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Abstract

There is a growing global interest in maximising te@ise and recycling of waste, to
minimise the environmental impacts associated with waste treatment and disposal. Use
of high-volume wastes in the production of blended or novel cements (including alkali-
activated cements) is well known as a key pathway by which these wastes can be re-
used. This paper presents a critical overview of the urban, agricultural, mining and
industrial wastes that have been identified as potential precursors for the production of
alkali-activated cement materials, or that can be effectively stabilised/solidified via
alkali activation, to assure their safe disposal. The central aim of this review is to
elucidate the potential advantages and pitfalls associated with the application of alkali-
activation technology to a wide variety of wastes that have been claimed to be suitable
for the production of construction materials. A brief overview of the generation and
characteristics of each waste is reported, accompanied by identification of opportunities
for the use of alkali-activation technology for their valorisation and/or management.

Keywords. Engineering; Immobilisation; Clean processes; Recycling; Waste treatment

and waste minimisation
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1. Introduction

Over the past decades, extensive discussions about climate change have taken place
around the world, analysing its potential implications for the way in which our society
works, especially for the vulnerable populations in less developed regions. Within this
discussion, there is a growing consensus that climate change is not just an issue of
energy efficiency or industrial carbon emissions, as our approach to demanding
development and economic growth has proven to be highly unsustainable in an
ecological senskTherefore, there is an urgent need to develop new and sustainabl
approaches to the manufacture and consumption of materials as a key component of the

move to minimise waste generation. This also requires maximising the conversion of

wastes into valuable resourges. FigL1re 1 presents some concepts related to the (current

and potential) implementation of closed-loop material flows in the construction
industry, focusing specifically on urban and agricultural (rather than broader industrial)
wastes, and the relationships between different industry sectors and waste generators
of relevance in this context. Various wastes highlighted in Figure 1 (shaded in grey) are
currently under-utilised or simply discarded, but offer potential for further valorisation

through alkali-activation, and will form part of the focus of this review.

Across modern society, concrete is the second-most widely used material of any kind
(after water) as it is the pillar of the infrastructural development of our society and the
basis of a large fraction of the global built environment. Modern concrete is mainly
composed of hydrated Portland cement (wlkick as the binding phase in more than
98% of all concrete produced worldwide) along with natural sand and rocks, and the
engineering properties of the concrete as a whole are largely controlled by the ghemistr
and design parameters of the binder. However, Portland cement is not the only type of
binder which can be used in concréte.the past decade, there has been rapid growth

in international research efforts in the utilisation of wastes as alternative construction
materials. One area of particularly rapid development has been the field of alkali-
activated or“geopolymer” cements, where the reaction between an alkali source
(referred to as the activator) and an aluminosilicate powder (referred to as the
precursor) yields a hardened binder with performance (and often also appearance)

similar to that of Portland cemehhut with a fraction of the C£emissions.
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Figure 1. Schematic representation of some of the material flows related to recycling in the construction materials industry, focused on wastes
generated directly by urban society and agriculture. Wastes identified in this review as having potential for use in alkali-activatios iare shade
grey.
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Precursors which are generally used in research and in the current (relatively early)
stages of commercialisation of alkali-activated cements include industrial by-products
such as fly ash from coal combustion, atadys from iron-making processgspwever,

alkali activation can be applied to any material with a sufficiently high content of
reactiveAl0z and SiQ speciesin recent years, there has been significant growth in
the use of different urban, industrial and mining wastes as precursors for production of
alkali-activated materials, as the high existing demand for blast furnace slag and fly ash
in blends with Portland cement represents one of the main barriers to the further
deployment of alkali-activated cements on a large industrial sd¢ddsvever, there

does exist the need to increase the valorisation of some such wastes, especially for fly
ash where the re-use rate can still be low: India, Middle East and Russia currently report
fly ash utilisation rates of ~14%, ~11%, and ~19%, respectivEfere is also growing
interest in the stabilisation/solidification of hazardous wastes via alkali-activation, to
reduce the severe environmental impacts which can be associated with their chemistry

and toxicity¥1°

In this paper, we present an overview of some of the wastes that have been used as
precursors for the production of alkali-activated materials, the main material properties
obtained when using those wastes in alkali-activation, and the associated development
opportunities. Coal fly ashes and metallurgical slags will not be covered in detail, as
their use in alkali-activation has been described in depth in recent reviews inéttiding.
High quality coal fly ash and ground granulated blast furnace slag are also in high
demand for blending in Portland-based cements and concretes, which brings an
associated cost, and thus many of the likely opportunities for growth in low-cost alkali-
activated material production may be identified as being linked to precursors which are

not currently useth standardised Portland cement bleffdBhe wastes to be discussed

in detail here are outlined|in Figure 2, which represents their approximate compositions

on the CaO-Si@Al.0s ternary phase plane. Based on their chemical compositions,
content of amorphous phases and degree of reactivity (which are all inter-related), the
potential valorisation of these wastes through alkali activation can be addressed through

two general alternative pathways:

1. Use the waste as main precursor for the production of an alkali-activated

binder for sale as a product in its own right, or

2. The use of alkali activation technology to develop a new outlet for a particular

5
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waste, including as an alternative source of2$MQhe alkali activator, as a secondary

precursor or blending agent, or even as an aggregate.

A. Urban wastes

B. Agro-industrial wastes
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Figure 2. Approximate compositions of the wastes discussed in this review.

A key point that is generally neglected in academic studies is the volume of material
available in any particular location for the production of cements or concretes. Cement
and concrete are generally produced in very large quantities (up to hundreds of
thousands of tonnes per annum) from a specific production site, and so any process for
their production based on wastes needs to have a long-term secure supply of the waste
of at least tens of thousands of tonnes per annum. This also needs to be seaured on
time horizon of multiple decades, to enable recovery of the capital cost of construction

of the production facility and an economically viable degree of profitability. Academic
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studies based on a single waste source rarely consider such aspects of scale-up when
promoting the use of a particular waste as a precursor for alkali-activated cements, and

so this paper will aim to provide some insight where possible, regarding these issues.

2. Urban wastes
2.1 Ashesfrom municipal solid waste incineration

The local and central authorities of urban and rural areas worldwide are currently under
pressure to find responsible ways to manage and dispose of the municipal solid waste
(MSW) that is produced every day. China alone generates over a quarter of total global
MSW (=250 Mtly), with a reported annual growth rate of 8 to 1®&sa consequence

of its growing urbanisation and consumer-focused society. Landfill is the main strategy
for MSW management in China, and only ~15% of municipal wastes are incinérated.

In the U.S., the MSW thas recyclable is less than ~35% of total MSW arisitrgmnd

the non-recyclable wastes are landfilled, as this isamn and currently inexpensive

method for disposal.

Landfilling of MSW has severe environmental impacts including odour emissions
groundwater pollution from landfill leachate, and soil contamination. Therefore, the
controlled incineration of municipal solid wastes (MSW) has beca@mmore
widespread way used to manage this kind of wastes. By direct incineration of MSW, it
is possible to reduce the volume of waste by converting it into an ash (achieving up to
80-90% volume reduction depending on the nature of the waste), and decrease the
amount of waste that needs to be landfilledjith the added value that the energy
recovered from the heat that is released during the incineration of plastics, paper, other

organic matter, and ferrous and non-ferrous metals can have significant financial value.

The main disadvantages associated with MSW incineration are the high levels of
emissions of greenhouse and other problematic gases, and the large amounts of ashes
which can be generatédThese ashes can be categorised esserititdlywo groups:

bottom ash (BA-MSW), which is the material that remains in the furnace after
combustion, and the air pollution control residues that are removed from the fie gas.
TheBA-MSW represents ~80% of the total residues generated during inciné?ation
Scrubber residues are retained by sorbents (such as lime or sodium hydroxide), and the
fly ash (FA-MSW) is separated by filters or electrostatic precipitdfpes shown in
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Figure 4. SEM image of a particle of FA-MSW showing the heterogeneous nature of
this waste even within a single particle, and the intraparticle porosity. From Kersch et
al?t, copyright John Wiley & Sons.
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MSW ashes are often classified as hazardous due to the presence of toxic elements and
organic compounds, and consequently these ashes must be treated and disposed with
care, considering regulatory aspects and specifications such as the European Waste
Catalogue List (19 0% The major elements present in MSW ashes are mainly O, Si,
Ca, Al, Fe, Na, and K. BA-MSW also has carbon due to unburned material. Although
most of the metals are present as oxides, there are also considerable quantities of metal
chlorides, metal sulfates and metal carbonates, and some non-oxidised metallic
components. Some ashes may also contain significant amounts of polycyclic aromatic
hydrocarbons (PAH), polychlorinated biphenyls (PCB), chlorobenzenes,
chlorophenols, chlorinated compounds, benzofurans or mutagenic organic ché&hicals.
When the MSW ashes are usbkyg the construction industry or as geotechnical
materials, the leachability of these organics, as well as alkalis and heavy metals, is
major concern, as these can affect the properties of the concretes and the soils. Ashes
with high chloride content are also severely restricted froageusn reinforced

concretes due to the risk of corrosion of the embedded steel reinforcement.

Currently, the utilisation of ashes from MSW combustion is very limited, especially if
the ash has not been pre-treated, and also due to the intrinsically high variability of this
type of ash. Some ashes are decontamihby different processes, including wet
chemical treatmertt; thermal or plasmvitrification,?>2?®carbonatiort, or disposed via
stabilisation/solidification (S/Sih a cementitious matrix® Life cycle analysis has
enabled quantification of the environmental benefits associated with the,re-use
particularly metal recovery, of the MSW ashes; a significant reduction is observed

related to the global warming impaégs.

The recycling of MSW ashéwy the construction industry has increased worldwide over

the past years, including the assessment and use of FA-MSW and BA-MSW as
aggregate$’? as raw materials for Portland clinker productidit* and as mineral
admixtures for the production of concretesSome studies have identified that the
presence of slowly-reacting siliceous glass or metallic aluminium particles in the ashes
derived from MSW might negatively affect the durability properties of cements and
concretes, as these components can increase the susceptibility to degradation, via the

alkali-silica reaction or the release of hydrogen gas, respecti&ly.

