
This is a repository copy of From Secure Business Process Models to Secure 
Artifact-Centric Specifications.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/95533/

Version: Accepted Version

Proceedings Paper:
Salnitri, M., Brucker, A.D. and Giorgini, P. (2015) From Secure Business Process Models 
to Secure Artifact-Centric Specifications. In: Gaaloul, Q., (ed.) Enterprise, 
Business-Process and Information Systems Modeling BPMDS. 16th International 
Conference, BPMDS 2015, 20th International Conference, EMMSAD 2015,, June 8-9, 
2015, Stockholm, Sweden. Springer-Verlag , pp. 246-262. ISBN 978-3-319-19237-6 

https://doi.org/10.1007/978-3-319-19237-6_16

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


From Secure Business Process Models

to Secure Artifact-Centric Specifications

Mattia Salnitri1, Achim D. Brucker2, and Paolo Giorgini1

1 University of Trento, Trento, Italy

{mattia.salnitri, paolo.giorgini}@unitn.it
2 SAP SE, Karlsruhe, Germany

achim.brucker@sap.com

Abstract. Making today’s systems secure is an extremely difficult and challeng-

ing problem. Socio and technical issues interplay and contribute in creating vul-

nerabilities that cannot be easily prevented without a comprehensive engineering

method. This paper presents a novel approach to support process-aware secure

systems modeling and automated generation of secure artifact-centric implemen-

tations. It combines social and technical perspectives in developing secure sys-

tems. This work is the result of an academic and industrial collaboration, where

SecBPMN2, a research prototype, has been integrated with SAP River, an indus-

trial artifact-centric language.

1 Introduction

Today’s systems are more and more similar to complex organizations, where au-

tonomous and independent components interact one another to achieve common and

local objectives. An air traffic management system is, for instance, composed of sev-

eral autonomous elements, such as the communication service provider network, the

tower control, the meteorological services provider, the Very High Frequency (VHF)

network, the ground management system, and so forth. Some of them can be consid-

ered as pure technical components (e.g., satellite communication network or the aircraft

router) while others are human/social elements (e.g., the controllers in the control tower,

or airport rescue team). In other words, socio and technical elements are components of

the same Socio-Technical System (STS) where they interact as autonomous elements.

STSs can easily become complex and hard to control systems, where human fac-

tors may introduce an high level of unpredictability. To regulate the system’s interac-

tions, process modeling languages are commonly used to design the flow of activities

and to prescribe roles and responsibilities. Business Process Management and Notation

(BPMN) 2.0 [1] and Business Process Execution Language (BPEL) [2] are well known

examples of process-centric modeling languages. The design of a STS cannot leave

out, however, the artifacts (entities, data and documents) that are used, consumed and

shared within the system. SAP River [3] and Oracle PeopleCode [4] are largely used

artifact-centric approaches to model business artifacts and their business logic.

In STS, security is not exclusively a technical problem, very often it is the combina-

tion of socio and technical factors that gives origin to the most critical vulnerabilities of

mailto:achim.brucker@sap.com


a system [5]. To guarantee desirable levels of security, artifact-centric approaches offer,

for example, access control and authentication security controls to constraint the access

to the data and related executable functions (business logic) [6]. However, the security

strategies that are beyond the usage of such security controls, should be consistent with

the security choices adopted in the business process model; namely, any security strat-

egy adopted for the STS should be first implemented into the business process and then,

as consequence, coded at level of artifacts. For example, in a payment engine (e.g., SAP

Payment Engine [7]), security choices of creating a process that maintains the integrity

of the invoice or ensuring the confidentiality of the credit card information, should be

enforced on related business artifacts (e.g., implementing authentication controls for

accessing the credit card data).

The literature offers a number of process-centric languages for modeling security

concerns along the activities’ flow of a system. SecBPMN [8] and SecureBPMN [9]

are two examples of modeling languages where specific annotations are introduced to

extend BPMN with security concepts. However, no approach has been proposed so far

to handle with security as a global concern across process-centric and artifact-centric

dimensions. For example, SAP proposes SAP River [10] and ABAP [11] as artifact-

centric languages without any related support for modeling security at process level.

In this paper, we present an approach to deal with security that combines the ad-

vantages of business process modeling with the advantages of artifact development. We

implemented our approach using SecBPMN2 [12] as a process-centric modeling lan-

guage to define the business processes and the security choices and SAP River platform

for the artifact-based implementation. The overall approach guarantees that the artifact-

based implementation complies to the high-level security-aware process specification.

In more detail, our contributions are three-fold: first, we present an integrated ap-

proach for modeling and implementing secure process-aware socio-technical systems.

Second, we present a mapping from control-flow-centric business process models to

artifact-centric implementations that include the translation of security and compliance

properties. And, third, we implemented our approach on an industrial platform.

