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 14 

Abstract 15 

Direct measurements of NOx concentration and flux were made from a tall tower in central 16 

London, UK as part of the Clean Air for London (ClearfLo) project.  Fast time resolution (10 17 

Hz) NO and NO2 concentrations were measured and combined with fast vertical wind 18 



measurements to provide top-down flux estimates using the eddy covariance technique. 19 

Measured NOx fluxes were usually positive and ranged from close to zero at night to 2000 – 20 

8000 ng m-2 s-1 during the day.  Peak fluxes were usually observed in the morning, coincident 21 

with the maximum traffic flow.  Measurements of the NOx flux have been scaled and 22 

compared to the UK National Atmospheric Emissions Inventory (NAEI) estimate of NOx 23 

emission for the measurement footprint.  The measurements are on average 80% higher than 24 

the NAEI emission inventory for all of London. Observations made in westerly airflow (from 25 

parts of London where traffic is a smaller fraction of the NOx source) showed a better 26 

agreement on average with the inventory.  The observations suggest that the emissions 27 

inventory is poorest at estimating NOx when traffic is the dominant source, in this case from 28 

an Easterly direction from the BT tower.  Agreement between the measurements and the 29 

London Atmospheric Emissions Inventory (LAEI) are better, due to the more explicit 30 

treatment of traffic flow by this more detailed inventory.  The flux observations support 31 

previous tailpipe observations of higher NOx emitted from the London vehicle diesel fleet 32 

than is represented in the NAEI or predicted for several EURO emission control technologies. 33 

Higher than anticipated vehicle NOx is likely responsible for the significant discrepancies that 34 

exist in London between observed NOx and long-term NOx projections. 35 

 36 

Introduction 37 

The oxides of nitrogen NOx (defined as the sum of NO and NO2), are emitted as a 38 

consequence of most combustion processes.  The majority of NOx is emitted as NO, which is 39 

rapidly oxidised to NO2 upon reaction with ozone (O3), with the reverse of this process being 40 

caused by the action of sunlight on NO2 to form NO and O3.  NO2 is known to have 41 

significant direct health effects on humans.  At high concentrations it causes inflammation of 42 

the airways and long-term exposure may affect lung function and enhance the response to 43 



allergens1, 2.  In addition, NOx contributes to the formation of O3 and secondary particles 44 

through a series of photochemical reactions3.  As a result of this, NO2 is included in a series 45 

of air pollutants identified as part of the EU Air Quality Directive (AQD, 2008)4 which sets 46 

limit values for hourly and annual mean exposure.  It has been shown by measurements and 47 

models that the annual mean limit value of 40 g m-3 continues to be exceeded in many urban 48 

centres throughout the UK5, including London.  Measures are in place to control the 49 

emissions of nitrogen oxides and UK emissions are projected to decline by about 35 % 50 

between 2010 and 20206. However, it is known that ambient NO2 concentrations do not 51 

respond linearly to reductions in the concentration of NOx (e.g. Derwent et al., 19957), mainly 52 

because of the chemical coupling of ozone (O3) and NOx under ambient conditions8.  In 53 

addition, changes in diesel emission control technology have led to increases in directly 54 

emitted NO2
9

.  Trends in ambient concentrations of NOx and NO2 in the UK have generally 55 

shown a decrease in concentration from 1996 to 2002, followed by a period of more stable 56 

concentrations from 2004–201210.  This is not in line with the expected decrease suggested 57 

by the UK emission factors11.   58 

Air pollutant emission inventories provide input data for air pollution models, which in turn 59 

are used for predicting current and future air pollution.  This is typically done using a ‘bottom 60 

up’ approach involving estimated emissions from different source sectors to produce yearly 61 

emission estimates.  However it is known that this method can contain large uncertainties, 62 

with the errors propagating through into errors in air pollution models12.  Evaluation of 63 

emission inventories can be carried out by comparing air quality model predictions (using 64 

inputs from the inventory) to observed concentrations13, 14, however this method does not 65 

provide a direct comparison with the emission rate as it requires knowledge of other 66 

paramters such as chemistry and meteorology.  The eddy covariance technique provides a 67 

direct measurement of the flux to the atmosphere of a particular pollutant, thus providing a 68 