The stabilization/solidification (S/S) of MSW ashes via alkali-activation has also been

assessed. The mechanisms of heavy metal immobilisation in an alkali-activated binder

9
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can be physical and/or chemical, where the hazardous elements are either fixed in the
gel network, linked into the structure in change balancing roles, or physically trapped
in a dense and low-permeability matik.Luna-Galeano et &f studiedFA-MSW
incorporation into alkali-activated systems based on a variety of precursors (including
metakaolin, blast furnace slag and coal combustion fly ash) and alkali activators
(sodium and potassium hydroxide and silicate). Although the mechanical performance
of the wasteforms produced was relatively low (< 10 MPa after 28 days), the
leachability of Zn, Co, Ni and Sn was greatly reduced compared to the raw MSW ash
Lancelloti et af® showed that metakaolin-based systems can stabilise larger amounts

of MSW ashes when compared with conventional cementitious S/S.

The use of untreated MSW ash as a precursor in the production of alkali-activated
binders is limited due to its toxicity and the low contents of amorphous, reactiye SiO
and AbOs-containing phases. However, some MSW residues have been shown to be
suitable to be used in this Wd§: Zheng et at! achieved compressive strengths of up

to 20 MPa after 7 days of curing for such materials. The use of CaO for flue gas
treatment in MSW incineration facilities generates fly ashes rich in Ca-compounds
(Ca(OH), CaCQ, or CaS@)*, and these can be beneficial for strength development
and permeability reduction in alkali-activated binders. Some FA-MSW materials can
be treated by washirtg reduce the content of undesirable elements such as ClI, Zn, Cu,
Cr, Pb, Cd and Ni. Zheng et ‘Qlalso reported that after a washing treatmen&/An

MSW exhibited higher reactivity in alkali-activation, yielding a binder with improved
mechanical performance due to the removal of the chloride which was affecting setting
and mechanical performant&* This was consistent with the results of Ferone &t al.

who evaluated the effect of blending fly ash vidth-MSW which had been pre-washed

to remove both chloride and sulfate, and found an improvement in terms of leaching
performance. However, the washing process does itself generate a secondary liquid
waste stream which requires further treatment, and this added cost must be considered

when assessing the desirability of the washing step in waste treatment.

Diaz-Loya et af® assessed alkali-activated systems based on blends of coal FA and
FA-MSW. Their materials based solely on FA-MSW showed leachability of heavy
metals (with the exception of Se) which was within the allowable limits according to
the US Environment Protection Agency. The alkali-activated binders containing 60%

FA-MSW exhibited mechanical performance which was suitable for the production of

10
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non-structural precast producacompressive strength of 18 MPa and flexural strength
of 2.8 MPa after curing at 100 °C for 7.

In general, unless a decontamination treatment is applied, the use of MSW ashes as a
raw material for alkali-activated cements in civil construction applications seems
limited, as the products may not comply with the toxicity regulations to be used as a
building material, and will tend to be variable in quality and performance. In this sense,
MSW ashes present challenges related to valorisation as a construction material via
alkali-activation, and future work in this area is likely to be driven predominantly by
environmental arguments and the need to avoid landfilling of the waste ash, rather than
any particularly desirable or unique technical properties of the materials produced.
However, it does seem that solidification/stabilisation using alkali-activated matrices
may be a viable route for the management of this waste via incorporation into a solid
binder rather than simply landfilling it, as such a process can contribute significantly to

reducing the leachability of toxic elements to the environment.

2.2 Demolition and ceramic-type wastes:

Roughly 45% of the total wastes arising from construction prosasseeramic-type

waste$’, which are produced from two main sources:

e Wastes generated by demolition and construction activities: including
construction and demolition wastes: concrete, bricks, roof tiles and ceramic
materials.

e Wastesgenerated by the ceramic industry: including waste from thermal process

or from the manufacture of bricks, roof tiles and construction materials.

These wastes are generally classified as non-hazaftlagslong as no asbestos is
present. According to Dahlbo et &.the current construction and demolition waste
management system of the European Union needs to be significantly updated and
modified in order to achieve the target of recycling a minimum of 70% in 2020 as
suggested by the EU Waste Framework Directive (2008/98/EC). However, the main
problems in the utilisation of wastes generated by demolition and construction materials
are related to the lack of control of composition (which is very heterogeneous) and the

difficulty in extracting certain contaminants, e.g. wood, paper, gypsum, glass, rubber,

11
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among other&’ Europe and the U.S. have made significant advances over the past
decadesn the correct classification and subsequent reuse of construction wastes. New
techniques to ensure effective separation, instead of selective demolition and manual
sorting, are now utilised, such as wet jiggifa@ir jigging;*® heavy liquid separatioH,

optical sorting and near-infrared sorting technotégy

The main consumer of these wastes is the same construction industry which generates
them, and common applications include soil stabilisation,asse fill material for
landscapingasan artificial aggregate in the production of concrete, and/or Ess@as
material for the production of Portland cemght® However, in growing economies
where high volumes of ceramic and demolition wastes are generated, the potential for
recycling and re-use of these wastes is often not reag®donsequence of the low

cost and high volume availability of virgin raw materials, as well aslithiged
expertise available for treating wastes and the limited allocation of resources for waste
management. Recently, life cycle analysis modelling has demonstrated that the re-use
and valorisation of construction and demolition wastes can reduce the footprint of the
industry across most environmental impact categéfiddowever, transportation is

the most important impact to be considered; its contribution to the global warming
impacts can be high, and may in fact dominate other benefits if local valorisation is not
possible®®

The use of demolition wastes for the production or development of alkali-activated
cements is challengingconsidering the varying nature of these wasiad the
consequent lack of consistency in chemical and physical properties across wastes from
different sources. There is also a high energy and financial cost associated with the
reduction of wastes to a sufficiently fine particle size for use as a precursor in alkali-
activation, as crushing to a particle size in the range of tens of microns is very much
more expensive than when targeting a normal aggregate particle size (a few millimetres
to a few centimetres), and problematic dust emissions may also be associated with this

process.

However, there do exist reports related to the use of demolition wastes as a precursor
for production of alkali-activated cements. For example, Pay&@tassessd hydrated
Portland cement which had previously been carbonated in an attempt to replicate end-
of-life conditions for cement in regular concretesg alkali-activation with NaOH and

waterglass. Themortar specimens cured at 65 °C after 3 days exhibited a compressive

12
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strength on the order of 10 MPa, demonstrating potential use of cement-rich fraction of
the demolition wastes, whidh not strongly desirable as an aggregate duts toigh

water demand in concrete mixtures. The applicability of cement recovered from
demolition wastes as a precursor for alkali-activated materials is likely to be limited by
competition from the re-use of this material in Portland cement clinker manufacture,
and so further assessment will be required to elucidate the true feasibility of this option
from financial, technical and environmental points of view. Recently, Komnitsas et
al.%% demonstratd the potential use of construction and demolition wastes (including
recycled concrete, bricks and tiles) as raw materials for the synthesis of geopolymers:
high mechanical strength (> 40 MPa after 7 days of curing) was achieved under specific
synthesis conditions using wastes derived from tiles and bricks. However, the
demolition wastes based on recycled concrete (regardless of the particle size
distribution) showed a lower degree of reactivity and lower mechanical performance.
These results elucidate the importarafe developing an effective selection and
screening process for the demolition wastes prior to use as a precursor in alkali-
activation, taking into account their heterogeneity.

Therefore, the wastes generated by the ceramic industry can prbbablysed more
easily than general demolition wastes due to the greater control of composition, and
thus reduced variability. The largest producers of clay-based ceramic tiles are China,
Brazil, India, Italy, Iran and Spain, which together represent ~70% of global
production®! and in these countries, the residues generated during the production of
ceramic products are mainly disposed in landfill. These ceramic wastes consist mainly
of silicate and aluminosilicate minerals obtained through the calcination of clays, such
as quartz (Sie), feldspars (MAISOs where M is an alkali metal) and vitreous phases.
Several studies have describ@ti the use of these ceramic wastes as a coarse or fine
aggregate for concrete or mortar production, axr@sv material for the production of

Portland clinkef*®°

Some ceramic wastedo show pozzolanic reactivity, as they contain amorphous
aluminosilicate phases which react with the portlandite formed during the hydration of
Portland cemerf€ % Although the pozzolanicity of these wastes is significantly lower
than that of other calcined clays (such as metakaolin), their value as precursors in alkali-
activated cement production can be optimised through control of the formulations and

the activation conditions. Reig et ‘&{° evaluated the alkali-activation of an
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aluminosilicate waste obtained from red clay bricks and porcelain stoneware; mortars
cured at 65 °C for 7 days developed compressive strengths exceeding 20 MPa
demonstrating that it might be feasible to reutilise these wastes for the production of
alkali-activated cements. Allahverdi and Najafi K&rproduced alkali-activated pastes
based on blends of waste bricks and 8-month old crushed concrete, which achieved

compressive strengths of up to 40 MPa after 28 days of curing.

The use of recycled crushed &l obtained from bricks and other clay products as
raw materials for the development of alkali-activated cements is currently quite Jimited
although studies including those described above suggest thay ibentechnically
achievable. One of the main limitations in a practical sense is the low volume of
production of clay-based demolition waste in any particular location, compared with
what might be commercially required for production of alkali-activated cements at an
industrial scale, as most activities which generate such wastes are small in scale.
Likewise, the growing demand for low-cost housing in many areas around tlte worl
has led to the development of improvised brick factories, whose product control is
minimal, which can consequently affect the potential reactive quality of the powdered

brick after recycling.

Conversdy, ceramic wastes such as broken or off-specification porcelain stoneware,
tiles, tableware and others, that can be sourced directly from the factories
manufacturing these products rather than from the demolition process, could have
higher potential as precursors for alkali-activated cements, as the raw materials and
process of manufacture are well known, and there will be greater consistency in the
properties of the wastes to enable optimisation of alkali-activated cement formulations.
This is an interesting area of research that needs to be further explored, although the
volumes of these wastes available from each single source tend to be rather small
compared to the scale of cement production facility throughput values, and so such
products may be best utilised in niche products such as refracfonibissh can make

use of their intrinsically high thermal resistance, rather than in production of bulk

construction materials.