2 Baseline

In this section, we introduce the foundations of our work: the security aware, process-

centric modeling language SecBPMN2 and the artifact-centric framework SAP River.

2.1 SecBPMN2

Among various process-centric modeling languages, SecBPMN2 stands out for its ex-

pressiveness, and the possibility to model both business processes and security poli-

cies. It is composed of SecBPMN2 - modelling language (SecBPMN2-ml), a model-

ing language that extends BPMN 2.0with security concepts, and SecBPMN2-Query

(SecBPMN2-Q), a modeling language for security policies. Fig. 1 shows an example of

SecBPMN2 concerning the SAP Payment Engine (PE). SAP Payment Engine [7] is a

flexible single-payment platform aimed for processing payments into one central hub.

It can be used as a single entry point where the company orders/receives payments. It



Fig. 1. Example of SecBPMN2-ml model

interacts with any bank it is required to be connected using the proper interface and

security level required by the bank. The process in Fig. 1 starts when a money transfer

is executed between two banks.

SecBPMN2 extends BPMN 2.0 adding security choices, represented as eleven secu-

rity annotations: accountability, auditability, authenticity, availability, integrity, privacy,

binding of duties, non-delegation, non-repudiation, separation of duties, and confiden-

tiality. In Fig. 1, we have: non-repudiation, linked with “Authorize transaction”, spec-

ifies that “Bank src” cannot be able to deny the execution of that task; separation of

duties specifies that “Bank src” and “Bank dst” cannot be the same bank; confiden-

tiality, linked to the message flow that transmits the “CC info”, specifies that only the

authorized receivers can read the message. More details can be found in [12].

2.2 Artifact-Centric Business Process Modeling

Well known business-process or workflow modeling languages such as BPMN 2.0 or

BPEL are based on activity flows: data that is processed within the processes is often

an afterthought. In contrast, artifact-centric business process modeling [10,13] puts the

business artifacts (e.g., data, documents) into the center of the process modeling.



1 @OData

2 type LocalDate { date : UTCTimeStamp; state: S t r i n g; }

3 a p p l i c a t i o n PizzaCloud.SalesApp {

4 r o l e Approver;

5 export e n t i t y SalesOrder a c c e s s i b l e by Approver {

6 key element ID : S t r i n g;

7 e lement transactionDate : LocalDate;

8 e lement items : association[0..*] to SalesOrderItems via backlink order;

9 a c t i o n approveOrder() { [..] } } }

Listing 1. A Simple River Example: Modeling a Sales Order

Fig. 2. The SAP River Platform

For our prototype, we use the SAP River, a

framework for developing business applications on

top of the SAP HANA. Fig. 2 shows an high-level

overview of SAP River: SAP HANA provides the

persistency layer as well as the container in which

the enterprise applications are executed. Clients as

well as back end systems or external services can

communicate with the River platform using stan-

dard protocols. The business artifacts (i.e., the data

model) and their behavior (i.e., the business logic)

as well as the access control are specified in the River Definition Language (RDL) [3].

RDL is an executable specification language that allows to specify declaratively

the artifacts (e.g., entities), the relations between them (e.g., associations) as well as

the business logic (e.g., actions) on the artifacts. Lst. 1 illustrates an excerpt of a

SAP River application. Most importantly, RDL allows for specifying entities (e.g.,

SalesOrder, their attributes (e.g., transactionDate), custom types of the at-

tributes (e.g., LocalDate), and the relation (associations) to other entities. For exam-

ple, the entity SalesOrder as a bidirectional association (similar to associations in

UML [14]) to the entity SaledOrderItems. Besides this pure data modeling, RDL

also supports to specify the actions (e.g., approveOrder in a declarative style. Fi-

nally, RDL supports to specify role-based access control restrictions: the actions of the

entity SalesOrder are only accessible by members of the role Approver.

By default, artifacts in RDL are private. To enable access outside of their scope, they

need to explicitly marked with the export keyword. Moreover, the annotation @OData

enables remote access using the OData protocol (www.odata.org). Such a remote

access is controlled by the same access control restrictions of internal access.

3 From Procedural Specification to Business Artifact Specification

Fig. 3 provides an overview of our approach: Step 1 consists in defining the procedu-

ral specification, where a team composed of domain experts (i.e., the customers and

consultants) and security engineers work together to express security needs over the

activities’ flow of the system. The procedural model is then used to automatically gen-

erate a set of River application skeletons (step 2) that will be used by developers to

implement the business logic (step 3). Whenever the system changes (e.g., to adapt to

www.odata.org


Fig. 3. The process proposed with the approach

new organizational processes or new legislations), a revised version of the SecBPMN2

processes or new specifications for the artifacts can be introduced. Compliance between

SecBPMN2 models and artifact specifications has to be checked again and new changes

on the process models or artifact specifications are introduced (step 4).

