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Large-System Analysis of Correlated MIMO
Multiple Access Channels with Arbitrary Signaling
In the Presence of Interference

Maksym A. Girnyk, Mikko Vehkapera, Lars K. Rasmussen

Abstract— Presence of multiple antennas on both sides of _I
a communication channel promises significant improvementin  Gs1 _,| yser 1| , Ts! Hs,
system throughput and power efficiency. In effect, a new clas _I \
of large multiple-input multiple-output (MIMO) communica tion y

systems has recently emerged and attracted both scientifind Rx

industrial attention. To analyze these systems in realisti scenar-

ios, one has to include such aspects as co-channel interfece,

multiple access and spatial correlation. In this paper, we tsidy

the properties of correlated MIMO multiple-access channet in

the presence of external interfe_rence. Using _the replica nieod Gs i —|Userk

from statistical physics, we derive the ergodic sum-rate othe

communication for arbitrary signal constellations when the num-

bers of antennas at both ends of the channel grow large. Based _I

on these asymptotic expressions, we also address the prablef

sum-rate maximization using statistical channel informaton and Int. 1 _T

linear precoding. The numerical results demonstrate that viaen

the interfering terminals use discrete constellations, tk resulting

interference becomes easier to handle compared to Gaussian T T

signals. Thus, it may be possible to accommodate more interfing Gi Gi L

transmitter-receiver pairs within the same area as compard

to the case of Gaussian signals. In addition, we demonstrate Fig. 1. MIMO multiple-access channel in the presence ofrfatence.

numerically for the Gaussian and QPSK signaling schemes thidt

is possible to design precoder matrices that significantlymprove

the achievable rates at low-to-mid range of signal-to-nogs ratios ) ) ) ] )

when compared to isotropic precoding. the techniques in practice. For example, in the uplink ofla ce

lular system, the effects afo-channel interferencemerging
from other cells need to be taken into account. As observed

I. INTRODUCTION in [5], such interference has also a surprising influencehen t

During the last decade, multi-antenna communications r@Rtimal power allocation strategy at the transmitter. Iditidn

received an increased interest both from academia and-indi@sC0-channel interferencepatial correlation[6] and the type
try. Pioneering research by Foschini, Gans and Telatar [Pfchannelinputs [7] have a greatimpact on the achievakie ra
[2] on the topic suggested that the new class of multiple:HinpO the channe_l. However, an_aIyS|s of real|st_|c scgnarlog te
multiple-output (MIMO) systems allowed the transmissiater be mathematically challenging and numerical simulatiores a
to be increased roughly linearly in the number of antennfd'® consuming, especially if discrete signaling is emplby
available at the transmitter and receiver. Measuremertts bgt the transmitter. Some simplifying assumptions are tbege
indoors [3] and outdoors [4] have also confirmed the througRgeded to make the problem tractable.

put gains of the multi-antenna transmission. Asymptotic approaches developed within the fieldrai-

The main price to pay for the benefits offered by multidom matrix theorygreatly facilitate the analysis of achievable
antenna transmission is the hardware and signal procesgifigedic rates (mutual information averaged over chanra re
complexity at both the transmitter and receiver. It is thene izations) in MIMO systems. Such methods were used already
of great importance to analyze the potential performanaesgai the early works [1], [2] to assess the capacity of multi-
of MIMO processing in realistic scenarios before employingntenna transmission. At the same time, several approaches

using random matrix theory for the analysis of the spectral

The research leading to these results has received fundingthe Euro- efficiency of large code division multiple access (CDMA)

pean Research Council under the European Community’s Seffeamework systems [8]—[12] were reported. The multi-antenna results
Programme (FP7/2007-2013) / ERC grant agreement no 2280t work | ded h f ial lati i 13
has further been supported in parts by the ARC Grant DPOB6& the were later extended to the case of spatial correlation "1 [

VR grant 621-2009-4666. The material of this paper was ptesein parts and then toMIMO multiple-access channédMIMO-MAC)

at the IEEE GLOBECOM Conference 2012, Anah¢|m, USA., 2. in [14] (vide Fig. 1). Some analysis of MIMO systems in
The authors are with the School of Electrical Engineerind #ve ACCESS h f h li f h Iso b ted

Linnaeus Centre at KTH Royal Institute of Technology, Staiikn, Sweden the case ot co-channel interference have also been caur 0

(e-mail: {mgyr, mikkov, Ikrg @kth.se). under the assumption of Gaussian channel inputs. The first
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analytical results using random matrix theory were obthine
in [15] assuming uncorrelated channels and interferermeSo presence of spatially correlated multi-antenna interfere
later efforts [16]—[18] have extended this analysis to etiff The analysis is valid for arbitrary channel inputs at all
ent assumptions about correlations and numbers of antennas terminalé and is carried out in théarge-system limit
present in the system. (LSL), where the numbers of antennas at both ends of
Although the above methods assume formally that the each MIMO channel grow without bound at a constant
system size grows without bound, they usually provide a good rate. As expected, several prior results are obtained as

of the MIMO-MAC with spatial correlation and in the

approximation also for the performance of finite-sized exyst.
Furthermore, the underlying large-system assumpgien se
has recently found a practical application in so-caliegssive
MIMO [19]-[22]. Typically this concept entails a multiuser

special cases of the analysis. For instance, in the absence
of interferers, our results degenerate to those reported
in [14], [36] when Gaussian signals are employed and
to those provided in [33] when arbitrary signal constella-

system where a single base station, equipped with a verg larg tions are used. Finally, in the presence of interference and
antenna array, is used to serve a smaller number of terminals under assumption of Gaussian signaling, our results partly
simultaneously. Apart from the aforementioned throughput reduce to the expression of the mean mutual information
gains, such systems allow for a significant reduction of the derived in [34].
transmit power and reduced-complexity signal processd@j[ « We address the precoder optimization problem for both
Consequently, asymptotic random-matrix methods have been Gaussian and finite-alphabet signaling schemes under the
widely applied for the analysis of various aspects of ma&ssiv  assumptions of full channel state information (CSI) at
MIMO [23]-[25] systems. the receivet and statistical CSI at the transmitteBy

The aforementioned studies regarding MIMO systems with  using the asymptotic sum-rate as an objective function
co-channel interference have all concentrated on the @peci for the corresponding optimization problem, we obtain
case, where Gaussian signals are transmitted both by the the precoding matrices for each user.