2.3 Wastes or sedimentsfrom water treatment plants

14



381
382
383
384
385
386
387
388
389
390
391
392
393
394
ng
396
397
398
399
400
401
402
403
404
405
406
407
408

409
410
411
412
413

Sewage sludge is a residue generated by the wastewater treatment process, where the
liquid and solids fractions are separated. Residues are collected during the primary
(physical and/or chemical), secondary (biological) andiaigr (nutrient removal)
treatment. The solids collected can be subjected to further treatments (including
biological, thermal, long-term storage, among others) and are finally disposed. The
quality of the sludge produced is affected by the degree of pollution of the effluent
treated and the technical features of the water treatment plant. The physical and
chemical proce&s involved in sewage sludge treatment tend to increase the
concentrations of heavy metals, such as Zn, Cu, Ni, Cd, Pb, Hg ddd&<water is
progressively removed from the sludge. In Europe, 35-45% of the sewage sludge
generated is still landfilled, 37% is used in agriculture, 11% incinerated and the
remainder is used in other areas such as forestry and land reclafh@tienpresence

of hazardous compounds restricts the use of sewage sludge in agriculture due to its
potential ecotoxicity, and therefoitehas to be assessed carefully before utilisation, to

reduce any harmful effects.

There exist some reports related to dwecombustion of sewage sludge in cement
manufacturing, where the calorific power of the organic fraction of the sludge is used
as a source of energy. The main restrictionblending the sludge with coal for
combustion within the kiln is the emission of harmful elements, including heavy metals
which can accumulate in the cement kiln dust. On other hand, the ashes generated
during the incineration of sludge wastes have been used in the construction industry as
a fine aggregate, a@ mineral admixture in concrete/mortars mixésr as a raw
material for the production of brické/® There do not exist reports related to the
assessment of sewage sludge ashes as the sole raw material in the production of alkali-
activated cements, as these ashes tend not to contain high contents of reactive
aluminosilicates; instead, alkali-activated cements have been examined as potential
solidification/stabilisation matrices for these ashes, to reduce the leachability of heavy

metals.

Yamaguchi and lked& evaluated the solidification of sewage sludge slag, which is
produced via the melting of the sludge at high temperature, in a fly ash based
geopolymer matrix. It was identified that the sewage sludge slag wasta filler

and the best mechanical strength was obtaateal 25 wt.% sludge slag loading,

although high temperature curing (8C) was required to produce monoliths. Such
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slags could potentially be utilised in the production of alkali-activated matrices, but
further research in this area would certainly be required, especially regarding

immobilisation of heavy metals.

Reservoir sludge is a by-product resulting from the storage and treatment of potable
water, mainly consisting of deposited clays and silt, and thus contains much lower
levels of toxic substances than sewage sludge. It can therefore be catdgarest

cases as a ndmezardous waste andaybe reused in different engineering applications.
Taking into accounits relativdy high content of clay minerals, reservoir sludge can be
thermally treated to produce bricks or lightweight aggreddtesplended with other
precursor materials as a reactive component of an alkali-activated binder system. It has
been demonstrat€dthat the compressive strength of ternary alkali-activated binders
with 30 wt% blast furnace slag, 20 Wwb. metakaolin and 50 wt.% calcined reservoir
sludge increases significantly when the sludge is thermally treat860-850 °C
consistent with the thermal activation of the clay minerals present. The maximum
compressive strength reported was 56 MPa after 28 days of curing, and the mechanical
performance was reduced slightly when the content of the calcined reservoir sludge was
increased. Foamed alkali-activated panels based on calcined reservoir sludge with 30%
blast furnace slag have also been shown to generate valuable sound-insulation
properties, as expected for a low-density material based on calcined clays, offering an
alternative to the use of more expensive commercial metakaolin sources in such

applications?

The use of calcined reservoir sludge as the sole aluminosilicate component of an alkali-
activated binder was evaluated by Ferone e®4t using NaOH and waterglass
solutions as alkali activators. The sediments were based on quartz, feldspar, kaolinite,
illite and smectite, and after being thermally treated at up to 750 °C and combined with
the alkali activator, the materials developed compressive strengths lower than 12 MPa
after 3 days at 60 °C. Strength development was improved greatly (38 MPa under the
same conditions) when some blast furnace slag was added as a more reactive secondary

constituent of the binders.

Alkali-activation seems to be a suitable technology for exploiting reservoir clay
sediments, which do not currently have commercial value. It is important to note that
the variation in clay content and nature means that mix design optimisation (including

blending with other aluminosilicate materials) will be needed in each location rather
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than using a single universal ‘ideal’ formulation. However, alkali-activation technology
seems to be a suitable alternative for the manufacture of valuable products from these

wastes.

2.4 Waste glass

The rates of production and consumption of glass for packing differ widely between
countries, and so in some countries a very high degree of reuse or recycling of waste
glass is achieved, while in others (particularly countries which are high-volume
importers of wine), there are a lot of waste glass bottles generated which are not suitable
for domestic re-use. In EU, the glass packing waste generated was 32 kg per capita in
2011. Although the 2008 target of 55% waste glass (WG) recycling has been achieved
by most EU Member States, there still exists scope to increase the recycling and
recovery raté® The non-recyclable mixed-colour broken glass from used bottles, along
with the glass from fluorescent lamps, can represent an environmental problem for
municipal waste treatment plardsthe glass is not biodegradable, and landfilling is

not making effective environmental or economic use of the value and energy embodied
in these residues. According to Vossberg et al.X, glass recycling shows significant
energy savings (>25%) and greenhouse gas emissions reduction (~35%) when

compared to landfilling’

The efficiency of the glass recycling processstrongly affected by the collection
method and the abilityo sort the glass by colour. If glasses of different colours are
correctly separated, they can be used many times without significant changes in
chemical or optical properties. However, when cadglasses are mixed, they are not
suitable for reuse and then are disposed mainly in landfills. Additionally, although used
fluorescent lamps are typically processed to remove the mercury and reduce its
concentration to the levels recommended by the Waste Acceptance Criteria (<0.2
mgkg),8 the growing adoption of fluorescent lighting systems is making difficult the
safe disposal and recycling of the full range of lamps available on the worldwide

market.

The use of waste glass in Portland cement production has generally been avoided, as it
increases the alkali content in the clinker, which can generate alkali-aggregate reactions
as well as the potential for flash setting due to the formation of highly soluble sulfate
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salts®’ The use of waste glass as a partial replacement of coarse or fine aggregate in the
production of concrete is also limited, again due to the reaction induced between the
reactive silica present in the gtand the alkalis of the Portland cement (and the glass
itself). However, when the waste glass is crushed and pulverized to smaller than 300
pm, and aluminous supplementary cementitious materials such as coal fly ash are used,
the deleterious effect attributed to the alkali-silica reaction decr&&Se&Some very

finely ground waste glasses show pozzolanic activity, and they can be used for the
partial replacement of Portland cement for concrete production, as they may enhance

mechanical performancé.

In the context of alkali-activation of waste glasswo main approaches have been
investigated: use of the waste glass as a solid precursor for the alkali-activated cement,
or asaraw material for the production of low cost sodium silicate solutions. In utilising
waste glass asprecursor for alkali-activated cement production, Cyr ét assessed

the use of a green soda-lime-silica waste glass activated by alkali hydroxide splutions
and obtained mortars with a compressive strength of up to ~60 MPa after 56 days of
curing. As the content of Si®in the waste glass was quite high (~72%), the use of
silicate activator was not necessary to achieve high compressive strengths. The absence
of asodium silicate-based activator significantly reduces the cost of production of these

maerials.

Redden et al? carried out a comparative study activating glass powder, fly ash, and
blends of these materials, and identified that the glass powder-based activated cements
developed higher strengths than activated fly ash cements when cured at room
temperature. However, the main reaction product of glass activation was a sodium
silicate gel, which was highly soluble in water and alkaline media, calling into question
the stability of these cements in a real service environment in the absence of an added
aluminium or calcium source that could generate an insoluble gel. Kéflaz et aP?

utilised urban waste glass, blended with limestone as a low-cost source of calcium, to
produce alkaliacivated cements. Higher reactivity of the waste glass was identified
when using NaOH as an activator, which prosdahe formation of a C-S-H type gel

along with the hydrou€aNa carbonate salt pirssonite as main reaction products.

Compressive strengths of up to 38 MPa were obtained in optimised mixes.

Badanoiu et al* synthesised foamed alkali-activated cements using waste glass cullet,

red mud, and blends of these materials, activated by solutions of NaOH and liquor
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512 derived from the filtration of red mud slurry, with the aim of using waste-derived
513 materials as both precursors and activators. These foamed cements developed a
514 compressive strength of 25 MPa after curing at®@or 24 h then at 20C and 85%

515 relative humidity (RH) for 7 days.

516 These studies demsimate that waste glasses can certainly be used as precursors for
517 producing hardened alkali-activated cementitious materials. However, the mix designs
518 need to be adjusted and optimised in order to produce stable reaction products, so that
519 these cements can withstand service conditions, and therefore develop desirable
520 durability.

521 Puertas and Torres-Carrasco have also demonstrated the production of sodium silicate
522 solutions via chemical digestion in NaOHAE#s; solutions of urban waste glas$es,

523 and have used these solutions as alkali activator for producing cements based on alkali-
524 activated slad® and alkali-activated fly asH.These studies have elucidated that waste

525 glass can be recycled for production of sodium silicate solutions, and that these
526 solutionscan act as effective activators for producing alkali-activated cemaests,

527 similar compressive strengths and phase assemblages were identified when using these
528 alternative activators compared with those obtained when using commercial sodium
529 silicates. This seems to be a very viable alternative for the recycling of waste glass to

530 produce a valuable product.