‘top down’ approach to quantifying emissions15.  Flux measurements also provide 69 

information on both spatial and temporal change in emissions from a calculated flux 70 

footprint, giving insight into controls and sources.  The majority of eddy covariance 71 

measurements made to date have concentrated on fluxes of greenhouse gases (CO2, CH4 and 72 

N2O)16, 17 and volatile organic compounds (VOCs)18-20, largely from biogenic sources. Some 73 

eddy covariance NOx flux measurements have been made and have typically focused on 74 

emissions from soils21, forests22-24 or snow25, 26.  Recently however, it has been shown that 75 

this method can be extended to the urban canopy for CO2
27-29 and VOCs30-32, with one study 76 

of urban NOx
33.   77 

In this study, we use the eddy covariance technique to directly measure the flux of NO and 78 

NO2 from a tall tower (190 m) in central London as part of the Clean Air for London 79 

(ClearfLo) project34.  The results are compared to local traffic flow and a flux footprint is 80 

calculated to allow comparison with two emission inventories, one for the whole of the UK 81 

and one specific to London.   82 

 83 

 84 

Experimental 85 

Measurement site 86 

Measurements were made during June – August 2012 and March – April 2013 from the top 87 

of the BT tower, a 190m tall telecommunications tower situated in central London, UK 88 

(51o31’17.4’’N 0o8’20.04’’W).  Mean building height is 8.8 ± 3.0 m within 1 - 10 km of the 89 

tower and 5.6 ± 1.8 m for suburban London beyond this30, 35.  The area surrounding the tower 90 

is dominated by roads and commercial / residential buildings, but also includes some urban 91 

parkland and pervious ground.  A map of the location of the tower within London is shown in 92 

the supplementary information (Figure S1).  The gas inlet and ultrasonic anemometer were 93 



attached to a mast which extended ~3 m above the top of the tower.  Air was pumped down a 94 

~40 m long Teflon tube (1/2” OD) at a flow rate of ~30 L min-1 to the gas instruments which 95 

were housed in a room inside the tower.  96 

The most prevalent wind direction during the summer 2012 measurement period was the 97 

SW sector (~50 % of the time), with other wind sectors split approximately equally. Wind 98 

speed was 6.7 ms-1 on average, with the highest wind speeds measured when the wind was 99 

from a NW direction. Average temperature was 15.1 ± 4.3 oC.  During the March and April 100 

2013 measurement period, the most prevalent wind direction was between 0 - 90o (50 %), 101 

again with other directions split approximately equally. Wind speed was higher than summer 102 

2012, being 8.8 m s-1 on average with the highest wind speed when the wind was from the 103 

SW direction. As expected, average temperature was lower than the summer 2012 period, 104 

being 9.7 ± 2.4oC. 105 

 106 

NOx measurements 107 

Measurements of NO were made using an Ecophysics 780TR instrument, which uses the 108 

chemiluminescence technique36, 37.  NO2 was quantified in a second identical NO instrument 109 

by initial photolytic conversion to NO using blue light LED diodes centred at 395 nm. The 110 

395 nm wavelength has a specific affinity for NO2 photolytic conversion to NO, giving high 111 

analyte selectivity within the channel38 and there is a low probability of other species such as 112 

nitrous acid (HONO) being photolysed.  The diode based converter also has a very low 113 

residence time for the air sample (< 0.1s) which allows 10 Hz measurements of NO2 to be 114 

made.  The NO instruments were calibrated every 36 hours by addition of a known amount of 115 

NO to the sample line, made by diluting a gas standard (5 ppm NO in N2, BOC – traceable to 116 

NPL scale) in NOx free air (Ecophysics PAG003).  The conversion efficiency of the NO2 117 

converter was also measured during each calibration by gas phase titration of the known NO 118 



upon addition of O3, with typical conversion efficiencies being 30 - 35%.  It is estimated that 119 

the total error (including accuracy and precision) is around 10 % for NO and 15 % for NO2 at 120 

10 ppbv.         121 

 122 

Meteorology measurements 123 

Fast (20 Hz), 3 dimensional wind vectors and sonic temperature were measured from next 124 

to the sample line inlet by a Gill Instruments R3-50 ultrasonic anemometer.  The data was 125 

logged, along with that from the NOx instrument, using a custom National Instruments 126 

LabViewTM program.  The boundary layer height was measured using a HALO Photonic 127 

