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Abstract

Heat transfer models for agitated, jacketed, laboratory-scale batch reactors are re-

quired to predict process temperature profiles with great accuracy for tasks associated

with chemical process development such as batch crystallisation and chemical reaction

kinetics modelling. The standard approach uses a reduced model which assumes the

system can be adequately represented by a single overall heat transfer coefficient which

is independent of time, however the performance of reduced models for predicting the

evolution of process temperature is rarely discussed. Laboratory scale (0.5 and 5 l)

experiments were conducted using a Huber thermoregulator to deliver a thermal fluid

at constant flow to a heat transfer jacket. It is demonstrated that the relative specific

heat contribution of the reactor and inserts represent an increasing obstacle for these

transient models with decreasing scale. However, a series of experiments implied that

thermal losses were the limiting factor in the performance of a single coefficient reduced

model at laboratory-scale. A diabatic model is presented which accounts for both ther-

mal losses and the thermal inertia of the reactor vessel and inserts by incorporating

a second coefficient and a modified heat capacity term. The mean absolute error in

predicted process temperature was thereby reduced by a factor of eight, from 2.4 to

0.3K, over a 150min experiment.
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Introduction

Jacketed stirred vessels are widely used in the chemical and pharmaceutical industries as

well as in the process development laboratories in industry and in academia for carrying out

many operations involving heat transfer, for example, chemical reaction and crystallisation

processes. Accurate prediction of temperature-time profiles in the vessel as functions of

jacket fluid inlet temperature and flow rate is required for controlling these processes to

meet product specifications. A lumped parameter (or reduced) model with a single overall

heat transfer coefficient (OHTC) is frequently employed in industry and academia to predict

the transient temperature profiles and batch operating times in such vessels irrespective of

the size of the equipment. How adequate and how accurate are the predictions? The OHTC

is a steady state concept applied to these transient operations. The reduced model is based

on a number of simplifying assumptions as listed in Table 1.1,2 The use of the OHTC is

therefore a compromise between accurately representing the system and the convenience of

applying a simple model with only one coefficient. Given this compromise, it is important to

provide a measure of OHTC performance in order to clarify how significantly an OHTC-based

model departs from real measurements as a consequence of these assumptions.

Some assumptions are more onerous on a model’s performance than others, while some

assumptions, such as the accommodation of thermal losses and the specific heat contributions

of the vessel and inserts can be addressed by using a more involved model. It is therefore

possible to redress the compromise between accuracy and simplicity, making it important to

select a heat transfer model appropriate for the requirements. A broad estimate of a batch

plant’s annual throughput and a pharmaceutical/fine chemical batch crystallisation kinetics

model are likely to have vastly different requirements for accuracy and complexity. A model

which predicts the evolution of process temperature over time to high precision may be more

valuable in the latter case.

The OHTC represents the summation of five resistances to heat transfer in series. These

are the internal and external film resistances, internal and external fouling resistances (RFi
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Table 1: Assumptions applied in reduced heat transfer models for agitated batch reactors1,2

Number Assumption Justification
1 The steady state concept of OHTC

can be applied to transient operation
Common practice in these models for
ease of application

2 The OHTC is constant Variation of film coefficients with time
and position is relatively small

3 Residence time in the jacket is small When compared to the duration of
heating or cooling

4 The process fluid is perfectly mixed High impeller speed used (large
Reynolds number flow)

5 Jacket flow rate is fixed The thermoregulator has a fixed speed
pump

6 Heat capacities are time invariant Valid when the heat capacities do not
depend strongly on temperature and
concentration of the reactants

7 The temperature of the jacket inlet is
constant

As programmed at the thermoregulator

8 Thermal losses or gains are negligible
(the system is adiabatic)

Valid when jacket and process are well
insulated

9 Mass weighted heat capacity contri-
butions of the vessel walls, agitator
and jacket walls are small in compar-
ison to the process fluid

Frequently true but will depend on the
scale, reactants and contruction mate-
rials

10 The thermal response of the jacket is
instantaneous

Valid when the thermal conductivity is
high and the specific heat is low

11 Heat input from the impeller is negli-
gible

When compared to the thermal duty of
heating or cooling

12 Heat transfer due to friction in the
jacket is negligible

Pressure drop through the jacket is rel-
atively low

and RFo) and a wall conduction resistance. Depending on the properties of the thermal

jacket and process fluids, the fouling resistances are often assumed to be negligible. These

resistances are shown as a schematic in Figure 1 and are used to define the OHTC in eq. (1),3

based on the internal heat transfer area, Ai, of the vessel. It should be noted that the height

of the heat transfer area, L, is likely to be affected by vortexing of the process fluid due to

agitation as well as by the geometry of the thermal jacket.
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Figure 1: Resistance diagram for heat transfer from the jacket to the process

Countless Nusselt number relationships (expressed in terms of Reynolds and Prandtl

numbers) exist for the internal and external film coefficients associated with various vessel

geometries, including different impeller types, impeller dimensions, reactor scales and for

both Newtonian and non-Newtonian fluids.4–6 These Nusselt correlations are themselves

associated with significant errors, reported as up to 39.8% in Heinlin and Sandal 1972.7 The

dimensionless numbers are calibrated based on instantaneous values of fluid properties, such

as dynamic viscosity, which are highly dynamic over a temperature range.