531 Other types of waste glass, such as solar panel residué®tass, also been utilised

532 in laboratory studies as a partial replacement material in metakaolin-based activated
533 cements. Although material performance seemed acceptable on a lab scale, the
534 applicability of such processes (or those including post-consumereglass

535 electronic items such as display screen equipnatiat) industrial scale is likely to be

536 infeasible, considering the low volume availability of such residues worldwide or in
537 any particular location; a very large (and expensive) number of broken panels or screens
538 would be required to produce a useful quantity of concrete. However, as hazardous
539 elements might be present in the waste glass, alkali-activation technology could be a
540 suitable alternative for its safe disposal if the production of a monolithic wasteform is
541 desired

542

543 3. Agro-industrial wastes
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3.1 Ricehusk ash

Rice is a cereal grain, and is the most widely consumed staple food for a large part of
the world. It is the third-highest produced crop worldwide (744 million tonnes in
20149), after sugarcane and mai?@ Every five tons of rice from paddy cultivation
produce one ton of rice husk waste, and in 2014 alone more than 148 million tonnes of

rice husk were produced worldwide. Currently, some rice husks are utilised as fuel, and

the resulting ashgs, Figure¢ 5, are a low cost source of amorphous silica thatnhas bee

extensively used by the construction industry as a supplementary cementitious material
for concrete productiot?*1°>The pozzolanic activity of a rice husk ash dependsson
content of amorphous silica and unburnt carbon, the particle size distribution and
specific surface area, all of which are strongly affected by the combustion temperature

and duratiorf?1:103

Figure 5. SEM micrograph of a rice husk ash particle, showing its porous structure
which yields a high specific surface area and thus rapid reaction. From Abret?®t al.,

copyright John Wiley & Sons.

In the context of alkali-activated cements, similar to the situation discussed in the
preceding section for waste glasses, rice husk ash has been used both as a secondary

precursor andsa silicate source for production of sodium silicate activating solutions.
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564 Detphan et al®® used rice husk ash, produced at different combustion temperatures, as
565 partial replacement material in alkali-activated coal fly ash cements. The rice husk ash
566 fineness and the degree of fly ash replacement strongly influenced the conepressiv
567 strength; mechanical strengths of up to 56 MPa were adhvelven the rice husk ash

568 was sintered at 698C and the amount of small particles increased. Rattanasak’®t al.
569 blended rice husk ash with Al(Oftp produce alkali-activated cements, adding sodium
570 hydroxide and sodium silicate as alkali activators. Boric acid was also added to these
571 binders to reduce thresolubility in water. The formation of an aluminosilicate type gel
572 asthe main reaction product in these binders was adgb&vith compressive strengths

573 between 14 and 20 MPa after 90 days of curing, depending on the Al¢Ohtent.

574 This study elucidated that hardened solids containing more than 70 wt.% rice husk ash
575 can be produced, and that these materials can achieve moderate but useful compressive
576 strengths.

577 He et alt’” assessed the compressive strength and microstructural features of red
578 mud/rice husk ash blended alkali-activated cements, and identified that an increased
579 content of red mud promoted the development of higher compressive strengths,
580 depending on the formulation of the bindeks.observed by Rattanasak et'®).an

581 aluminosilicate type gel is forming in these cements, which is responsible for

582 mechanical strength development over the time of curing.

583 Gastaldini et at°® produced blended concretes containing 80 wt.% Portland cement,
584 20 wt.% rice husk ash, and 1 wt.% of eithepBl&s, KoSQs or N&SiOsz. An increase

585 in the compressive strength development at early time of curing (7 days) was identified
586 when alkali activators were included, along with a significant reduction in chloride

587 permeability of the concretes.

588 The dissolution of rice husk ash into concentrated NaOH to produce sodium silicate
589 solution as an alkakcivator is an attractive application of this waste in the field of
590 alkali-activation technology. Bernal et &Y. evaluated the effectiveness of this

591 alternative activatoin producing cements based on slag, metakaolin and their blends.
592 This study elucidated that the mechanical performance and structural development of
593 the alkali-activated cements produced with the waste-derived activator was comparable
594 with the results obtained when using a commercial sodium silicate solution of

595 corresponding chemical composition. Similar observations have been identified when
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using these alternative activators in producing alkali-activated cements based on coal

fly ash/slag blends® or spent fluid catalytic cracking catalysts.

The thermal resistance of alkali-activated slag cements produced with a rice-husk ash
based activator has also been asse'$sedth higher retention of compressive strength
after treatment at up to 1000 °C than in comparable cements produced with a
commercial silicate solution. Villaguiran-Caicedo et'dlobserved the formation of
different crystallisation products upon high temperature exposure of alkali-activated
metakaolin binders based on waste-derived or commercial sodium silicate activators
which could influence the performance of these binders under fire conditions. This was
associated with the differences in the speciation of the soluble silicates available during
the activation reaction when using rice husk ash based or commercial sodium silicate

solutions.

3.2 Palm ail fuel ash

Palm oil is now a significant bio-based energy source in many parts of the world,
particularly in Sautheast Asia, Africa and South America. The main wastes derived
from the palm oil production process are shells, palm kernel cake and fibres, among
others, which are often utilised as fuel for steam production in palm oil mills. During
this combustion process, a large quantity of siliceoussgsioduced, and over the past
decades this has begun to be utilised as a partial pozzolanic replacement for Portland
cement in producing concreté 116 As in the case of other biomass ashes, the palm oil

fuel ash particles exhibit heterogeneous shamllular structure and high specific

surface are¢ (Figure 6), which increase water demand when used as a mineral admixture

in cements and concret¥$. Recent efforts have also focused on maximising the
recycling of palm oil fuel ashes via alkali-activation, as theeg@pid grovth in palm
oil production, and interest in biomass combustion to produce electricity as a means of

reducing the cost of disposal of these wastes.
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Figure 6. SEM image of a particle of palm oil fuel ash, showing the porous structure

of the larger particles present. From Ooi etHIgopyright John Wiley & Sons.

Most of these studies have been based on a single source of palm oil by-product ash,
and have focused on the assessment of the effects of different mix design parameters
on the strength development and basic microstructural features of alkali-activated
cements based on palm oil fuel ash. However, this approach has meant that there is little
broader generic information available regarding this class of ashes as a whole, as each
study considers only the characteristics of a single material. There is a high degree of
variability between palm oil fuel ashes in terms of composition and mineralogy,
although most tend to be relatively low in reactive alumina content and thus challenging
to use as a sole precursor for alkali-activated cements. Salib'®assessed the effect

of the curing temperature and duration on the compressive strength development of
these cements, identifying that comparable compressive strengths (21 - 24 MPa after 7
days) were obtained in samples cured at room temperature compared with specimens
cured at between 6@ and 80°C. This elucidated that high temperature curing is not

required for these cements, if the mixes are appropriately designed.

The utilisation of palm oil fuel ash as a secondary precursor for production of blended
alkali-activated cements has also been widely studied, and the fineness of these ashes
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has a strong influence on reactivity and consequently strength development. Yusuf et
al. produced alkali-activated ceméntsand concretéd® based on blends of ultrafine

palm oil ash and blast furnace slag. The addition of up to 20 wt.% ultrafine palm oil
fuel ash to the slag-based mixes increased the compressive strength after 28 days of
thermal curing, but higher volumes of ash slightly reduced mechanical performance.
Conversely, Islam et a&f! identified that the optimal level of blast furnace slag
substitution by a coarser palm oil ash was 30 wt.%. Blended palm oil ash-slag alkali-
activated cements exhibited good chemical resistance when exposed to sulfuric acid,
when the content of slag was lower than 40 wt.% of the total binder (to minimise the
degree of damage which could happen via decalcification and gypsum formation) and

when the water content of the cement was held-féw.

Ranjbar et at?>1?4partially replaced coal fly ash by palm oil fuel ash in alkali-activated
cements, where a delay in compressive strength development was observed as the
fraction of palm oil fuel ash increased, in contrast to the trend identified in activated
slag/palm oil fuel ash cements as noted above. These alkali-activated palm oil fuel
ash/fly ash blended cements gained strength when exposed to temperatures of up to 500
°C and then cooled to room temperature for testing; however, larger fractions of palm
ash reduced the strength retention upon heating of these materials. High resistance to
sulfuric acid exposure was also found in concretes based on these binders by Ariffin et
al. > compared with Portland cement based concretes. This was again associated with
the absence of Ca-rich reaction products, which are more prone to react with the sulfuric
acid to form gypsum.

Kupaei et al?® identified an increase in the compressive strength of foamed cements
as coal fly ash was partially replaced by palm oil fuel ash, which was attributed to the
higher water demand of the coal ash and thus the need to add more water to achieve
satisfactory workability, and Liu et &’ also developed low-density structural
insulating materials from this combination of precursors. Hawa'ét adlded palm oil

fuel ash to alkali-activated metakaolin, which was able to decrease the tendency

towards drying shrinkage of these alkali-activated cements.

The growing number of studies utilising this waste, and the positive results obtained in
terms of mechanical performance and durability, elucidate that alkali-activation
technology is a feasible pathway for its exploitation and the production of construction

materials in palm oil producing areas, some of which are underdeveloped and in need
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of low-cost housing. The production volumes of palm oil fuel ash from major electricity
generating facilities are also sufficient to make the production of alkali-activated
concretes from the ash potentially economically viable, and the timescale on which
these ashes are expected to be produced is also sufficiently long to make construction

of dedicated facilities for their utilisation in construction materials appear worthwhile.

3.3 Sugar cane bagasse ashes

Sugar cane is the single most produced crop in the WSrMijth an estimated
production of more than 2165 million tonnes in 263 3around 30% of which is
produced in Brazil, with very large volumes also generated in other warm-climate
regions of the Americas and Asia. These regions in general correspond to areas of high
demand for construction materials, and so any by-products generated by the sugar

industry would appear to be geographically well located for use in concrete production.

This is highlighted in Figure|7, which compares the per-capita cement and sugar cane

productbn for the world’s top 10 sugar cane producing countries. All of these nations
have relatively high per-capita cement production, correlating well with sugar cane

production (circled region) except in the cases of Brazil (high sugar cane, moderate

cement) and China (high cement, moderate sugar cane) as mgrked in Figure 7. This

indicates that there is generally likely to be good availability of sugar cane bagasse ash
in areas of high demand for construction materials, which shows a strong potential for

the valorisation of this waste material in construction applications.
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Figure 7. Comparison of sugar cane and cement production per capita (top 10 global

sugar cane producers). Data fréih3?