Doppler LiDAR instrument39.  128 

 129 

Flux calculations and uncertainties 130 

NO and NO2 fluxes (FNO and FNO2
) were calculated using eq. 1 and 2 below. 131 

𝐹𝑁𝑂 =  𝑤′𝐶𝑁𝑂′̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑆𝑁𝑂𝑉𝑚𝑜𝑙 (1) 132 

 133 

𝐹𝑁𝑂2 =  1𝛼 𝑉𝑚𝑜𝑙 {𝑤′𝐶𝑁𝑂2′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑆𝑁𝑂2 − 𝑤′𝐶𝑁𝑂′̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑆𝑁𝑂 }  (2) 134 

 135 

Ci is the number of instrument counts (in Hz) and Si is the associated instrument sensitivity 136 

(in Hz ppb-1) for species i (NO and NO2).  Vmol is the molar volume (calculated for each 137 

individual point), α is the photolytic conversion efficiency of NO2 to NO and w is the vertical 138 

wind component measured by the ultrasonic anemometer. A “prime” symbol represents an 139 

instantaneous deviation from the mean and a horizontal bar denotes the covariance of 2 140 

scalars.  141 



Processed data were filtered using a three-step quality assurance algorithm whereby data 142 

were deemed of satisfactory quality if: 143 

The level of turbulence was sufficient, i.e. locally-derived friction velocity u* ≥ 0.2 m s-1 144 

(<5% of the data is rejected due to this parameter) 145 

The number of spikes in w, NO and NO2 did not exceed 1% of total in each half-hourly 146 

averaging period. 147 

The stationarity test described by Foken et al.40, 41 , which requires the flux for the complete 148 

averaging interval (here 30 min) to be within 30 % of the fluxes calculated for the sub-149 

intervals (6  5 minutes), was satisfied. 150 

Total measurement uncertainty, i.e. the sum of total random and systematic uncertainties, 151 

was estimated using the 24-hour differencing method42 whose assumption is that the 152 

difference between pairs of observations taken exactly 24 hours apart under similar  153 

meteorological conditions (air temperature, wind speed and direction) is mainly attributable 154 

to stochastic factors. Using multiple pairs of observations, the standard deviation of the 155 

random error can be calculated from eq. (3). 156 𝜎 =  𝜎(𝑥1,𝑡−𝑥2,𝑡)√2    (3) 157 

 158 

The environmental conditions were deemed similar if: 159 

Air temperatures diverged by less than 3 C. 160 

Wind speed diverged by less than 2 m s-1. 161 

Wind directions originated from the same quadrant. 162 

 163 

Causes of systematic uncertainties are varied and include calibration procedures, 164 

instrumentation limitations or data processing artefacts. Unlike random uncertainties, 165 

systematic errors can be minimized by careful data processing and correction.  166 



Successive calibration events were linearly interpolated over time cancelling out errors due 167 

to calibration drifts provided that the drift is linear over time. 168 

To estimate potential turbulence attenuation in the sampling line, which can lead to 169 

underestimation of the actual flux, fluxes of CO2 measured using by a Picarro G2301-f 170 

sampling off the same line as the NO and NO2 analysers were compared with fluxes 171 

measured by a Licor 7500 open-path analyser mounted near the ultrasonic anemometer. The 172 

underlying assumption is that turbulence attenuation and molecular interactions with the 173 

sampling tube are comparable for CO2, NO and NO2 molecules. Rather than correct for 174 

attenuation, this systematic uncertainty was added to the estimated stochastic component and 175 

presented as confidence interval in what follows. 176 

 177 

Flux footprint 178 

In order to carry out meaningful interpretation of the data, it is necessary to calculate the 179 

flux footprint of the measurement. It is not possible to get footprint models to fully account 180 

for the spatial variability of building heights, topography and surface heat flux from an urban 181 

environment.  In this case, the Kormann and Meixner (2001)43 footprint model (K-M model) 182 

was applied, which accounts for non-neutral stratification but assumes homogeneous 183 

surfaces.  The aerodynamic roughness length for momentum was assumed to be 1 m as used 184 

in previous BT Tower flux studies35.  The sample height for the BT Tower was 190 m. The K 185 

- M model was used to estimate the flux footprint on a half hourly time base.  A Microsoft 186 

