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SHORT REPORT

The effect of genome-wide association scan quality
control on imputation outcome for common variants

Lorraine Southam1, Kalliope Panoutsopoulou2, N William Rayner3,4, Kay Chapman1, Caroline Durrant3,
Teresa Ferreira3, Nigel Arden5,6, Andrew Carr1, Panos Deloukas2, Michael Doherty7, John Loughlin8,
Andrew McCaskie8,9, William ER Ollier10, Stuart Ralston11, Timothy D Spector12, Ana M Valdes12,
Gillian AWallis13, J Mark Wilkinson14,15, the arcOGEN consortium, Jonathan Marchini16 and Eleftheria Zeggini*,2

Imputation is an extremely valuable tool in conducting and synthesising genome-wide association studies (GWASs). Directly

typed SNP quality control (QC) is thought to affect imputation quality. It is, therefore, common practise to use quality-controlled

(QCed) data as an input for imputing genotypes. This study aims to determine the effect of commonly applied QC steps on

imputation outcomes. We performed several iterations of imputing SNPs across chromosome 22 in a dataset consisting of

3177 samples with Illumina 610k (Illumina, San Diego, CA, USA) GWAS data, applying different QC steps each time. The imputed

genotypes were compared with the directly typed genotypes. In addition, we investigated the correlation between alternatively QCed

data. We also applied a series of post-imputation QC steps balancing elimination of poorly imputed SNPs and information loss. We

found that the difference between the unQCed data and the fully QCed data on imputation outcome was minimal. Our study shows

that imputation of common variants is generally very accurate and robust to GWAS QC, which is not a major factor affecting

imputation outcome. A minority of common-frequency SNPs with particular properties cannot be accurately imputed regardless of

QC stringency. These findings may not generalise to the imputation of low frequency and rare variants.
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INTRODUCTION

Genome-wide association scans (GWASs) have proven to be a

successful strategy for detecting common variants exerting modest

effects on complex disease risk. Currently available commercial

platforms focus on common variants and capture the majority

of HapMap1 SNPs with minor allele frequency (MAF) 40.05 in

European populations.2 Several large-scale consortia have been formed

in order to carry out GWAS meta-analyses for various phenotypes,

with successful outcome (eg, Zeggini et al,3 Prokopenko et al,4 Franke

et al,5 Barret et al6 and Soranzo et al7). To enable the combination

of data across studies carried out on different platforms, and to enable

in silico fine mapping of association signals, imputation approaches

were proposed a few years ago8 as a means of statistically inferring

genotypes at untyped loci using a reference set, for example, the

HapMap (B2 500 000 SNPs).

An important aspect of any GWAS analysis is the implementation

of a series of rigorous quality control (QC) steps before testing for

association. These QC procedures help guard against genotyping error,

population stratification, sample duplication and other confounders

that can affect the analysis results. QC steps are typically applied at the

sample- and SNP-specific level. Sample-level QC includes filtering out

samples with low call rates, evidence for different ethnic origin, high

heterozygosity, relatedness/duplication, gender discrepancies and

genotyping batch effects. SNP-level QC includes filtering out SNPs

with low call rates and deviation from Hardy–Weinberg equilibrium

(HWE) at pre-determined thresholds. It is generally believed that

datasets should be stringently quality controlled (QCed) at the marker

level before applying imputation approaches. For this reason, lower

MAF SNPs tend to also be excluded, as their accuracy can be

hampered by poor clustering properties and incorrect automated

genotype calling (at least with currently widely used algorithms).

Even though such weight is placed on pre-imputation SNP QC,

the effects of applying different criteria and thresholds to the starting

dataset have not been investigated thus far. In this report, we evaluate

the effect of GWAS QC on imputation outcome, and find that

imputation works very well for common variants irrespective of QC,

and that a minority of some common-frequency SNPs with particular

properties cannot be accurately imputed regardless of QC stringency.
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MATERIALS AND METHODS
We used an empirical GWAS dataset to assess the effect of QC on imputation

outcome. We focused on chromosome 22, (n¼9038 directly typed SNPs) from

3177 osteoarthritis (OA) cases from the United Kingdom, typed on the

Illumina 610k quad chip (Illumina) as part of the arcOGEN consortium

GWAS (manuscript submitted). Chromosome 22 is representative of the

genome in terms of the proportion of directly typed to imputed SNPs.

