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Visual feature binding in younger and older adults: encoding and suffix
interference effects
Louise A. Browna , Elaine H. Nivenb*, Robert H. Logieb, Stephen Rhodesb and Richard J. Allenc

aSchool of Psychological Sciences & Health, University of Strathclyde, Glasgow, UK; bDepartment of Psychology, and Centre for Cognitive
Ageing and Cognitive Epidemiology, The University of Edinburgh, Edinburgh, UK; cSchool of Psychology, University of Leeds, Leeds, UK

ABSTRACT
Three experiments investigated younger (18–25 yrs) and older (70–88 yrs) adults’ temporary
memory for colour–shape combinations (binding). We focused upon estimating the
magnitude of the binding cost for each age group across encoding time (Experiment 1; 900/
1500 ms), presentation format (Experiment 2; simultaneous/sequential), and interference
(Experiment 3; control/suffix) conditions. In Experiment 1, encoding time did not differentially
influence binding in the two age groups. In Experiment 2, younger adults exhibited poorer
binding performance with sequential relative to simultaneous presentation, and serial
position analyses highlighted a particular age-related difficulty remembering the middle item
of a series (for all memory conditions). Experiments 1–3 demonstrated small to medium
binding effect sizes in older adults across all encoding conditions, with binding less accurate
than shape memory. However, younger adults also displayed negative effects of binding
(small to large) in two of the experiments. Even when older adults exhibited a greater suffix
interference effect in Experiment 3, this was for all memory types, not just binding. We
therefore conclude that there is no consistent evidence for a visual binding deficit in healthy
older adults. This relative preservation contrasts with the specific and substantial deficits in
visual feature binding found in several recent studies of Alzheimer’s disease.
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Older adults have reliably been shown to exhibit a deficit
for associating a variety of different types of stimuli in epi-
sodic memory, including verbal and non-verbal, and static
and dynamic information (Naveh-Benjamin, 2000; Old &
Naveh-Benjamin, 2008a, 2008b). The deficit presents as a
greater age-related decline in memory for the associations
between features, such as names and faces, than for indi-
vidual features. A general age-related decline in visual
working memory performance has also been observed
(e.g. Johnson, Logie, & Brockmole, 2010; Park et al., 2002).
These findings have led to the hypothesis that older
adults may have difficulty temporarily maintaining combi-
nations of features such as colours, shapes, and locations
(temporary binding). Such deficits could manifest as an
age-related difficulty in recalling, for example, that the
car was red and the van was blue, rather than vice versa,
or whether the round or the oval white pill had just been
taken.

Multiple studies have reported evidence for an age-
related deficit in temporarily binding objects to spatial
locations (Borg, Leroy, Favre, Laurent, & Thomas-Antérion,

2011; Brockmole & Logie, 2013; Cowan, Naveh-Benjamin,
Kilb, & Saults, 2006; Fandakova, Sander, Werkle-Bergner,
& Shing, 2014; Mitchell, Johnson, Raye, & D’Esposito,
2000; Mitchell, Johnson, Raye, Mather, & D’Esposito,
2000). There is also robust evidence for a binding deficit
in Alzheimer’s disease patients when only surface visual
features such as colour and shape are involved (e.g.
Parra, Abrahams, Fabi, et al., 2009; Parra, Abrahams,
Logie, & Della Sala, 2010; Parra, Abrahams, Logie,
Mendez, et al. 2010). On the other hand, visual binding def-
icits have been much more elusive in healthy older adults,
so much so that, using a change detection paradigm, the
evidence is weighted towards older adults being unim-
paired in this ability (Brockmole, Parra, Della Sala, &
Logie, 2008; Parra, Abrahams, Logie, & Della Sala, 2009;
Read, Rogers, & Wilson, 2015; Rhodes, Parra, & Logie,
2016). However, Brown and Brockmole (2010) found that
a small age-related visual binding deficit may indeed
accompany the healthy ageing process, even when using
the commonly employed change detection paradigm. In
Experiment 2 of that study it was demonstrated that,
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only in older adults, memory for bound visual objects
(coloured shapes) was significantly poorer than memory
for the worst performing individual feature (shape). Simi-
larly, Isella, Molteni, Mapelli, and Ferrarese (2015) appeared
to observe significant age ×memory condition interactions
using A′ (but not proportion correct) as their outcome vari-
able (see Allen, Hitch, Mate, & Baddeley, 2012), with their
older adult group displaying reduced binding memory
accuracy. However, they argued for the absence of a
specific binding deficit in older adults, because the p-
value for the interaction did not meet the .001 level. Fur-
thermore, evidence of age-related temporary visual
binding deficits has been reported using more complex
paradigms (Chen & Naveh-Benjamin, 2012; Peich, Husain,
& Bays, 2013). Thus, although this form of deficit is by no
means robust across studies, it is observable. Given the
theoretical and applied importance of this topic, and the
inconsistency of findings reported in the literature pertain-
ing to the effects of healthy ageing on temporary visual
feature binding, our analyses will highlight the effect
sizes and confidence intervals for the key comparisons of
interest, in each experiment (Cumming, 2012, 2014).
Rather than simply stating whether or not a statistically sig-
nificant binding deficit exists, this approach, which has
thus far been lacking in the literature, will establish the
size of any effect (i.e. binding deficit) that is related to
healthy ageing. Additionally, in order to demonstrate that
temporary binding is not disproportionately affected by
age, one must be able to obtain evidence for the null
hypothesis, that there are no interactions between age
group and condition. Therefore, we also report Bayes
factors for crucial interactions of interest, using
the default family of priors outlined by Rouder, Morey,
Speckman, and Province (2012).

It is also unclear what cognitive mechanisms may
underlie visual feature binding deficits when they are
observed (see Allen, Brown, & Niven, 2013, for a review).
Brown and Brockmole (2010) argued that attention deficits
were not able to account for the observed deficit, and this
is in parallel to findings in the long-term memory literature
(Chen & Naveh-Benjamin, 2012; Cowan et al., 2006; Kilb &
Naveh-Benjamin, 2007; Naveh-Benjamin, Guez, &
Shulman, 2004). Examining the reliability of possible age-
related visual feature binding deficits across a variety of
contexts has important implications for models of
binding in working memory and for the characterisation
of healthy cognitive ageing. The present study assesses
the extent to which encoding and maintenance limitations
may contribute to visual feature binding deficits in young
and older adults. We addressed the potential role of
three specific processes, which were identified as key vari-
ables of interest in the study of temporary visual feature
binding. These are encoding duration (Exp. 1: 900/1500
ms), mode of presentation at encoding (Exp. 2: simul-
taneous/sequential), and interference after encoding
(Exp. 3: control/suffix presentation). Cowan et al. (2006)
suggested that older adults’ binding deficits could be

due to a lack of processing robustness (following Li et al.,
2004; see also Mitchell, Johnson, Raye, & D’Esposito,
2000), emphasising the requirement for detailed investi-
gations of the encoding stage of the visual binding
process in younger and older adults. Specifically, proces-
sing speed has been shown to exert a strong influence
on older adults’ working memory performance (e.g.
Salthouse, 1992, 1994, 1996) and could therefore differen-
tially impact older adults’ encoding success and sub-
sequent binding memory performance. In addition, both
presentation format at encoding, and suffix interference
after encoding, were also important to consider in the
present context, given their influence on visual binding
that has been identified in the existing literature, particu-
larly with younger adults, as well as their relationship
with attentional processes (Allen, Baddeley, & Hitch, 2006,
2014; Allen, Castellà, Ueno, Hitch, & Baddeley, 2015;
Ueno, Allen, Baddeley, Hitch, & Saito, 2011; Ueno, Mate,
Allen, Hitch, & Baddeley, 2011). Despite their importance
in the recent binding literature, to the best of our knowl-
edge, serial position effects in sequential presentation con-
ditions and suffix interference effects have yet to be
investigated in healthy older adults’ visual binding. By
investigating all of these variables, we will gain further
insights into visual feature binding in both younger and
older adults, and important evidence regarding the poten-
tial visual binding deficit in healthy ageing.