Excel tool (based on the K - M model) calculates the distance from the measurement point at 187 

which a set percentage of the measured flux is emitted from.  Figure S4 in the supplementary 188 

information shows a histogram of the calculated footprints for 50 %, 70 % and 90 % of the 189 

flux for the measurement period.   The analysis here uses the footprint where 90 % of the flux 190 



is predicted to originate from, which shows a range of 150 m – 19980 m with a median of 191 

4695 m.   192 

 193 

Results and discussion 194 

Measurements of the NOx flux were made during two time periods, June – August 2012 195 

(36 days) and March – April 2013 (28 days). Downtime was due mainly to instrument failure 196 

of both the fast NOx instrument and 3-D sonic anemometer, as well as a failure in the sample 197 

pump.  Despite this, data coverage on the days when measurements was taken  61 %), 198 

meaning the dataset provides a unique opportunity to examine the diurnal and seasonal 199 

behavior of NOx fluxes from central London.   200 

The full time series of data is shown in the supplementary information Figure S2, with NOx 201 

concentrations averaged to the 30 minute flux averaging time. Typically NO concentrations 202 

vary from close to zero at night to a maximum of 10 – 100 g m-3 during the day, whereas 203 

NO2 ranges from 5 – 80 g m-3. .  Also shown in Figure S2 is the time series of NO and NO2 204 

from an urban background site in at North Kensington, London, which is approximately 5 km 205 

west of the BT tower44. These data show similar trend to the BT tower for most of the time, 206 

although at generally higher levels. A regression analysis of the two datasets (BT tower and 207 

North Kensington, shown in supplementary information Figure S3), shows North Kensington 208 

data being on average 10 % higher for NO and 6 % higher for total NOx (R
2 of 0.65 and 0.58 209 

respectively).  This result gives confidence that, at least for total NOx, the BT tower site is 210 

representative of the wider London area.  211 

Random uncertainties (1 ) obtained by 24-hour differencing were 441 ng m-2 s-1 for FNO, 212 

475 ng m-2 s-1 for FNO2
 and 510 ng m-2 s-1 for FNOx

 (FNO + FNO2
); residual systematic 213 

uncertainties, were estimated at 15% of the measured flux.  Maximum NOx fluxes are 214 

measured during the daytime, with values from 2000 ± 741 to 5000 ± 1191 ng m-2 s-1 for NO 215 



and 2000 ± 775 to 12000 ± 2275 ng m-2 s-1 for NO2.  Measured fluxes are usually positive, 216 

demonstrating, as expected, that NOx emission dominates over deposition in this urban 217 

environment and that it is likely to be dominated by anthropogenic emissions.  NOx can be 218 

lost to the surface by dry deposition45, and assuming a deposition velocity of 0.1 cm-1 and a 219 

NOx concentration of 50 g m-3, then the downward flux can be estimated to be in the region 220 

of 100 ng m-2 s-1, which is more than an order of magnitude smaller than the observed values.  221 

NO and NO2 fluxes show a distinct diurnal profile. NO flux is close to zero at night (although 222 

still positive), with a rise starting at 05:00 to a peak of 1800 - 1900 ng m-2 s-1 between 08:00 223 

and 12:00.  The NO flux then usually starts to decrease throughout the rest of the day and into 224 

the night, reaching the nighttime value of 100 - 200 ng m-2 s-1 at around 20:00.  NO2 flux also 225 

typically shows a diurnal profile with 500 - 1000 ng m-2 s-1
 measured at night followed by a 226 

rise to 2200 - 2300 ng m-2 s-1 from 05:00 until 12:00, with levels then remaining constant 227 

until around 16:00.  There follows a steady decrease in NO2 flux throughout the rest of the 228 

day and into the night, with levels reaching around 1200 ng m-2 s-1 at midnight.  229 

Very few direct flux measurements of NO and NO2 have been made in an urban 230 

environment, however the values measured in this study are comparable to a study in the 231 

urban area of Norfolk, Virginia, USA, which reported total NOx fluxes in the range 5000 - 232 

