
This is a repository copy of Multi-Robot Grasp Planning for Sequential Assembly 
Operations.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/95162/

Version: Accepted Version

Proceedings Paper:
Dogar, M, Spielberg, A, Baker, S et al. (1 more author) (2015) Multi-Robot Grasp Planning 
for Sequential Assembly Operations. In: Robotics and Automation (ICRA), 2015 IEEE 
International Conference on. IEEE. Robotics and Automation, 2015. ICRA 2015. IEEE 
International Conference on., 26-30 May 2015, Washington, USA. IEEE , pp. 193-200. 
ISBN 978-1-4799-6923-4 

https://doi.org/10.1109/ICRA.2015.7138999

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Multi-Robot Grasp Planning for Sequential Assembly Operations

Mehmet Dogar and Andrew Spielberg and Stuart Baker and Daniela Rus

Abstract— This paper addresses the problem of finding robot
configurations to grasp assembly parts during a sequence of
collaborative assembly operations. We formulate the search for
such configurations as a constraint satisfaction problem (CSP).
Collision constraints in an operation and transfer constraints
between operations determine the sets of feasible robot config-
urations. We show that solving the connected constraint graph
with off-the-shelf CSP algorithms can quickly become infeasible
even for a few sequential assembly operations. We present an
algorithm which, through the assumption of feasible regrasps,
divides the CSP into independent smaller problems that can be
solved exponentially faster. The algorithm then uses local search
techniques to improve this solution by removing a gradually
increasing number of regrasps from the plan. The algorithm
enables the user to stop the planner anytime and use the current
best plan if the cost of removing regrasps from the plan exceeds
the cost of executing those regrasps. We present simulation
experiments to compare our algorithm’s performance to a naive
algorithm which directly solves the connected constraint graph.
We also present a real robot system which uses the output of
our planner to grasp and bring parts together in assembly
configurations.

I. INTRODUCTION

We are interested in multi-robot systems which can per-

form sequences of assembly operations to build complex

structures. Each assembly operation in the sequence requires

multiple robots to grasp multiple parts and bring them

together in space in specific relative poses. We present an

example in Fig. 1 where a team of robots assemble chair

parts by attaching them to each other with a fastener. Once an

assembly operation is complete, the semi-assembled structure

can be transferred to subsequent assembly operations to be

combined with even more parts. We present an example

sequence in Fig. 2.

This paper addresses the problem of finding robot base and

arm configurations which grasp the assembly parts during a

sequence of assembly operations.

The problem imposes a variety of constraints on the robot

configurations. Take the assembly operation scene in Fig. 1.

We immediately see one type of constraint: the robot bodies

must not intersect. In effect, they must “share” the free space.

The sequential nature of the task, however, may result in even

more constraints. A robot may choose one of two strategies

to move a semi-assembled structure from one assembly op-

eration to the next (Fig. 2): The robot can regrasp, changing

its grasp on the semi-assembled structure, or the robot can

transfer the semi-assembled structure directly to the next

operation, keeping the same grasp.

This work was supported by the Boeing Company.
Computer Science and Artificial Intelligence Lab, Mas-

sachusetts Institute of Technology, Cambridge, MA 02139 USA
{mdogar,aespielberg,spbaker,rus}@csail.mit.edu

Fig. 1: Three robots at an assembly configuration.

Both strategies have their advantages. If the robot chooses

transfer, it avoids extra regrasp operations during execution.

Regrasps, on the other hand, make the planning problem

easier by decoupling sequence of operations from each other:

In Fig. 2, since the robot commits to transfer the structure

between assembly operations 1 & 2, it must plan a grasp

of the part which works for both operations. The coupling

between multiple operations makes it extremely expensive to

solve problems with long sequences of assembly operations

Humans use a combination of both strategies during

manipulation: we regrasp when we need to, but we are

also able to use transfer grasps which work for more than

one operation. Given a sequence of assembly operations,

how can a team of robots decide when to regrasp and

when to transfer? We present a planner with this capability:

Our algorithm trades off between regrasps and transfers

while generating collision-free robot configurations for each

assembly operation.