The generation of River applications skeleton from SecBPMN2 models requires

extra information that are specific of business artifacts and that are not represented in

the process models. Particularly, SecBPMN2 data objects are complex data structure

with heterogeneous data types in River; for instance, in the procedural specification in

Fig. 1, the credit card data object is specified only by its name, while in River it will be

specified as complex business artifact with information such as the number of the credit

card, Card Verification Value (CVV), name of the owner, or the issue date. Companies

such as SAP or Oracle have created repositories of templates, that can be reused when-

ever the same business artifacts are requested. Our approach includes such repositories,

so to support the generation of River applications that already incorporate a complete

definition of business artifacts and therefore to reduce the amount of work required to

River developers to customize the River application once generated. Developers will,

then, complete the specification of the business artifacts and their business logic with

domain dependent details. For example, in PE, the business logic related to the credit

card strictly depends on the context in which the system applies.

Moreover, since River applications can enforce only SecBPMN2 security choices

regarding information handled in the process, they cannot be the only enforcement point

for all security choices defined in the procedural specification. We include, as an output

of the approach, a “security specification” document which contains a list of the security

controls that cannot be implemented in River applications.

Fig. 4 shows the mapping relations between part of SecBPMN2 and River meta-

models. The six mapping relations are described below.

Stored as “Data object”, which represents a set of information, is “stored as” a River

“Type”, which represents the structure of the information of an element in entity.

Transmitted as “Message”, that represents a set of information sent between pools, is

“transmitted as” a River “Type”, which represents the structure of a message sent.

Embodied by “Pool”, which defines a company or an actor such as a buyer or a manu-

facturer, is “embodied by” an “Application”, that represents a set of business artifacts,



Fig. 4. Part of meta-models of SecBPMN2 and River and the mapping relations

which can be accessed only using the APIs, and their business logic. From an artifact-

centric perspective, a pool and a River application are use to identify organizations or a

well defined parts of them.

Executed as A “Task” represents an operation performed by a participant. “Action” rep-

resents the business logic linked to a data structure, i.e., they are the operations executed

to set/maintain some properties of the business objects. The operations represented by

a task are implemented and executed in a River action.

Played by A “Lane” represents a participant, i.e., a person, a service or a set of them.

A“Role” represents a set of authorizations assigned to a (set of) physical entity(ies),

i.e., the it represents any entity that can receive an authorization. A lane is “played by”

a River role because any entity represented by a role can perform all the actions required

by the tasks in the lane.

Started as A “Sub-process” is a task that encapsulates a business process, which con-

tains a whole new set of SecBPMN2 elements. Similarly a “Call” is a reference to

another River application, which, in turn, contains a whole set of business artifacts. A

sub-process is “started as” a call because a call starts a new River application.

The creation of River skeletons is based on generation rules that follow the mapping

relations defined in Fig. 4. Events and gateways elements are, however, not part of the

model transformation since they are used to define the control flow. The main generation

rule specifies that a River entity and a River type are generated for each data object and

for each message in the SecBPMN2 model. Each entity contains one element of the type

generated together with the entity. Each task linked to the data object is transformed in

an action, that is placed in an ad-hoc namespace, created for the data object (see Sec. 5).

Fig. 5 shows an example of generation. The name of the application reflects the

name of the pool and two roles, which correspond to the lanes in the business process,

are specified. From the data object “VCNUM” are generated: (i) a type “VCNUM”

that contains the structure of the data that makes tangible the information; (ii) an entity

”VCNUMEntity” that contains the actual information; (iii) a namescape “VCNUM-

namespace” that contains all the actions derived from the SecBPMN2 tasks linked to the



1 a p p l i c a t i o n paymentEngine

2 {

3 r o l e controller;

4 r o l e validator;

5 type VCNUM {

6 element ClientIDs : I n t e g e r;

7 element PaymentCardType : S t r i n g;

8 element CardNumber : S t r i n g;

9 [..]}

10 export e n t i t y VCNUMEntity {

11 key element id: I n t e g e r;

12 element VCNUMData: VCNUMType; }

13 export namespace VCNUMnamespace a c c e s s i b l e by sap.hana.All {

14 export a c t i o n ValidateCreditCard() {}

15 export a c t i o n FilterSensitiveInformation() {} } }

Fig. 5. A SecBPMN2 model representing part of a PE business process

“VCNUM” data object. The structure of “VCNUM” is retrieved from the SAP reposi-

tory, indeed “VCNUM” is a template for the information related to credit cards.

The fourth step of process described in Fig. 3 consists in checking if the security

requirements are satisfied in SecBPMN2 models and River applications. The former

control can be performed using SecBPMN2 verification engine, while the latter may be

perform using software verification techniques.