Experiment 1

In one previous study that demonstrated an age-related
temporary visual binding deficit, the total encoding time
was longer (1500 ms; Brown & Brockmole, 2010, Exp. 2)
than had been used in previous similar experiments that
did not reveal an age-related binding deficit (900 ms,
Brown & Brockmole Exp. 1; Brockmole et al., 2008).
Indeed, it is possible to predict that encoding time could
influence the presence or absence of binding deficits.
Recent studies suggest that temporary visual feature
binding occurs rather automatically at a low level of the
working memory system (Baddeley, Allen, & Hitch, 2011;
Logie, Brockmole, & Vandenbroucke, 2009) but that, by
1500 ms, a stable representation of the object has been
encoded into visual short-term storage (Logie, Brockmole,
& Jaswal, 2011; see also Peich et al., 2013). Thus, one
could predict enhanced visual working memory for fea-
tures and/or conjunctions with longer encoding durations,
and such enhancement could benefit older adults to a
greater extent than younger adults. Rhodes et al. (2016)
recently investigated the effect of a rather long encoding
time (2500 ms) for comparison with the conventional
900 ms, and found that this did not differentially affect
the binding performance of older adults. Nevertheless, it
is important to compare directly the 900 and 1500 ms
encoding conditions, given the differential findings that
have been reported in the literature previously, and in
light of the evidence suggesting that 1500 ms is an
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important threshold for developing stable bound rep-
resentations, at least in younger adults (Logie et al., 2011).

Furthermore, it is possible to predict that the slightly
longer encoding duration could be problematic for older
adults. Younger adults may disproportionately benefit
from the extra available time, or older adults’ performance
could actually suffer. As declining frontal lobe functions
may underlie cognitive ageing (Braver & West, 2008), one
could predict that the less efficient use of task-limiting
strategies could be observed in older adults when more
time is available for encoding (Sander, Werkle-Bergner, &
Lindenberger, 2011). Participants may supplement fast,
relatively automatic, perceptual attention-driven binding
processes (Hu, Hitch, Baddeley, Zhang, & Allen, 2014;
Murre, Wolters, & Raffone, 2006) with higher level executive
processes such as inhibition and strategy use (Hu et al.,
2014; Logie et al., 2011; Naveh-Benjamin, Brav, & Levy,
2007; Sander, Lindenberger, & Werkle-Bergner, 2012).
Task-limiting strategies could include focusing on a
subset of stimuli at the expense of full, successful encoding
and/or retention of the array. We hypothesised, then, that
stimuli display duration may influence the presence or
absence of age-related binding impairments.

Methods

Design
A 2 × 2 × 3 mixed factorial design was used to investigate
the effects of age group (younger, older), encoding
format (short-900 ms/long-1500 ms; within participants),
and memory block type (colour, shape, binding; within par-
ticipants) on memory performance. A single-probe change
detection paradigm was employed, using A′ as the depen-
dent measure. As is typical for change detection para-
digms, a hit was defined as the correct detection of
change. A′ ranges between 0 and 1, and .5 indicates
chance level performance (Stanislaw & Todorov, 1999). To
enhance comparability with future research, but also for
ease of inclusion in future meta-analyses, Cohen’s d was
selected as the main standardised effect size measure
(Cumming, 2012, 2014).

Participants
There were 48 participants in total. The younger sample
comprised 8 males and 16 females, recruited from the
University of Edinburgh community, aged 18–25 years
(M = 19.92, SD = 1.91; mean years of education = 14.50,
SD = 1.60). Their mean estimated full-scale IQ [Test of Pre-
morbid Functioning – UK (ToPF); Pearson, 2009] was
101.17 (SD = 7.04). Across all experiments, the older
adults volunteered on the basis of being healthy, living
independently in the community, and agreeing to visit
the University to participate. There were 13 male and 11
female older adults, aged 70–86 years (M = 76.08, SD =
4.24; mean years of education = 15.00, SD = 3.36). Their
estimated IQ was 115.63 (SD = 7.44). The latter was signifi-
cantly different between younger and older adults, t(46) =

6.91, p < .001, although this was in the opposite direction of
any expected age effects, and likely reflects greater verbal
knowledge in older adults (Park et al., 2002). Indeed, the
number of years of formal education was not significantly
different, t(33) = .66, p = .52. The Mini-Mental State Examin-
ation (MMSE; Folstein, Folstein, & McHugh, 1975) was used
to determine that all older participants were cognitively
healthy (M = 28.79, SD = 1.14, min = 27, max = 30). All par-
ticipants reported normal or corrected-to-normal vision,
and no memory problems. For this and the following
experiments, the participants were unique to each exper-
iment and had not taken part in any of the other exper-
iments. Participants received either an honorarium or
course credit.

Materials
Stimulus displays comprised three coloured shapes pre-
sented on a grey background. Each object was created
from a pool of six colours (red, yellow, blue, green, cyan,
purple) and six shapes (circle, triangle, diamond, heart,
arrow, cross), by randomly selecting one colour and one
shape, without replacement. Test arrays comprised either
a single feature (a colour blob or a blank, grey shape
with a black outline for the colour and shape memory
blocks, respectively) or a coloured shape (for the binding
memory block). Stimuli were presented on a 51 cm LCD
monitor with a screen refresh rate of 60 Hz. Each stimulus
measured approximately 2.2 cm2, and viewing distance
was not constrained.

Procedure
All participants completed the ToPF (Pearson, 2009), and
older participants also completed the MMSE (Folstein
et al., 1975). The main task was then administered using
a blocked, counterbalanced procedure. There were three
blocks of trials, which varied by memory test type
(colour, shape, binding), for each of the two encoding
time conditions (short, long). The blocked procedure was
adopted so as to minimise any potential influence of
higher level cognitive mechanisms (e.g. confusion over
task instructions, particularly across different memory con-
ditions). Participants completed all three blocks of one
encoding condition followed by the other. Encoding con-
ditions and memory blocks were counterbalanced, with
the constraint that each participant completed the differ-
ent memory tasks in the same order for each encoding
condition. Each trial block comprised six practice trials fol-
lowed by 36 experimental trials. Trial order was random-
ised across participants.