We formulate multi-robot grasp planning as a constraint

satisfaction problem (CSP). In this representation every

robotic grasp in every assembly operation becomes a vari-

able. Every variable must be assigned a robot configuration

which grasps a particular part or semi-assembled structure.

We impose two types of constraints: collision constraints be-

tween variables of the same assembly operation; and transfer

constraints between variables in subsequent operations.

Ideally, a plan involves no regrasps and the assembly is

transferred between operations smoothly. Trying to find a

plan with no regrasps, however, means having transfer con-

straints between all operations. A complete solution requires

solving for all the assembly operations at once. In general,

complete CSP solvers display exponential complexity with

respect to the number of variables [1]. Solving the multi-



Transfer RegraspAssembly operation 1 Assembly operation 2 Assembly operation 3

Fig. 2: Sequential assembly operations for of a chair.

robot grasp planning problem then becomes exponentially

expensive with increasing number of assembly operations.

Instead, our algorithm starts with a strategy to perform

regrasps between all operations. Our key assumption is that,

regrasps between any two grasps (possibly through a series

of intermediate grasps) are always feasible. This decouples

assembly operations from each other. The resulting problem

can be solved by solving a small CSP separately for each

assembly operation.

After finding this initial solution, our algorithm continues

to find solutions with fewer regrasps by imposing sets of

transfer constraints. As such solutions are found, the algo-

rithm increases the number of transfer constraints imposed.

Our algorithm is an anytime planner: Given more time, it

generates plans with fewer regrasps and more transfers. The

algorithm enables the user to stop the planner and use the

current best plan if the cost of removing regrasps from the

plan exceeds the cost of executing those regrasps.

When imposing a new set of transfer constraints, our

algorithm does not solve the CSP from scratch: Solutions

with fewer (or no) transfer constraints are readily available

from previous cycles. We use state-of-the-art local search

methods for CSPs, which can be initialized with partial

solutions. Local-search methods work only in a locality

of the constraint graph and therefore their runtime is not

affected by the full size of the CSP [1], leading to fast

updates.

A. Related work

Recent work by Lozano-Pérez and Kaelbling [2] also rep-

resent sequential manipulation problems as CSPs. These ge-

ometric CSPs are formulated by a higher-level task planner.

Their focus is on the interface between the task planner and

CSP formulation, and they propose methods for constructing

the CSPs efficiently. The CSPs are solved by an off-the-shelf

solver. We propose an algorithm to solve the CSP itself by

using domain-specific assumptions, such as feasible regrasps.

The effectiveness and necessity of regrasping during ma-

nipulation have been recognized [3, 4]. We show that assum-

ing feasibility of regrasps we can simplify the CSP solutions

of manipulation plans significantly. Structures similar to the

grasp-placement space [5] or the grasp-graph [6] can be

precomputed to satisfy our regrasp feasibility assumption.

Fig. 3: Example grasps for assembly parts.

Our algorithm takes as input a sequence of relative poses

of assembly parts. Assembly planning [7, 8] addresses the

problem of finding such sequences. In this paper we find

robot configurations to realize an assembly plan.

Other grasp planners that take into account task constraints

[9, 10, 11] and multiple robots [12] exist. Unlike previous

work, we focus on planning such grasps in a sequential and

multi-robot context.

We use complete and local methods to solve CSPs. There

is extensive literature in this area but the treatment in Russell

and Norvig [1] covers all the methods we use.

II. PROBLEM

An assembly is a collection of simple parts at specific rela-

tive poses. A simple part by itself is also a (trivial) assembly.

Robots perform an assembly operation, o = (Ain, aout, p),
to produce an output assembly aout from a set of input

assemblies Ain. We also assume that a three-dimensional

pose in the environment, p, is specified as the location of an

operation.

During an assembly operation, input assemblies Ain must

be grasped and supported by robots at their respective poses

in aout at operation pose p. We assume that a local controller

exists to perform the fastening/screwing, once the parts are

at the poses specified by the assembly operation.

Note that our definition of an assembly operation also

applies to the grasp of a single part a, where Ain = {a}
is a singleton, aout = a, and p is the pose of a.