desired user and the interfering. terminals. This i_s in @BUr  The remainder of the paper is organized as follows. In the
to real-world systems, where discrete constellations &h ¢4|1owing section, we describe the system model and forteula
QPSK and QAM are used. These realistic cases are, hoWeygE main problem. In addition, we discuss the necessary
out-of-bounds for random matrix theory, except for setuRgsails regarding the MIMO channels with perfect CSI at the
where sub-optimal linear detection and per-stream degaelin yansmitter. Next, in Section 111, we present the main resil
con5|deredl. To investigate the performance bounds of genghe paper, that is, the asymptotic sum-rate of a MIMO-MAC
systems withnon-Gaussian channel inputa tool borrowed i the presence of interference. Section IV then addresses
from the field of statistical physics, namely tfeplica method e precoder optimization problem, followed by Section V,
has been recently used. _ where we present numerical results and discussion. Firially
‘The replica method was invented by Kac [26], and i§ection VI, we conclude the paper. The proofs are relegated
widely known due to its early applications &pin glasses i the appendices.
[27], [28]. The replica framework provides a powerful set of \iation: Throughout this paper we will use upper case
mathematical tools for computing average quantities W'thbold-faced letters to denote matricasg, A, with elements
Iarge many-body systems and has since been applied i, a4 by[A]; ;, lower case bold-faced letters to denote
various pro_blems in science and engineering. In the context .\, vectorse.g, a, with elementsu;, and lower case light-
of information theory, it was used to assess the spectgley |etters to denote scalar variablesy, a. Superscripts

efficiency of large CDMA systems with antipodal signaling: 54 1y denote transpose and Hermitian adjoint operators,
by Tanaka in [29], [30]. Later, Guo and Verd( generalizesl tr}espectively. Meanwhiled!/2, tr{A} anddet(A) denote the

approach to CDMA with arbitrary signaling [31]. Meanwhile incinal square root, the trace and the determinant ofimatr

in [7] and [32] the method was applied to spatially corredate 4 \ye gifferentiate between operators diayy which denotes

MIMO channels with binary inputs. These works were further yia4onal matrix containing the coefficients of veatoon its
generalized in [33] to the analysis of the sum-rate of a MIMO-

MAC. A somewhat different approach was taken in [34]' 1Throughout the paper, we assume that the signaling scheeteatseach
where the replica method was used to analyze the momeintsfering terminal is known to the receiver. In the cellulsetting, such
of mutual information of a MIMO system with co-channeinformation can be exchanged between neighboring bas®rstatia an
. . . existent backhaul link with a very small overhead. Alterredy, our results
interference. The results in [34] were obtained, howevedeu provide an upper bound to the setting where the signalingreel are not
the assumption of Gaussian signaling at all terminals. known or the base station is misinformed about them.
In the present paper we extend our previous work [35]2|n practice, thg CEI at the rleceri]ver isII elstimate;d byhusing/mgaining
. . o uences sent by the users. In the cellular setting, the gancedure can
and investigate the performanc_:e and sum_—rate maximizat be used to estimate the channels of the interferersiétls sufficient
of a correlated MIMO-MAC using the replica method. Theynchronization and the base station is informed about éteo training
analysis encompasses the presence of correlated noni&aussauences that are in use in the neighboring cell. The lesterbe achieved

: - : : - with a small overhead in the backhaul link. Furthermoreriteo to implement
interferers and arbitrary inputs at all terminals. As inJi29 soft handover between the cells, the base stations tendtablieh tight

[34], the results are obtained under the technical assemptkynchronization with the users from other cells close toctleborder. Hence,
of replica symmetric ansatz. To summarize, the fo||0Win$stimating the interfering users’ channels is possible @$practical systems.

; ; . he mathematical model considered in this paper provides #n upper
contrlbutlon§ are reportEd' . ) bound for the performance of a practical systems that etdsnthe CSI or
« We derive an expression for the asymptotic sum-rabas only partial knownledge of the latter.



main diagonal, and Didgl), which denotes a column vectorfor independent vectors with i.i.d. zero-mean unit var@anc
containing the diagonal entries of matr&. Also, I, 0 and entries, we may writecs, = GsiSsk andxi, = Gisie

1 denote the identity matrix, the zero matrix and the allwithout loss of generality. This formulation is especialseful
ones vector of appropriate sizes. Operdidr} denotes the when we consider the optimization of the input covariance
expectation;1(-) denotes the indicator functiom, represents for discrete signals. For notational simplicity, we alsaoie
the Kronecker product, andl > 0 implies that the matrix Ms £ Zszl Ms, and M; £ Zf:ﬂ‘éfi,é, and rewrite the

A is positive semidefinite. FinallfRe{-} andIm{-} stand for input-output relation of the resulting MIMO channel as

the real and imaginary parts of the argument.

y=Hsxs+ Hizi + n, (4)

[l. PRELIMINARIES where Hy £ [H%,M,,HS{] Te @NXTMS'T H, Mé

. . X M 2 As

A. System Model [H'Aal"'T' ’H'aL]TeTC o Ts = (w5, 2] € C,
:ci:[:ci_rl,...,mLL] c CM,

Consider the scenario wherE multi-antenna terminals
communi_cate toa s_ingle multi-antenn_a receive_r in the mEEse E Problem Statement
of L multi-antenna interferers, as depicted in Fig. 1. An uplin ] ] )
cellular communication system in the presence of intelr-cel Dellne the instantaneous CSI at the receiver as
interference can be regarded as an example of such a scendfio = {Hs Hi}. Given that all channels are ergodic
The numbers of antennas at transmitteinterferer? and the @nd the receiver knows(, the distribution ofzs, as well as

receiver, are denoted byfs ., M, and N, respectively. The the distribution ofx;, we can write down the average mutual

discrete-time received vector is given by information
K L I(y;xs) = h (y|H) — h (yles, H) (5)
= H H; yx; 1 . . .
Y ; sk®sk + ; Leie ot T @) where the differential entropy terms are given by
wherexs;, € CMs+ is the zero-mean transmitted signal vector h(y|H) = — By nInEa ap (ylos, zi, 1),  (6a)
of the kth user with covariance matrik{xsxd)} = Psx h(y|lxs,H) = — Ey go1 I Egp (Y| s, i, H) (6b)

andz;j € CMi« is the transmitted signal vector of tith in-
terferer having zero-mean and covarialﬁ‘{eciygccm} = Pj,.
To satisfy long-term power constraints at the transmittees
require thatr{ Psy} < Msy andtr{P;,} < M;,. The noise
vectorn € CV has independent circularly symmetric compleXhe mutual information in (5) represents an achievable sum-
Gaussian (CSCG) entries with unit variance. Matriégs, € rate of the MIMO-MAC (1) when the receiver does not
CN*Msr and H;, € CN*Mie denote the MIMO channels decode the interference signal Given statistical knowledge
between usek and the receiver and between interfefeand of the channels, the sum-rate could then, in principle, be
the receiver, respectively. The channels are assumed tatbe thaximized by designing the precoder matriog, Vk.
fading and are modeleda the Kronecker model [37], that is Unfortunately, the explicit expression for (5) is not knowmn
general. Moreover, its numerical evaluation is compureily

and the conditional distribution of the channel (4) reads

1y Hea Hoa?
p(ylw&whH): ﬂ_—Ne ly—Hses— Hiai| . (7)