Figure 1(a) illustrates the paradigm. Participants pressed
the space bar to begin a trial, whereupon a randomly gen-
erated two-digit number (between 20 and 99) was dis-
played for 2000 ms. Immediately, participants would
begin articulating this number out loud continuously and
consistently, throughout the trial, until they made a key-
press response. This secondary task was intended to
suppress articulation and verbal recoding of the stimuli
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(Baddeley, 2007; Larsen & Baddeley, 2003). After presen-
tation of the two-digit number, a central fixation cross
appeared for 1000 ms which was then accompanied by
three coloured shapes, presented in a row in three fixed
locations (left, centre, right), for either 900 (short) or
1500 ms (long), above the cross. After a 1000 ms delay, a
single test item appeared below the fixation cross in one
of three fixed locations (left, centre, right; randomly
selected, but appearing in each position equiprobably).
Participants responded yes or no, by pressing the z or m
keys on the keyboard, to indicate whether or not the
item had appeared in the memory array. Following pre-
vious studies (e.g. Allen et al., 2006; Wheeler & Treisman,
2002), target trials involved presenting a colour, shape, or
colour–shape combination at test. In lure trials, new

colours or shapes were introduced from the pool in
feature memory blocks, and new colour–shape combi-
nations were introduced in the binding memory blocks
by swapping features that had appeared in the memory
array (see also Brown & Brockmole, 2010). Half of the
trials featured targets at test, while the other half featured
lures.

Results

Table 1 displays the mean A′ scores from each condition.
These data were analysed using a 2 (age group) × 2 (encod-
ing time) × 3 (memory type) mixed analysis of variance
(ANOVA). There were effects of age group, F(1, 46) =
27.14, MSE = .008, p < .001, h2

p = .37, encoding type, F(1,

Figure 1. (a) Experiment 1 procedure. Participants carried out six trial blocks (i.e. each memory block type – colour, shape, binding – under each encoding
time condition – 900, 1500 ms). (b) Experiment 3 procedure – suffix condition. Each participant carried out each memory type (colour, shape, binding) under
each interference condition (control, suffix). The control condition was the same as the 900 ms condition of Experiment 1. In all experiments, stimuli were
drawn from a pool of six different colours and shapes, and are not drawn to scale here. Fill effects represent different colours.
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46) = 7.42, MSE = .002, p = .009, h2
p = .14, and memory task

type, F(2, 79.7) = 44.59, MSE = .005, p < .001, h2
p = .49. Col-

lapsed across both age groups, planned comparisons
(paired t-tests) showed that performance was superior in
the colour condition (M = .94, SD = .05) relative to shape
(M = .88, SD = .06), t(47) = 8.09, p < .001, but shape and
binding (M = .86, SD = .06) were performed similarly,1

t(47) = 1.34, p = .19. There was an interaction between
encoding condition and age group, F(1, 46) = 4.10,
MSE = .002, p = .049, h2

p = .08; collapsed across memory
type, older adults benefited from the long (M = .88, SD
= .04) compared with the short (M = .85, SD = .04) encoding
time, t(23) = 2.92, p = .008, while younger adults performed
similarly across both encoding conditions (Mshort = .92,
SD = .04; Mlong = .92, SD = .04; t(23) = .6, p = .56). All other
interactions were non-significant (all p > .68).

Focusing on comparing binding memory performance
with that of the worst performing individual feature con-
dition, shape memory, we assessed the size of the effect
of retaining bound relative to individual features, using
the A′ scores.2 The mean of the paired differences was cal-
culated across shape and binding memory, and a negative
value indicates poorer performance in binding. We first cal-
culated dz′, by dividing the mean of the paired differences
between shape and binding performance (Mz) by the stan-
dard deviation of the difference scores (SDz; Cohen, 1988).
We then calculated Cohen’s d using d = dz′√2 (Cohen,
1988). Cohen suggested the convention that an effect
size of .2 be interpreted qualitatively as a small effect. A
value of .5 is indicative of a medium effect, which would
be noticeable when visually inspecting the data, while .8
reflects a large effect.

In younger adults in the short encoding condition, the
mean of the paired differences was −.01 (SD = .07 [95%
confidence interval: −.04, .01]; d =−.30). In the long
encoding condition, the mean of the paired differences
was similar at −.02 (SD = .08 [−.05, .02]; d =−0.32). In
the older adults, the mean of the paired differences
between shape and binding memory in the short encod-
ing condition was −.02 (SD = 0.12 [−.08, .03]; d =−0.25).
In the long encoding condition this was −.004 (SD =
0.11 [−0.05, 0.04]; d =−.05). Thus, the effect size is small
in both age groups under both encoding conditions,

and is negligible in the long encoding condition in
older adults.

The argument that there is no disproportionate effect of
age on temporary visual feature binding has previously
been made on the basis of failure to reject the null hypoth-
esis. Bayes factors offer an intuitive, and increasingly
popular, way to state evidence for one proposition (or
model) relative to another (Edwards, Lindman, & Savage,
1963). In this case, models are defined by the inclusion or
omission of main or interaction effects. As mentioned
above, we used the default family of priors outlined by
Rouder et al. (2012), which place greater prior probability
on effects of small magnitude (i.e. symmetrically around
zero) but do not rule out larger effects. Our Bayesian
ANOVA was conducted using the BayesFactor package in
R (Morey & Rouder, 2015; R Core Team, 2015). The analysis
compared a full model, with all main effects and inter-
actions between experimental variables, to reduced
models omitting a specific component at a time (for
example, a model without an age group ×memory type
interaction).3 The resulting Bayes factor therefore reflects
the relative evidence for retaining the effect in the full
model versus the reduced model, which does not rep-
resent the effect.

Relative to a full model, with main effects of age group,
memory type, and presentation time, and the interactions
between these variables, the reduced model, which omits
the age ×memory type interaction, was favoured by a
factor of approximately 13 to 1. Thus, Experiment 1 provides
fairly strong evidence against a differential effect of age
across the three memory types. There was also evidence
against the three-way interaction, as the reduced model
without this component was preferred by over 6 to 1.

Discussion

As expected, younger adults outperformed the older adults
overall, indicating an age-related deficit in visual working
memory (Brown & Brockmole, 2010; Johnson et al., 2010;
Park et al., 2002). Importantly, however, there was little evi-
dence of a specific deficit in the temporary retention of
bound visual objects, relative to memory for the most dif-
ficult individual feature condition (shape). The

Table 1. Change sensitivity data (mean A′ scores; with standard deviations) for each condition across all three experiments.

Younger Older

Colour Shape Binding Colour Shape Binding

Exp. 1 Short (900 ms) 0.97
(±0.03)

0.90
(±0.06)

0.89
(±0.07)

0.90
(±0.06)

0.84
(±0.07)

0.82
(±0.08)

Long (1500 ms) 0.97
(±0.03)

0.91
(±0.06)

0.89
(±0.06)

0.93
(±0.06)

0.85
(±0.06)

0.85
(±0.08)

Exp. 2 Simultaneous 0.98
(±0.03)

0.93
(±0.06)

0.93
(±0.05)

0.92
(±0.06)

0.84
(±0.09)

0.78
(±0.12)

Sequential 0.97
(±0.03)

0.93
(±0.04)

0.87
(±0.09)

0.91
(±0.05)

0.81
(±0.10)

0.80
(±0.07)

Exp. 3 Control 0.97
(±0.02)

0.87
(±0.07)

0.91
(±0.06)

0.92
(±0.06)

0.82
(±0.10)

0.76
(±0.12)

Suffix 0.96
(±0.03)

0.83
(±0.08)

0.86
(±0.08)

0.88
(±0.06)

0.73
(±0.12)

0.65
(±0.19)
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standardised effect sizes also support this conclusion.
While there was evidence of a small binding-related
effect size in the short encoding condition, the younger
adults also exhibited this across both encoding conditions;
therefore, there are no grounds to argue for a specific age-
related binding deficit within this particular experiment.
We were also able to gauge the strength of evidence for
interactions between age and memory condition, using
Rouder et al.’s (2012) default Bayes factors. This analysis
showed that models without interactions between age
group and memory type were more likely, relative to the
saturated, full model, which included them. When con-
sidered in relation to the wider working memory literature
that is weighted against an age-related deficit in temporary
surface visual feature binding using similar paradigms
(Brockmole et al., 2008; Brown & Brockmole, 2010, Exp. 1;
Parra, Abrahams, Fabi, et al., 2009; Rhodes et al., 2016),
these results are in keeping with the suggestion that the
performance of healthy older adults in binding conditions
is primarily driven by their ability to detect changes in indi-
vidual features, and does not reflect an impairment specifi-
cally of temporary binding of colour–shape combinations.