The film coefficients (ai and ao) are derived from OHTCs by applying the Wilson method8

and the 39.8% error does not account for the errors associated with the determination of

the OHTC value, which can be significant. Applying these OHTC values reported in the

literature to a new system, with even subtle differences in geometry, scale and environmental

conditions, can have significant detrimental impact on the capacity to predict the evolution

of process temperature with time. Ultimately, relying on literature OHTC values is no

substitute to generating a unique OHTC for the precise system at hand, particularly as the

model used to obtain the OHTC and the assumptions required for that model are often

inadequately reported.

With these factors in mind, there is clear value in providing a quantitative measure for

how well a reduced model represents the system. The purpose of the OHTC is to predict
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the evolution of process temperature with time. The performance of a heat transfer model

can be quantified using the overall mean absolute error (MAE) obtained from the difference

between predicted and measured process temperatures over the duration of an experiment.

Point temperature data obtained from laboratory-scale batch reactors of 0.5 and 5 l scale

are used to assess the performance of OHTC models and investigate the validity of some of

the assumptions listed in Table 1.

Experimental Methods

Figure 2 is a schematic of the experimental facility. A Huber 380 HT thermoregulator was

connected by flexible hosing to an unbaffled agitated batch reactor (Radleys, UK), of either

0.5 or 5 l scale, mounted in a fume cupboard. The optional condenser, turbidity and pH

probes shown in Figure 2 were not used while characterising the heat transfer performance

of the system. The vessels have a borosilicate glass construction with a thermal jacket for

heat transfer, while the smaller vessel has a secondary jacket providing vacuum insulation

to the system. The dished portion of the vessel is not thermally jacketed in the 0.5 l vessel,

in contrast to the 5 l vessel. The vessels are agitated by pitched blade impellers. Standard

vessel geometry9 is employed in all aspects except for the impeller to vessel diameter ratios,

which are 0.471 and 0.5 for the 0.5 and 5 l scales, respectively, rather than 0.333. The process

fluid for this heat transfer study was tap water. Results from the 0.5 l vessel, agitated at

200 rpm are presented as the base case in this study.

The Huber delivers a thermal fluid (TF) (Radleys, UK) containing a mixture of tri-

ethoxysilanes, to the jacket. The process temperature, Tp, is measured by a class A PTFE

Pt100 temperature probe of accuracy within ±0.15K at 0 ◦C. The jacket inlet and outlet

temperatures, Tj1 and Tj2, as well as the ambient temperature of the fume cupboard, T∞,

are measured by class B metallic Pt100 temperature probes of accuracy ±0.3K at 0 ◦C. The

volumetric flow rate of the TF, delivered by the Huber’s fixed speed circulation pump, is
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Figure 2: Schematic of the jacketed reactor/crystalliser system with relevant heat transfer
and control apparatus

measured to an accuracy of ±1% by a positive displacement flow meter (Caché Instrumenta-

tion Ltd.). These measurements are recorded at 1 Hz frequency using an in-house, Labview

derived data-logging software.

The Huber can be programmed with alternative temperature plans, implemented in Lab-

view, as demonstrated in Figure 3. Temperature plan 1 uses a simple ramp program to cycle

the target process temperature, Tset, between 20 and 50 ◦C. Temperature plan 2 uses a near

square step profile to control the target jacket inlet temperature. Using temperature plan

2, the process temperature is allowed to exponentially approach the jacket temperature,

thereby mimicking the natural heating and cooling operation typical of batch crystallisation.

8



0 50 100 150

20

30

40

50

S
et

 te
m

pe
ra

tu
re

 (
ºC

)

Time (min)

 

 

Temperature plan 1 (Ramp)
Temperature plan 2 (Square step)

Figure 3: Two set temperature profiles programmed at the Huber thermoregulator

Reduced models for heat transfer

Adiabatic models

The process for heat transfer indicated in Figure 2 is a jacketed batch reactor with a non-

isothermal heating/cooling medium flowing through the jacket. Assumption 8, that the

system is adiabatic, entails that the entire enthalpy change on the jacket side manifests on

the process side, whether the jacket is heating or cooling the process. The heat transfer

processes associated with an adiabatic system are illustrated in Figure 4. Consequently, at

any instant in time and with assumption 3, the change in enthalpy of the TF flow through

the jacket, Q̇j(t) = Q̇j1(t)− Q̇j2(t), must equal the rate of change of enthalpy in the process,

Q̇p(t), as given by eq. (2). Q̇j−p(t) represents the rate of heat transfer across the wall between

the jacket and process and will become relevant later in this derivation.

Q̇j(t) = Q̇p(t) (2)

Measurement of the TF flow, Ṁj, and jacket inlet and outlet temperatures enables the

calculation of Q̇j(t), using eq. (3).
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Figure 4: Heat transfer processes in an adiabatic jacketed batch reactor

Q̇j(t) = (Ṁcp)j(Tj1(t)− Tj2(t)) (3)

The rate of heat accumulation on the process side depends on the application of assump-

tion 9, that the specific heat contributions of the vessel and inserts are negligible compared

to the process fluid. If the assumption is applied then Q̇p(t) is given by eq. (4).