Dk pl/2 1/2 expensive due to averaging of (6a) and (6b) over the channel
Hsy, = Msr, Ry WeiTg) s (28)  realizations. Even more serious difficulty arises when thia d
_ symbols are non-Gaussian. In this case, one needs to compute
Hi, = MR%QWMT%Z, (2b) two sums over an exponential number (w.r.t. the numbers of

Mie transmit antennas and bits in the constellation) of termis fo
where ps i and p;i ¢ represent average signal-to-noise ratiosvery realization of the channel.
(SNRs) of the corresponding links and matricéss ;, and The aim of the present paper is to find a computationally
W, have i.i.d. CSCG entries of unit variance. The correlatidieasible expression for the ergodic mutual information (5)
matrices at the receive end are denotedBy, and R;,, given arbitrary channel inputs. To make the analysis thdefa
while T's, and T’ , represent the correlation matrices at theve consider the asymptotic regime where the system size
transmit end of the corresponding channels. To ensurehibat frows large and use the replica method to compute the
correlation matrices do not influence the average path gaimrslividual entropy terms. These expressiovislé¢ Section Il1)
they are normalized as are then used to optimize the covariance matrices so that the
mutual information is maximizedvi{de Section IV). Finally,

{Rs} =N, tr{Tsr} = Msp, (B2) e large system result is used to give an approximation for
tr{Ri} =N, tr{Tic}= M, (3b) ' the original quantity (5) when the system size is finite.
For later convenience, we write the input covariance ma- ) ]

Gs,GY, and P, = G; (G}, and let them depend on theChannel
statistical CSl,i.e., the knowledge of{ ps, Tsx, Rsx} and To finish this section, we discuss the problem of finding
{pi,e;Tie, Ri¢}, respectively. Thus, denotings; and si, the mutual information and the minimum mean squared error



(MMSE) of a fixed MIMO channel. These results are used latpossible input vectors. Denoting

in the paper to evaluate the asymptotic mutual information oM

obtainedvia the replica method. —lz—A=x
p Peu(z|A) CMZ e |z—A zll (15)
1) General Case:Consider the following multi-antenna i=1
communication channel the MMSE estimate of: is by definition given as
z T+ w, (8) () Z Tj Psu z|m17 A) (16)
where A is a fixed N x M channel matrix andw € CV CM p Dsu(z '

has i.i.d. CSCG elements of unit variance. The channel sput

x = G's € CM are a combination of a precoder matéxand The MMSE matrix is thus obtained from

vector s that has i.i.d. zero-mean unit variance entries, with mmse,, (¢, A) = P — / W (2] A)dz 17)
constrainttr { P} < M whereE{zz"} = P. The conditional ’

distribution of this ﬁxedSingle'User(SU) Channél is given by while the mutual information between and x reads

Dsu (2], A) = LMe’”z’Am”z. 9) I (z;2|Aypsu) = N+ MInC
T CIW CIW
The posterior mean estimate of is denoted (z) = Z E. mZe—HA(:ci—ijwIP . (18)
E {x|z, A}, where the expectation is taken over the posterior CM =

densityps, (z|z, A) obtained from the prior distributiop(x)
and (9)via Bayes’ theorem For future convenience, the con-
ditional MMSE matrixis defined here through parametrlzatmrb

2) Parallel Gaussian ChannelsAssume that the channel
matrix A is diagonal with real-valued entries, ..., ay;. Let
also be a real diagonal matrix formed lgy, ..., ga SO
mmse, (¢, A) £ E, {(w —(x))(x — <w>)H} e ¢MxM  that the MIMO channel (8) decouples into a bank of parallel
(10) channels

Zm = QmTm + W, (29)
where the expectation is w.rt. the joint distribution . i
Peu (2, | A). Similarly, the mutual information reads The MMSE estimate Ofxm for the mth cha_nn_el is then
(xm) = E{Tm|2zm, am}, Wh|Ie the MMSE matrix is diagonal
Isu (z;@|A) = Bz o Inpsu (2|2, A) — E: InEg pou (2|2, A) . with E. o {|zm — (zm)|*lam} as its (m,m)th element.

(11) The mutual information (11) reduces in this case to a form

where the expectations are again wpd, (z, z|A). Ny

Below we present two important special cases and provide Iy, (z;x]|A) = Z I (Zim; T |Gy Dsu) - (20)
the corresponding expressions for the mutual informatiwh a m=1
the MMSE. In the following examples we discuss three analytically

Example 1 (Gaussian inputs The MMSE detector becomestractable special cases, which will be useful later in S&cti.

linear if the channel inpui is a CSCG vector givel&s. In  Example 3(Gaussian inpufs In this scenario, we have,, ~

this case, the output of the MMSE detector reads CN(0,g2,) so that the MMSE estimate af,, becomes
2 G Zm
(x) = (P’l + A“A) Az, (12) \m) = 192 N 1)

and the MMSE matrix is given by leading to

mmsey, (x, A) = (P_1 + AHA)_1 . (13) Eepzm {[Tm — (@m)Plam} = 1_‘_99%- (22)
The mutual information reduces also to the well-known forfhe mutual information between the input and output of (19),
mula on the other hand, is quantified as

I (z;2|A) = Indet (IN n APAH) : (14) T s ol = 0 (14 g2 (23)

Example 2 (Discrete channel inpujs Let the entries ok be so that using (20) we obtain the total achievable sum-raitg (1
independently drawn from a discrete constellatierg( QPSK, of a single-user MIMO system with fixed diagonal channel.