4 Security Enforcement Rules

In this section, we present a set of rules that are used to enforce the security choices of

SecBPMN2 into River applications. Tab. 1 shows SecBPMN2 security annotations. To

simplify, security annotations shown in the table are linked to all elements they can be

linked to; however, SecBPMN2 allows for only one link (except for separation of du-

ties and binding of duties, that can be linked to two pools). In this paper we report only

the enforcement rules for process and collaboration models, while details about chore-

ographies can be found in [12]. For each SecBPMN2 security annotation, we briefly

describe in the following its meaning and the corresponding Enforcement Rule (ER).

ER1: Integrity. It requires a system to ensure completeness, accuracy and absence of

unauthorized modifications in all its components [8]. It can be linked to one task, data

object or message flow (Tab. 1-a). Although, it can be partially enforced by filtering the

users who can access the River entities (i.e. using authentication and access control),

backup mechanisms should be used to avoid loosing potentially precious information

(when linked to a data object), or loosing functionalities offered by the system (when

linked to the message flow or to an activity). Since, such configurations cannot be spec-

ified in a River application, they are enlisted in the security specification document.

ER2: Authenticity. It is defined as the ability of a system to verify identity and to

establish trust in a third party and in information it provides [8]. It can be connected to

one task or data object (Tab. 1-b). When it is linked to #Task, it can be enforced with an

authenticity security control that verifies the identities of users who execute the action

generated from #Task. When it is linked to #DO, an element which contains the hash of

the type generated from the #DO will be included in the type itself.



Table 1. SecBPMN2 security annotations

(a) Integrity (b) Authenticity (c) Accountability (d) Non-repudiation

(e) Auditability (f) Confidentiality (g) Privacy (h) Binding of duties

(i) Separation of duties (j) Availability (k) Non-delegation

ER3: Accountability. It is defined as the ability of a system to hold users responsible

for their actions (e.g., misuse of information) [8]. It can be linked to a task, as shown

in Tab. 1-c. It is enforced using the signature security control, which stores the private

key of the user who performs the action generated from to #Task. We used private key

to unequivocally identify users that performed the action.

Lst. 2 shows part of the River template used to generate the River code for the

signature security control. A River template is a piece of River application with place-

holders, marked with a “#”, that are substituted with an appropriate string. For example,

in Lst. 2, #Pool will be substituted with the name of the pool in SecBPMN2. The entity

in lines 2–4 contains the private keys associated to the users, while the entity defined in

lines 5–8 stores the link to the signature of the user who executed the action, the date

in which the action is performed and the link to the entity that contains the action per-

formed. Lines 10–15 show how the signature security control is implemented in each

action generated from #Task: a new entry is inserted in the entity “SignatureLogs”.

ER4: Non-repudiation. It is defined as the ability of a system to prove (with legal

validity) occurrence/non-occurrence of an event or participation/non-participation of a

party in an event [8]. It can be connected to one activity or one message flow (Tab. 1-d).

We use the signature security control to enforce the non-repudiation security choice. If

the security annotation is linked to a message flow, every time send and receive actions

are executed, the information about the execution is inserted in the signature entity.

If the security annotation is linked to #Task, the information is inserted whenever the

action, generated from #Task, is executed.



1 a p p l i c a t i o n #Pool {

2 e n t i t y repositorySignatures {

3 signature : S t r i n g;

4 user : S t r i n g; }

5 export e n t i t y SignatureLogs {

6 element signature: Association to repositorySignatures;

7 element date: UTCTimestamp;

8 element #DO : Association to #DO; }

9 export namespace #DOnamespace a c c e s s i b l e by sap.hana.All {

10 export a c t i o n #Task() {

11 l e t newSignatureLogs : SignatureLogs = SignatureLogs{

12 date : sap.hana.utils.dateTime.currentUTCTimestamp(),

13 signature : SELECT ONE repositorySignatures FROM repositorySignatures

14 WHERE user = sap.hana.services.session.getUserName(), #DO : this };

15 Add newSignatureLogs to SignatureLogs; } } }

Listing 2. Enforcement of accountability, implementing signature security control

1 a p p l i c a t i o n #Pool {

2 type ActionType : enum { READ; WRITTEN; SENT; RECEIVED; }

3 export e n t i t y ActionLogs#DO {

4 e lement date: UTCTimestamp;

5 e lement actionType : ActionType;

6 e lement user : S t r i n g; } [..]

7 export namespace #DOnamespace a c c e s s i b l e by sap.hana.All {

8 export a c t i o n get#DO(idEntity: I n t e g e r) : #Pool.#DOType { [..]