Q̇p(t) = Mcp
dTp(t)

dt
(4)

where M is the mass and cp is the specific heat of the process fluid within the vessel and

Tp(t) is the process temperature.

Alternatively, the heat capacity, Mcp, contributions of all N components of the reactor,

including the vessel, agitator and inserts, can influence the process temperature and eq. (4)

is updated to give eq. (5).

Q̇p(t) =
N∑
n=1

(Mcp)n
dTp(t)

dt
(5)

Before proceeding with the reduced model it is useful to check that the assumptions ap-

plied are valid for the system under investigation. A common steady state heat exchanger

parameter, the thermal effectiveness, E, is proposed for this validation. The thermal effec-

tiveness is the ratio of the actual rate of heat transfer, Q̇, to the maximum possible rate of
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heat transfer, Q̇max, and is represented as follows:

E =
Q̇

Q̇max

(6)

The maximum possible rate of heat transfer will occur if the outlet temperature of the

TF becomes equal to the process temperature. However, in these batch systems, the temper-

atures change with time and so the thermal effectiveness will be time dependent. In eq. (6),

Q̇ will become Q̇j(t) and Q̇max will be obtained from experimental measurements according

to eq. (7):

Q̇max(t) = (Ṁcp)j (Tj1(t)− Tp(t)) (7)

Hence the time dependent thermal effectiveness, E(t), can be evaluated from experimen-

tal point temperature data using the following ratio of temperatures:

E(t) =

∣∣∣∣∣(Ṁcp)j(Tj1(t)− Tj2(t))

(Ṁcp)j(Tj1(t)− Tp(t))

∣∣∣∣∣ =

∣∣∣∣Tj1(t)− Tj2(t)

Tj1(t)− Tp(t)

∣∣∣∣ (8)

where

0 ≤ E(t) ≤ 1 (9)

As a normalised dimensionless parameter, the thermal effectiveness must remain between

zero and unity at all times. The failure of this constraint would give cause to question

the underlying assumptions of Table 1. Thus, instances where the experimental value for

thermal effectiveness is outside the range given by eq. (9) reveal underlying assumptions

which undermine the model.

Returning to the reduced model, an OHTC term is required in order to predict the

evolution of process temperature with time or predict batch operating times. The OHTC

is introduced through the rate of heat transfer across the boundary between the jacket and

process, Q̇j−p(t). Since the system is adiabatic, the rate of heat transfer across the boundary
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is equivalent to the enthalpy change in the jacket and in the process at any instant.

Q̇j(t) = Q̇j−p(t) = Q̇p(t) (10)

The value ascribed to the OHTC depends on how the temperature difference, representing

the driving force for heat transfer, is defined. If the driving force is taken to be the arithmetic

mean temperature difference between the jacket and the process temperatures, the OHTC

is defined using eq. (11).

Q̇j−p(t) = UA(T̃j(t)− Tp(t)) (11)

where

T̃j(t) =
Tj1(t) + Tj2(t)

2
(12)

If the driving force is defined using the more popular logarithmic mean temperature

difference, LMTD, eq. (13) applies.

Q̇j−p(t) = UA∆Tln(t) (13)

where

∆Tln(t) =
∆T1(t)−∆T2(t)

ln
(

∆T1(t)
∆T2(t)

) =
Tj1(t)− Tj2(t)

ln
(
Tj1(t)−Tp(t)

Tj2(t)−Tp(t)

) (14)

As eq. (10) applies at any point in time, eq. (3) and eq. (13) can be equated to provide

the relationship for instantaneous jacket outlet temperature in eq. (15).

Tj2(t) = Tp(t) + (Tj1(t)− Tp(t))exp

(
− UA

(Ṁcp)j

)
(15)

Substituting eq. (15) back into eq. (3) and equating that expression with eq. (4) yields

the ordinary differential equation (ODE) for process temperature in eq. (16).10
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Mcp
dTp(t)

dt
= (Ṁcp)j

(
1− exp

(
− UA

(Ṁcp)j

))
(Tj1(t)− Tp(t)) (16)

Applying eq. (5) rather than eq. (4) to the enthalpy balance results in the modified ODE

in eq. (17).

N∑
n=1

(Mcp)n
dTp(t)

dt
= (Ṁcp)j

(
1− exp

(
− UA

(Ṁcp)j

))
(Tj1(t)− Tp(t)) (17)

The thermal effectiveness-number of heat transfer units, E − NTU , model proposed by

Kays and London 198411 introduces alternative terminology for some components of eqs. (16)

and (17). The large bracket term represents the thermal effectiveness, previously defined in

eq. (6). The grouping in the exponential terms of these equations is labelled the dimensionless

number of heat transfer units, NTU , and is the ratio of the heat transfer capacity, UA, of

the vessel to the heat capacity of the flow, Ṁcp.

E = 1− exp(−NTU) (18)

where

NTU =
UA

(Ṁcp)j
(19)

This highlights a contradiction in the reduced model, because if the thermal effectiveness

is a transient term, as implied by eq. (8), the OHTC, which is a steady state concept, must

be transient also.