QAM) of cardinality C, so thats is uniformly distributed over Example 4 (QPSK inputs When the prior distribution of the

the set{si,...,scm}. For fixed G we may then treat also o _ .
x as being uniformly drawn from a sdteq,...,zom} Of elements ofs is given byp(s) = 1/4 6(s £1/v2 £ j/V2),
we have
(T) = g_\/n% tanh (\/igmam Re{zm})

3In this and the following sections, the probabilities rethtto the chan- . Om
nel (8) are denotegs,. This is to make a clear separation to the probabilities + j== tanh (\/igmam Im{zm}) . (24)
related to the original channel (4). \/5



E. oz {|xm - <xm>|2|am} = 92 - ==
I L e e (6“7””‘“” s) + cosh (ngam s)

Furthermore, thegm, m)th element of the MMSE matrix is where
given by

K K
1 1
hs= — I (zZsk; s k| A —&s k€
Eanawm {|£Cm - <‘rm>|2|am} ) N ; ( Sk Sk| Sk kz /BSk k S7k
s2
= 'r2n ta,nh m m mQAm S ei% dS? 25 1 - 3
g \/— (gmam — g ) (25) +5 > L (zigimie]Aig) =) B, o
and the per-stream mutual information is evaluated as =t K ZZIL )
su merm'am) = 292 2 1ndet (IN+Z(€S]CRS]C+ZEI éRiJ)
P k=1 {=1
\/7/ In cosh ( gma — gmam s) e~ 2 ds. (26) +1+Inm, (29)

L L
Example 5 (16-QAM input}. When the elements of, are hi = 1 stu (Zi,0; i o] Air) Z L & (Eie
uniformly drawn from the standard 16-QAM constellatiore th N & T = Bie 7
diagonal terms of the MMSE matrix are evaluated as in (27) L
on the top of the page (the minor typo in [38, (27) — (28)] In det (IN + Zgi,gRLg) +1+Inmw
is corrected there). The mutual information is then obf@ine r=1
numerically through the I-MMSE relation [39].

(30)

The parametergs, &k, i, &ie, &0 and Ziyg satisfy the
following set of fixed-point equatiohs

[1l. ASYMPTOTIC ACHIEVABLE SUM-RATE K L -1
Es k= trq Rsp |In + Z eskRsi + Z ei, el ¢ ,
In this section, we present the main findings of the paper, Sk k=1 =1
namely, the asymptotic sum-rate of reliable communication (31a)
over a multi-access MIMO channel in the presence of interfer ) - -1
ers. The expression is derived in the large-system limiLjl.S £o= tr Ri,g Iy + Z esnRsp + Z e Riy 7
where the numbers of antennas at each terminal grow without M. | =1
bounds at constant ratiose., 85z Msy = N — oo, Vk € (31b)
{1,....,K} andfi ¢Mi, = N — oo, VL € {1,..., L}, where } .
Bs.x and G ¢ are finite positive constants - 1 =
' o . - ir=—trd Ri,|I gioRi , 3lc
In the remainder of the section, we first present the asymf‘)'xe Mg )TN + ; Fielte (310)

totic result for a general (correlated) MIMO-MAC, and then Pk
specialize to the uncorrelated case where the expression @n = 7t {mmses, (€sk, Ask) Ts}, (31d)

much simpler. plsgk
gip = ——tr {mmseqy, (zi¢, Ai¢) Tie}, (31e)
M,
A. General Case Eie = ]C}—Ztr{mmsesu (wie, Aie) Tic} (31f)
I

The main result of the paper is given in the f°”°W'”9NhereAsk _ \/m’fl/;f Ay = \/WT%Q A, =
2 ) S,k ? > A5, il )

propositiort. _ _ _
pijgi’gTw and the MMSE matrices are obtained \iED).

Proposition 1. Let the input distributiong(xs,x) andp(wi,g), . . _

as well as the spatial correlation matriceBsy, Rsy, T Proof: In the mutual information expression of (5),.

and R; ¢, be given. Then, the ergodic mutual informatic) term (6a) represents the sum-rate of an uplink system with

normalized by the number of antennas at the receiver rea@ interferers considered as being desired users and @auss

in the LSL as noise being the only source of disturbance. The asymptotic
i[(y;ws) =hs—hi+0O i , (28) 5In general, the fixed-point equations may have more than eteok
N N solutions. Among those, the one minimizing both (29) and,(86rresponding

to entropy termsh(y|H) and h(y|xs, H), respectively. In physics, this
phenomenon is referred to ghase coexistencgl0]. Note, however, that
4Even though some of the steps in the replica method areasthting rig- according to [41], one should expect the number of coexjstinlutions to be
orous proof, the key results of the present paper are pegbastpropositions, finite since the phase space of a related problem in CDMA isvknto be
being a convention in the replica calculus literature. simple.



1 K 1 L 1 K L
NI WiEs) = > @Isu (Zs,k; s | v Ps,kés,k) +> mlsu (Zi,z; wie|v/ pi,z&,fz) +1In (1 +) ekt Y ci
k=1""> =1"" k=1

=1 = =1
K L L L L
1 1 1 — 1_ 1
— Z B—fs,ké“s,k - Z B_—gi,zé‘i,e — Z ﬂ__Isu (Z,l;xi,z A/ Pi,zfiyg) —1In <1 + ZE,Z) + Z B_—fi,ﬁi,z +0 (N) ,
k=1 "SF =1t = e =1 =1 "t
(32)
expression (29), corresponding to this term can therefere b ¢, = ﬁ—jétr {mmseSu (.’Biyg, \/pi_’[é.i_’[II\,{iye) }, (33d)
derived following the lines of [33], where the sum-rate of i€ .
a MIMO-MAC without interferers is considered. Hence, we _ L B
omit the part of the proof related to (29) and present only the &i,e = Fi.e | 1+ = (33e)
=1

part related to (30) in the Appendix.

] _ Pie =
H = —t su i0 i H I i 5 33f
Here the mutual information terms in (29) and (30), as Eirt M, r{mmse (w"é Piekie M'e)} (330

well as terms (31d), (31e) and (31e), are associated WiHq the mutual information terms are obtained us{@g).
two different fixed channels given by (8) with corresponding

channel matricesAs ., Ai, and A; ,. Hence, the terms., Proof: The proof follows directly from Proposition 1. The
e andz, include the MMSE matrix of a fixed single-useresult was also reported in our previous work [35]. ~ ®
channel discussed in Subsection II-C1, and transmit croel

of the original multiuser-MIMO channel (2). Despite loogin IV. PRECODEROPTIMIZATION

a bit cumbersome, the two asymptotic expressions aboveas each transmitter has statistical CSl, by carefully choos
have a simple interpretation. For instance, (29) represiet ing the precoder matrix, the transmitters could, in prifeip
contributions of both users and interferers to the sum-o&te maximize the sum mutual information between the inputs
the MIMO-MAC presented in (1). Meanwhile, (30) describegnd outputs of their channels. The corresponding optinoizat
the amount of information discarded at the receiver due #poblem is described as

noise and interference removal.