These results also provide evidence regarding the
potential role of encoding time in older adults’ temporary
visual feature binding performance (Brown & Brockmole,
2010). The results clearly showed that encoding time
cannot account for the differential findings in the previous
literature on visual feature binding. Although older adults
benefitted more than younger adults from a longer encod-
ing time overall (e.g. Salthouse, 1996), the presence or
absence of age-related visual binding deficits in working
memory appears to be unrelated to the encoding duration,
at least within the present experimental conditions (see
also Rhodes et al., 2016).

Experiment 2

Sequential presentation appears to disrupt temporary visual
feature binding in both younger and older adults (Allen
et al., 2006; Brown & Brockmole, 2010; see also Gorgoraptis,
Catalao, Bays, & Husain, 2011; Jaswal & Logie, 2011). As
sequential presentation requires creating new bindings
whilemaintainingpreviously encountered ones, this disrup-
tion may result from a fragility of bound material in visual
working memory (Baddeley et al., 2011; Logie et al., 2009;
Ueno, Allen, et al., 2011). That is, relative to individual fea-
tures in visual working memory, bound objects might be
more readily overwritten by new information. We would
therefore expect to replicate a general decrement in
binding performance, when stimuli are presented sequen-
tially. It is possible that older adults may bemore vulnerable
to this manipulation. Allen et al. (2014) have shown that
visual working memory for sequentially presented objects
involves two attentional components, which may be
thought of as internal, or top-down, attentional control,
and externally driven, bottom-up attention (Chun,
Golomb, & Turk-Browne 2011). If older adults exhibit

limited executive attentional resources (Braver & West,
2008; Buckner, 2004), then sequential presentation could
cause difficulty. That said, Brown and Brockmole (2010;
see also Read et al., 2015) provided evidence that older
adults’ visual binding was not differentially disrupted by
sequential presentation, suggesting retention of the
capacity to encode individual features and bindings serially.

A new avenue of exploration, however, was specifically
to examine older adults’ performance across the different
serial positions during sequential presentation. Allen et al.
(2006, 2014) showed that, in younger adults, memory for
bound representations exhibited a particular deficit relative
to individual feature memory in the earlier positions in the
sequence while, for the final position in the sequence, bind-
ings were retained as well as individual features. We there-
fore predicted that the poorest performance would be
observed at an earlier serial position, which depends upon
internally guided executive control. We could further
predict the same pattern of serial position deficit in older
adults, if they create and maintain serially presented bind-
ings in the same way as younger adults. It is possible,
however, to predict a different serial position curve in
older adults. In a dual-task verbal working memory study,
Foos (1989) reported similar serial position curves to Allen
et al. (2006), in that the final of three items was best remem-
bered. In older adults, however, a clear deficit existed for the
middle item, whereas there was no effect of age for items 1
and 3. We could therefore predict a particularly clear age-
related deficit at the middle serial position in our task,
which could potentially be more pronounced for bindings.

Methods

Design
A 2 × 2 × 3 mixed factorial design was used to investigate
the effects of age group (younger, older), encoding
format (simultaneous, sequential; within participants),
and memory block type (colour, shape, binding; within par-
ticipants) on A′, the main dependent measure of memory
performance.

Participants
There were 48 participants in total. The younger sample
comprised 8 males and 16 females (18–25 years, M =
22.13, SD = 1.75; mean years of education = 16.13, SD =
3.35; ToPF-estimated IQ = 110.00, SD = 5.88). The older
sample comprised 8 males and 16 females (70–83 years,
M = 77.63, SD = 4.15; mean years of education = 16.08, SD
= 3.01; ToPF-estimated IQ = 119.38, SD = 5.67). Estimated
IQ was significantly higher in the older than the younger
group, t(46) = 5.62, p < .001, but number of years of
formal education was not significantly different, t(46)
= .05, p = .96. All older participants were cognitively
healthy, as determined using the MMSE (Folstein et al.,
1975; M = 28.33, SD = .92; min = 27, max = 30). All partici-
pants reported normal or corrected-to-normal vision, and
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no memory problems. All participants received either an
honorarium or course credit.

Materials and procedure
Thematerials and procedurewere the same as described for
the 1500 ms condition of Experiment 1 (see Figure 1(a))
except that, in the sequential condition, each object was
presented individually, in turn, across the three positions
at the top of the screen, for 500 ms each. The encoding con-
ditions and memory task blocks were counterbalanced as
per Experiment 1.

Results

Table 1 displays the mean A′ scores for each condition. The
data were analysed using a 2 (age group) × 2 (encoding
format) × 3 (memory type) mixed ANOVA. There were
effects of age group, F(1, 46) = 53.59, MSE = .011, p < .001,
h2
p = .54, and memory type, F(2, 79.9) = 64.27, MSE = .005,

p < .001, h2
p = .58, but no significant effect of encoding

format, F(1, 46) = 3.09, MSE = .004, p = .086, h2
p = .06. Col-

lapsed across age group, planned comparisons showed
that, as in Experiment 1, performance was most accurate
in the colour condition (M = .95, SD = .05) relative to
shape (M = .88, SD = .08), t(47) = 8.63, p < .001. Performance
was also better in the shape condition than in binding (M
= .84, SD = .09), t(47) = 3.34, p = .002. However, there was a
significant interaction between memory type and age
group,4 F(2, 92) = 4.12, MSE = .004, p = .019, h2

p = .08.
Planned comparisons, collapsed across encoding
conditions, showed that, in younger adults, memory
for colours (M = .98, SD = .02) was better than shapes
(M = .93, SD = .04), t(23) = 6.74, p < .001, and memory for
shapes was better than bindings (M = .90, SD = .06),
t(23) = 3.34, p = .003. In older adults, whereas memory
for colours (M = .91, SD = .04) was better than shapes
(M = .83, SD = .07), t(23) = 6.74, p < .001, the difference
between shapes and bindings (M = .79, SD = .08) was not
significant, t(23) = 1.93, p = .066. The remaining two-way
interactions were non-significant (all p > .24), but
the three-way interaction was significant, F(2, 92) = 4.24,
MSE = .003, p = .017, h2

p = .08.
To further investigate the three-way interaction, separ-

ate 2 (encoding format) × 3 (memory type) ANOVAs were
carried out within each age group. In the younger
adults, there were effects of encoding format, F(1, 23) =
7.67, MSE = .002, p = .011, h2

p = .25, and memory type,
F(2, 46) = 39.55, MSE = .002, p < .001, h2

p = .63, as well
as the two-way interaction, F(2, 32.8) = 6.82, MSE = .003,
p = .007, h2

p = .23. As expected, while there was no differ-
ence between shape and binding memory perfor-
mance under simultaneous encoding format conditions,
t(23) = .34, p = .74, binding memory performance was
poorer than shape memory when stimuli were sequentially
encoded, t(23) = 3.97, p = .001. In contrast, in older adults,
only the effect of memory type was significant, F(2, 46) =