It has been reporté#f that for every 10 tonnes of sugarcane crushed, a sugar factory
produces nearly three tonnes of wet bagasse, which isthigkly significant source

of waste produced worldwide. Sugar cane bagasse is used for several applications,
including in the production of animal feed, enzymes, amino acids, organic acids and
compounds of pharmaceutical importaf¢ehowever, it is also often utilised as fuel

in sugar cane mills. Bagassombustion produces silica-rich ashes which have been
studied over the past decades as supplementary cementitious metetidls. Brazil

alone, the generation of sugar cane bagasse ash (SCBA) is equivalent to about 6% of
national Portland cement productitfiwhich could potentially mitigate more than 500
kilotonnes of CQ emissions per yedir the SCBA were to be used as a partial cement

replacement.

A limited number of studies have been carried out to demonstrate the utilisation of
sugar cane bagasse ashes as precursors for alkali-activated cements. Castaldélli et al.
demonstrated that it is possible to produce alkali-activated cements based on a blend of
blast furnace slag and SCBA, with compressive strengths of up to 60 MPa after 55 days
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of curing at 20°C, and low porosity. In a later study, the same g¥aiso produced
cements from alkali-activated fly ash blended with sugar cane bagasse ash which had
been thermally treated to reduce its content of organics. These cements developed good
compressive strengths when cured at°@5 associated with the formation of an

aluminosilicate type gel as the main reaction product.

More recently Pereira et & also produced blended activated cements based on blast
furnace slag and SCBA, and evaluated the durability of these binders when exposed to
hydrochloric acid, acetic acid, ammonium chloride, sodium sulfate and magnesium
sulfate. These cements perfadmuch better than Portland cements when exposed to
ammonium chloride, acetic acid and sodium sulfate; however, little advantage was
observed when the specimens were exposed to hydrochloric acid or magnesium sulfate.
The partial substitution of slag by sugar cane bagasse ash did not have a significant
effect in the phase assemblage or mechanical strength development of the assessed
cements. Therefore, it was proposed that this might be a feasible way to reduce the
production cost of alkali-activated blast furnace slag cements by achieving good
performance with lower contents of this more expensive precursor, and also to
maximise the re-use of sugar cane bagasse ashes, particularly where exposure of the

hardened material to certain chemically aggressive conditions is likely.

4  Wastesfrom the mining and mineral industries
4.1 Red mud

Red mud is an alkaline waswith a pH between 9.2 to 12.8 in the untreated $féate,
generagd from alumina extraction via the Bayer process, where the bauxite ore is
treated with sodium hydroxide solutions. When most of the aluminium has been
extracted from the ore, the red mud hagyh quantity of entrained NaOH, and contains

iron oxides that give its red colour. This waste can contain high contents of silicon, as
well as some residual aluminium whose quantity depends on the efficiency of the Bayer
process operations, often present as zeolites or related aluminosilicate mineral phases.
The worldwide annual generation of red mud is estimated at 120 million tonnes/year,

which makes its disposal an issue of great environmental impoft&nce.

The development of mechanical strength through alkali-activation of red mud is limited

by the low available aluminium content of most of the red mud sources which have
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748 Dbeen tested. However, the use of a more aluminium-rich red*¥hadl, adding

749  metakaolid*’ or fly asiH*®14°as secondary sources of aluminium, can contribute to
750 improve the mechanical strength development of the alkali-activated binder. Kumar et
751 al'®*® have produced paving blocks based on alkali-activated fly ash/red mud blended
752 cements which comply with the relevant Indian national legislation (BIS IS
753 15658:2006) for precast concrete blocks, and withleaghability of alkalis. Alkali-

754 activated blast furnace slag/red mud blended binders have also been detéibped,
755 and the slag significantly increased the compressive strength of these materials.

756  Ye et all®3™jdentified that thermal treatment of red mud increases its reactivity in
757 alkali-activation; however, it was still not sufficiently reactive to develop a measurable
758 compressive strength when simply mixing the calcined red mud with water, despite its
759 high initial alkalinity. In a following study, Ke et &> added NaOH prior to the thermal

760 treatment of the red mud, which favoured the formation of hydraulic phases including
761 a disordered peralkaline Na-aluminosilicate, tricalcium aluminate cadidalcium

762 silicate. This modified red mud reacted with water, without requiring the addition of an
763 additional alkali-activator, and hardened monoliths with a measurable compressive
764  strength were producedhis study demonstrated that utilisation of red mud for
765 producing just ‘added water’ alkali-activated cements is feasible via alkali-thermal
766 activation, although the cost-effectiveness of such a process requires further
767 investigation and a secondary source of inexpensive alkalis.

768
769
770 4.2 Kaolin wastes

771 Kaolin is one of the most important clay minerals exploited for the mantgaatu

772 paper (~45%), ceramics (~15%), refractories (~15%), and other products. The United
773 States, Uzbekistan, Czech Republic, Germany and Republic of Korea are the largest
774  producers of kaolin, with an annual total production estimated at ~23 millions of metric
775 tons!®® The clay is often extracted from open-cut mines amidcessed by different

776 treatments (thermal, mechanical or chemical) to remove impurities, enhance whiteness,
777 and/or adjust particle size distributions and shape. Wet processing is widely used to
778 produce kaolin products for the paper industry and in filler applicatiomisis process,

779 adispersed kaolin-water suspension is passed through screens, hydroseparators, or
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780 hydrocyclones to remove the coarser mineral particles. Thereafter, whitening
781 increase brightness is carried out. The rejected kaolin sludge is now generating a
782 considerable environmental impact due to the large areas required for its digp58al.
783  This mineral waste is formed mainly of coarse kaolinite particles and some traces of

784 quartz and/or anatas®.

785 Inrecent years, the mining industry has become motivated to find a suitable application
786 for the rejected kaolin sludge, with a view towards its potential valorisation. In this
787 sense, dried kaolin waste has been assessed as an aggregate in asphaft®€oncrete.

788 The controlled thermal treatment of kaolin sludge at temperatures around 700 °C
789 transforms the waste kaolinite into metakaolin, which is a material with higher added
790 value. This metakaolin derived from calcined kaolin sludge (CKS) exhibits pozzolanic
791 properties and high reactivity in cementitious systéht§’ and in zeolite

792  synthesig83164

793 This reactivity indicates thafKS is potentially suitable for use in the production of

794  alkali-activated binders. Longhi et &P.1%assessed the use of a Brazilian kaolin waste,
795 which was thermally treated at 700 °C and ball milled, then activated with sodium
796 silicate solution. The resulting geopolymers exhibited high mechanical performance
797 (up to 70 MPa in compression), comparable to the strengths achieved through the use
798 of a much more expensive commercial metakaolin as precursor, and the coarser particle
799 size of the CKS is actually to some extent beneficial in improving the fresh-state
800 properties of the geopolymer mixes. Alkali-activation thus appears to be a technological
801 and feasible solution for the valorisation of this industrial waste.

802

803 4.3 Low purity clays

804 The search for low cost or easily available materials for production of alkali-activated
805 cements has led to the assessmemntoafal clays such as montmorillonites, smectites
806 and illites, among others. These clays are widely available all over the world, and may
807 show reactivity with alkalis after thermal activatit®i%® However, they tend to be

808 more variable in composition and mineralogy than commercial kaolinites, and the
809 parameters of the thermal activation process must be particularly precisely controlled

810 in order to reach high reactivity® Sq, extensive research is required to elucidate the
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factors that control the performance and long term stability of alkali-activated cements

based on normal clays.

Two particular types of clays, bentonite and lateritic soils, are the object of alkali-
activation research in several countries. Laterites are soil types rich in iron and
aluminium, formed in hot and wet tropical areas, and contain kaolinite in which a high
proportion of AP* is replaced by Fé or Fé*.1’* When thermally treated between 750

°C and 800°C, the kaolinite and gibbsite present in the soil transform into metakaolin
and amorphous alumit& which show pozzolanic activity and can be used as
supplementary cementitious materials for concrete produtfidmrecent years, there

has been a growing interest producing alkali-activated cements based on calcined
lateritic soils. Silva-Neto et &l* and Gomestall”>have demonstrated that Brazilian
laterites are suitable precursors for alkali-activated cement production. In these systems
the iron is seen to play a significant role in the development of the binding phases, so
that iron distribution in the aluminosilicate type gels appears to occur via formation of
Fe-Al-Si oxide amorphous structures. Although the structural role &f &® a
substituent for A" in these aluminosilicate gels remains poorly understood, screening
methodologies such as those presented by Mcintosh! &tfat.the Fe-rich kaolinite
resources of Northern Ireland offer the possibility to identify and exploit these lower-
purity clay deposits, which would otherwise be of little or no economic value, as
precursors for alkali-activation. The potassium silicate-activated mixes described in
that study reached strengths as high as 89 MPa at 7 days.

Lassinantti-Gualtieri et af.” assessed the effectiveness of eitheriadihosphoric

acid) or basic (sodium silicate) activation of laterite soils, before and after thermal
treatment,to produce alkali-activated cements. It was demonstrated that thermal
treatment of the laterite is required prior to chemical activation, and that both pathways
of activation could promote the formation of hardened solid binders from a suitably
calcined precursor. The acid phosphate chemistry described in this context appears in
some way similar to the ‘Ceramicrete’ phosphate-bonded ceramics, and also to
published work based on the combination of phosphoric acid and pure metaiaolin,
but the cost of phosphoric acid is rather high and so is likely to restrict its use in large-

scale applications.

Bentonite is a montmorillonite type clay that can be thermally treated to produce a

pozzolan, andanbe used by the construction industry as a supplementary cementitious
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844 material'’®'8 There exist a limited number of studies related to alkali-activation of
845 thermally treated bentonite. Hu et'&81 carried out a study using non-treated bentonite
846 as an additive (less than 15 wt.%) in alkali-activated fly ash binders, identifying that
847 this clay acted as a filler and contributed to densify these binders. Chervonniet al.
848 utilised alkali-activated thermally treated bentonite for the solidification of low-level
849 radioactive ashes from the Chernobyl accident region. Monoliths achieved 12 MPa after
850 28 days of curing, and showed significantly lower leachability of strontium compared
851 with Portland cement grouts. This suggested that alkali-activated cements based on
852 bentonites could be an environmentally beneficial process for treatment of radioactive

853 wastes.