9 l e t log:ActionLogs#DO = ActionLogs#DO{

10 user : sap.hana.services.session.getUserName(),

11 actionType : ActionType.READ,

12 date : sap.hana.utils.dateTime.currentUTCTimestamp() };

13 log.save(); }

14 export a c t i o n #Task() { [..] } } }

Listing 3. Enforcement of auditability, implementing logging security control

ER5: Auditability. It is defined as the ability of a system to conduct persistent, non-

by-passable monitoring of all actions performed by humans or machines within the

system [8]. It can be linked to one task, data object or message flow (Tab. 1-e). It is

enforced with the logging security control, which stores information of the actions per-

formed. If the security annotation is linked to #DO, all actions in the entity that contains

the type generated from #DO are logged; if it is linked to #Task, only the calls to the

action that is generated from #Task are stored; if it is linked to a message flow only the

actions send/receive, generated from the message flow, are stored.

Lst. 3 shows part of the River template for the logging security control. The type

“ActionType” (line 2) defines the type of actions. The entity in lines 3–6 contains: type

of the action, date of execution and user who performed the action. Lines 9–13 show

how the information about the execution of an action is stored in the entity action-

Log#DO. If the security annotation is linked to #DO, information about the execution

is inserted in actionLog#DO every time an action, defined in an entity that contains

the type generated from #DO, is performed; if the security annotation is linked to #Task

then the information is stored every time the action, generated from #Task, is performed;

if the security annotation is linked to the message flow, then the information is stored

every time the send and receive actions, generated from the message flow, are executed.



1 a p p l i c a t i o n #Pool {

2 type #DO {[..]}

3 export e n t i t y #DOEntity {

4 [..]

5 a c t i o n encrypt(data :#DO): #DO { [ENCRYPTION ALGORITHM] }

6 a c t i o n decrypt(data :#DO): #DO { [DECRYPT ALGORITHM] } }

7 export namespace #DOnamespace a c c e s s i b l e by sap.hana.All {

8 export a c t i o n get#DO(idEnt: I n t e g e r) : #DOEntity {

9 l e t #DOInst: #DOEntity = SELECT * FROM #DOEntity WHERE id == idEnt;

10 #DOInst.#DOData = #DOInst.decrypt(#DOInst.#DOData);

11 re turn #DOInst.#DOData; } } }

Listing 4. Enforcement of confidentiality, implementing encryption security control

ER6: Confidentiality. It requires a system to ensure that only authorized users access

information [8]. It is a security annotation that is linked to one message flow or one data

object (Tab. 1-f). We enforced it using authentication, access control and implementing

encryption security control.

Lst. 4 shows part of the River template for the encryption security control. In lines

5 and 6 the encryption and decryption functions are defined. For the sake of brevity,

the algorithms used to encrypt and decrypt data are not shown. Lines 8–11 show how

the functions are used to enforce confidentiality: the content of the entity/message is

decrypted when retrieved/received and encrypted when is stored/sent. Therefore, the

content of entity/message will be visible only in the River application. The encryp-

tion/decryption functions are inserted in the send/receive actions when the security an-

notation is linked to a message flow, while are inserted in getters and setters of the entity

which contains the type generated from #DO.

ER7: Privacy. It requires a system to obey privacy legislation and it should enable indi-

viduals to control, where feasible, their personal information (user-involvement) [8]. It

is linked to one message flow or one data object (Tab. 1-g). With authentication and ac-

cess control, we restrict the access to authorized users. We further enforce it, encrypting

the content of the entity that contains the type generated from #DO (when the security

annotation is connected to #DO), or encrypting the entities sent and received (when the

security annotation is linked to a message flow).

ER8: Binding of duties. It requires the same person to be responsible for the com-

pletion of a set of tasks [15]. It is linked to two pools (Tab. 1-h). It is enforced using

authentication and access-control, ad-hoc security controls. Lst. 5 shows the template

for the enforcement of binding of duties. Element “BoDUser” in line 3 contains the first

user who accesses the entity and, therefore, the only one that is authorized to access the

entity(s) contained in the River applications generated from #Pool and #Pool2. In lines

4–14 the function “CheckBoD” is defined: it checks if the variable “BoDUser” is set

locally and in the application generated from #Pool2. If the variable is not set, it sets the

variable both local and remotely, otherwise it checks if the user who is executing the

action in which the “CheckBoD” method is called, is the same as the one memorized

in the variable. The “CheckBoD” method will be called in any action of the entities

contained in the applications generated from #Pool and #Pool2 (lines 16–19).



1 a p p l i c a t i o n #Pool{ [..]