Here we emphasize the difference from the MAC system max 1(y;zs)

studied in [33], where mterferers were absent and whitseoi st tr{GsiGH) < My, ek (34)
was the only source of disturbance. In contrast, our result, "o
given in Proposition 1, describes the sum-rate of the MIMO- GsiGs), = Ong kek,

MAC in the presence of interference. In the case of a Singﬂ\ﬂwerelc 20 K}, Gs 2 {Gsy, VE € K} and the
user and a single interferer, both using Gaussian signag| o S S

the above result immediately reduces to the mean mutg?
f

informatign reported in [34], where it was obtained in §hormation (5) is difficult. Thus, we next use the asymptoti
slightly d|ff_erent Way._Note, though, _that In contrast L3 results obtained in the previous section to simplify thei-opt
our result is not restricted to Gaussian channel 'npUtSleWhhization problem

the authors there computed also higher moments of mUtuaWhen examining Proposition 1, we see that the random

information. parts of the channels¥ s, and W, ,, play no role in the

mutual information when the system is sufficiently large.

i : Therefore, instead of the objective function (5), we maxeni
The next result provides the sum-rate for the special cgg¢ asymptotic counterpart. Problem (34) then decouples in

whereTs, T', Rs) and R;, are all identities. a set of individual per-transmitter optimization problems

Corollary 1. In the LSL, the asymptotic average sum-rate max I, (zsk;wsk\Ask)

of an uncorrelated MIMO-MAC given if4) in the presence Gk ' " '

of interference is given by (32) on the top of the page, where s.t. tr{Gs,stH,k} < Mgy, (35)

parameterss i, &k, €i e i vl Ei e aNAE; , satisfy the following H

set of fixed-point equations . GsrGsp = Onse

jective function is given in (5). However, as mentioned in
vious sections, working directly with the ergodic muitua

B. Uncorrelated Channels

e I -1 where Ag;, = psykgsykTif. Namely, each transmittet
Esr=Bsi [ 1+ ngk + Zgi P ’ (33a) adjusts its own precoder matri&’s according to its own
’ ’ = o transmit correlation matrixI’s ;, which is available by the

statistical-CSI assumption.

K L -1
o= Bie H_ngk +Z€ié ’ (33b) Note that here we need to maximize only the tehm
’ ’ = = in (29) sinceh; does not depend on the precoding matrices

_ Psk -~ e Gsy, Vk € K. On the other hand, the parametets,,
Esk = Ms,ktr {mmseS“ (ms’k’ ps’kgs*kIMSvk)}’ (33¢) sk, Yk, andeiy, & V0 do depend on the precoders ¢h.




To obtain a feasible point satisfying the KKT conditions][42 B. Discrete Inputs
we have to set to zero the derivatives of the objective w.r.t

the precoder matrice€s , given by Unlike the previous case, finding the optimal precoder for

discrete constellations is a difficult task. For such ca8&s (
Ve, hs(Gsr) is no longer a convex optimization problem. It has been
Sk shown in [45], [46] that the mutual information isHa c%ncave
Ohs Ohs function in the quadratic formFs, £ As;GsiGqjAgy;
+ Z Des Va,,es5(Gsk) + Z 3553 V&8s (Gsk) yet, due to the power constrairtlr;{GS,ngk} = Msy, one
cannot directly apply convex optimization tools for solyitihe

Bhs ahs problem. For instance, when using thedient ascenmethod
+ Z szkg' ((Gs) + Z VGS 2t (Gsk)- for solving (35), one updateE's, iteratively as

(36) Fg;l) = Fél,)e + upAFsy, (42)
However, sincehs represents the free energy given by aith .
equation similar to (66) in the Appendix, parametess;,
&y e and &, constitute itssaddle-point Therefore, the
corresponding derivatives reduce to (see also [43] fohturt

1

being the step size andl F's;, being the gradient of
L (zs; Ts | Asi) W.rt. Fsy. It is shown in [47] that the
gradient of the mutual information in the single-user satup

discussion) VF,, Isu (2sk; Tsk| As ) = Esi, (43)
Ohs _ Ohs _ Ohs _ Ohs —0. Vk. ¢ (37) where we denoted for notational conveniendg; =
Oesy, Ok Ociy  Oeiy ’ ’ mmsey, (Ts, Asi) for the MMSE matrix defined in (10).
and it follows that Nonetheless, in practice, precoder matf¥; is updated

subject to a power constraint, which limits its feasibleioag

Ve, [(y;®s) = Ve, Lo (2ski sk Ask) Yk (38)  and complicates the problem.
Thus, for the sum-rate maximization we may considgs, ~Here we apply an algorithm similar to that proposed in [45],
¢k €10 and&  as being independent o, [46], based on the alternating optimization between thievel
' ing two subproblems.

1) Per-Eigenmode Power Allocatiorl.et the SVD of the
precoder matrix be given b@sx = Ug,,Za,, Ve, . For
fixed Vg, , the first subproblem is

Albeit optimization problem (35) is, in general, non-corye
it can still be efficiently solved for the following (most
practically relevant) special cases.

II%&X I(Zs,k;ms,k‘As,kapsu)
2Gs,k

st tr{Zg, } < My, (44)

In the case of Gaussian channel inputs, it is convenient to EQGM = O, -
work with covariance matrices instead of precoders sinee th
objective function of the optimization problem (35) redsice ~\ccording to [48], this problem is convex, provided that the
precoder has an optimal structure.
I, (Zs,k§ -'Bs,k‘As,k) = Indet (IM + AsﬂszykAgk) . (39) Since the matrix of mteresEG , is a diagonal matrix, we
introduce for notational convenience a vectpr, such that
Let the singular-value decompositio(6VD) of the effective 22 — diag(g,,). We then choose an initial value far,,

A. Gaussian Inputs

fixed channel be given bys; = Ua,, Xa,, V., where "y .

Ua., and V4, are orthonormal matrices anHk:A, _ .g, g;,” = 1/Msy 1y, and perform the gradient updéte
diag([01(Ask); - - o, (Asy)]T) is the matrix with the sin- (+1) _ ) (pig 52, VH BV 1

gular values on the diagonal. Given the solution to the fixeg Ji THa ( o Gox sk Gun) =7 Ms'(k 5’)

point equations &, andesy), the optimal input covariance

- . i ) =1 i 2 vh
matrix is then given by thevater-filling solution [44] with 7 = 1/Msy 1y, Diad(3g, V¢, BsrVe.,) and ug

being an appropriately chosen step sieeg, obtained by
Py, = VAS,CZPS,CVZM, (40) the backtracking line searctalgorithm [42]. If g!*") has

negatlve entries, one sets those to zero and renormalizes

whereXp,_, is a diagonal matrix whose non-zero entries are(z+1 so that the power constraint is satisfied and then sets