854  More recently Garcia-Lodeiro et 8f evaluated thermally treated bentonites as the sole
855 precursor for producing alkali-activated cements. This study elucidated that effectively
856 alkali-activated thermally treated bentonites produce hardened solids, whose strength
857 is dependent on the availability of Si and Al in the system. The addition of highly
858 soluble sources of Al, such as sodium aluminate, improved the compressive strength of
859 these binders.

860 The alkali-activation of low cost normal clays such as bentonites and laterites, which
861 are highly available in growing countries where the need for infrastructure is pressing
862 and will increase in coming years, seems a viable alternative pathway to produce
863 affordable construction materials.

864

865 4.4  Other mining and mineral wastes

866 Mining wastes are fine and coarse mineral materials resulting from mining and mineral
867 processes operations, which usually are collected, transported and placed in large heaps
868 or dams'®* Approximatdy seven billion tons of tailings are produced worldwide each

869 year, much of which consists of clay-rich minerals which are impure and considered to
870 be of low value, but which may offer significant value as precursors for alkali-
871 activation, particularly in applications such as mine backfilling where the ability to
872 replace Portland cement offers the possibility to reduce costs and gain environmental
873 benefit®

874  One such source of low purity clays from the mining industry is a tungsten mine waste

875 from Portugal, which is an aluminosilicate rich in clay minerals and iron. When
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thermally treated at 95T, dehydroxylation and amorphisation of this waste has been
identified1®® consistent with its significant content of phyllosilicate clay minerals.
Pacheco-Torgal et a}’ evaluated the effect of NaOH and Ca(@Ebncentrations on

the mechanical performance of alkali-activated calcined tizatugsten mine waste, and
used these results to develop a material with an optimised activator ¢8heantyell

as lower shrinkage than Portland cement and low water penetration. Conversely, the
blending of sodium carbonate with the tungsten mine waste hindered the
dehydroxylation of the waste, and even though a high compressive strength was
achieved at early times of curing, a reduction in the stability of these cements was

observed when immersed in watét.

Other mining wastes that have been utilised to produce alkali-activated cements include
those obtained from copper mining, which are rich in feldspars and can be used in the
production of brickd8%1%°heavy metalsra also able to be effectively immobilised in
these material®! The addition ofa small quantity of sodium aluminate can enhance
the strength development of these materials, depending on the temperature df€uring,
which suggests that the availability of aluminium from the mining wastes was limiting
the performance achieved. For this reason, the combination of copper mine wastes or
tailings with other aluminous materials has also been identified as advantageous in
alkali-activation; Zhang et &?? produced copper mine tailings/fly ash-based alkali-
activated cements, where fly ash addition promoted high compressive strengths and
relatively rapid strength development. Ahmari et'®alproduced alkali-activated
cements by blending copper mine tailings with loalcium flash-furnace copper
smelter slag and an alkali activator. The addition of the smelter slag enhanced the
mechanical strength and promoted the formation of a denser microstructure, as a
consequence of the high solubility of silica from the slag iéadine particle size
distribution. However, elevated temperature curing was required to accelerate the
hardening of the specimens. Ren et’aalso showed that aluminium sludge coudd b
effective asa secondary source of ADz in an alkali-activated blend with copper mine
tailings, to decrease the overall Si/Al molar ratio and improve the performance of the

resulting binders.

Caballero et al®® utilised a silica-rich gold mining waste, derived from the grinding
and subsequent separation of sulfides from quartzo-feldspathic gneiss, as the main

precursor to produce alkali-activated cements, with minor Portland cement addition to
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accelerate early reaction. These cements developed compressive strengths of up to 45
MPa, and presented a high resistance to when exposed to sulphuric acid, but
degradation of the specimens was identified upon exposure to nitric acid. In both
sodium and magnesium sulfate solutions, these cements gained strength at extended
times of immersion. In another study, the alkali-activation of thermally treated
halloysite blended with volcanic glass and gold extraction tails was reported by Barrie
et all% The cements thus produced developed good compressive strength (30 MPa),
and immobilisation of zinc ankgad present in the tails was achieved irséwdkali-
activated cements. However, high leachability of arsenic and copper was identified in
these specimens, which makes the material unsuitable for construction purposes, and
So it was suggested that these activated cements may be most effectively used for back-

fill purposes or as capping materi&is.

5 Wastesfrom other industries
51 Coal bottom ashes

Coal is the most abundant fossil fuel used for electricity generation, and its helative
low cost and large deposits represent a reliable source of energy. Around 7.1 billion of
tonnes of coal is used worldwide every yEaiThe main coal combustion wastes (or
by-products) are fly ash, bottom ash, flue-gas desulfurisation products, and boiler slag.
These wastes are mainly used as raw materials for the construction industry in the
production of clinker or blended cements and concretes, in civil engineering (as
subgrade stabilisation, pavement base course, and structural fill), and for site restoration
in open cast mining?®1%°However, the majority of these materials are eventually sent

to landfill rather than being effectively re-used.

Coal fly ash (FA) is currently playing an important role in the concrete and cement
market due to its low cost and pozzolanic reactifitygnd has been discussed in the
context of its use in alkali-activation in several major reviews, so will not be the focus
of discussion here. The second most important residue generated during coal
combustion is coal bottom ash (CBA), which represents up to the 20% of the total ash
generated. The CBA is collected at the bottom of the furnace and consists of larger,
granular and glassy heavier particles. The total production of CBA in the European
Union (EU15) is estimated to be ~4.1 Mt per annum, and only 46%sakthe-used
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efficiently.2° In the U.S., the total production of CBA reported in 2012 was 14.1 Mt

with a utilisation rate of 38%.2°2

AlthoughFA and CBA have similar origins, their physical and chemical features differ
widely. In particular, the CBA generally contains more heavy metals than the fly ash.
Therefore, in some countries, the most recent regulations and policies for the safe
disposal of coal combustion wasteswe modified the management of CB®.Taking

into account the large volume that is disposed in landfill, CBA is becoming an
environmental and economical concern due to the large land areas used, as well as the
ground and water contamination by leaching of trace elements. CBA has been used as
an artificial aggregate in concrebg substitution for sané’*?%and also shows some
pozzolanic reactivity, which can be improved through mechanical treatfRé?t.
However, its use as a supplementary cementitious material has not been widely
accepted due to its high porosity and low density, which have a negative effect on water

demand®’

A significant alternative route for the valorisation of CBAtsspotential use as a raw
material for the production of alkali-activated cements, as a consequence of its

relativdy high content of Si@and AbOs in reactive form.

However, Chindaprasirt et & provided a comparative assessment of alkali-activated
binders produced with FA or CBA (both with CaO contents of ~16.5%), and found that
the compressive strength achieved by RAebased binders was considerably higher
than was achieved with the CBA, due to the higher reactivity and higher content of
amorphous phases present in the R8was noted above related to the utilisation of
CBA as a pozzolan, the application of mechanical treatment can also initeease
reactivity in alkali-activation, and thus mortars with improved mechanical performance
and higher workability can be obtain®d.The differences in chemical composition,
degree of amorphicity and particle size distribution of the diverse CBAs generated in
different thermoelectric plants lead to an intrinsically high variability in the
development and optimisation of alkali-activated binder formulations based on these

materials.

Because the development of CBA-based alkali-activated binders has increased only
recently, there exist few reports related to the performance of these materials when
exposed to aggressive environments. Sata &P studied alkali-activated binders
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973 derived from a milled CBA exposetd 3% HSOQ: and 5% N&SQw solutions. The

974 mortars exhibited excellent performance after immersion in these sulfate sglutions
975 which is even better when finer CBA is used due to the finer pore size distribution and
976 consequent lower permeability of the bindéfs.

977 As an alternative method to using alkali-activation directly to convert waste into
978 cementitious binders, Geetha and Ramamétthseported the effectiveness of a

979 pelletisation method for the production of artificial coarse aggregates through the
980 alkali-activation of CBA using blends of NaOH, sodium silicate and CafOH)
981 Although their results elucidate a novel potential route to valorisation and application
982 of CBA, further assessmeistrequired in order to understand the perforoeeof these

983 synthetic aggregates in concrete mixes, as well as the economic and environmental

984 feasibility of their production through the alkali activation of CBA.
985

986 In general, the volume of CBA generated worldwide is continuing to increase as the
987 worldwide demand for energy grows, and the development of new methods for the safe
988 disposal or valorisation of this material is essential. Its chemical and physical properties
989 are more challenging, and more variable, than those of the fly ash which results from
990 the same coal combustion processes, but this also means that the competition from other
991 potential users of CBA is much lower and so it offers significant potential for
992 development in future years.

993
994 52  Paper dudgeash

995
996 It has been estimated that one tonne of paper sludge is generated per three tonnes of
997 paper producedt® and considering the total worldwide annual production of 403
998 million tonnes of papetitthis means that more than 130 million tonnes of paper sludge
999 need to be valorised or disposed worldwide each year. Some of the strategies adopted
1000 for the management of paper industry wastes include incineration with energy recovery,
1001 pyrolysis, steam reforming, production of mineral fillers for building materials such as
1002 cement, among othets: In particular, paper sludge ash isyaproduct derived from
1003 the incineration of paper sludge, which can contain varying quantities of thermally-

1004 amorphised clays and partially decomposed calcium carbonate, depending on the
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proportions of clay and calcite used in paper production. The potential use of this ash
as a supplementary cementitious material has been studied over the past'détade,
considering the importance of both calcined clays and limestone as mineral admixtures
for Portland cement.

A limited number of studies have been carried out using paper sludge ashes as
precursor for alkali-activated cements. In preliminary work, Yan €t aentified that

the partial substitution of fly ash with dried (uncalcined) paper sludge reduced the
workability and compressive strength of thlkali-activated cements; however, it did
promote a refinement of the pore structure which led to a reduced drying shrinkage of
the materia Antunes Boca Santa et &F produced alkali-activated calcined paper
sludge cements blended with coal bottom ashes, as the calcined paper sludge utilised
was partially crystalline and not highly reactive. Higher contents of bottom ash

contributed to increase the mechanical strength and density of the cements.