It is possible to solve eq. (16) analytically subject to the conditions in eq. (20). These

conditions invoke assumptions 5 and 7, that the TF flow and the jacket inlet temperature

are constant. This integration yields eq. (21).10

Tp = Tp(0) at t = 0

Tj1, Ṁ = constant at t ≥ 0

(20)
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ln

(
Tj1 − Tp(0)

Tj1 − Tp(t)

)
=

(Ṁcp)j
MCp

(
1− exp

(
− UA

(Ṁcp)j

))
t (21)

A plot of the logarithmic temperature ratio (LTR) on the left hand side of eq. (21) against

time should therefore provide a linear relationship from which the gradient can be used to

determine the OHTC. The absence of a straight line relationship indicates the failure of

assumption 2 that the OHTC is constant.

Often, the evolution of process temperature must be predicted for a transient jacket inlet

temperature. Figure 3 demonstrates two set temperature plans for which the jacket inlet

temperature will not be constant during much of the experiment. For a transient jacket inlet

temperature, eq. (16) or eq. (17) can be solved numerically subject to the initial conditions

in eq. (22).

Tp = Tp(0) at t = 0

Ṁ = constant at t ≥ 0

(22)

Here, a second order Runge-Kutta method is used to solve the ODE reduced models in

Matlab in order to predict the evolution of process temperature with time for an estimated

value of the OHTC. The instantaneous process temperature predicted by any such model,

f(t), can be compared with the experimental process temperature measured using the PTFE

temperature probe. The OHTC value is optimised by minimising the mean absolute error

(MAE) between the predicted and measured process temperature profiles to a tolerance of

1× 10−4 K. The benefit of this approach is that the optimisation criteria, MAE, is calculated

over the entire duration of the experiment, rather than for a brief period when the jacket

inlet temperature is held constant.

MAE =
1

I

I∑
i=1

|f(t)− Tp(t)|i (23)

This MAE provides a quantitative measure of the performance of the model and can be
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used as a basis for comparing the different ODE models. By comparing the predicted and

measured process temperature profiles it is also possible to identify the regions where the

profiles depart and thereby deduce which assumptions most limit the model’s performance.

Diabatic model

A poorly insulated, laboratory-scale glass batch reactor, with a corresponding large external

surface area to volume ratio, is unlikely to have negligible thermal losses. For a diabatic

system, as demonstrated in Figure 5, eqs. (3), (4) and (13) cannot be equated due to thermal

losses both direct from the process through the reactor lid and from the jacket external wall.

The schematics in Figures 4 and 5 are largely representative of the larger 5 l reactor used

in this study as the thermal jacket covers the dished portion of the process and there is no

secondary vacuum jacket to reduce thermal losses.

Q̇j1

Tj1(t)
Q̇j2

Tj2(t)

Q̇j

Q̇j−p

Q̇p

Tp(t)
Q̇jloss

Q̇ploss

Figure 5: Heat transfer processes in a diabatic jacketed batch reactor

A heat balance around the process side reveals that the sum of the rate of heat accumula-

tion in the process, Q̇p(t), and the rate of heat loss from the process, Q̇ploss(t), is equal to the

rate of heat transfer across the wall between the jacket and the process, Q̇j−p(t). Equally, a

heat balance around the jacket indicates that the difference between the total rate of heat

transfer from the jacket, Q̇j(t), and the rate of heat loss from the jacket, Q̇jloss(t), equates

to the rate of heat transfer across the boundary, Q̇j−p(t).
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Q̇p(t) + Q̇ploss(t) = Q̇j−p(t) = Q̇j(t)− Q̇jloss(t) (24)

The rate of thermal loss from the process is introduced to eq. (17), generating eq. (25).

In reality, these thermal losses represent the sum of the losses due to radiation and free

convection, however for simplicity the rate of heat loss is represented using a single coefficient,

similar to eq. (11) for heat transferred across the interior jacket wall. This lumped parameter

thermal loss model used implies that the vapour in the vessel ullage is in thermal equilibrium

with the process fluid. The driving force for heat loss from the process is given by the

difference between the process temperature and the ambient temperature, T∞(t).

N∑
n=1

(Mcp)n
dTp(t)

dt
= (Ṁcp)j

(
1− exp

(
− UA

(Ṁcp)j

))
(Tj1(t)−Tp(t))−(UA)ploss(Tp(t)−T∞(t))

(25)

This diabatic ODE model given by eq. (25) can be integrated using the same second order

Runge-Kutta numerical integration technique.12 However, the ODE must now be optimised

for two heat transfer coefficients, U and Uploss, thus requiring more extensive experimental

validation.

Since the rate of heat transfer across the interior jacket wall and rate of heat transfer

from the jacket are known at any instant in time, the rate of thermal loss from the jacket

external wall can be determined from eq. (24). The heat transfer coefficient for the losses

from the jacket can be determined without the need for numerical integration using eq. (26).