1 1 + EGM = diagg\™").
(2P dmm = [; - m} ’ (41) 2) Optimization of the Eigenvectors #fs;: In this sub-
7 problem, for fixedzéswk we optimize the eigenvectors of the

quadratic formFs;, = AsxGsiGo ALy, Let Ap ), be the
diagonal matrix, whose entries are elgenvaluesi.f?gfC The

wherev is chosen so that the power constrainf Ps} =
M, is satisfied.
We remark here that, as pointed out in [14], to obtain
the optimal transmit covariance matrix one has to iteraee th ) ) -
lution to the fixed int ti ith th b iatist We remind the reader that Diag) denotes a column vector containing
solu '0n _0 € _'Xe -poin ?qua '_Ons_ W'_ € above sta the diagonal entries of matrid, whereas dia@z) denotes a diagonal matrix
water-filling until the stopping criterion is reached. containing the entries of vectar.
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Fig. 2. Average mutual information per dimensies. SNR for the single- Fig. 3. Average mutual information per dimensioa.the inverse of the
user single-interferer scenario. Both, the user and ieterf have the same number of antennad/ = N € {4,...,11} at terminals for both Gaussian
type of signaling. The terminals are equipped with = N = 4 antennas. and QPSK signaling schemes at SMR= 10 dB. The asterisk markers at
Solid curves denote analytic results, markers denote thétseof Monte-Carlo 1/M — 0 denote the predictions obtained by the replica analysikerLSL.
simulation.

second subproblem is then formulated as All terminals have equal numbers of antennas, thatNis=
Mg = M, = M. Both the user and interferer utilize the
X I (2sk; s | sk, Pon) same type of signals (either Gaussian or QPSK), and have
' (46) the same total transmit power, that iss = pi = p. In

st. Ap, =35 X4 . ) ) . :
Fox Gak T Ask Fig. 2, we plot the average mutual information per transmit

The gradient of the mutual information is given by (43), andntenna in bits per channel use (cu) as a function of SNR.
hence the gradient update féts ;, becomes Both the asymptotic results obtainedh the replica method
FUD _ g B 47 and Monte Carlo simulations fav/ = 4 antennas are shown.
sk = Pk T HFPEsk (47) For QPSK, the simulations and asymptotic results are the
The obtained update has to be further projected into a matfatthest apart at SNRs around= 10 dB due to thephase

with the prescribed eigenvalues, which is as closdrth™"  transition phenomenon. Namely, in this region the system
as possible [45], [46]. ’ instantly switches from one state to another, mimicking the

“water-ice” transition in physics [7]. For Gaussian inputse
plotted curve does not experience a phase transition and the

) ) ) ] . _asymptotic results are accurate already for small numblers o
In this section, we provide numerical results alongsidéwityhtennas.

some discussion. For the simulations, the spatial coroalat
at the transmitter side is assumed to be generated bya
uniform linear antenna array witbaussian power azimuth
spectrum([43]. Hence, correlation matricesl'{;, and T ;)
consist of entries given by

V. NUMERICAL RESULTS

To illustrate how the small scale simulations converge & th

szi‘/mptotic result obtained using the replica method, Fig. 3

plots the simulated values of the mutual information (5)

vs.1/M for M € {4,...,11} at p = 10 dB. The markers

at 1/M = 0 represent the results obtained using Corollary 1
_ 1 /7T o2mida(a=b) sin(ga)_(*’;sg)z dip (48) and quadratic curves are fitted.to the simulated.data using

@b 9rs2 ’ non-linear least-squares regression. From the extrapolae

. . , . observe that the simulated per-antenna mutual information
where d), is the nearest neighbor antenna spacing (in wave-

lengths \), 0 is the mean angle an? is the mean-square apprqaches clqse to the value predicted by_the replica sinaly
oL glso in the region nearby the phase transition.
angle spread. For the sake of simplicity, we assume thag ther ) ) )
is no correlation at the receiver side, thath . = I, .. Vk Next, we consider the effect of signal constellations on the
andRi ;= I, . VL. ’ o achievable sum-rate. Fig. 4 depicts the mutual informatibn
' n the desired user when the Gaussian and/or QPSK signaling

are used by the terminals. The interference-free case s als
A. Uncorrelated Channels drawn for comparison. We directly see that for the desired

To begin with, we complement the obtained expression (3@3er it is always best to employ Gaussian signaling. On the
for the uncorrelated case with Monte-Carlo simulations].[49ther hand, Gaussian signaling, when used by the interferer
We consider the setup, where a single user transmits itglsigoreates more disturbance. Hence, in a cellular system where
towards the receiver in the presence of a single interferarter-cell interference is present, the network might bé ab

T

—T
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Fig. 4. Average mutual information per dimensioa.SNR for different Fig. 6. Average mutual information per dimensiesi SNR for a single-user

combinations of user’s and interferer’s signaling scheriié® terminals are system without interference. Both correlatéfl 4 I,,) and i.i.d. @ = I,y)

equipped withM = N = 4 antennas. MIMO channels with P # I;) and without P = I,;) precoding are
considered. Gaussian or QPSK signaling is employed by tmeirtals that
each are equipped withf = N = 3 antennas.
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Fig. 5. Average mutual information per dimensios.SNR for a single Fig. 7.  Achievable rate region for the 2-user MIMO-MAC undepower

user with Gaussian signaling and € {1,2,3} interferers using different constraint ofp € {0,20} dB. Both correlated T # I,;) and i.id.

signaling schemes. The terminals havle= N = 4 antennas. (T = I,) channels with P # I,s) and without @ = I,;) precoding
are considered. The terminals havé = N = 3 antennas.

to handle more users if some of them are assigned discrete . _
constellations. This is due to the fact that the most sevdfierferers with QPSK create smaller performance degiaulat

(unoptimized) interference is in fact Gausgid81]. than I = 2 interferers with 16-QAM. Again, we see that

Fig. 5 presents the average mutual information per transrﬁ?uss'an signaling causes the worst-case degradatiorein th

antenna of a single user in the presencelof {1,2,3} esired user's performance.

interferers using different signaling schemes (Gaus§#tK

and 16QAM). We see thatL = 2 interferers using QPSK B. Correlated Channels

c_onstellatior_ls cregte roughly _the same performf_;mce dagrad In this section, we study the behavior of the system un-

tion as a single interferer with 16-QAM signaling at highjer spatial correlation and quantify the gains of precoding

SNR. On ther other hand, at SNR higher than 20 8Bs 3 Fig_ 6 depicts the normalized ergodic mutual informatioregi