A robot can grasp an assembly by placing its gripper at

certain poses on the assembly. We assume we can compute a

set of such poses, grasps, for each assembly a. We illustrate

example grasps for simple parts in Fig. 3. We use Q to

represent the robot configuration space, which includes base



(a) Assembly operations for a chair (b) A complete constraint graph for the chair

(c) No transfer constraints (d) Trying to impose one transfer constraint (e) Searching a larger neighborhood

Fig. 4: The chair assembly example.

pose and arm joint configurations. If a configuration q ∈ Q

places the robot gripper at a grasping pose for assembly a

during operation o, we say that “q is grasping a during o”.

The robots must avoid collision during assembly operations.

Robots perform a sequence of assembly operations

O = [oi]
N

i=1
to gradually build large complex structures:

output assemblies of earlier operations are used as inputs

in later operations. Robots move the assemblies from one

operation to the next.

As an example, we present a sequence of assembly op-

erations to build a chair in Fig. 4a. This example includes

eleven operations: three operations in which multiple parts

must be assembled, and eight operations where a single part

must be grasped at its initial pose. Each arrow indicates an

instance where robots move an assembly from one operation

to the next.

Given a sequence of assembly operations, we formulate

the problem of multi-robot grasp planning for sequential

assembly operations as finding grasping configurations for

all the robots required by the assemblies in all the operations.

A. Moving assemblies between operations

Suppose o = (Ain, aout, p) and o′ = (A′

in
, a′

out
, p′) are

two operations such that aout ∈ A′

in
; i.e. the output assembly

of o is one of the input assemblies of o′. We call o and o′

sequential operations. aout must be moved to o′ after o is

completed. There are two ways this can be done: transfer

and regrasp.

To directly transfer aout, one of the robots grasping an

assembly in Ain can keep its grasp and carry aout to o′.

There is flexibility; any a ∈ Ain may be used for the transfer.

For example, after the first assembly operation in Fig. 2, the

assembled structure can be transferred either by the grasp on

the back of the chair as in the figure, or alternatively by the

grasp on the side of the chair.

The alternative is to regrasp aout after o is completed.

Robots can regrasp an assembly in different ways: e.g. by

first placing it on the floor in a stable configuration and then

grasping it again, or with the help of other robots which

can temporarily grasp and support the assembly while it is

being regrasped. The important implication for our planning

problem is that the new grasp of aout can be different from

the grasps of all a ∈ Ain. An example is the regrasp after

the second assembly operation in Fig. 2.

III. CSP FORMULATION

Given a sequence of assembly operations O, we can

formulate multi-robot grasp planning as a CSP.

A CSP is defined by a set of variables X, a set of possible

values V(x) that each variable x can be assigned with, and a

set of constraints specifying consistent assignments of values

to variables. A solution to the CSP is an assignment of values

to all the variables that is consistent with all the constraints.

Variables: For our problem, we create one variable for the

grasp of each input assembly of each assembly operation. We

use oxa to represent the variable correponding to the grasp

of assembly a ∈ Ain of operation o ∈ O.

Values: The set of values for the variable oxa is the set

of robot configurations grasping the assembly:

V (oxa) = {q ∈ Q | q is grasping a during o.}

In general there can be a continuous set of robot configura-

tions grasping a, due to redundancy in the kinematics or due

to a continuous representation of grasping gripper poses on a

part. We discretize this continuous set by sampling uniformly

at a fine resolution.

Constraints: We define two sets of constraints: collision

constraints and transfer constraints. A collision constraint

c(x, x′) enforces that two robot configurations assigned to

x and x′ do not collide. We create a collision constraint



c(oxa, oxa
′

) between each pair of variables of the same

operation o.

A transfer constraint t(x, x′) enforces that robot configura-

tions assigned to x and x′ grasp the same part while placing

the robot gripper at the same pose on the part.

Given any two sequential assembly operations

o = (Ain, aout, p), o′ = (A′

in
, a′

out
, p′), and an assembly

a ∈ Ain, we can create a transfer constraint between two

variables t(oxa, o
′

xaout). If the CSP with this constraint

has a solution, then the assembly aout can be transferred

directly from o to o′ using the grasp on a. Each different

choice of the transfer assembly a ∈ Ain corresponds to a

different transfer constraint we can impose. Solving for any

one of these transfer constraints is sufficient, however.