(Ṁcp)j(Tj1(t)−Tj2(t))−(UA)jloss(T̃j(t)−T∞(t)) = (Ṁcp)j

(
1− exp

(
− UA

(Ṁcp)j

))
(Tj1(t)−Tp(t))

(26)
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Results

Measured temperature profiles

Measured temperature-time profiles for the base case heating-cooling run in the 0.5 l vessel

are shown in Figure 6 for the ramp and natural heating/cooling operations of temperature

plans 1 and 2. The process fluid is agitated at an impeller speed of 200 rpm with correspond-

ing Re (ρNDi
2

µ
) ≈ 47000. The jacket outlet temperature is also measured but closely mirrors

the inlet temperature, due to the rapid flow of the TF in the jacket, and hence is not shown.

From the response of the process temperature to the jacket temperature profiles, it is

possible to observe departure from some of the assumptions listed in Table 1. At the onset

of heating at the start of Figure 6a and at the onset of cooling in Figure 6b at 50min there

is a clear delay in the response of process temperature to the rapid change in temperature

on the jacket side. This demonstrates the thermal inertia of the glass vessel in contradiction

of assumption 9 that the heat capacity contribution of the vessel is negligible in comparison

to the process fluid.
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(a) Temperature plan 1 (ramp operation)
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(b) Temperature plan 2 (natural heating/cooling
operation)

Figure 6: Measured temperature-time profiles in the 0.5 l reactor agitated at 200 rpm

Figure 6b demonstrates the process temperature approaching steady state between 30
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and 50min, peaking at a maximum of 47.6 ◦C, significantly below that of the jacket inlet

temperature of 50.5 ◦C. Similarly in Figure 6a, between 45 and 80min, the process tempera-

ture falls in spite of the higher jacket inlet temperature and hence the positive driving force

for heat transfer between the jacket and process. This demonstrates the diabatic nature of

the system as a result of heat loss directly from the process in contravention of assumption

8. In an adiabiatic system, the process temperature would approach the jacket temperature

and the temperature drop through the jacket would fall towards zero. Here, the maximum

process temperature is limited by the thermal losses while a near constant temperature drop

is maintained on the jacket side.

Between 5 and 50min in Figure 6b both the jacket inlet temperature and the ambient

temperature are relatively constant. Consequently, as the process temperature rapidly in-

creases towards the jacket temperature the driving force for desirable heat transfer to the

process quickly falls, while the driving force for undesirable thermal losses from the process

increases. The assumption that thermal losses are negligible is therefore most applicable at

the start of the heating regime, however, as the thermal losses are greatest in magnitude

when heat transfer to the process is at a minimum, thermal losses can have a significant

influence on the process temperature profile towards the end of the heating regime.

Having identified a couple of assumptions which appear to be qualitatively contradicted

by the raw temperature data, we can quantitatively assess how these assumptions affect the

capacity of the models proposed to predict the evolution in process temperature over time.

Transience of the OHTC

As listed in Table 1, the OHTC is assumed to be constant with time in reduced models.

Two methods are outlined for testing this assumption using eqs. (18) and (21). Figure 7

demonstrates the evolution in thermal effectiveness over the duration of temperature plan

1, as calculated from eq. (8), for the base case experiment. From this thermal effectiveness

profile, an instantaneous OHTC is calculated using eqs. (18) and (19). If the thermal re-
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sponse of the jacket is not instantaneous and the system is diabatic, achieve negative thermal

effectiveness values may be obtained from the experimental data, therefore the modulus of

the thermal effectiveness is shown in Figure 7 for representation on a logarithmic scale.

An OHTC of 208.9Wm−2 K−1 was found by optimising eq. (17) for the minimum MAE

over the entire duration of the experiment and is shown for reference in Figure 7. Typical

OHTC values reported in the literature for glass lined stainless steel reactors lie in the range

of 170-450Wm−2 K−1.13
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The asymptotes at around 80 and 115min coincide with the thermal effectiveness ex-

ceeding unity. This contravenes the constraint shown in eq. (9) and thus implies a failure

in the assumptions of Table 1 at these times. Comparing, this thermal effectiveness profile

with the corresponding raw temperature data in Figure 6a, the thermal effectiveness asymp-

totes coincide with the jacket and process temperatures becoming equal during a transition

between heating and cooling operation.

If there is a transition between heating and cooling, there must be an instant where
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there is no driving force for heat transfer between the jacket and process. Logic follows

that if there is no temperature difference between the jacket and process there can be no

heat transfer between the jacket and process and the thermal effectiveness must be zero.

However, as the thermal response of the jacket to rapid changes in jacket inlet temperature

is not instantaneous and the jacket is imperfectly insulated, in contradiction of assumptions

10 and 8 respectively, a finite temperature drop is maintained along the length of the jacket

while there is no driving force for heat transfer to the process. Consequently, during rapid

changes in jacket inlet temperature and when the process temperature approaches the jacket

inlet temperature, maximum strain is placed on the adiabatic reduced heat transfer model

and the thermal effectiveness tends to infinity.

In Figure 6b the jacket inlet temperature is near constant between 5 and 50 minutes,

thereby satisfying the conditions in eq. (20) which allow eq. (16) to be solved analytically,

generating eq. (21). Figure 8 shows a plot of the LTR term (left hand side of eq. (21))

evolving with time. A constant gradient in this relationship would imply a constant OHTC.