All samples included in our analysis had passed standard sample level QC

(based on call rate, heterozygosity, relatedness, ethnicity and gender discre-

pancies). We imputed genotypes at variants on the basis of HapMap phase II

release 22 CEU data (n¼33 815 SNPs on chr22) using IMPUTE v1 (https://

mathgen.stats.ox.ac.uk/impute/impute.html).8

We performed each imputation in duplicate, with and without the IMPUTE v1

predict genotyped SNPs flag, which resulted in one set of imputed data

containing the original genotypes and in the other imputed genotypes.

To assess the effect of varying levels of QC, we carried out several rounds of

imputation, using differently QCed OA SNP data as the starting point.

Initially, we imputed on the basis of no SNP-level QC, including all directly

typed SNPs, regardless of MAF, call rate and HWE. We also imputed on the

basis of only those SNPs that passed stringent QC thresholds (call rate 495%

for SNPs with a MAF Z5% and call rate 499% for SNPs with a MAF o5%,

HWE exact P40.0001, MAF 40.01 and removing all SNPs with GC or TA

alleles; Table 1). Although imputation biases can occur due to poor clustering

of SNPs with miscalled genotypes in the starting dataset, cluster plot checking is

not feasible at the genome-wide scale and therefore, it is not implemented

in standard GWAS QC.

We evaluated the accuracy of imputed genotypes by comparing allele

frequencies at the same SNP between imputed and true, directly typed data.

For each QC-imputation iteration, we performed an allele frequency compar-

ison between the actual directly typed and imputed SNPs. Under perfect

imputation, we would expect to see alignment with the null hypothesis of no

association. We used SNPTEST (http://www.stats.ox.ac.uk/~marchini/software/

gwas/snptest.html)9 to investigate differences between directly typed and

imputed genotypes at the same variants within the same samples, taking into

account the distribution of genotype probabilities for each individual. For the

purposes of our comparison, we used those SNPs that were directly genotyped

in OA cases and also present in the HapMap reference samples. Table 1

summarises the number of these SNPs for each QC threshold.

When comparing directly typed with imputed allele frequencies at the same

variant in the same individuals, we arbitrarily considered Po10�6 as signifi-

cantly different. We calculated the correlation between imputed and directly

typed MAF, using the expected counts to allow for genotype-associated

probabilities. We also applied a series of post-imputation QC steps in order

to eliminate unreliably imputed SNPs, aiming to filter out as many of these

SNPs as possible while retaining a good proportion of nonsignificant SNPs.

We compared two alternative methods for post-imputation QC filtering, first,

the IMPUTE-info score, which is associated with the imputed allele frequency

estimate which ranges from 1, indicating high confidence, to 0 suggesting

decreased confidence, and second, the freq-add-proper-info score provided by

SNPTEST, a relative statistical score ranging from 0 to 1, representing no

information to complete information, respectively. The SNPTEST freq-add-

proper-info score has been shown to be highly correlated with the IMPUTE-info

score under the additive model.10 In both scenarios, we also filtered out SNPs

with MAF o5%. Figure 1 illustrates the effects of altering post-imputation QC

filters on the QCed data. On the basis of these results, we chose to use the

IMPUTE-info score with a filtering threshold o0.8 and MAF o5%, which

effectively eliminated B79% of the significant SNPs while retaining B85% of

the nonsignificant ones (SNPTEST freq-add-proper-info o0.9 and MAF 5%

would be roughly equivalent to this eliminating B73% of the significant SNPs

while retaining B89% of the nonsignificant ones). We applied this post-

imputation filter to each of our datasets and compared the results. We looked

at the unQCed and QCed datasets first, as synopsised in Table 1. For each

scenario, we examined frequency differences between the directly typed and the

imputed genotypes as described above. In addition, we compared the imputed

genotypes at imputed SNPs only for the unQCed and the fully QCed (QCed

data with all poorly clustered markers removed) strategies.