8000 ng m-2 s-1 33. Direct measurements of NOx fluxes have been made previously over 233 

forested and snow pack environments, with the measured fluxes still positive, but typically an 234 

order of magnitude smaller than measured here22, 24, 25.  Because of the close coupling of NO 235 

and NO2, it is the sum NOx that is typically reported in emission inventories, and so the rest 236 

of this work will concentrate on measurements of total NOx.  This also allows us to discount 237 

the chemistry associated with the inter-conversion of NO and NO2, which can happen on a 238 

very fast timescale., Total NOx is likely to be conserved between emission and sampling on 239 

the BT tower, as formation of NOx reservoir species such as PAN and HNO3 takes place on a 240 



much longer timescale than the time between emission from street level and sampling at the 241 

tower (estimated as 3 – 8 minutes).   242 

Analysis of the wind sector dependence of the flux can help to identify the sources of the 243 

species in question. Figure 1 shows bivariate polar plots with the joint flux footprint-wind 244 

direction of the NOx flux, created using the Openair package46.  The flux footprint used was 245 

calculated using the method described above.  Two plots are shown to reflect daytime (05:00 246 

– 19:00) and night time fluxes. During the daytime, there are clearly higher fluxes measured 247 

when the calculated footprint is smaller, in particular when the wind is from an E / NE 248 

direction from the tower.  Fluxes then get smaller as the footprint gets larger in all directions.  249 

This is a reflection of the reduced traffic density (and hence traffic emissions), further away 250 

from central London.  At night the fluxes are lower in all directions and for all footprints (as 251 

expected), however there is much less of a reduction in flux as the footprint gets larger.  An 252 

explanation for this behavior is likely that traffic emissions are much less important for the 253 

total night time NOx emission, with the majority of the emissions from commercial, industrial 254 

and domestic combustion.  Hence there is more homogeneity over London during the night 255 

compared to the daytime.  There are still greater fluxes measured when the wind was from 256 

the NE – SE sector, which is probably due to the area to the east of the tower being more 257 

urban in nature than that to the west.   258 

 259 

 260 



 261 

      262 

Figure 1. Wind sector dependence of the NOx flux for all data averaged during (a) daytime 263 

(05:00 – 19:00) and (b) nighttime (20:00 – 04:00).  The radial axis shows the calculated flux 264 

footprint in metres for each measurement.   265 

 266 



 267 

Concentrations of a given pollutant in the atmosphere are largely dependent on its emission 268 

rate, meteorology and chemical processing. It is useful to consider diurnal profiles in all these 269 

quantities because it can help understand the processes leading to what is observed.  For 270 

diurnal averages, systematic uncertainties greatly outweigh random uncertainties which 271 

decrease as 1 √𝑛⁄  , with n the sample size.    Average diurnal cycles have been calculated for 272 

the entire measurement period, for NOx flux, average traffic volume at 20 traffic counting 273 

sites within the flux footprint of the site, boundary layer height and NOx concentration and 274 

this data is shown in Figure 2 (all times local time).  Standard deviations of the average 275 

diurnals are also shown, demonstrating the relatively small day to day variability of the 276 

measurements.  The traffic data used can be thought of as a proxy for total traffic flow across 277 

the entire flux footprint area and a map of the location of the traffic counting sites used is 278 

shown in the supplementary information (Figure S5).  Data from each day is binned into 279 

hourly time periods (UTC = local time -1 hour) and averaged, with the time stamp being the 280 

mid-time of the averaging period.  NOx flux shows a diurnal cycle with positive fluxes seen 281 

throughout the day. From 00:00 to 04:00 fluxes are slightly decreasing from 1400 ± 210 ng 282 

m-2 s-1 to 450 ± 67 ng m-2 s-1, with a rise starting at around 04:30, consistent with the onset of 283 

the morning rush hour in London (at 05:30 local time). There follows a steady increase in the 284 

NOx flux to around 4000 ± 600 ng m-2 s-1 at 10:00, levels that remain until 17:00 (with a 285 

slight second peak at 16:00). This is broadly similar to the average traffic count data, 286 

providing more evidence that the majority of the NOx emissions sampled at the BT tower are 287 

from road traffic emissions. There then follows a steady decrease in the NOx flux throughout 288 

the rest of the day, to around 1200 ± 180 ng m-2 s-1 at 00:00.  This is again broadly in line with 289 

the traffic flow. NOx concentrations are reasonably stable at ~ 18 - 20 g m-3 throughout the 290 

night, followed by a rapid rise starting at 04:30 (at similar time to the rise in NOx flux). This 291 



rapid rise is due to a combination of the increase in fluxes, and the fact that the boundary 292 

layer height does not increase until around 06:30. Once the boundary layer starts to grow 293 