More recently, Gluth et &F° reported higher compressive strengths in water-hydrated
paper sludge ash paste compared to the same ash activated by NaOH or KOH, after 28
days of curing. A of the portlandite formedy hydration of the free lime in the ash

was consumed during the first 7 days of curing. Bernal @f atilised a paper sludge

ash rich in free limes a precursor for production of alkali-activated cements. This
particular paper sludge ash was highly reactive, and when combined with either water
or an alkaline solution, it formed hydrated reaction products including AFm-type
phases, portlandite and a highly disordered C-A-S-H type phase. The inclusion of an
alkaline solution (either sodium hydroxide or silicate) increased the dissolution rate of
free lime, and consequently favoured the formation of more Ca-rich phases compared

to the water-hydrated paper sludge ash.

Considering the significant differences in composition, particularly the content of free
lime, between paper sludge ashes from different sources, it cannot be stated that this
waste will generically be suitable for production of alkali-activated cements, as the
activation reaction will proceed in a different way depending on the content of calcium
present in the ash. However, with the correct combination of ash, activator and
secondary (likely siliceous) precursors, it does appear possible to produce good-quality
alkali-activated materials from paper sludge ash, and this would seem to be a high

value-added end usage for these ashes.
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5.3  Spent fluid catalytic cracking catalyst

Fluid catalytic cracking catalyy

t (Figurg

2 8) is an aluminosilicate product, ofsadba

on a zeolitic framework, used extensivetyoil refineries. Once this catalyst loses its

activity (becomes ‘spent’), and if it cannot be effectively or economically regenerated,

it is discarded and treated as waste. This waste catalyst has been studied as a potential

supplementary cementitious material for the production of blended ceffieittand

high performance mortars and concretes have been produced in this manner. The

reactivity of this waste varies depending on the nature of the initial catalyst?ti$&d,

therefore optimisation studies are required when using materials from different sources.

The production of this waste is relatively low, around 800,000 tons per year worldwide

in 2010224 which has limited its large-scale adoption as a partial replacement of

Portland cements in concrete production.

Figure 8. SEM image of a spent fluid cracking catalyst particle, showing a spherical

particle morphology and absence of micron-scale pores, as well as bright regions

which are likely to correspond to high local concentrations of heavy metals. From

Bare et al??® copyright John Wiley & Sons.
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In recent years, Tashima et %2>’ Rodriguez et a?® and Trochez et &F° utilised

fluid catalytic cracking catalyst residues as sole precursors for producing alkali
activated cements. These studies have been focused on evaluating the effects of
different formulation parameters on the microstructural development of these materials,
their phase assemblage and compressive strength. There is a good consensus that this
waste is a suitable precursor for producing alkali-activated cements, which can develop
a high compressive strength depending on the formulation adopted for its production.
In the case of Tashima et%%:??’ high temperature curing (6&) was utilised, while
Rodriguez et &?® and Trochez et &F° cured their samples at 4C and 25°C,
respectively, and the materials obtained developed compressive strengths comparable
to those reported for high temperature cured specimens. Significant differences in the
nature of the alkali activation reaction products between sources of spent fluid catalytic
cracking catalyst waste have been identified across these studies, and therefore it is
necessary to identify the characteristics of the waste, particularly mineralogy and
particle size distribution, that control its performance when used as a precursor for
alkali-activated cements.

The alkali-activation of this waste might be of interest for its treatment or valorisation,
depending on the content of toxic and hazardous elements present, as both catalytic
heavy metals and contaminants deposited on the catalyst in use can be important in
determining the availability of hazardous species from the waste catalysts. Further
investigation of these systems is required to elucidate whether these cements can
develop specialised technical properties to make their development sufficiently

attractive for commercial purposes.

6 Summary and general considerations

Table 1 provides a summary of the nature and production of the wastes discussed in
this review, and their characteristics which are particularly relevant to use in the

production of alkali-activated cements and concretes.
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1088

1{089 Table 1. Summary of wastes considered, and key factors defining their utilisation in alkali-activated cement materials.

Use in alkali ; ; Waste
Quantities available activation Disadvantages if used in alkali-activation Potential advantages for use i classification
technology alkali-activation 230

EU-27 incinerates ~58 Mt of MSW (2012
producing between 6-18 Mt of BA!

As precursor.

- Presence of toxic compounds including: metal chlorides
metal sulfates, metal carbonates, polycyclic aromatic
hydrocarbons, polychlorinated biphenyls, chlorobenzeng
chlorophenols, chlorinated compounds, benzofurans an
heavy metals.

- Lower reactivity when compared to traditional prescuis.

Ashes from L : - High heterogeneity in chemical and physical propertie - Reduction of harmful substances ]
mimcipal | e ctesn chinageneraed mere han || rongbatcies eased o o enstonmetdus ot 190LHSSL1Z
’ Y- High water demand due to its high porosity and specific encapsulation. :
waste The US generated 254 Mt of MSW in 201 precursor surface area. - High interest to find alternative roiste hMa{gg:dous non-
Incineration where 1330 (~33 Mt) was incinerated and ~8| As aggregate | - A decontamination process could be necessary. for disposal.
of BA was produced® ggreg - Absence of policies for its re-use in other production
) processes.
- Most of the alkali-activated products will likelyceire
thermal curing
- The production of materials with high mechanical
performance is limited.
- Construction and demolition waste:
- EU-27 generates ~860 Mt
- China generates ~2.19 &t.
- Demolition wastes are not rigorously tracked
U.S. However, the amount estimated in 2
was approximately 480 Mé* Construction and demolition waste:
- High heterogeneity in chemical and physical propertie . -, .
- Ceramic waste: - Requirement of a classification process due to the prese CO”.SHU.C“On and (f:i_eg]ollmon waste:
- Ceramic tile production climbed to 11.9] As precursor of different materials (wood, plastic, glass, metal, e&), a| ~ fH'gd. |ntere|st to find alternative routes
i billion square metres  with  growtl well as a milling treatment. or disposal. .
Ceramic and - h . L A h d h I 17.01/17.01.07:
demolition overwhelmingly confined to Asia and non-E| As a secondary| -Low reactivity when compared to other precursors. Mirror non-
Europes! precursor - The alkali-activated products will likely requiteermal . .
wastes - China, Spain and ltaly are the threegkst curing. Ceramic waste: =~ : hazardous
y ] ) - Better homogeneity in chemical and
exporter countries, accounting for 66% | As aggregate physical properties when compared to
world exports. demolition wastes
- China, Brazil and India remain the top three { Ceramic waste:
producer and consumer countries. - Low reactivity when compared to other precursors.
- The ceramic tile industry generates a lal
volume of ceramic waste outputs to laridj
estimated at 8%t in 2007 from both exces
stock and defective productg®
- Limited availability of sewage sludge.
- Low reactivity due to its low content of amorphous
aluminosilicate compounds.
- Requires the use of a primary aluminosilicate precursor
According to the FAO/AQUASTAT databas¥, with high reactivity
the values reported between 2008-2015 - Presence of heavy metals (including Zn, Pb, Cd, Cu, Hg
municipal waste water production are: Zn, and Ni).
Wastes or Africa: 12.47 Gtly, Americas: 94.27 Gtly; Asig As a secondary| -Depending on its mineral composition a thermal process noquction of harmful substances relead 9:02-06/19.08.12:
sediments 123.46 Gtly; EU: 35.54 Gtly. precursor could be required (particularly for clay-rich sedirnen to  th h t d o thel Mirror hazardous/|
from water sludges) ?,' € | t?nr\lllronmen ue 1o & Mirror non-
plants The estimated sewage sludge production ratg Immobilisation - Waste water treatment capacity is strongly related to encapsufation. hazardous
dry metric tons per annum are: national development.
EU-27: 8909 (2010); - Absence of policies for its re-use in other production
US: 6514 (2004), and China: 2966 (2088). processes.
- The alkali-activated products will likely requireermal
curing
- The production of materials with high mechanical
performance is limited.
- There exist targets to achieve higher
EU-28 glass production 20.85 Mt with a recyclir - Limited availability of the residue. reuse rate
rate of 71% (20135 As asource of - Requirement for a classification process - Reduction of cost of binder production 15.01.07/19.12.05
SiO; for the - Presence of high content of Hg when the waste cantain due to the substitution of waterglass, | 20.01.02: Absolute
Waste glass In U.S. the glass container generationdg production of used fluorescent lamps. which is the component with the non-hazardous
recovery in 2012 were 11.57 Mt and 3.2 N the alkali - Low volumes of waste can be valorised due to the low highest price 17.02.02: Mirror-
respectively?** activator amount of extra Si©required during alkali activation. - Improved performance of alkali- non hazardous

- Chemical dissolution of amorphous phases can be requ

activated systems when used as a
soluble source of SiO

Rice husk ash

In 2014 the global production of paddy rice w
746 million metric tonnes$ Assuming that 20%
of paddy rice is husk, ~150 Mt of this residue w
generated. When the husk is burned, 25% of a{
is generated, which represents ~38 Mt.

As asource of
SiO; for the
production of
the alkali
activator.

- Depending on the control of the thermal process, high
contents of unburned material can be obtained.

- Other potential applications are available, whiohld
increase cost.

- The transport cost of the residue can be high dite tow
density.

- Activator solutions can exhibit a dark color, whicgti
affect the aesthetics of the final product.

- Requires an extra investment within the alkali-actorati
technology/process for its dissolution in order to obtain g
high quality activator.

- Lower volume utilisation when compared to materiaisdi
as precursors, due to the low requirements for soluble
silicates during the activation.

Reduction of cost of binder production
due to the substitution of waterglass
solution, which is the component with
the highest price

Alkali activator with a specific
M,0/SiO;, ratio can be produced.
When produced under optimal
conditions, similar performance can bg
achieved compared to commercial
soluble silicate solutions.

Activator solutions with other alkaline
cations can be also produced.

High number of reports elucidate its
feasibility for use in activator
production.

Not specified in
this standard.

Theglobal palm oil production for 2015 was 62

As precursor

- Low content of reactive alumina.