32.59, MSE = .006, p < .001, h2
p = .59 (all other p > .39), as dis-

cussed above.5

To further qualify the pattern of findings, in the
younger adults, the mean of the paired differences
between shape and binding memory accuracy in the sim-
ultaneous encoding condition was −.01 (SD = .06) with a
95% CI of [−.03, .02] (d =−.11). Within the sequential
encoding condition, this was −.06 (SD = .08 [−.09, −.03];
d = –1.12). In the older adults, the mean of the paired
differences between shape and binding memory in the
simultaneous encoding condition was −.06 (SD = .14
[−.12, .004]; d =−.56), whereas in the sequential encoding
condition this was −.02 (SD = .11 [−.06, .03]; d =−.20).
Thus, the effect of feature binding increases from very
small in the simultaneous condition to large in the
sequential condition in younger adults, whereas the
effect size is small to medium across both conditions in
older adults.

The Bayesian ANOVA on the data from Experiment 2
revealed evidence for the age group ×memory type inter-
action. The full model was marginally more likely, given
the data, than a model omitting this interaction (B = 0.526,
approximately 2 to 1 support for the interaction).
However, removing the colour condition from the analysis
—and contrasting shape and binding only—leads to
favouring the reduced model, and hence the absence of
the age ×memory type interaction, by a factor of over 4 to 1.

For the three-way interaction, the full model is preferred
over the reduced model whether the colour condition is
included in the analysis (B = 0.401, approximately 2.5 to 1
support for the interaction) or not (B = 0.344, approxi-
mately 3 to 1 support for the interaction). However, in
this case, it is clear that the slight evidence for the three-
way interaction is borne out of younger adults’ larger
binding cost in the sequential condition (see above).

Serial position analyses
In order to assess the impact of serial position on perform-
ance, we analysed the accuracy (proportion correct) data
that resulted from the target trials in the sequential presen-
tation condition (Allen et al., 2006, 2014). A 2 (age group) ×
3 (memory type) × 3 (serial position; 1, 2, 3) mixed ANOVA
revealed effects of age group, F(1, 46) = 31.77, MSE = .107,
p < .001, h2

p = .41, memory type, F(2, 92) = 9.19, MSE
= .043, p < .001, h2

p = .17, and serial position, F(2, 92) =
11.37, MSE = .062, p < .001, h2

p = .20. There were also inter-
actions between age group and position (see Figure 2(a)),
F(2, 92) = 6.51, MSE = .062, p = .002, h2

p = .13, and between
memory type and position (see Figure 2(b)), F(4, 184) =
3.59, MSE = .031, p = .008, h2

p = .07. All other effects, includ-
ing the three-way interaction, were non-significant (all
p > .29).

To follow up on the age group × position interaction,
planned comparisons investigated the serial position
effect (collapsed across memory blocks) within each age
group. Within the younger adults, accuracy was not

MEMORY 267



significantly different between serial positions 1 and 2, t
(23) = .70, p = .49, and between positions 2 and 3, t(23)
= .99, p = .33. In the older adults, however, accuracy was
much poorer in serial position 2 as compared with both
positions 1, t(23) = 4.73, p < .001, and 3, t(23) = 4.68, p
< .001. Thus, while younger adults were unaffected by
the serial position of the target object, older adults per-
formed significantly worse, and at chance level, for the
middle stimulus in the sequence, across all memory
conditions.

Planned comparisons were also used to follow up the
effects of memory test type within each serial position, col-
lapsed across age groups. Within position 1, colour and
shape were not significantly different, t(47) = 1.35, p = .18,

whereas shape was performed much better than binding,
t(47) = 3.13, p = .003. Within position 2, colour was per-
formed better than shape, t(47) = 2.93, p = .005, but
shape and binding were performed similarly, t(47) = .39,
p = .70. Within position 3, colour and shape were not sig-
nificantly different, t(47) = .77, p = .44, whereas shape was
marginally significantly better than binding, t(47) = 2.01,
p = .051. As predicted, a binding deficit is greatest and
most reliable only at the earliest position in the sequence
(Figure 2(b)), and this was the case for both age groups.

Discussion

The results are consistent with previous literature showing
that, in younger adults, temporary visual binding is poorer
when stimulus presentation is sequential rather than simul-
taneous (Allen et al., 2006; Brown & Brockmole, 2010). The
effect of feature binding was large under the sequential
condition, but only very small in the simultaneous con-
dition. Results also showed that, for both age groups, the
earliest bound item in the sequence is especially vulner-
able (Allen et al., 2006), reflecting the fragility of bindings
in memory, relative to individual features (Allen et al.,
2006; Baddeley et al., 2011).

There was little evidence for an age-related binding
deficit in the present experiment, and this was underlined
by the effect sizes observed across both encoding con-
ditions, which again were only small to medium in older
adults. This result is therefore consistent with the present
Experiment 1, and with previous findings in the literature
(Brockmole et al., 2008; Brockmole & Logie, 2013; Parra,
Abrahams, Fabi, et al., 2009). The present findings also
support Brown and Brockmole’s (2010) conclusions that
any binding deficits in older adults do not result from,
nor are exacerbated by, sequential presentation of the
memory array (see also Chen & Naveh-Benjamin, 2012;
Read et al., 2015). As the observed small effect of feature
binding was not dependent on encoding format (and
therefore present in the simultaneous condition), age and
presentation format may also impact upon shape
memory. However, considering that binding deficits are
characterised by deficits over and above those in individual
feature memory, in this case shape, then one must con-
clude that there is only a small to medium effect of
feature binding on older adults’ working memory and
that sequential presentation format does not drive its
presence.

A particularly interesting finding was the marked serial
position curve in older adults, who exhibited specific diffi-
culty remembering the middle stimulus in the sequences,
across all memory types. In contrast, the younger adults
produced a much flatter curve, possibly as the sequence
length was within their working memory capacity. Older
adults may have been more likely to lose the middle
items due to increased susceptibility to interference
(Braver & West, 2008; Lustig, Hasher, & Zacks, 2007),
given that the middle objects were unique in being

Figure 2. Proportion correct data (±SE) from Experiment 2 sequentially pre-
sented target trials. (a) Interaction between age group and serial position. (b)
Interaction between memory test type and serial position.
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subjected to interference from both a previously encoded
item (position 1) and the requirement to create a new rep-
resentation (position 3). For Experiment 3 we go on to
directly assess the role of interference in visual feature
binding memory. However, it is important to note that
the age-related limitation for serial position 2 could
reflect a different process than the binding interference
effect observed at position 1 for both age groups. It is
more generalised (i.e. across all memory types) and also
apparently exerts a much stronger effect, bringing per-
formance near to chance. In older adults with reduced
capacity, the middle item may have been differentially
lost over time due to its lack of rehearsal (relative to pos-
ition 1) and recency (relative to position 3; Foos, 1989;
Foos & Wright, 1992). To elaborate, due to a capacity
limit in internally guided executive attention, or processing
speed deficits (Salthouse, 1996; Vaughan & Hartman, 2010),
older adults may have strategically focused internal atten-
tion on the first item (see Hu et al., 2014), while item 3 was
successfully served by external attention (Allen et al., 2014;
Hu et al., 2014). Although this would have allowed rela-
tively successful performance for two of the three items,
item 2 would be particularly vulnerable. We suggest that
this would be a useful focus for future work investigating
visual working memory limitations with ageing.