(from ~ 300 m at 08:00 to 1700 m at 12:00), the rise in NOx concentrations is less rapid, and 294 

in fact they start to fall after a peak of 22 g m-3 at 08:00 until 16:00. This is likely due to 295 

dilution effects caused by the increasing height of the boundary layer meaning the NOx is 296 

emitted into a larger volume. After 15:30, the NOx concentrations start to rise again, despite a 297 

decrease in flux. This is again likely due to the meteorology, with a decreasing boundary 298 

layer height into the night. 299 

Also, plotted in Figure 2 is the weekday and weekend diurnal average for the data. During 300 

the day, traffic counts are on average lower during the weekend, particularly during the 301 

morning where the difference is up to 50 %. This is reflected in the NOx flux data, although it 302 

does not show as pronounced a difference between weekend and weekday. This is potentially 303 

due to the type of traffic at the weekend, which is likely to be predominantly buses and larger 304 

vehicles (mainly powered by diesel engines), whereas during the week, private cars and taxis 305 

maybe more prevalent.  During the night, traffic levels are actually higher at the weekend 306 

than during the day, also likely to be a result of public transport and the large nighttime 307 

weekend economy of London. This is also reflected in the NOx flux measurements showing 308 

higher values from midnight to 06:30 for weekends compared to weekdays.  309 



 310 

Figure 2. Average diurnal profiles for 36 days of data during Jun – Aug 2012 and 28 days 311 

during March and April 2013. Data shown are average traffic count (see text for further 312 

details), NOx flux, boundary layer depth and NOx mass mixing ratio.  All times local time 313 

with the time stamp the mid-point of an hour averaging period. Error bars reflect the 95 % 314 

confidence intervals in the mean of the different measurements used to calculate the diurnal 315 

average. The red dotted line shows weekday data and the blue dashed line show weekend 316 

data. 317 



The flux data was binned into 4 different regimes according to the calculated footprint (0 - 318 

2.5, > 2.5 - 5, > 5 - 10 and > 10 - 20 km radial distance from the BT tower) and average 319 

diurnal profiles for each are plotted in Figure 3.  The shaded regions represent the 95 % 320 

confidence of the day to day variability of the flux measurements.  All regimes show a 321 

similar diurnal profile, with the flux starting to rise at around 04:30, with a peak between 322 

10:00 and 14:00.  The highest fluxes are seen in the two smallest footprint regimes, with both 323 

showing similar values during daytime of around 4500 ± 675 ng m-2 s-1.  The 5 - 10 km 324 

regime shows lower daytime peak fluxes of 3200 ± 480 ng m-2 s-1, with the 10 - 20 km 325 

regime lower still, with a peak of 2950 ± 442 ng m-2 s-1 at 10:00 and then a decline 326 

throughout the day. All 4 regimes show similar NOx fluxes at night of around 1000 ± 150 ng 327 

m-2 s-1, the exception being the 0 - 2.5 km, which does exhibit some elevated flux levels up to 328 

1500 ng m-2 s-1, and appears to start to rise slightly earlier than the other regimes.  All this 329 

behavior is consistent with traffic emissions being the dominant source of NOx, especially in 330 

central London.  It is expected that traffic volume will be higher closer to central London and 331 

this is shown by the average traffic counts also plotted in the different footprint bins in figure 332 

4. As a result of this, the smaller footprint regimes from the BT tower show the largest 333 

daytime fluxes. At night, it is likely that a smaller proportion of the NOx will come from 334 

traffic sources, meaning the measured flux will be similar in all flux regimes out to 20 km 335 

from the measurements site.      
  336 

 337 



 338 

Figure 3. Average diurnal profiles for NOx flux in 4 different footprint regimes (red trace).  339 

The error bars reflect the 95 % confidence intervals in the mean of the different 340 

measurements used to calculate the diurnal average.  All times local time with the time stamp 341 

the mid-point of an hourly averaging period. Also shown is the average traffic flow at 6 sites 342 

within each of the individual footprint areas (blue trace).   343 

Emissions inventories 344 

In order to put the measured data in some context, a comparison has been carried out 345 

against inventories of NOx emissions for London.  The UK National Atmospheric Emissions 346 