We can also choose not to create any transfer constraints

between o and o′. Our underlying assumption here is that,

whatever new grasp is required by aout during o′, it will

be feasible to achieve it with a regrasp after o — possibly

through a number of intermediate grasps. This is a reasonable

assumption in our domain where there is ample space in the

environment for robots to change from one feasible grasp to

another feasible grasp.

Given a CSP, we can represent the variables and con-

straints in a constraint graph. In this graph, there is a node

for each CSP variable, and an edge between two nodes

if a constraint exists between the variables. In Fig. 4b we

show a constraint graph for the chair assembly. Each node

corresponds to the grasp of a certain part during a certain

operation. In the figure, we show the image for the operation

inside the node and highlight the image of the part which

should be grasped. Light gray edges correspond to collision

constraints, and dark edges correspond to transfer constraints.

In this graph all operations are connected with transfer

constraints: If we can find a solution the robots will not

need to perform any regrasps.

A. Solving a CSP

Backtracking search is a widely used and complete al-

gorithm for solving CSPs. It searches forward by assigning

values to variables such that all assignments obey the con-

straints. If at any point the algorithm cannot find a value

for a variable which obeys the constraints, it backtracks by

undoing the most recent assignment. The search continues

until an assignment is found for all variables. If there is

no solution, backtracking search tries all combinations of

value assignments. The worst-case time complexity of back-

tracking search is exponential in the number of CSP vari-

ables. One can use domain-independent heuristics to prune

the search space. Minimum remaining value and forward-

checking [1] are two widely used heuristics.

Another approach to solving CSPs is by focusing on

a local neighborhood of the constraint graph so that the

computation time is not affected by the total size of the

graph. These local techniques start with an initial assignment

of values to variables, identify the conflict regions in the

constraint graph, and try to resolve the conflicts only in the

local neighborhood of the conflicts. One can use different

methods in the local neighborhood, e.g. a complete method

like the backtracking search or a heuristic-based search like

the min-conflicts [13] algorithm which greedily minimizes

the number of conflicts in the graph. For min-conflicts algo-

rithm, a local neighborhood is enforced usually by limiting

the maximum number of steps the algorithm is allowed to

run before giving up.

IV. ALGORITHM

We would like to find solutions which involve a small

number of regrasps, since each regrasp in the solution will

require extra time to plan and execute.

A naive way to find solutions with minimum number of

regrasps would be to create transfer constraints between all

operations and try to solve the resulting CSP (e.g. the graph

in Fig. 4b) with an algorithm such as backtracking search. If

this succeeds we have found a solution with no regrasps. If

it fails, we can remove one of the transfer constraints and try

to solve the resulting CSP problem again to find a solution

with one regrasp. If this fails, we can try removing a different

transfer constraint, and if that fails, we can try removing two

transfer constraints to find a solution with two regrasps; and

so on. We call this the naive CSP solution.

The problem with the naive CSP solution is that it tries to

solve the most difficult problems first: The CSP graph where

operations are connected with transfer constraints make the

search space exponentially larger. As we will show in the

results, this approach quickly becomes infeasible, requiring

hours to solve problems with only a few operations.

Instead, we propose an algorithm (Alg. 1) which works in

the opposite direction: it first solves the easiest problem, the

constraint graph with no transfer constraints, and then tries

to improve the solution by imposing an increasing number

of transfer constraints as more time is given.

This approach has two advantages. First, it leads to an

anytime planner which produces a solution quickly and

improves it as more time is given. The planner can be stopped

anytime after the initial solution has been achieved and the

current solution with the minimum number of regrasps can be

used. This, for example, enables the user to stop planning if

the planning time spent on imposing new transfer constraints

exceeds the time which is required to plan and execute those

regrasps. Second, this approach enables the use of local

search algorithms to quickly identify easy-to-solve transfer

constraints. We would like to solve easy transfer constraints

first since we want to minimize the number of regrasps as

much as possible before the time allocated to the planner

runs out.

A. Generating the “All-Regrasps” Plan

We first assume no transfer constraints between opera-

tions. Collision constraints remain, but they only constrain

variables within an operation. Hence, the constraint graph

is divided into N connected components, where each con-

nected component corresponds to one assembly operation. In

Fig. 4c, we show this graph for the chair assembly example.