Palm oil fuel Mt.2% Assuming that ash equivalent to%Gof - Most of the systems likely will require thermal curing - The presence of calcium (5-15%) can| Not specified in
ash this mass is generated, approximately 6.3 M| A d - Few reports related to its performance and effectivenesgy  improve its performance as precursor, this standard.
waste is obtained. S a secondary| g precursor. More studies are required.
precursor
Brazil is the world’s largest sugar cane producer
Sugar cane | {@round 650 Mt in 2013), which corresponds|  sq 5 secondary| - The content of A is not sufficient to be used as a main| - High production in markets with high | Not specified in

bagasse ash

30% of the world’s production.?

Brazilian sugarcane industry generates
considerable amount of sugarcane bagasse
estimated at about 2.5 Mt/y (Cordeiro, 2006).

precursor

precursor.

demand for construction materials.

this standard.

Red nud

120 Mt/y of red mud is generafétiand currently
a quantity in storage of more than 2.7 Bt
estimated#

As precursor

As a secondary
precursor

- High content ofe,0;, whose participation during the
alkali-activation technology and mechanical perforneanc
improvement is not well understood (may be positive or
negative)

- According to the efficiency and effectiveness of tlagy@&
process, the content of reactikeO; can be extremely low

After thermal treatment the red mud c
be considered a good alternative to
produce one-part alkali-activated
systems (just adding watefy.

Alkaline residue (mainly with high
contents of dissolved NaOH).

01.03.09:  Mirror
non-hazardous

Kaolin wastes

The United States, Uzbekistan, Czech Repul
Germany andRepublic of Korea are the large
producers of kaolin, with an annual tof
production estimated at 23 million metr|
tonnes 16

The Brazilian mining industry generates ~(
Mtly of kaolin sludge waste, with a stockpile
~10 Mt24

As precursor

- Requires thermal treatmetatincrease its reactivity

- Particle shape reduces the workability of the frestiures

- Reactivity degree is dependent on the kaolinite cinte

- Kaolin sludge can be re-used for other industries and
applications.

Materials with high mechanical
performance can be obtained (even
comparable to purlK-based
systems).

Depending on the source, the chemicg
and mineralogical composition might
be homogeneous.

Not specified in
this standard.

Coal bottom
ashes

In 2010 the global production of coal combusti
products (CCP) was estimated at 780 |
Considering that the ~15% of the overall CCH
CB,SA, the generated estimated value is around
Mt.

Annual production quantiésof bottom ash in US
and EU were about 14 (American Coal A
Association (ACAA), 2014) and 4 (Europeq
Coal Combustion  Products  Associati
(ECOBA), 2012) million tonnes in the last
decade, respectivel

As precursor

As a secondary
precursor

- Low reactivity.

- High heterogeneity in chemical and physical propertie
among batches.

- The production of materials with high mechanical
performance is limited.

- The alkali-activated products will likely requiteetrmal
curing

High interest to find alternative routes
for disposal.

10.01.01: Absolute
non-hazardous
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Coal fired thermal plants in India produce ab(
131 million tons of coal ash, which compris
about 25 million tons of coal bottom &%h

Paper sludge
ash

Production of 125 kt per annuimthe UK?2*

Confederation of European Paper Industr
(CEPI, 2014) states that pulp and paper induj
landfill disposal has declined by 55% over the |
12 years, from 32.7 to 14.3 kg/tonne of prodidtt

As precursor

As a secondary
precursor

- Requires thermal treatment in order to increase its
reactivity.

- Particle shape may reduce the workability of thetfre
mixtures

- Reactivity is dependent on the kaolinite content.

Thermal treatment conditions for this
material are similar to those used for
pure kaolinite

Optimisation considers the
decomposition of organic material and
the prevention of free lime formation
from calcite.

03.03.02: Absolute|
non-hazardous

High reactivity
Homogeneity in its chemical

Spent TIUid - Low production when compared to the other residues. R %ﬁg&%ﬂig?sirgﬁgt%&'gg rr(;:‘]r;tirg;té:ifgzs.
catalytic The2 global production is estimateat ~200 As precursor - The residue requires and previous treatment in order to and AbOs 16.08.04:  Mirror
. 4 ; : ) g
cracking ktly. ;en(fjug?hgg content of harmful elements, includinga/, - Materials (mainly mortars) with high non-hazardous
catalyst : mechanical performance can be
produced.
1090
1091
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1092

1093 One additional key consideration, which is relevant across many of the wastes
1094 discussed in this reviews organic carbon content. The content of organic carbon,
1095 particularly when present as unburned material in wastes generated via thermal
1096 processes, must be considered carefully in the design of alkali-activated cements. The
1097 presence of a high content of porous and non-reactive organic particles, with a high
1098 specific surface area, significantly increases the water demand of the fresh mixtures
1099 with a consequent negative effect on the rheological and mechanical properties of the
1100 material. These particles can also absorb the activator solution, which reduce the alkali
1101 concentration during the reaction process. Fernandez-Jiménez and Palomo suggested
1102 that a suitable coal FA must have loss on ignition values lower th&fi’5%wever,

1103 there exist studies related to the production of alkali-activated materials using different
1104 industrial wastes or by-products derived from thermal processes witér lcightents

1105 of organic matter, including coal fly a$tf?! coal bottom ash'?2522%5 municipal

1106 solid waste ashes®2>"palm oil fuel asit?%:122128nd sugar cane bagasse dsfiaking

1107 into account that the high content of un-reacted material reduces the effectiveness and
1108 reactivity of these wastes as precursors, blending with another more-reactive
1109 aluminosilicate may be required. When the mechanical performance requirements for
1110 the material are higher, the use of precursors with a high content of unburned material
1111 can be restricted.

1112 One of the methods which is often used to reduce the organic carbon content of waste
1113 ashes is a more extended (or higher temperature) combustion process, which consumes
1114 the carbon, but often at the cost of inducing partial crystallisation of the silicate or
1115 aluminosilicate phases and thus reducing their reactivity. A balance is therefore
1116 required between carbon elimination and reactivity retention, which necessitates
1117 careful process control and parametric optimisation to achieve the best results when
1118 producing alkali-activated cements using siliceous wastes.

1119 Additionally, as discussed in section 3, it is very unlikely that pure siliceous wastes
1120 would be suitable for use as a sole precursor in alkali-activation due to their low Al
1121 content; blending with an aluminous material will always be necessary. For these
1122 reasons, the Si-rich wastes including SCBA, RHA and glass waste have generally been
1123 used as a source of amorphous silica for the alkaline activator. Although some of the
1124 residues included in this review have been chemically modified in order to be used as

1125 alternative alkali activators, the open literature also reports the use of other industrial
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wastes that are suitable for potential re-use as waste derived activators. A sodium
aluminate and NaOH-based solution from the aluminium anodising process has been
successfully incorporated as an activator in fly ash / blast furnace slag blends. Even
though the time of setting of these alkali-activated systems were considerably longer,
these materials were able to generate a 28-day compressive strength higher than 80
MPa?2°8:2%°This work, along with other reports of aluminate activation in fly ash-based
alkali-activated binder systerd®;?1offers yet another opportunity for the valorisation

of problematic wastes in the production of this class of construction materials.

7 Concluding remarks

This paper has summarised the most important research findings related to different
wastes that could be used for the synthesis of alkali-activated binders. Valorisation of
a wide variety of metallurgical, societal and agricultural wastes can be achieved through
the use of these materials as precursors or alternative sources @ 8i® activator

for alkali-activated binders and concretes. Most alkali-activated mixes are currently
based on ground granulated blast furnace slag or on fly ash, with alternative wastes
generally used in lower volumes. Blending of specific wastes in defined combinations,
often involving one of these better-understood materials in conjunction with another
alternative material, can offer a lower-risk and potentially highly attractive path to the
utilisation of a broader range of wastes, as the quality control and metals leachability
issues which are often associated with many of these materials are reduced through

dilution.

Standardisation and large-scale commercial deployment of alkali-activation technology
is taking place rapidly in many jurisdictions worldwide, and although most of the mixes
now being used at production scale are based on a fairly narrow selection of precursors
(coal fly ash, blast furnace slag, and calcined clays), a performance-based approach to
standardisation does certainly offer scope for the utilisation and valorisation of a much
wider range of silicate and aluminosilicate slags as precursors for the production of

alkali-activated concretes.

In developing any new material or process for large-scale deployment, it is essential to

ensure that there is a robust supply chain in place. This is particularly critical in the
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construction materials industry because of the enormous volumes which must be
processed for an operation to be economically viable; a modern cement kiln has a
throughput on the order of thousands of tonnes per day, whereas in most process
industries this could easily represent the annual throughput of a large plant. The cement
and concrete industry, the agriculture industry and the extractive metallurgy industry,
are arguably the only process sectors which are equipped to handle a such a large
volume of solids as both precursor and product, and this raises important questions
when analysing a potential new route to market, or a new product. When defining
whether a particular alkali-activated binder formulation will be worthy of commercial
attention, the key question often becomes: is it possible to make enough of this material
to become commercially viable? A large number of academic studies are conducted,
and published, which describe the production of an alkali-activated binder system from
particular combinations of industrial wastes and chemical feedstocks. However, if a
particular waste material is available only in quantities of a few tens of tonnes per day,
it will be very difficult to produce a commercially useful volume of alkali-activated

concrete for general construction or infrastructure applications.

This means that the production of alkali-activated concretes based on waste streams of
low to moderate volume will require some form of driver other than simply the
production of a low-cost, standard-performance concrete to enable their use in a
practical and profitable context. Specific environmental or cost benefits can arise from
the use of a particular solid waste material (through diversion of materials from landfill)
or source of waste alkalis (replacing some of the more costly sodium silicate activator)
in large-scale alkali-activated concrete production), and sometimes the performance of
alkali-activated materials derived from a specific lower-volume precursor can offer
attractive opportunities for niche applications. Such properties include chemical and
thermal resistance, and concretes displaying good performance in these areas can
command a significant price premium over standard products. This is likely to be the
area in which alkali-activation of waste materials will lead to commercially and
technologically significant outcomes, and will enable the true valorisation of wastes

from a wide range of industries and areas of society, as has been outlined in this review.
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