Inventory (NAEI) shows official annual, spatially disaggregated 1 x 1 km gridded emission 347 

maps for a wide range of atmospheric pollutants, including NOx.  A detailed description on 348 

how the emissions maps are produced is given in Bush et al. 200847. Briefly, annual emission 349 

estimates are generated from 11 source sectors, according to those laid out by the United 350 



Nations Economic Commission for Europe (UNECE). For each sector a national total 351 

emission estimate is produced from a combination of reported emissions and estimates based 352 

on modelling.  The UK National Atmospheric Emission Inventory (NAEI) gives an estimate 353 

of the NOx emissions in 1 km2 grids over the UK, including a breakdown of the different 354 

sources. The NAEI estimate for NOx emissions for London is shown in the supplementary 355 

information (Figure S6). The map is centered on the BT tower and features of London 356 

characterized by large NOx emissions can clearly be seen (e.g. Heathrow airport to the West 357 

and the M25 orbital motorway circling the city).  Four maps are shown, with the contribution 358 

from 3 of the most important sectors (road transport, domestic, industrial and commerical 359 

combustion and other transport (rail and shipping), as well as the total emissions. Also shown 360 

on the maps are 5 km and 10 km radius circles from the tower, indicative of the flux footprint 361 

bins described above. It suggests that around 65 % of NOx emissions from central London are 362 

from road and other transport, with the majority of the remainder from commercial, domestic 363 

and industrial combustion.  364 

The London Atmospheric Emissions Inventory (LAEI) provides emissions estimates of 9 365 

air pollutants (including NOx), on a 20 m x 20 m grid square scale.  The inventory reflects the 366 

geography of the roads in London, enabling an accurate assessment of population exposure 367 

and health impacts.  Two versions of the LAEI are used in this study.  The standard LAEI 368 

(LAEI base) is the 2012 inventory based on methods set out in the Greater London Authority 369 

datastore48, but updated for 2012 emission data.  Also, we use an enhanced version of the 370 

LAEI, which uses measured roadside emissions based on extensive vehicle emission remote 371 

sensing49.  Both emissions inventories discussed are purely annual averages with no seasonal 372 

or finer temporal detail.    373 

 374 

 375 
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Comparison with measurements 377 

  378 

 379 

Figure 4. Comparison of the averaged measured fluxes, scaled to give an annual emission 380 

rate, with the estimate of the National Atmospheric Emission Inventory (NAEI) and two 381 

versions of the London Atmospheric Emissions Inventory (LAEI) – see text for details.  The 382 

different colours in the columns represent the estimates from different source sectors.    383 

 384 

 385 

Figure 4 shows estimated emissions of NOx taken from the NAEI and LAEI for 2.5 km, 5 386 

km and 10 km radial distance from the tower, along with the estimates for sections in easterly 387 



(30 – 150o) and westerly (210 – 330o) directions and the source sector estimate divided into 388 

road transport, commercial and residential combustion and other transport (which is mainly 389 

rail in London).  For the NAEI data for a 20 km radial distance is also plotted however this 390 

data is not available for the LAEI.  Also plotted is the averaged measured NOx flux for the 391 

different footprint regimes, also divided into periods of easterly and westerly wind directions 392 

and scaled to give a yearly emission rate.     393 

The measurements are seen to be significantly higher than the NAEI (outside the estimated 394 

experimental flux systematic error of 15 %) under all regimes.  The agreement between the 395 

measurement and the inventory tends to get worse for the larger footprint regimes, with the 396 

measurement being 2.2 times higher than the inventory for the 10 – 20 km regime, and only 397 

1.6 times higher for the 0 – 2.5 km regime.  There is much more scope for error when 398 

considering a comparison between larger flux footprints and the inventory as the further the 399 

air has travelled, the more different emission inventory grid squares it could have passed 400 

over, making a comparison with the inventory more difficult.  In general the agreement is 401 

better for the westerly flow conditions, with the measurement being 1.36 and 1.38 times 402 

higher than the inventory for the 2.5 km and 5 km footprints respectively, whereas for the 403 

easterly flow, the agreement is worse (1.6 and 1.9 times higher for 2.5 km and 5 km).  The 404 

difference in source sector between the 2.5 km and 5 km radius is small.  Road transport 405 

dominates (62 % and 60% for 2.5 km and 5 km respectively), with the remainder from 406 

commercial and domestic combustion (29 % and 27 %) and other transport (4 % and 10 %).  407 