Algorithm 1 Multi-Robot Grasp Planning for Assembly

Input: O = [oi]
N

i=1
is a sequence of assembly operations.

1: for each oi in O do

2: sol[oi] ← BACKTRACKINGSEARCH(oi)

3: best ← {sol[oi]}
N

i=1

4: for n = 1 to MaxTransferConstraints do

5: best ← SOLVETRANSFERCONSTRAINTS(n,best)

6: procedure SOLVETRANSFERCONSTRAINTS(n,seed)

7: for enlarging neighborhood h do

8: for each T in TransferConstCombinations(n) do

9: sol ← SOLVECSPLOCAL(T, h, seed)

10: if sol exists then

11: return sol

We solve each of these connected components separately

using a complete CSP solver (lines 1-2 in Alg. 1). Any

complete CSP solver can be used. We use an implementation

of backtracking search with minimum remaining value and

forward checking.

The collection of solutions of all operations gives one

solution for the complete graph, which we treat as the current

best solution (line 3). At this point we have a valid plan,

but it is inefficient since executing the plan requires each

sequential operation to be interleaved with regrasps. We call

this solution the “all-regrasps” solution.

B. Imposing Transfer Constraints

Once the “all-regrasps” solution is found, our algorithm

starts imposing a gradually increasing number of transfer

constraints (lines 4-5) to reduce the number of regrasps.

Fig. 4d shows one example transfer constraint added to

the graph. The procedure SOLVETRANSFERCONSTRAINTS

attempts to solve n transfer constraints. If a solution is found,

it is recorded as the new best solution, and the algorithm

progresses to n + 1 transfer constraints. One can stop the

algorithm anytime and use the current best solution.

The procedure SOLVETRANSFERCONSTRAINTS tries to

solve for n transfer constraints as quickly as possible. It

iterates over all valid n-combinations of transfer constraints

(line 8). During this iteration we prioritize combinations

which include smaller combinations that we have previously

found solutions for. If we cannot find a solution for these

prioritized combinations we then try all combinations.

Instead of searching the complete graph and losing time on

difficult combinations, our algorithm performs local search

(line 9) which succeeds or fails quickly. Local search vari-

ables are initialized with values from the current best solution

(seed). Local search neighborhood size starts small (Fig. 4d)

but gets larger (Fig. 4e) if no solution can be found (line 7).

C. Analysis

We analyze several important properties of our algorithm.

1) Completeness:

Proposition 4.1: Algorithm 1 is resolution-complete.

Proof: We use a discrete CSP representation which

requires the discretization of the robot configuration space.

Assume we are given a resolution with which to discretize.

If the algorithm is unable to find a solution with no transfers

(as computed in line 3), then the only constraints that the

algorithm is unable to satisfy must be those within assembly

operations (i.e. collision constraints). This implies one of

the following: either the input problem itself is infeasible, or

no solution exists at the given resolution of discretization.

At a high enough sampling resolution, the second problem

disappears.

2) Optimality: We define optimality as returning the solu-

tion requiring the minimum number of regrasps. We do not

necessarily aim for optimality: if the time required to remove

more regrasps from the plan is more than the time required

to execute those regrasping operations, we would like to

stop planning and start execution. For this reason, in our

implementation we use the greedy min-conflicts algorithm for

our local search. In practice we have found it to produce good

results, however, min-conflicts does not guarantee optimality

and may get stuck in local minima.

Alg. 1, nevertheless, can be turned into an optimal planner

if a complete algorithm, e.g. backtracking search, is used to

search the local neighborhood.

Proposition 4.2: If a complete local search is used, then

Algorithm 1 returns the minimum regrasp solution.

Proof: Our algorithm can terminate immaturely with a

suboptimal solution only when it cannot improve the solution

via local search for a given number of constraints (line 5

in Alg. 1). However, our algorithm will expand the local

neighborhood to include the entire graph before failing (line

7). If the local search is complete, then this becomes a

complete graph search, and a complete graph search must

always find an improvement if it exists. The algorithm cannot

terminate if it has not found an optimal solution, and thus it

will always return the optimal solution.