Experiment 3

To our knowledge, the impact of a to-be-ignored suffix on
memory for features and bindings has not yet been inves-
tigated within the ageing context. In younger adults, Ueno,
Allen, et al. (2011) and Ueno, Mate, et al. (2011) (see also
Allen et al., 2015) showed that binding maintenance is dis-
rupted or overwritten by subsequent presentation of a to-
be-ignored suffix. This perceptually driven interference
particularly impacts on recently encountered items and/
or those that participants are attempting to prioritise in
memory (Hu et al., 2014). It has been claimed that older
adults’ visual working memory may suffer interference
from irrelevant information at encoding (Braver & West,
2008; Lustig et al., 2007; Pilotti, Beyer, & Yasunami, 2002).
Therefore, if an underlying cause of age-related binding
deficits is the susceptibility to interference, then a suffix
should result in or exacerbate such a deficit. Specifically,
we could predict a greater binding deficit, in terms of
poorer performance in binding memory relative to shape
memory, in older adults when carrying out the suffix inter-
ference condition.

Methods

Design
A 2 × 2 × 3 mixed factorial design was used to investigate
the effects of age group (younger, older), suffix condition
(control, suffix; within participants), and memory test
type (colour, shape, binding; within participants) on
change detection performance (A′).

Participants
There were 48 participants. Younger participants com-
prised 8 males and 16 females, (18–25 years, M = 20.50,
SD = 1.53; mean years of education = 16.04, SD = 1.43;
ToPF-estimated IQ = 107.25, SD = 6.32). Older participants
comprised 6 males and 18 females (70–88 years, M =
75.46, SD = 4.86; mean years of education = 15.21, SD =
4.08; ToPF-estimated IQ = 116.42, SD = 7.57). As in the
first two experiments, estimated IQ was significantly
higher in the older than in the younger group, t(46) =
4.56, p < .001, but there was no significant difference in
years of education, t(28.6) = .95, p = .35. Older adults’
mean score on the MMSE (Folstein et al., 1975) was 29.08
(SD = 1.14; min = 26, max = 30). All participants received
either an honorarium or course credit.

Materials and procedure
The stimuli and procedure were as reported for Exper-
iment 1, except that the six trial blocks varied by suffix con-
dition (control, interference) as well as memory test type
(colour, shape, binding). Conditions were counterbalanced
as per Experiment 1.

The control condition was administered as per the 900
ms condition in Experiment 1. In the suffix condition, once
the memory array had disappeared, and after a further 250
ms, a new coloured shape was presented in place of the fix-
ation cross (see Figure 1(b)). This suffix was created by com-
bining a colour and a shape from the excess items of the
feature pool; specifically, the object was plausible as an
object related to the memory set (Ueno, Allen, et al.,
2011; Ueno, Mate, et al., 2011), but neither of the features
would have appeared within the memory array for that
trial. Participants were informed that the suffix was to be
viewed but ignored. The fixation cross replaced the suffix
for the remaining 500 ms of the delay period, before pres-
entation of the test item.

Results

Table 1 presents the A′ data, which were analysed using a 2
(age group; young, older) × 2 (suffix condition; control,
suffix) × 3 (memory type; colour, shape, binding) mixed
ANOVA. There were main effects of age, F(1, 46) = 37.43,
MSE = .022, p < .001, h2

p = .45, in which the younger adults
(M = .90, SD = .04) outperformed the older adults (M = .79,
SD = .08), and of suffix, F(1, 46) = 35.79, MSE = .006, p
< .001, h2

p = .44, in which the suffix reduced performance
overall (Mcontrol = .88, SD = .07; Msuffix = .82, SD = .10).
There was a main effect of memory type, F(1.7, 77.0) =
71.64, MSE = .009, p < .001, h2

p = .61. Collapsed across age
group and suffix condition, planned comparisons revealed
that the colour condition was performed better than
shape, t(47) = 12.78, p < .001, but there was no difference
between shape and binding memory performance, t(47)
= 1.20, p = .24. The interactions between suffix and age
group, F(1, 46) = 6.74, MSE = .006, p = .013, h2

p = .13,
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memory type and age group,6 F(2, 92) = 11.70, MSE = .007,
p < .001, h2

p = .20, and suffix and memory type, F(1.7, 78.7)
= 4.29, MSE = .005, p = .022, h2

p = .09, were all significant,
while the three-way interaction was not7 (p = .81).

Planned comparisons were used to follow up on the
suffix × age group interaction. There were significant
suffix effects in both younger (Mcontrol = .92, SD = .04;
Msuffix = .88, SD = .05), t(23) = 3.32, p < .01, and older
adults (Mcontrol = .83, SD = .07; Msuffix = .75, SD = .10), t(23) =
4.99, p < .001; however, this effect was stronger in older
adults (see Figure 3).

The suffix ×memory type interaction was driven by the
smaller effect of the suffix within the colour memory task,
most likely an artefact of a ceiling effect in this condition.
Indeed, there is no suffix ×memory type interaction
when only shape and binding blocks are included in the
analysis, F(1, 46) = .15, MSE = .006, p = .70, h2

p = .003.
Following up the age group ×memory type interaction,

as expected, colour memory was better than shape in both
younger (Mcolour = .97, SD = .03; Mshape = .85, SD = .06),
t(23) = 9.05, p < .001, and older adults (Mcolour = .90, SD
= .05; Mshape = .77, SD = .09), t(23) = 8.95, p < .001. In
younger adults, binding (Mbinding = .88, SD = .06) was per-
formed slightly better than shape memory, t(23) = 2.23,
p = .036. However, close inspection of the data in Table 1
reveals that, rather than binding memory performance
being better in younger adults in Experiment 3, shape
memory performance is slightly worse than in the previous
two experiments. In older adults, binding (Mbinding = .71,
SD = .14) was significantly poorer than shape memory, t
(23) = 2.74, p = .012. This interaction still existed when
only shape and binding memory blocks were included in
the analysis, F(1, 46) = 12.04, MSE = .009, p = .001, h2

p = .21.

In the younger adults, the mean of the paired differ-
ences between shape and binding memory accuracy in
the control condition was .03 (SD = .07) with a 95% CI of
[.002, .06] (d = .63). Within the suffix interference condition,
this was .03 (SD = .09 [−.01, .07]; d = .43). In the older adults,
the mean of the paired differences between shape and
binding memory in the control condition was −.06 (SD
= .12 [−.11, −.008]; d =−.69), whereas in the suffix con-
dition this was −.08 (SD = .18 [−.15, .001]; d =−.59). Thus,
there was a medium positive effect of binding in
younger adults, whereas there was a medium negative
effect of feature binding in older adults, regardless of the
interference condition.

For Experiment 3, the presence of the two-way inter-
action between age group and memory type was strongly
favoured over its omission (by over 14,000 to 1). Although
restricting the analysis to the shape and binding conditions
greatly reduced the strength of evidence for this inter-
action, it was still favoured by a factor of over 100 to
1. There was no suggestion that the visual suffix modulated
this, as a model omitting the three-way interaction was
favoured by over 7 to 1. This was also true when restricting
analysis to the shape and binding memory conditions only
(B = 3.436).