2 export e n t i t y #DOEntity {

3 element BoDUser : S t r i n g;

4 a c t i o n checkBoD(): Boolean {

5 i f (BodUser i s n u l l && getBodUser(’#poolURL’,id) i s n u l l) {

6 BodUser = sap.hana.services.session.getUserName();

7 setBodUser(’#poolURL’, id, sap.hana.services.session.getUserName());

8 re turn t ru e; }

9 e l s e

10 i f (BodUser == sap.hana.services.session.getUserName() &&

11 getBodUser(’#poolURL’,id) == sap.hana.services.session.getUserName())

12 re turn f a l s e;

13 e l s e

14 re turn t ru e; } }

15 export namespace #DOnamespace a c c e s s i b l e by sap.hana.All {

16 export a c t i o n get#DO(idEnt: I n t e g e r) : #DOEntity {

17 l e t #DOInst: #DOEntity = SELECT * FROM #DOEntity WHERE id == idEnt;

18 i f (!#DOInst.checkBoD()) re turn n u l l;

19 re turn #DOInst.#DOData; }

20 export a c t i o n setBoDUser(urlPool: Str ing , idEnt: Str ing , BodUser: S t r i n g){[..]}

21 export a c t i o n getBoDUser(urlPool: Str ing , idEnt: S t r i n g): S t r i n g{[..]} } }

Listing 5. Implementation of dynamic binding of duties

ER9: Separation of duties. It requires two or more different people to be responsible

for the completion of a set of tasks [16]. It is linked to two pools (Tab. 1-i). Static sepa-

ration of duties [17] is enforced using authentication and access control, while dynamic

separation of duties [17] is enforced with authentication, access control and ad-hoc se-

curity controls. The template for enforcing dynamic separation of duty is similar to the

one for binding of duty (Lst. 5).

ER10: Availability. It requires a system to ensure that all its components are avail-

able and operational when they are required by authorized users [8]. Tab. 1-j shows

its graphical representation. It cannot be enforced in a River application because it re-

quires configuration of the system (e.g., the configuration of the data-base management

system), so the specification of using backup mechanism for #DO will be added to the

security specification document.

ER11: Non-delegation. It requires the system to ensure that the actions are performed

only by indicated actor(s). It can be linked to one task (Tab. 1-k). It is enforced using

access control: when #Task is transformed in an action in River, it is executed by the

roles authorized to access the tenancy/server where the River application is deployed.

Once the action is implemented, it will not be anymore delegated to a third party.

5 Implementation and Evaluation

5.1 Prototypical Implementation

Our prototype (available from [12]) tool takes as inputs an XML specification of the

SecBPMN2 model, a repository of business artifact definitions and, optionally, a set of

enforcement rules. Using the generation rules described earlier, the prototype generates

the River skeletons form templates using Freemarker (http://freemarker.org):

a Java template library.

http://freemarker.org


Alg. 1 shows the generation of the River skeletons. It follows the generation and en-

forcement rules described in Sec. 3 and 4. It uses the function GENERATE that retrieves

the Freemarker templates and instantiate them using the information contained in the

SecBPMN2 model. For each pool of the SecBPMN2 model (line 1), the algorithm cre-

ates a new River application (line 2) and it adds, to the application generated, all roles

generated from all lanes contained in the pool (lines 3–5). For each data object, it cre-

ates a River type, entity and namespace, and add them to the application (lines 6–10).

After that, for each task in the pool, it generates the corresponding action and adds it

to the entity(ies) that is(are) generated from the data object that is linked to the task

(lines 11–16). The RETRIEVE function checks for this link. If no data object is linked

the task, the generated action is added to the application. The last part of the algorithm

is for the enforcement of the security annotations: for each security annotation in the

pool, GENERATESC instantiates the Freemarker template for the corresponding secu-

rity control(s) and after that GERNERATESP generates the security specifications that

are added to the security specification document.

Algorithm 1 Algorithm for generation of River applications

GENERATERIVERAPPLICATIONS(SecBPMN2 model)
1 for each pool ∈ model

2 do riverApplication← GENERATE(pool)
3 for each lane ∈ pool

4 do riverRole← GENERATE(lane)
5 riverApplication.ADD(riverRole)
6 for each dataObject ∈ pool

7 do riverType, riverEntity, riverNamespace← GENERATE(dataObject)
8 riverApplication.ADD(riverType)
9 riverApplication.ADD(riverEntity)

10 riverApplication.ADD(riverNamespace)
11 for each task ∈ pool

12 do riverAction← GENERATE(task)
13 if LINKEDDO(task)

14 then riverEntity← RETRIEVE(DataObject)
15 riverEntity.ADD(riverAction)
16 else riverApplication.ADD(riverAction)
17 securitySpecificationDoc← NEW()
18 for each securityAnnotation ∈ pool

19 do securityMeachanisms← GENERATESC(securityAnnotation)
20 riverApplication.ADD(securityMechanisms)
21 securitySpecifications← GENERATESP(securityAnnotation)
22 securitySpecificationDoc← ADD(securitySpecification)

Due to lack of resources, our prototype is currently limited to public and private

process models and collaboration models. We do not foresee any fundamental problem

in extending the prototype to support SecBPMN2 choreography models.