The instantaneous OHTC obtained from eq. (26) using the instantaneous gradients of the

LTR-time curve is also plotted on a second axis of Figure 8. The instantaneous LTR-time

gradients are time averaged over two minute intervals in order to reduce the noise arising

from fluctuations in the experimental measurements.

U(t)A = −(Ṁcp)j ln

1− (Ṁcp)j
MCp

d ln
(
Tj1(t)−Tp(0)

Tj1(t)−Tp(t)

)
dt

 (27)

In Figure 8 the LTR profile has a near constant gradient during 5-12min, falls significantly

during 12-30min and is very small thereafter. Consequently, even while the jacket inlet

temperature and jacket flow rate are constant, there are difficulties in generating a clear and

unambiguous constant OHTC from the experimental data. During the initial 5-12min time

range, the instantaneous OHTC is close to the value of 208.9Wm−2 K−1 generated using

eq. (17). During this period the driving force for heat transfer to the process is high and
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that for thermal loss from the process is very low and so the assumption that thermal losses

are negligible is most applicable in this regime. As the process temperature rises, the thermal

losses become increasingly significant and, as the thermal losses approach equilibrium with

the desirable heat transfer to the process, there is negligible heat accumulation in the process

the observed OHTC falls toward zero.

Specific heat contributions of the vessel and inserts

During a heating cycle, the TF heats not only the process fluid, but the metal and glass walls

of the vessel and all inserts on the process side, which could include impellers and baffles for

mixing, as well as temperature and other measurement probes. As a result of assumption

9, only the heat capacity of the process fluid is considered in eq. (16), implying that the

wall separating the jacket and process is transparent to heat, even though the OHTC itself

contains a wall conduction term, as shown in eq. (1).

Table 2 details the heat capacity contributions of the various components of four water

filled, unbaffled reactors of different scales, including the two laboratory-scale reactors inves-

tigated in this study. For this exercise, heat transfer is assumed to be in one direction, either

from the jacket to the process or vice versa, and so only the reactor wall separating the jacket

and process is considered to contribute towards the heat capacity of the vessel. The majority

of the total heat capacity is accounted for by the process fluid, however the contribution of

the vessel and inserts are by no means negligible. The heat capacity contributions of the

vessel and inserts increases as scale is reduced as a consequence of the enhanced surface area

to volume ratio. The vessel and inserts represent 20.8 and 17.6% of the total heat capacities

of the filled 0.5 and 5 l reactors respectively.

When the vessel and inserts contribute appreciably to the total system heat capacity, the

heat capacity term in eq. (16) is smaller than that in eq. (17). When using a particular model

to optimise the OHTC to the experimental data, the specific heat, thermal effectiveness,

number of heat transfer units and OHTC are all proportional, and so eq. (16) will estimate a
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Table 2: Contributions to the total specific heat of water filled, agitated batch reactors of
different scales

V M cp Mcp Mcp

(m3) (kg) (kJ kg−1 K−1) (kJK−1) (%)
2273 litre (Pfaudler, USA)14
Water 2.27 2.26× 103 4.18 9.45× 103 96.2
Steel inserts 2.37× 10−3 1.87× 101 0.51 9.54 0.1
Steel walls 8.96× 10−2 7.07× 102 0.51 3.60× 102 3.7
Total 9.82× 103

25 litre (Radleys, UK)
Water 2.15× 10−2 2.14× 101 4.18 8.93× 101 94.8
Teflon inserts 2.23× 10−4 4.80× 10−1 1.30 6.24× 10−1 0.7
Glass walls 2.53× 10−3 5.65 0.75 4.23 4.5
Total 9.42× 101

5 litre (Radleys, UK)
Water 4.31× 10−3 4.28 4.18 1.79× 101 82.4
Teflon inserts 2.10× 10−5 4.60× 10−2 1.30 5.98× 10−2 0.3
Glass walls 7.60× 10−4 5.02 0.75 3.77 17.3
Total 2.17× 101

0.5 litre (Radleys, UK)
Water 4.29× 10−4 4.26× 10−1 4.18 1.78 79.2
Teflon inserts 2.00× 10−5 4.30× 10−2 1.30 5.59× 10−2 2.5
Glass walls 1.00× 10−4 5.49× 10−1 0.75 4.12× 10−1 18.3
Total 2.25

lower thermal effectiveness and OHTC than eq. (17) for the same experimental data. Table 3

demonstrates that the OHTC value found using eq. (17) is 13.3% higher than that obtained

using eq. (16) for the 0.5 l vessel and 22% higher for the 5 l vessel. It is therefore vital,

particularly at laboratory-scale, to understand how the heat capacity of the system has been

estimated for the purpose of calculating the OHTC, and yet this is not always explicit when

OHTC values are reported in the literature.