3) Complexity: The naive CSP solution has an exponen-

tial runtime O(exp(n∗m)), where n is the maximum number

of robots involved in assembly operations and m is the

number of assembly operations (m ∗ n is the total number

of CSP variables). By comparison, our algorithm’s initial

solution has runtime O(m exp(n)) — exponential in the

number of robots per assembly operation but linear in the

number of assembly operations (since each operation can

be solved independently). Since n is typically very small

in practice, finding initial solutions is generally quick. The

complexity associated with improving the initial solution

depends on the local search technique used. If a complete

method such as backtracking search is used, the complexity

of improving the solution will approach the complexity of

the naive CSP algorithm as more transfer constraints are

imposed. We have, however, found the min-conflicts greedy

search to be a good trade-off between improvement speed

and optimality. As we show in §V min-conflicts improve

the solution quickly and reduces the number of regrasps

effectively. This is very practical for real-world applications

where a small number of regrasps is feasible.



V. EXPERIMENTS AND RESULTS

We implemented and evaluated our algorithm on an the

chair assembly example. We also performed experiments to

show that our algorithm can scale up to solve large problems.

A. Chair Assembly

We show the sequence of operations in Fig. 4a. The

number of robots required by the complex operations are

3, 3, and 4, respectively. The operations require the semi-

assembled structures to be transferred twice and simple

parts to be transferred eight times, totaling to ten potential

regrasps. We implemented our algorithm and evaluated it in

the OpenRAVE environment [14] with four KUKA YouBot

robot models 1. We presented the chair parts to the robots

in an environment with some obstacles, presented in Fig. 6a.

These obstacles make the problem even more constrained

making a no-regrasp solution impossible. Particularly one of

the chair side parts must be regrasped after its initial grasp.

We ran our algorithm on the chair example 20 times. In 17

of these runs, our algorithm found the optimal solution with

one regrasp and in 3 runs it generated a solution with two

regrasps. We plot how our algorithm reduces the number of

regrasps with time in Fig. 5. We plot the results for the 17

runs with one-regrasp solutions (red points) separately from

the 3 runs with two-regrasps solutions (light green points)

since they display different and consistent trends. Each data

point marks the average time it took our algorithm to produce

a plan with the number of regrasps given on the vertical axis.

The horizontal bars show the standard deviations. Our algo-

rithm generates the “all-regrasps” solution in about 4 seconds

and then improves the solution every few seconds. The

difference between the trends that find one-regrasp solutions

(red points) and two-regrasp solutions (light green points)

exists because as we impose increasing number of transfer

constraints we prioritize combinations which include smaller

combinations that we have previously found solutions for, as

explained in §IV-B. This, combined with the greedy nature

of min-conflicts local search, can create different, possibly

non-optimal, trends of solutions for the same problem.

We present part of an example plan in Fig. 6(b)-(d). The

robots are able to transfer the assembly between the complex

operations without a regrasp: The left-most robot holding

onto the side of the chair keeps its grasp fixed and transfers

the assembly between all three operations.

We also compare the performance of our algorithm with

the naive CSP solution mentioned in §IV. This algorithm is

optimal, but also naive in that it tries to solve the full CSP at

once. The naive algorithm exceeded the one-hour time limit

in 5 of 5 runs. Our algorithm generates plans which include

only one or two regrasps in seconds.

Note that we do not provide our algorithm with infor-

mation about the number of tractable transfer constraints to

solve. Our algorithm automatically discovers and postpones

the solution of intractable or infeasible constraints. In the

above example, if given the problematic constraint, one could

1http://www.youbot-store.com

Fig. 5: Time to generate plans with decreasing number

of regrasps. In 17 of 20 runs (red points) our algorithm

generated a plan with one regrasp. In 3 of 20 runs (light green

points) our algorithm generated a plan with two regrasps.