Gaussian and QPSK inputs as a function of SNR of a single-

"Note that here we do not consider the optimization of therfieter's signal  ;ser (no interference) MIMO channel wifli = Ms = M =3

constellation aiming to jam the user. In the latter case,sSian signaling d . diti N | id h
would not cause the worst-case interference, whereas amipgd discrete antennas under various conditions. Namely, WQ consl e_r the
signaling would degrade the user's performance the mogt [50 cases of correlated and uncorrelated channels with andwtith
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Fig. 8. Average mutual information per dimensiest SNR for a singleuser correlated MIMO channel wittRs # I ;) and without Ps = I ;) precoding.
A single interferer using precoded®( # I ) or isotropic (P; = I ;) channel inputs is present. The terminals ha¥e= N = 3 antennas.

precoding at the transmitter. The transmit side corratatitwo users who both havé! = Ms; = Mse = 3 antennas.
parameters are set to the terminals as follows. The anteWa further fix the available transmit poweps= ps1 = ps2
spacing is set ta, = 1, the mean angle is set tb=0° and to p € {0,20} dB and evaluate the achievable rate regions for
the root-mean-square angle spread is chosen to-b&°. The the given 2-user MAC. The result is depicted in Fig. 7 where
receive side correlation matrix is set to identitg,, R = I'y. both uncorrelated and correlated channels with and without
As expected, at low SNR the curves representing the twoecoding are present. It is clear that using precoding #t bo
constellations coincide. Moreover, for the case of Gaussiterminals is beneficial when transmit correlation is présen
inputs, transmit correlation decreases the achievabie aat As expected though, at high SNR the rate region is largest
high SNR regardless of precoding. Quite remarkably thougioy the uncorrelated MAC. On the contrary, at low SNR the
at low SNR transmit correlation together with precodingduhs largest rate region is achieved in the presence of coroelati
on the statistical water-filling (40) is beneficial in ternfdttee and optimal precoding.

mutual information. Somewhat similar behavior is observed To finish this section, we return to the case of one desired
for the case of QPSK signals. At low SNR a precoder inser and add an interferer withl; = 3 antennas, having the
combination with transmitter-side correlation allows ta-i same transmit powep; = p, and same correlation parameters.
prove the system performance as compared to the caseFigf. 8 depicts the average mutual information as a functfon o
an uncorrelated channel. However, since in this case the pBNR for this scenario under Gaussian and QPSK signaling
stream mutual information saturates at 2 bits/cu at high SN&hemes. Both the user and interferer either do or do not
transmit correlation does not affect the rates too much inalize precoding. Note that the scenario is symmetric and
this region. To optimize the precoder matrix for the cadeence the precoders used by the terminals are the same.
of QPSK signals, we have used the algorithm described hMoreover, the terminals adapt to their own correlation mag
Subsection 1V-B. aiming to increase their own rates. From Fig. 8(a) we see that

Next, we investigate the performance of a correlated MIM juite expectedly, for the case of Gaussian signals, pragadi

MAC. The rate region of a generig -user MIMO-MAC using he user increases _|ts own erg.odlc rate. At the same time, we
: . R also see that utilizing the optimal precoder at the interfer
Gaussian signaling is given by [52]

results in higher rate at the user’s terminal at high SNR,

degrading the performance of the latter in the low-SNR negio
Cwac = U {{Rk},W{ cK: only slightly. This observation falls along the lines of [53
tf}DPst}OSI"fsvk where spatially colored noise was shown to be less harmful
Sorer than white Gaussian noise. Interestingly, similar behaiso

ZRi <Indet <IN + ZHSJPSJ-HEJ- from expected saturation at 2 bits/cu at high SNR.

observed for the case of QPSK inputs (cf. Fig. 8(b)), apart
) VS C IC}.
€S €S
(49) VI. CONCLUSIONS

Note that the corresponding large-system ergodic mutual in In this paper, we derived an explicit expression for the
formation terms can be directly obtained from Proposition Asymptotic achievable sum-rate of the MIMO multiple-asces
To illustrate this region, we consider a symmetric setughwithannel in the presence of interference. The result acsount
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for the spatial correlation at the terminals and, in contraBy the interferers. Its distributiom,(cci(“)), is identical top(x;)

to the previous results, is not restricted to Gaussian sgnand conditionally independent far € {0,1,...,u} given
Although derived in the large system limit, it approximateg and . For ease of exposition, we have also defined the
relatively well the achievable sumate of small systems. Wevector X; £ [”7, ... oT|T € EM(u+1) that contains
have also studied the impact of the number of interferetfie replicated interferers’ signals. Note that since theitjzn
their signaling scheme and spatial correlation structume €unction (50) has an expectation oves and notxs, we
the system performance. For instance, Gaussian signaindntroduce only the replicas related to the former.

seen to create the worst-case (unoptimized) interferéitees,  After applying the replica trick, the problem of finding the
the system may handle more interferers if they use discrétee energy reduces to evaluatifg .. 1 {Z"(y, zs, H)} for
signal constellation, as compared to the case of Gaussiateger-valued: using techniques from large deviations theory
interferers. The obtained large-system approximatiorbe@® and then assuming that the result generalizes to real y®siti
further used to find precoder matrices for maximizing the-sumajlues, at least in the vicinity of zefo

rate for both Gaussian and finite-alphabet signaling sckeme | et ys now define the following set of random vectors
It has been demonstrated that properly optimized precoder

significantly increases the achievable rates. More intieigy, vep 2 Psk Hgixs, € CV, (54a)
in the low-SNR region the presence of spatial correlatian, i M.

com_blnatlon with an optimal precoder, is beneficial and can i ’Ui(tz) a [ Pie H, Emi(lz) c N, (54b)
fact improve the system performance as compared to the case ' M, 7

of uncorrelated channels. The proposed approach is general

, & K (@ & L ,(a)
and degenerates to many well-known results as special.casg§note alsovs = > 4, vy and v = > ), v, and
group them into a concatenated vector

APPENDIX Va0 ol 0™ T e eNetD (B5)
In general, direct computation of (6b) is very difficult if weconditioned on the interferers’ signal;, we know by the
allow arbitrary channel input distributions. To overcomét central limit theorem that as the dimensions of the channel
obstacle we use the replica method to compute the entropymatrices Hs, and H; , grow large,V converges to a zero-

the LSL. To stay coherent with the existing work, we pafiallmean Gaussian random vector with conditional covariance
keep the statistical physics terminology, avoiding unssagy

K L
jargon whenever possible. _ @ Rer) + R ). 56
Let us define theartition functionrelated to (6b) as e ;(Qs’k k) ;(Q"Z ) (56)
Z(y, xs,H) 2 Eq, {LNestmsHimiz} . (50) The auxiliary matrix@; , has entries
T _ Pt (OHAp - (a)
[Qi,e]a,b L TI-,Z‘,Dij ) (57)

- ]\/[I ik
or a,b € {0,1,...,u}, while Qg = gslut11],, With

In statistical physics, virtually all interesting macropic

guantities can be derived from the partition function of th

system. Often, however, it is more convenient to work wit

the logarithm of the partition function, dree energyinstead. Gor = ps—’kwsHkTs_kms_k. (58)

If we further average the (normalized) free energy w.ré th ' 7

remaining randomness in the MIMO setup (50), we get  Note that here we used (2) and the assumption Wa}, and
A1 Wi, have i.i.d. CSCG entries of unit variance to derive the

F = _NEy,ms,’H InZ (yv s, H) l (51) result.