Table 3 confirms that the two models perform equally well in predicting the evolution of

process temperature when the same specific heat assumption is used in the generation and

application of the OHTC. The significance of the heat capacity assumption becomes clear

in Figure 9 when different heat capacity models are used to optimise the OHTC and apply

the OHTC to predict the evolution of process temperature. The dashed lines of Figure 9
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Table 3: The impact of the specific heat contributions of the vessel and inserts towards the
OHTC for 0.5 l and 5 l vessels

Scale Model Mcp UA U MAE Max error
(l) (kJK−1) (WK−1) (Wm−2 K−1) (K) (K)
0.5 eq. (16) 1.78 3.59 184.4 2.36 3.39
0.5 eq. (17) 2.25 4.07 208.9 2.36 3.39
5 eq. (16) 1.79× 101 9.92 83.4 1.20 2.10
5 eq. (17) 2.17× 101 12.10 101.8 1.20 2.10

represent model predictions of process temperature. The first legend entry for these profiles

represents the model used to estimate the OHTC and the second legend entry represents the

model used to predict the temperature profile.
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Figure 9: The effect of heat capacity assumptions on the predicted process temperature
profile in a 5 l reactor agitated at 200 rpm. Dashed lines represent predictions of process
temperature where either eq. (16) or eq. (17) has been used to optimise the OHTC (first
legend entry) before predicting the evolution of process temperature (second legend entry)

If the low OHTC, optimised using eq. (16), is applied in eq. (17) the thermal effectiveness

will be artificially low for the heat capacity term. When predicting the evolution process

temperature, eq. (17) will correct for the low thermal effectiveness by over-estimating the rate

of change in process temperature. The predicted process temperature therefore over-shoots

the experimental process temperature, as shown by the green line of Figure 9. Conversely,

if the larger OHTC, optimised using eq. (17), is deployed in eq. (16) the heat capacity is too
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low for the thermal effectiveness and the predicted process temperature profile will under-

shoot the experimental data, as shown by the purple line of Figure 9. This highlights the risk

associated with indiscriminately applying OHTCs from the literature without appreciating

the full calculation procedure.

Thermal losses from and gains by the system

An adiabatic model with just one coefficient in eq. (17) and a diabatic model with two

coefficients in eq. (25) are presented to predict the evolution of process temperature with

time. The experimental temperature profiles in Figure 6 imply that thermal losses from the

process are not negligible. However, the approach used for numerical intergation of ODEs

throughout this study provides a quantitative measure of how well each heat transfer model

performs in predicting process temperature over time and so the significance of thermal losses

can be assessed.

Using this methodology, an OHTC is optimised by solving the ODE for the minimum

MAE over the duration of any particular experiment. The second heat transfer coefficient

governing thermal loss from the process is assumed to be constant for each vessel. This

coefficient can therefore be optimised across multiple experiments undertaken in a particular

vessel, including for experiments using different jacket inlet temperature profiles and different

mixing conditions.

The optimised coefficients from each model are presented for the two temperature plans,

using the base case experimental set up, in Table 4. The MAE and maximum error in the

predicted process temperature are also presented as a measure of each model’s performance.

The process temperature predictions of each model can also be qualitatively compared with

the measured process temperature profiles in Figure 10.

In Figure 10, the adiabatic model is shown to significantly over-predict the process tem-

perature whenever the process temperature is significantly larger than the ambient temper-

ature and hence the driving force for thermal loss is high. Consequently errors up to 3.4
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Table 4: A summary of OHTCs and performance of adiabatic (eq. (17)) and diabatic
(eq. (25)) heat transfer models in the 0.5 l vessel agitated at 200 rpm

Temperature plan Model UA U (UA)ploss MAE Max error
(WK−1) (Wm−2 K−1) (WK−1) (K) (K)

Plan 1 eq. (17) 4.07 208.9 - 2.4 3.4
Plan 1 eq. (25) 4.25 218.0 0.45 0.3 0.8
Plan 2 eq. (17) 4.49 230.3 - 1.7 2.9
Plan 2 eq. (25) 4.25 218.0 0.45 0.5 1.1
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Figure 10: A comparison of adiabatic (eq. (17)) and diabatic (eq. (25)) ODE models for
predicting the evolution of process temperature with time in a 0.5 l vessel agitated at 200 rpm

and 2.9K are observed in each temperature plan and the MAE associated with temperature

plan 1 is 2.4K. This MAE is a factor of eight lower when applying the diabatic model to

temperature plan 1, equivalent to the experimental error associated with the class B tem-

perature probes used to measure the jacket inlet and outlet temperatures and the ambient

temperature. Figure 10 also demonstrates the exceptionally close fit between the diabatic

model predictions for process temperature and the experimental data throughout the two

experiments.

Significantly, the optimum OHTC generated by the adiabatic model is 10.3% larger for

temperature plan 2 than for temperature plan 1, even though all the experimental conditions
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apart from the jacket inlet profile are identical. The maximum jacket inlet temperature and

maximum process temperature are both larger for temperature plan 1 and so the thermal

losses impact that experiment more significantly. Consequently, thermal losses not only

significantly limit the quality of the predictions of the adiabatic model, but the applicability

of the OHTC generated is also more limited as the thermal losses impact experiments with

different jacket inlet profiles differently. Conversely, the adiabatic model performs very well

using the same two heat transfer coefficients for the two different jacket inlet temperature

profiles. Therefore, even though eq. (25) must be optimised for a second coefficient in addition

to the OHTC, a greater number of unique coefficients may be required if the adiabatic eq. (17)

model is applied to multiple experiments with different jacket inlet temperature profiles.