Problem
Avg. # of

transfers solved
Avg. time per

transfer solution
Naive method
planning time

Stairs-4 12 of 12 0.1 1.1

Stairs-9 27 of 27 0.9 11.2

Stairs-16 32.9 of 48 80.7 -

Stairs-25 27.2 of 75 143.4 -

Grid-2x2 20 of 20 1.1 24.9

Grid-3x3 40.5 of 45 98.3 -

TABLE I: Results showing how our algorithm scales with

problems of increasing sizes. Times are in seconds.

modify the naive optimal algorithm to ignore that constraint

and find a single-regrasp solution. This will lead the naive

algorithm to find a quick solution for the single-regrasp

case. This modification, however, requires identifying a priori

which transfer constraints are difficult to solve. This identifi-

cation is a challenging problem itself. Our algorithm’s power

is that it can identify difficult constraints automatically.

B. Scalability

We performed further tests to show how our algorithm

scales with large assembly problems. We created two dif-

ferent problem types. In the first (Fig. 8) the robots attach

square parts to each other to create a series of steps. The

problem instance Stairs-N refers to the case where the robots

assemble N steps. Each step takes three robot to assemble.

In the second type, shown in Fig. 7, the robots build a grid

structure using the same square parts. The problem instance

Grid-NxN refers to a N×N grid. Each grid cell requires five

robots working together, which makes every single operation

very difficult to plan due to spatial constraints.

We ran our planner on different instances of these prob-

lems ten times. Tab. I summarizes the results, including

the performance of the naive planner for these problems.

The naive planner was not able to return a solution within

one hour for the larger problems. Our algorithm, however,

was able to solve many transfer constraints, as shown in

the second column of the table. In the third column we



(a) (b) (c) (d)

Fig. 6: (a) Initial locations of chair parts. (b)-(d) Solution for the assembly of our chair example.

Fig. 7: A plan for a five-robot team building a grid using square blocks.

Fig. 8: The goal staircase with 25 assembly operations.

show the average time it took our algorithm to solve one

transfer constraint in each instance. Note that earlier transfer

constraints are usually solved faster as shown in Fig. 5, and

therefore many transfer constraints are solved much faster

than the average times shown in Tab. I earlier in the planning.

The last scene in Fig. 7 shows a possible failure mode for

our planner. While the robot configurations are valid, one of

the robots is trapped inside the structure. As our planner does

not check for reachability to and from these configurations,

one may expect such problems. A possible solution is to

impose a new reachability constraint between configurations

and use a motion planner to solve them. Lozano-Pérez and

Kaelbling [2] propose methods to perform these kinds of

checks in a fast way.

C. Real robot implementation

We are building a real robot team to perform autonomous

assembly of complex structures. The algorithm presented

in this paper provides our system with the sequences of

configurations in which to grasp and assemble parts, enabling

fast planning and minimal regrasping operations. In Fig. 9

we present snapshots from the execution of an assembly plan

generated by our algorithm. The complete execution can be

seen in the video accompanying this paper.

Our system consists of three KUKA Youbot robots, each

with an omni-directional base, a 5 degree-of-freedom arm,

and a parallel plate gripper. Perception in our system is

provided by a motion capture system2 which is able to detect

and track infra-red reflective markers. We localize our robots

and the initial location of assembly parts using such markers.

We use an RRT planner [15] to move the robots between

configurations generated by our algorithm.

We present the initial grasps of three parts in Fig. 9a,

Fig. 9b, and Fig. 9c. The robots bring these three parts

together in Fig. 9d, using a planned assembly configuration.

The robots keep the same grasp on the parts through these

operations, enabling them to transfer parts between Fig. 9a-

Fig. 9d, Fig. 9b-Fig. 9d, and Fig. 9c-Fig. 9d. In Fig. 9e

the remaining part is grasped, and in Fig. 9f the complete

assembly of the chair is achieved. Again, the robots keep the

same grasp between Fig. 9d-Fig. 9f and Fig. 9e-Fig. 9f.

While our robots can successfully use the planner output to

bring parts to assembly configurations, they need to perform

highly precise manipulation operations to actually insert

fasteners. We are currently developing controllers and tools

[16] to perform these operations. In this example we use

magnets between parts to hold the assembly together.

VI. FUTURE WORK

A system that can go from a design input to complete

assemblies requires the development of more advanced tech-

niques both in control and reasoning. For example, error

2http://www.vicon.com



(a) Grasping right side (b) Grasping chair back (c) Grasping chair seat

(d) Assembly of right side, back, and seat (e) Grasping left side (f) Assembly of complete chair

Fig. 9: Multi-robot execution of a chair assembly plan.

accumulated from factors such as loose part grips and local-

ization uncertainty require on-board local controllers for fine

manipulation operations. Similarly, a variety of constraints

must be taken into account for a robust system, e.g. stability

constraints which require that the grasps on assembly keeps

it stable with respect to gravity and other forces that arise

during an assembly operation.