5.2 Evaluation and Discussion

To evaluate our approach, we used the framework to generate River applications for

the PE system. Following the process proposed in Fig. 3, we modeled the business

processes and then we generated the River applications, using the software tool we

implemented. The choice of SecBPMN2 was appropriate since the modeling language

was expressive enough to specify the business processes and the security choices. The

generation required no effort, and its execution took only few seconds. We successfully

deploy the generated River applications on a River server sandbox. The usage of our

approach saved lot of effort and time in the first part of the implementation phase,

where River skeletons are defined. While the overall evaluation of the approach was

very positive, we also observed several limitations that need to be addressed before a

commercialization is possible. In particular, we identified the following restrictions:

Manual written code: we generate skeletons of River applications. Although, we try

to minimize the human intervention after the generation of the River applications, we

believe that, with the current technologies, is hardly possible to completely remove the

intervention of developers after the generation. The price to pay in order to automati-

cally generate complete River applications is to collect all the information required, for

example the actual implementation of the business logic, before the generation. This

would only move the effort required to developers before the generation and, neverthe-

less, it would lead to a less intuitive, and less flexible framework.

Choice of security controls: Security constraints can often be fulfilled by different

security controls. For example, a confidentiality requirement can be implemented by

role-based access control or by encryption based access-control. In our prototype, we

decided to limit the choice of security controls to, first, increase the usability, and, sec-

ond, to be able to ensure the compositionality of the security controls. For applying our

approach to further application domains, we would need to guide a security expert in

selecting the most suitable security control as part of the generation.

Limitations of implementing “security-by-design”: While our framework is designed

with “security-by-design” in mind, due to technical and fundamental limitations, it can-

not be fully achieved. First, there are security controls that require a run-time configu-

ration (e.g., access control) and, second, security controls that are part of the generated

implementation could be modified during the development process. With respect to the

first item, we are generating requirements documents that need to be fulfilled while con-

figuring the actual system. With respect to the second item, we would need to integrate

consistency checks that ensure that the generated source is not modified during develop-

ment. Moreover, the generated security controls require that manually developed parts

to not violate the security requirements. To ensure this, we envision to implement static

source code checks (see [18] for a first work in this area).

Cross-organizational security constraints: Currently, our approach has only very lim-

ited support for cross-organizational security requirements such as separation-of-duties

across multiple organizations. This is a challenge which is out of scope of our work,

as it requires collaborations between the organizations on the overall system level, e.g.,



by using a federated identify management systems. As soon as such federated security

systems are used, our framework will support cross-organizational requirements.

Not all of those restrictions are limiting the wide-spread use of our approach simi-

larly. For example, relying on a “honest developer” is not considered to be a roadblock

as the current framework already advanced the state of the art with respect to building

secure process-aware systems significantly.

5.3 Related Work

In the area of secure process-aware systems, a variety of BPMN-based approaches have

been proposed for modeling security, privacy, and compliance aspects (e.g., [9,19,20]).

The BPMN meta-model is extended with new attributes and properties, and different se-

lections of security, privacy, or compliance properties are considered. However, none of

these proposals provide support to map BPMN models into artifact centric implemen-

tations. The approaches to implement and enforce security properties mainly focus on

integrating security control mechanisms (e.g., access control infrastructures) into busi-

ness process execution engines [21]. Lohmann et al. [22,23] discuss also the integration

of compliance aspects into artifact centric business processes.

In the area of mapping or transforming control-flow centric business process specifi-

cations to artifact based models, the number of existing proposals is surprisingly small.

Estañol et al. [24] present a mapping of BPMN to UML models with OCL constraints.

The data model of the target language, i.e., UML/OCL class models, is conceptual very

close to the River language. The pure mapping of business process artifacts results very

similar to our approach. In contrast to our work, Estañol et al. [24] do not discuss secu-

rity at all. Moreover, their approach is not supported by an actual implementation.

6 Conclusions and Future Work

To our knowledge, this paper presents the first automated framework for translating

security-aware control-flow-centric business-process-models to a secure artifact-centric

implementation of process aware systems. While our prototype used SecBPMN2 and

SAP River, the underlying approach is generic and can be applied as well to other

security-aware business process languages as well as other artifact-centric frameworks

and languages. Adapting the approach to a different security-aware business process

languages, e.g., SecureBPMN [9], changes the set of supported security properties,

which might require the development of new mappings. Adapting the mapping to dif-

ferent artifact-centric frameworks, e.g., ABAP (used by the SAP Business Suite) or

PeopleCode (used by Oracle PeopleSoft) that already support access control is easy.

We plan to extend our approach along at three lines of research: (i) automated gen-

eration of validation checks to be executed after each update of security-related config-

urations; (ii) as preliminary discussed in [18], automated check for the implementation

validation; (iii) integration with monitoring and process mining frameworks.