Discussion

The findings from Experiment 3 showed an age-related
deficit for temporary visual feature binding. This goes
against much of the pre-existing literature on temporary
visual feature binding in older adults, which has shown
this ability to be impervious to healthy ageing (Brockmole
et al., 2008; Brown & Brockmole, 2010, Exp. 1; Parra,
Abrahams, Logie, et al., 2009). It does, however, support
the limited evidence that previously existed using the
change detection paradigm (Brown & Brockmole, 2010,
Exp. 2, see also Isella et al., 2015), as well as evidence
using alternative paradigms (Chen & Naveh-Benjamin,
2012; Peich et al., 2013).

Inspection of the younger adult data presented in
Table 1 highlights that the one clear difference between
the findings of Experiment 3 and those from the previous
two experiments is that, in Experiment 3, the younger
adults showed poorer performance for shape compared
with binding memory while, in Experiments 1 and 2,
binding performance was poorer than shape. However, in
younger adults, binding performance was relatively
stable across the three experiments, whereas shape per-
formance decreased slightly in Experiment 3. Thus, the
effect in younger adults may be driven by poorer shape
memory performance rather than better binding memory
performance. Importantly, though, in older adults the
observed effect sizes in Experiment 3 are consistent with
the present Experiments 1 and 2, as these also demon-
strated small to medium effects of feature binding in
older adults (see Figure 4).

Figure 3. Interaction between age group and suffix condition in the Exper-
iment 3 A′ data (±SE). (Data are collapsed across memory test type.)
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The experiment also produced interesting findings
regarding interference effects in visual working memory.
We did not replicate a specific suffix effect on binding
memory in younger adults (Ueno, Allen, et al., 2011;
Ueno, Mate, et al., 2011). A smaller array size was used
due to the focus upon older adults in the present study,
suggesting that memory array size may be important for
this effect. Future work could explore the factors determin-
ing the magnitude of suffix interference effects and the
role of capacity on interference effects in binding. Impor-
tantly, there were interference effects across all forms of
memory in both age groups, but older adults exhibited a
greater general suffix effect (Braver & West, 2008; Lustig
et al., 2007; Pilotti et al., 2002). Older adults are therefore
more susceptible to interference in visual working
memory, even when the object is to be ignored (Pilotti
et al., 2002). Finally, although older adults exhibited
greater interference effects than younger adults, their
binding performance was not dependent upon interfer-
ence, as the effect clearly existed across both control and
interference conditions.

General discussion

The three experiments reported here were focused upon
understanding the role of encoding and maintenance pro-
cesses in temporary memory for visual features and feature
bindings. To summarise the main results, all three exper-
iments provide evidence of a small to medium effect on
feature binding performance, relative to individual
feature memory, in older adults. However, small to large
effects were also observed in the younger adults in Exper-
iments 1 and 2, with a large effect in this group when faced
with sequential presentation of the memory array. Indeed,

our Bayesian analysis of the data from Experiments 1 and 2
supported the absence of an age group ×memory con-
dition interaction when contrasting binding and shape per-
formance, thus going beyond previous failures to reject the
null hypothesis (although see Rhodes et al., 2016). For
Experiment 3, the weight of evidence was in favour of a dis-
proportionate binding cost for older adults. However,
effect sizes showed that the binding cost for older adults
was no larger in Experiment 3 than was observed in any
of the previous two experiments. It is therefore question-
able the extent to which we may describe such a pattern
of performance as reflecting an age-related binding
deficit. Our experiments also highlighted age-related vul-
nerabilities in visual working memory more generally;
namely, older adults differentially benefited from more
encoding time, they exhibited a specific, marked impair-
ment in memory for both single features and for colour–
shape bindings presented in the middle of three positions
in sequential presentation, and they experienced a greater
suffix interference effect.

There has been some debate regarding whether or
not healthy older adults show impaired temporary
binding of surface visual features and the present findings
contribute new evidence in this regard. Particularly given
the inconsistencies in this literature (i.e. presence/
absence of age-related binding deficits), it seems prudent
and timely to use an effect size approach to answering
this question (Cumming, 2012, 2014). Thus, rather than
asking whether or not such a deficit exists, we may
reframe this question to ask whether or not we have con-
sistent evidence for a larger effect size of feature binding
relative to individual feature memory in older adults as
compared with younger adults. Effect size data may also
usefully contribute to future meta-analyses as well as
being readily comparable across similar studies. There
have been recent observations of age-related binding def-
icits in visual working memory (Brown & Brockmole, 2010,
Exp. 2; Chen & Naveh-Benjamin, 2012; Peich et al., 2013; see
also Isealla et al., 2015). However, these findings contrast
with other previously published experiments using
change detection paradigms (Brockmole et al., 2008;
Brown & Brockmole, 2010, Exp. 1; Parra, Abrahams, Fabi,
et al., 2009; Read et al., 2015; Rhodes et al., 2016). Taken
together, we would argue that the present evidence
clearly shows that older adults do consistently demonstrate
a small to medium visual feature binding effect size, but that
younger adults tend to show this too (present Experiments 1
and 2). We therefore only haveminimal evidence for an age-
related binding deficit, at least using a change detection
paradigm. Certainly, where younger and older adults do
not show parallel effects (e.g. present Exp. 3, Brown &
Brockmole, Exp. 2), the effect in older adults appears only
to be small to medium, in terms of paired differences
between binding and shape memory performance. Finally,
the cross-experiment analyses reported in Appendix show
the consistency that exists across the samples used in the

Figure 4. Effect sizes (Cohen’s d ) for feature binding memory compared
with shape memory, for the two age groups in each experiment.
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present three experiments, and support the argument that
age-related binding deficits are not reliable in healthy
older adults.

Researchers have argued that temporary visual feature
binding is a relatively automatic process, carried out at a
low level of the working memory system (Baddeley et al.,
2011; Logie, 2011; Logie et al., 2009). Thus, this process
may be relatively resistant to decline in healthy ageing.
One conclusion, when taking all of the evidence into con-
sideration, is that binding in visual working memory is less
susceptible to ageing than is object-location binding in
working memory (Brockmole & Logie, 2013; Cowan et al.,
2006; Mitchell, Johnson, Raye, Mather, et al., 2000), and
associative long-term memory (e.g. Naveh-Benjamin, 2000;
Old & Naveh-Benjamin, 2008a). Furthermore, temporary
visual feature binding is markedly impaired in individuals
suffering from Alzheimer’s disease (AD; Parra, Abrahams,
Fabi, et al., 2009; Parra, Abrahams, Logie, & Della Sala,
2010; Parra, Abrahams, Logie, Mendez, et al., 2010). This
suggests that the underlying pathology of this disease com-
promises the processes involved in an ability that is rela-
tively unaffected by healthy ageing, and offers the
possibility of a specific cognitive marker for the disease
(e.g. Della Sala, Parra, Fabi, Luzzi, & Abrahams, 2012; Parra,
Abrahams, Fabi, et al., 2009; Parra, Della Sala, Logie, &
Morcom, 2014; for reviews see Allen et al., 2013; Logie,
Horne, & Petit, 2015; Logie, Parra, & Della Sala, 2015). We
would therefore argue that temporary visual feature
binding is relatively well preserved in healthy compared
with pathological ageing, and in comparison with other
forms of binding, such as long-term associative binding in
healthy older adults (Old & Naveh-Benjamin, 2008a).