REFERENCES

[1] S. J. Russell and P. Norvig, Artificial Intelligence: A

Modern Approach, 2nd ed., 2003.

[2] T. Lozano-Pérez and L. P. Kaelbling, “A constraint-

based method for solving sequential manipulation plan-

ning problems,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2014.

[3] T. Lozano-Pérez, J. Jones, E. Mazer, P. O’Donnell,

W. Grimson, P. Tournassoud, and A. Lanusse, “Handey:

A robot system that recognizes, plans, and manipu-

lates,” in IEEE International Conference on Robotics

and Automation, 1987.

[4] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani,

“Manipulation planning with probabilistic roadmaps,”

International Journal of Robotics Research, vol. 23, no.

7-8, pp. 729–746, 2004.

[5] P. Tournassoud, T. Lozano-Pérez, and E. Mazer,

“Regrasping,” in IEEE International Conference on

Robotics and Automation, 1987.

[6] N. Dafle, A. Rodriguez, R. Paolini, B. Tang, S. Srini-

vasa, M. Erdmann, M. Mason, I. Lundberg, H. Staab,

and T. Fuhlbrigge, “Extrinsic dexterity: In-hand ma-

nipulation with external forces,” in IEEE International

Conference on Robotics and Automation, 2014.

[7] R. H. Wilson and J.-C. Latombe, “Geometric reason-

ing about mechanical assembly,” Artificial Intelligence,

vol. 71, no. 2, pp. 371–396, 1994.

[8] R. A. Knepper, T. Layton, J. Romanishin, and D. Rus,

“Ikeabot: An autonomous multi-robot coordinated fur-

niture assembly system,” in IEEE International Confer-

ence on Robotics and Automation, 2013.

[9] D. Berenson and S. S. Srinivasa, “Grasp synthesis in

cluttered environments for dexterous hands,” in IEEE-

RAS International Conference on Humanoid Robots,

2008.

[10] D. Berenson, S. S. Srinivasa, and J. Kuffner, “Task

space regions: A framework for pose-constrained ma-

nipulation planning,” International Journal of Robotics

Research, vol. 30, no. 12, pp. 1435–1460, 2011.

[11] H. Dang and P. K. Allen, “Semantic grasping: Planning

robotic grasps functionally suitable for an object ma-

nipulation task,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2012.

[12] N. Vahrenkamp, E. Kuhn, T. Asfour, and R. Dillmann,

“Planning multi-robot grasping motions,” in IEEE-RAS

International Conference on Humanoid Robots, 2010.

[13] S. Minton, M. D. Johnston, A. B. Philips, and P. Laird,

“Minimizing conflicts: a heuristic repair method for

constraint satisfaction and scheduling problems,” Arti-

ficial Intelligence, vol. 58, no. 1, pp. 161–205, 1992.

[14] R. Diankov, “Automated construction of robotic manip-

ulation programs,” Ph.D. dissertation, CMU, Robotics

Institute, August 2010.

[15] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An effi-

cient approach to single-query path planning,” in IEEE

International Conference on Robotics and Automation,

2000.

[16] M. Dogar, R. A. Knepper, A. Spielberg, C. Choi,

H. I. Christensen, and D. Rus, “Towards coordinated

precision assembly with robot teams,” in International

Symposium of Experimental Robotics, 2014.


	I INTRODUCTION
	I-A Related work

	II Problem
	II-A Moving assemblies between operations

	III CSP Formulation
	III-A Solving a CSP

	IV Algorithm
	IV-A Generating the ``All-Regrasps'' Plan
	IV-B Imposing Transfer Constraints
	IV-C Analysis
	IV-C.1 Completeness
	IV-C.2 Optimality
	IV-C.3 Complexity


	V Experiments and Results
	V-A Chair Assembly
	V-B Scalability
	V-C Real robot implementation

	VI Future Work