There is a lower contribution from road transport for the westerly flow conditions (48 % for 408 

both 2.5 km and 5 km radius), giving a potential reason for the better agreement here.  It is 409 

likely that road transport is the most poorly constrained part of the NAEI, and hence when 410 

this is less important to the total emission rate, the agreement with the measurement is better.           411 



For the base LAEI, the comparison shows a much closer agreement of the measurements 412 

with the inventory compared to that with the NAEI discussed above.  The inventory is within 413 

the measurement error for the average of all wind directions, with the measurement 1.03 and 414 

1.1 times higher than the inventory in the 2.5 km and 5 km regimes respectively. The 415 

agreement is similarly good in westerly flow, and although in Easterly flow the measurement 416 

is now 1.07 times lower for the 2.5 km footprint and 1.03 times higher for the 5 km footprint, 417 

these are still well within measurement error.  For the 10 km footprint, the LAEI falls outside 418 

the systematic error of the measurements for all the data separated into easterly and westerly 419 

flow regimes, the measurements being 1.16 and 1.48 times higher than the inventory for 420 

westerly and easterly flow respectively.  A comparison of the measurements to the enhanced 421 

LAEI (which has generally increased road transport NOx emissions), shows the 422 

measurements being slightly lower than the inventory for data from the 2.5 km and 5 km flux 423 

footprints, although again these is still within the systematic error of the measurements for all 424 

the data and the westerly flow.   It is in the easterly flow conditions where the measurements 425 

are now significantly lower than the inventory, with the underestimation of 20 % and 17 % 426 

for the 2.5 km and 5 km regimes falling outside the flux measurement error.  For the 10 km 427 

flux footprint regime, the enhanced LAEI brings the emission estimates into much better 428 

agreement with the measurements than the base case, with the data from both easterly and 429 

westerly flows showing agreement within 10 %.  430 

In general both the LAEIs seem to be doing a reasonable job of estimating NOx emissions 431 

in central London, and certainly better than the NAEI estimations. The LAEI, particularly in 432 

its enhanced form with measured road traffic emissions, has a much more explicit treatment 433 

of road transport emission than the NAEI, thus potentially providing a more accurate estimate 434 

of NOx emissions in London.  It uses vehicle speed and vehicle flow data from each road link 435 

using GPS based vehicle speed, as well as automatic number plate recognition data to 436 



enhance vehicle stock information.  The inventory also makes predictions of primary NO2 437 

emissions, something that is potentially important in London due to the high proportion of 438 

diesel fuelled vehicles, which are likely to have a higher direct primary NO2 emission 439 

compared to petrol vehicles50.  The LAEI containing the enhanced treatment of traffic 440 

emissions actually overestimates the NOx emission in the central London footprint regimes (0 441 

- 5 km from the BT tower), with greater overestimation outside the error of the measurements 442 

under easterly flow conditions.  This suggests potential extra errors in the treatment of traffic 443 

flow in the center of London to the east of the BT tower within the LAEI.  The LAEI has a 444 

significant contribution from other sources, which are mainly from non-road mobile 445 

machinery (e.g. cranes, construction vehicles).  These are virtually zero in the NAEI and it 446 

could be errors in these sources that are contributing to the overestimation of the inventory in 447 

central London.  The better comparison with the LAEI compared to the NAEI support 448 

previous tailpipe observations of higher NOx emitted from the London vehicle diesel fleet 449 

than is represented in the NAEI or predicted for several EURO emission control technologies 450 

and show that a detailed treatment of traffic emissions is required to properly predict the NOx 451 

emissions11. There are no studies to our knowledge that specifically evaluate the London or 452 

national inventories. However, it is clear from recent remote sensing measurements in 453 

London during 2012 that emissions of NOx have not decreased as expected through emissions 454 

legislation49.  This higher than anticipated vehicle NOx is likely responsible for the significant 455 

discrepancies that exist in London between observed NOx and long-term NOx projections, 456 

and show that a detailed representation of traffic emissions is required to accurately represent 457 

NOx in London.   458 

 459 
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Figures S1 – S6 show a location map of the site, the time series of NOx levels and fluxes 463 
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