Yet, age-related deficits, although relatively small, are
observable. Indeed, Peich et al. (2013) recently observed
binding deficits with healthy ageing, in the form of mis-
binding errors. Taking all of the available literature into
account, they concluded that there is a quantitative differ-
ence between the extent of the visual feature binding
deficit observed in healthy older adults and those affected
by AD; our findings fully support such a conclusion
and contribute standardised effect size data. As the
deficit is clearly quantitatively smaller in healthy ageing
than has been shown in previous studies of temporary
surface visual feature binding in AD, whether or not older
adults’ visual feature binding performance may be differ-
entiated from that of younger adults likely depends on
the methodological approach being used (Chen & Naveh-
Benjamin, 2012; Peich et al., 2013), and detection of an
age-related binding impairment may require very large
sample sizes (Brockmole & Logie, 2013). Further research
into visual working memory as well as visual feature
binding more specifically, focusing on the encoding defi-
cits presently observed (related to encoding duration,
serial position, and suffix presentation) should be useful
in helping to clarify the cognitive mechanisms that
underlie abilities and limitations in healthy cognitive
ageing, but also in AD.

In the context that the presence of a temporary
visual feature binding deficit has been suggested as a
marker of AD, our findings clearly show that, using the
change detection paradigm, only small to medium effect
sizes are observable in healthy older adults’ performance.
Furthermore, this is consistent across a series of exper-
iments, and is often comparable to the direction and
sizes of effects observed in younger adults. Cumming
(2012, 2014) highlighted that we should move away from
our reliance upon the dichotomous (accept/reject)
approach afforded by null hypothesis significance testing,
as this is often untrustworthy when used across different
experiments and samples of the population. Rather, a pre-
ferable approach is to use simpler experimental paradigms
that allow for the estimation of effect sizes over numerous
studies. In the case of the debate regarding age-related
visual feature binding deficits, we have shown that effect
sizes are useful in establishing the ability of older relative
to younger adults. It is recommended that future research
should aim to establish the effect sizes associated with
visual feature binding in pathological ageing, and with
other forms of binding in the healthy ageing context.

Notes

1. There is some discrepancy in the associative memory literature
regarding the data that are compared in order to test for a
memory deficit. In the long-termmemory literature, associative
memory scores are typically compared with the averaged per-
formance of the two individual feature conditions. We have
focused upon comparing shape, theworst performed individual
feature condition, with binding performance primarily because
(1) an averaged score is an artificial amalgamation of perform-
ance across two different single feature types and (2) while
helping to overcome floor effects in the binding condition, the
best performed individual feature condition – in this case,
colour – can result in ceiling effects. Furthermore, this approach
has been commonly used in theworkingmemory literature (e.g.
Allen et al., 2006; Brockmole et al., 2008; Ueno, Allen, et al., 2011).
However, for comparison with the wider literature, the analysis
with averaged individual feature performance was also carried
out, and an age-related binding deficit was not significant
(p = .96).

2. We also analysed Cohen’s d using the proportion correct
measure. We observed similar effect sizes as with A′, and the
same general pattern as depicted in Figure 4.

3. We used the anovaBF function with the whichModels argument
set to top and the number of Monte Carlo samples set to
50,000. An additional 10,000 iterations were run until the pro-
portional error associated with each Bayes factor was less
than 5%. The full results from the Bayesian analyses from
each experiment are available in the Supplementary file.

4. This interaction is not significant when comparing binding with
the averaged colour-shape memory blocks (p = .20).

5. The 2 (age group) × 2 (encoding format) × 2 (memory type;
shape, binding) ANOVA on the A′ data revealed qualitatively
the same findings regarding binding as did the analysis that
included the colour memory condition, in that the
three-way interaction remained significant, F(1, 46) = 5.17,
MSE = .005, p = .028, h2

p = .10.
6. The analysis involving the averaged colour and shape blocks

for comparison with binding also revealed this significant inter-
action, F(1, 46) = 8.77, MSE = .004, p = .005, h2

p = .16.
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7. The age group ×memory type interaction remains when only
the data from the control condition were analysed, F(2, 92) =
9.10, MSE = .004, p < .001, h2

p = .17, and with a range of other
measures that were also analysed, including proportion
correct, F(2, 92) = 5.00, MSE = 74.36, p = .009, h2

p = .10, and cor-
rected recognition (hits–false alarms), F(2, 92) = 6.68, MSE
= .029, p = .002, h2

p = .13. Furthermore, the two-way interaction
remained in an analysis of covariance on the A′ scores, which
adjusted for the effects of sex, years of education, and Test of
Premorbid Functioning (IQ estimate) score, F(1, 43) = 10.94,
MSE = .009, p = .002, h2

p = .20. Finally, the three-way interaction
is still not significant when only the shape and bindingmemory
blocks are included in the analysis (p = .81).
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Appendix. Cross-experiment analyses

As Experiment 1 showed that encoding time does not
interact with memory test type, the parallel data from
all three experiments were pooled together in order to
assess (a) whether an age-related binding deficit exists
under control conditions only and (b) the consistency
of performance across the three experiments. Data were
taken from all 48 participants of Experiment 1, but only
from the encoding time condition that was carried out
first for each participant. For Experiments 2 and 3, the
selected data were from the control condition only, and
from only the 24 participants who carried out the
control condition first. Thus, we compared the control
conditions across all three experiments that could
usefully be compared without contamination by other
experimental conditions (sequential presentation, suffix

presentation). In all cases only the shape and binding
memory performance data were selected in order to
focus upon the most crucial memory conditions for com-
parison. This resulted in a 2 (age group) × 2 (memory
type: shape, binding) × 3 (experiment) mixed factorial
design, using the A′ scores. There were effects of
memory, F(1, 90) = 5.70, MSE = .004, p = .019, h2

p = .06
[with shape performance (M = .87, SD = .08) slightly
better than binding performance (M = .84, SD = .10)], age
group, F(1, 90) = 67.52, MSE = .007, p < .001, h2

p = .43
[with younger adults (M = .90, SD = .05) outperforming
older adults (M = .81, SD = .07)], and an age × experiment
interaction, F(2, 90) = 3.84, MSE = .007, p = .025, h2

p = .08.
Independent t-tests on the data collapsed across
memory condition reflected that there was generally
slightly poorer performance in both Experiments 2
(M = .78, SD = .07) and 3 (M = .78, SD = .09) relative
to Experiment 1 (M = .83, SD = .05) in older adults (both
p < .041), while there was no difference between Exper-
iment 1 and the other two experiments in the younger
adults (both p > .28). All other effects were non-significant
(all p > .12). Specifically regarding the age ×memory con-
dition interaction, this was not significant, F(1, 90) = 2.17,
MSE = .004, p = .145, h2

p = .02, with younger adults scoring
very similar across the shape (M = .91, SD = .06) and
binding (M = .89, SD = .06) conditions, and older adults
also showing very little evidence of decline (Mshape = .82,
SD = .07; Mbinding = .79, SD = .10). A Bayesian ANOVA on
this cross-experiment dataset also showed that, when
omitting the age ×memory condition interaction from
the full model, the reduced model is favoured (B = 1.77).
The results of these cross-experiment analyses therefore
demonstrate no general age-related binding deficit, and
no age-related binding deficit dependent on particular
samples.
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