Summary of the procedure for characterising heat transfer

in jacketed batch vessels

The following procedure is recommended for characterising heat transfer in jacketed batch

reactors prior to undertaking chemical reactions or crystallisations in that vessel:

• A target, or set point, process temperature profile should be chosen in consideration

of the crystallisation or reaction experiments to be undertaken in the vessel. Two

alternative temperature profiles are shown in Figure 3.

• A minimum of four temperature probes and one in-line flow meter are required at the

locations indicated in Figure 2 in order to capture the five fundamental parameters

necessary to characterise the system. These parameters are Tj1, Tj2, Tp, T∞, and Ṁ .

• Simple experiments should be conducted using the chosen set point temperature pro-

file on the process side and a chemically inert process fluid, recording the transient

temperatures and jacket flow at short regular intervals.
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• Data should be analysed in order to characterise the system and to find a heat transfer

model which adequately represents the system. The thermal effectiveness, E(t), may

be calculated as a function of time using Equation (8). If E(t) exceeds unity at any

point in time, this indicates the failure of an assumption listed in Table 1 at these

stages of the experiment.

• A heat transfer model must be chosen to predict the evolution of process temperature

with time. Two adiabatic models are presented using different assumptions regarding

the thermal inertia of the vessel and inserts in eqs. (16) and (17), and a diabatic model is

presented in eq. (25). The system in this study is best represented by eq. (25), however,

the heat transfer model should be chosen based on the the limiting assumptions for

the relevant system, revealed from the E(t) profile.

• The lumped model parameter, UA, must be optimised using the chosen heat transfer

model and an assessment made regarding how well that model performs when pre-

dicting process temperature evolving with time. Numerical integration of the ODE

for an estimate of UA enables the calculation of an error such as the MAE given in

eq. (23). The OHTC is optimised by manipulating UA to find its value when the MAE

is at a minimum. The MAE and the maximum departure between the experimental

and predicted process temperatures provide measures of the performance of the chosen

model using the optimised OHTC. An informed judgement can then be made as to

whether these errors are acceptably low for the work to be undertaken or whether an

alternative model is required.

Conclusions

1. Heat transfer in agitated, jacketed batch reactors is a transient process, however heat

transfer to the process is typically predicted using reduced models which employ a

single OHTC which is independent of time. Depending on how the reduced model
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assumptions are employed, vastly different OHTC values can be determined from the

same experimental data. For a 0.5 l vessel agitated at 200 rpm, modifying these as-

sumptions resulted in the OHTC varying in the range of 184.4-230.3Wm−2 K−1, a

variation of 20%.

2. The evolution in thermal effectiveness over time provides a useful check as to whether

these assumptions adequately represent the system at any instant in time. Solving

ODEs of reduced heat transfer models numerically allows a solution to be found for a

transient temperature profile in the jacket. This approach also provides a quantitative

measure of the reduced model’s performance in predicting process temperature evolving

over time through the MAE and the maximum error.

3. The specific heat contribution of the vessel and inserts become increasingly significant

at laboratory-scale as vessel walls and inserts increasingly contribute towards the total

mass of the system with reduced capacity. Whether these specific heat contributions

have been considered in the estimation of the OHTC can have a significant impact on

the value of the OHTC and the quality of any predictions attained using this value.

4. The large surface area to volume ratio and imperfect insulation of glass walled, laboratory-

scale batch reactors challenges the underlying assumption that the system is adiabatic.

Incorporating even a simple thermal loss model to the ODE has been observed to re-

duce the MAE by a factor of up to eight, while the model also becomes more robust

in its application to different jacket inlet temperature profiles.

5. For the laboratory-scale jacketed batch reactors in this study, a diabatic reduced model

which incorporates the heat capacity of the vessel and inserts, presented in eq. (25),

best represents the heat transfer and can be used to predict the evolution of process

temperature to a high precision. In order to reach this conclusion the equipment

needed to be characterised by measuring jacket inlet and outlet, process and ambient

temperatures as well as the jacket flow rate during a series of simple experiments. It is
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essential to consider and then assess the most appropriate heat transfer model before

proceeding to an investigation of crystallisation, mixing or reaction kinetics for process

development.

Nomenclature

α Heat transfer film coefficient (Wm−2 K−1)

Ṁ Mass flow (kg s−1)

Q̇ Rate of heat transfer (W)

A Heat transfer area (m2)

cp Specific heat capacity (Wkg−1 K−1)

D Diameter (m)

E Thermal effectiveness

L Height of heat transfer area (Wm−1 K−1)

M Mass (kg)

MAE Mean absolute error (K)

NTU Number of heat transfer units

OHTC Overall heat transfer coefficient (Wm−2 K−1)

R Resistance to heat transfer (WK−1)

T Temperature (K)

t Time (s)

U Heat transfer coefficient (Wm−2 K−1)
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x Length along jacket wall (m)

λ Thermal conductivity (m)

Subscripts

1 inlet

2 outlet

F fouling

i interior

j jacket

j − p jacket to process

max maximum

o exterior

p process

w wall
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