Let us defineQ = {(Qs;,Qi,), Vk, ¢}, so that the
%>§pectation over replicated vecto¥; may be rewritten as
an integral over a probability measure @f TreatingV" as a
Gaussian random vector, it can be showa the Edgeworth

o X oum 24 By (2" (y. s H)},  (52) ©Pansion thatin the LSL [30]
N u—o0+ Ou G 1 (w
and implicitly assuming that the system size also growselarg By zu{Z"(y, 25, H)} :/e Ddu(Q), (59)
as discussed in Section Ill. This identity is exact wheis )
a real number, but on its own it does not solve the probleM{here we have omitted constant terms anit) (Q) reads
Thus, we invoke theeplica trick and write the under-log term

K
as n(Q) = E{ [In (ps’kw:kTs*kms*k - qus’k)
k=1
Ey,ws,H {Zu (y7 Ts, H)}

1 ° My — i (@) 2 8Note that mathematical rigor of this step is still an ope m. However,
= Ea.xim {/_N He ly=Hses=Hiz Iy o, (63) : ¥ peret
™ a=0

that is, just the normalized equivocation terfah(y|xs, H).
Then, we take the first step towards making the evaluation
F solvable by writing

some results obtained by the replica method are confirmedatohrthe ones
derivedvia systematic approaches.g, [54], [40]). Moreover, the results can
be further verifiedvia Monte-Carlo simulations, as we saw in Section V.

(@) is the ath replica of the signal vector transmittedrherefore, we regard the replica analysis as a valid mattiesh#ool.

wherex;
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L
7{(Q, Q) = ulndet <IN(u+1 +) (pie — g0 R é) (67a)
=1

K L
75Y(Q, Q) = Z Msy(u+1)(Psk + udsk)gsk + Z M o(u+ 1)(Piepie + udiegie), (67D)

k 1 e 1
u 2 u
Téu)(Q,Q ZMskln (1—u(u—|—1 Sk) ZlnEX {exp ( —Zmi(j)H(Alg B; 4)3@5’?)}
a=0 a=0
(67c)

A (x|

(a) . invariant under the permutation of the replica indices.sThi
X H H]l (p' ém' k T' i — MilQila b) } is known as thereplica symmetriq(RS) ansatZz and here it

b=0t=1 (60) implies that we can write the members @fand Q as

- . R R
with the above expectation being w.r{tX;, 7}. If we plug Qs =Gsklut1lyyq + (Psk — Gsi) Lus1, (65a)
V into (53) and assess the expectations wW.tandy using Qi :qi7g1u+11£+1 + (pie — gi0)Tut1s (65b)
Gaussian integration, we get Oy =il + (e — G0 Tupi. (65¢)
G(Q) = ~Nulnw — Nn(u + 1) Under the RS assumption, the free energy in the LSL becomes
K L
l P — F=1+Innm+ N uli)nél+ 5 mln max ZT (Q, Q) (66)

(61)
(u) 3 ; i
whereS 2 T, — %Hluﬂlzﬂ € RuHDx (ut1). where the terms of; ’(Q, Q) are glven in (67) on the top
of the page, where we denotci,xﬂg;C = \/pskds, kTsk , A. =
To compute the integral in (59), we note that since both 1/2
pieq T} ;" and B, £ pipieTi. We also assumed there
Q.. and @, , are formed by summing independent rando TS . .
ariables, measure (60) satisfies the large deviationse hat all termlnals have independent channel inputs. Paifay
varl ! u STl 9 viatl Pp the Hubbard-Stratonovich transform [58], [59] on (67c), we

and by Varadhan’s theorem [55] decouple the quadratic terms

1
—1n Eyyms_’H{Zu(y, Ts, H)} Tg(u)(Q, Q)

N
1 (u) (w) — 62 S A
— ngax (G (Q) -1 (Q)) 0, (62) = E My Indet (1 —u(u+ 1)Aik)

in the LSL. The second term inside the maximization is k=1

referred to as the rate function and can be obtainid —ilni E {e_”Eil_Ai,m)eHzemei)ml}
Cramér’s theorem [55] ~ M Ti.e
K e{zl, A pxi o}~ (A7, —Bi )i “
109(Q) = maxq 37 Mstr{ Qe Qss} (B {eetebm et BB om | da,
© limm C (68)

L
+ Z M tr{Q; Qi o} —In M™(Q)

} (63) wherez; , € CMit is an auxiliary variable.
=1

To solve (66), we find the conditions under which the
derivatives of the argument w.r.t. all the RS parametersshan

where the momengenerating function of.(*)(Qs, Q;) reads
"8 g f9(Qs, Qi) After takingu — 0, we get

K
M™(Q) = Exi{ [T e Xos(Qer®Tan) X Pk = dsk = Pie =0, kL, (69a)
= G = 17t (ST Riy} (69b)
x HeﬂiveXﬁz(Qi,z@bTi,z)Xue}, (64) . 1 _
e Pie— Qe = mtr {mmsey, (zi¢, Ai¢) Tie}, (69c)
and we denotedXs;, £ [@l,,...,xl,|T € CMarlutD),
Xio 2 27, . 2lyT|T e €M+, As before, we group

the auxiliary “Q-matrices” a® 2 {(Qs ., Qi (), k. (}.
9This assumption has been widely accepted in the field ofsttati

To make the optlmlzatlon problems in (62) and (63ahy5|cs [40] and information theory [7], [31], [33]. Howeyedhe cases of
tractable, we next assume that the saddle-point solutioms eplica-symmetry breakingre known in the literature [56], [57].



where we wrote for notational convenience [15]
L

SEIN+ (pie—ao)Ris, (70) [
r=1

and the MMSE matrix is defined in (10). Finally, taking th‘fﬂl
derivative w.r.t.u and lettingu — 0 we get

L
F = Indet S+ Zfsu (Zi.0; i Aig)
=1

(18]

[19]

L
+ > MigGio(gie—pie) +1+nm, (71)
=1 [20]
where we used the fact that, = pi .. Denoting&; , = G

andg ¢ £ Die — Gi.¢, We obtainh; from (30), as well as a
system of fixeepoint equations given by (31f) and (31c).  [21]
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