Acknowledgment This research was partially supported by the ERC advanced grant

267856, ‘Lucretius: Foundations for Software Evolution’, www.lucretius.eu.

www.lucretius.eu


References

1. OMG: BPMN 2.0. OMG. (Jan 2011) www.omg.org/spec/BPMN/2.0.

2. OASIS: Web Services Business Process Execution Language. OASIS. (Apr 2007) docs.

oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

3. SAP SE: SAP River Developer Guide. (2014) Document Version 1.0, SAP HANA SPS 08.

4. Doolittle, J.: PeopleSoft Developer’s Guide for PeopleTools and PeopleCode. McGraw-Hill

Osborne Media (2008)

5. Paja, E., Dalpiaz, F., Giorgini, P.: Managing security requirements conflicts in socio-

technical systems. In Ng, W., Storey, V.C., Trujillo, J., eds.: ER’13. LNCS 8217, Springer

(2013) 270–283

6. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems – Chal-

lenges, Methods, Technologies. Springer (2012)

7. SAP SE: SAP Payment Engine Website. www.sap.com/services-support/svc/

custom-app-development/cnsltg/prebuilt/payment-engine/ Last vis-

ited Mar. 28th, 2015.

8. Salnitri, M., Dalpiaz, F., Giorgini, P.: Modeling and verifying security policies in business

processes. BPMDS ’14 (2014) 200–214

9. Brucker, A.D.: Integrating security aspects into business process models. it – Information

Technology 55(6) (2013) 239–246

10. Nigam, A., Caswell, N.S.: Business artifacts: an approach to operational specification. IBM

Syst. J. 42(3) (July 2003) 428–445

11. Keller, H., Krüger, S.: ABAP Objects. SAP PRESS (2007)

12. SecBPMN Website. www.secbpmn.disi.unitn.it Last visited Mar. 28th, 2015.

13. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling business opera-

tions and processes. IEEE Data Eng. Bull. 32(3) (2009) 3–9

14. OMG: OMG Unified Modeling Language, Infrastructure, V2.1.2 (2007) www.omg.org/

spec/UML/2.1.2/Infrastructure/PDF.

15. Wainer, J., Barthelmess, P., Kumar, A.: W-RBAC - a workflow security model incorporating

controlled overriding of constraints. Int. J. Cooperative Inf. Syst. 12(4) (2003) 455–485

16. Simon, R., Zurko, M.: Separation of duty in role-based environments. In: CSFW ’97, IEEE

Computer Society (1997) 183–194

17. Ferraiolo, D., Kuhn, R.: Role-based access control. In: 15th NIST-NCSC National Computer

Security Conference. (1992) 554–563

18. Brucker, A.D., Hang, I.: Secure and compliant implementation of business process-driven

systems. In: SBP ’12. LNBIP 132, Springer (2012) 662–674

19. Mülle, J., von Stackelberg, S., Böhm, K.: A security language for BPMN process models.

Technical report, University Karlsruhe (KIT) (2011)

20. Rodríguez, A., Fernández-Medina, E., Piattini, M.: A BPMN extension for the modeling of

security requirements in business processes. IEICE - Trans. Inf. Syst. ’07 E90-D 745–752

21. Brucker, A.D., Hang, I., Lückemeyer, G., Ruparel, R.: SecureBPMN: Modeling and Enforc-

ing Access Control Requirements in Business Processes. In Atluri, V., Vaidya, J., Kern, A.,

Kantarcioglu, M., eds.: SACMAT ’12, ACM (2012) 123–126

22. Lohmann, N.: Compliance by design for artifact-centric business processes. Information

Systems 38(4) (2013) 606–618

23. Lohmann, N., Nyolt, M.: Artifact-centric modeling using BPMN. In Pallis, G., Jmaiel, M.,

Charfi, A., Graupner, S., Karabulut, Y., Guinea, S., Rosenberg, F., Sheng, Q.Z., Pautasso, C.,

Mokhtar, S.B., eds.: ICSOC ’12 Workshops. LNCS 7221. Springer (2011) 54–65

24. Estañol, M., Queralt, A., Sancho, M., Teniente, E.: Artifact-centric business process models

in UML. In Rosa, M.L., Soffer, P., eds.: BPM ’12. LNBIP 132, Springer (2012) 292–303

www.omg.org/spec/BPMN/2.0
docs.oasis-open.org/ wsbpel/ 2.0/ wsbpel-v2.0.html
docs.oasis-open.org/ wsbpel/ 2.0/ wsbpel-v2.0.html
www.sap.com/services-support/svc/custom-app-development/cnsltg/prebuilt/payment-engine/
www.sap.com/services-support/svc/custom-app-development/cnsltg/prebuilt/payment-engine/
www.secbpmn.disi.unitn.it
www.omg.org/spec/UML/2.1.2/Infrastructure/PDF
www.omg.org/spec/UML/2.1.2/Infrastructure/PDF

	From Secure Business Process Models to Secure Artifact-Centric Specifications
	Bibliography