RESULTS

Table 1 summarises the number of SNPs with significantly (Po10�6)

different allele frequencies between the directly typed and imputed data

in the same set of individuals for each of the different QC sets.

Correlation plots and R2 values for the comparisons of the QCed and

unQCed datasets are presented in Figure 2. The difference between the

unQCed (R2¼0.993) and QCed data (R2¼0.994) was minimal. After

post-imputation filtering there were 77 SNPs with significantly different

(imputed v. directly typed) allele frequencies in the unQCed data

compared with 67 significant SNPs in the QCed data. In an attempt

to improve imputation for the small subset of poorly imputed SNPs in

the QCed data, we excluded all SNPs with MAFo5% and, subsequently,

also SNPs with MAFo10%. We found that eliminating these lower

MAF SNPs before imputation had little effect overall. The R2 for the

post-imputation QC filtered comparison with the QCed data was

virtually identical both when excluding all SNPs with MAFo5%

(R2¼0.994) and when excluding all SNPs with MAFo10% (R2¼0.991).

Given this apparent minimal influence of input data QC on

imputation outcome, we investigated further the small set of SNPs

showing significant allele frequency differences for the presence

of a common characteristic that could conceivably be used as a

Table 1 Summary of QC steps and related SNP number breakdown

Post-imputation

unfiltered SNPs

Post-imputation

QC filtered SNPs a

Pre-impute QC threshold applied

Directly typed SNPs also

present in HapMap NS S NS S

None (‘unQCed’ dataset) 8064b 7689 375 6498 77

Typical GWAS QC (‘QCed’ dataset)c 7910 7585 325 6446 67

As above plus 14 significant SNPs removed with poor cluster plotsd 7896 7592 304 6449 61

As above plus 36 additional SNPs removed with poor cluster plotse 7860 7557 303 6419 58

Typical GWAS QC plus MAF o5%c 7554 7269 285 6434 65

Typical GWAS QC plus MAF o10%c 6544 6287 257 5569 53

Abbreviations: GWAS, genome-wide association study; MAF, minor allele frequency; NS, not significant; QC, quality control; QCed, quality controlled; S, significant.
aFiltering is based on removal of SNPs with an IMPUTE-info score of o0.8 and MAF o5%.
bThere were 8082 SNPs in the unQCed data, of which 18 were monomorphic in the arcOGEN cases but polymorphic in HapMap; these SNPs were removed by IMPUTE.
cTypical GWAS QC was MAF r5% with call rate o95% and MAF o5% with call rate o99%, Hardy–Weinberg equilibrium Po1�10�4, and exclusion of GC and AT allele SNPs and MAF o1%

SNPs, applied as an additional post-association analysis and pre-imputation QC step.
dSignificant SNPs with poor cluster plots removed.
eThose SNPs flanking the significant SNPs with poor cluster plots removed.

arcOGEN data for chromosome 22 detailing the different pre-imputation QC steps. A breakdown of the SNP number for each QC threshold is indicated both with and without the post-imputation QC.

NS, PZ1�10�6; significant SNPs, Po1�10�6.
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post-imputation filter. To rule out poor genotyping as the cause of

these significant differences, we examined all cluster plots for the

unfiltered significant SNPs (Po1�10�6, n¼325). In all, 14 poorly

clustered SNPs were removed and the data were re-imputed. After

post-imputation QC, three additional SNPs were not significant and

six were less significant. We then inspected the cluster plots for

10 SNPs on either side of the 61 SNPs remaining significantly different

to rule out poor imputation due to flanking SNP poor clustering

properties. We examined the cluster plots for 1008 SNPs and found

that 36 of these were poor; these resided in the proximity of 35 of

the significant SNPs. We subsequently removed these SNPs and

re-imputed. We found that following post-imputation QC filtering,

only 3 of the 61 SNPs were no longer significant, and the R2 remained

the same as for the QCed data (R2
¼0.994) for the post-imputation

QC filtered data. When we repeated comparisons using IMPUTE v2

with the HapMap3 (CEU, release no. 2 February 2009) and data from

the 1000 genomes project (Pilot 1 genotypes released March 2010;

phased haplotypes released June 2010) as the reference panels, we

observed qualitatively similar results.

Differences in region-specific recombination rates may account for

the few remaining significant SNPs, as variants in areas of especially

high recombination rate may be more challenging to impute

accurately regardless of QC. To investigate this, we first examined

the QCed unfiltered data and found that when the data were

dichotomised into those markers with lower (o1 cm/Mb) and higher

(Z1 cM/Mb) recombination rates, there were more significant

SNPs present in the higher recombination rate group compared

with the lower recombination group (P¼1.85�10�27, average recom-

bination rates of 12.8 and 3.04, respectively). When we examined the

QCed data post-imputation QC, this difference disappeared

(P¼0.526). This clearly indicates that application of the post-imputa-

tion QC filter successfully identifies the majority of significant SNPs

with high recombination rates. Therefore, to include recombination

rate as an extra filter would not be prudent, for example,

using the QCed post-imputation QC filtered data and applying a

further filter using a recombination rate threshold of 41 cM/Mb

would eliminate 2075 SNPs, only 24 of which are significantly

different.
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Figure 1 (a) Imputation results for the QCed data indicating the total number of SNPs filtered for different QC thresholds using the IMPUTE-info and freq-

add-proper-info scores. The SNPs remaining after the filter (red bar) have been subdivided into SNPs that are significant (green bar) and not significant

(yellow bar). (b) The same data as percentage of significant and nonsignificant SNPs removed for each threshold. Both methods of filtering appear to be

equivalent, but the freq-add-proper-info is shifted to the right for the same numerical threshold; we chose the IMPUTE-info o0.8 for further analysis (similar

to a freq-add-proper-info o0.9).
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DISCUSSION

The imputation accuracy of common variants does not appear to be

substantially affected by GWAS QC steps. Our data demonstrate that

there is little difference in imputation accuracy observed in unQCed

GWAS data when compared with QCed GWAS data. Furthermore,

the implementation of additional QC steps (eg, filtering out variants

with MAFo0.05 and o0.10) does not considerably improve overall

imputation accuracy. Missing variants and directly typed variants that

fail pre-imputation QC checks are imputed and these data are used for

downstream analyses. Post-imputation QC successfully eliminates a

good proportion of inaccurately imputed SNPs. Specifically, by apply-

ing a very stringent post-imputation QC threshold, a smaller set of

variants with more accurately predicted genotypes remain. The

IMPUTE-info threshold of o0.8 and MAF r5% criterion successfully

filtered out the majority of poorly imputed SNPs. However, the

application of these strict filters in GWAS data could result in many

SNPs being excluded from the data, and thus potential true association

signals could be missed. Some of the inaccurately imputed variants were

due to poor clustering properties. It is plausible that the handful of

variants that still remained inaccurately imputed could be because

of the differences in ethnicity between our data and the HapMap CEU

reference panel from which the genotypes were predicted. We have used

IMPUTE, but do not expect our results and conclusions to qualitatively

differ with different imputation methods, for example, BEAGLE and

MACH exhibit similar imputation accuracy to IMPUTE.11 Differences

in population structure between the reference panel and target dataset

can be a source of imputation inaccuracy. Imputation accuracy for

common SNPs may be further increased by using larger reference

panels with data on denser sets of variants. Our results show that GWAS

QC is not of paramount importance for the imputation of common

variants. This may be different for the imputation of low frequency

and rare variants based on emerging reference panels such as the

1000 genomes (http://www.1000genomes.org) and UK10k (http://

www.uk10k.org) projects. In summary, our study demonstrates that
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imputation of common variants is generally very accurate and robust to

GWAS QC, which is not a major factor affecting imputation outcome.
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