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Large-System Analysis of Correlated MIMO
Multiple Access Channels with Arbitrary Signaling

in the Presence of Interference
Maksym A. Girnyk, Mikko Vehkaperä, Lars K. Rasmussen

Abstract— Presence of multiple antennas on both sides of
a communication channel promises significant improvementsin
system throughput and power efficiency. In effect, a new class
of large multiple-input multiple-output (MIMO) communica tion
systems has recently emerged and attracted both scientific and
industrial attention. To analyze these systems in realistic scenar-
ios, one has to include such aspects as co-channel interference,
multiple access and spatial correlation. In this paper, we study
the properties of correlated MIMO multiple-access channels in
the presence of external interference. Using the replica method
from statistical physics, we derive the ergodic sum-rate ofthe
communication for arbitrary signal constellations when the num-
bers of antennas at both ends of the channel grow large. Based
on these asymptotic expressions, we also address the problem of
sum-rate maximization using statistical channel information and
linear precoding. The numerical results demonstrate that when
the interfering terminals use discrete constellations, the resulting
interference becomes easier to handle compared to Gaussian
signals. Thus, it may be possible to accommodate more interfering
transmitter-receiver pairs within the same area as compared
to the case of Gaussian signals. In addition, we demonstrate
numerically for the Gaussian and QPSK signaling schemes that it
is possible to design precoder matrices that significantly improve
the achievable rates at low-to-mid range of signal-to-noise ratios
when compared to isotropic precoding.

I. I NTRODUCTION

During the last decade, multi-antenna communications has
received an increased interest both from academia and indus-
try. Pioneering research by Foschini, Gans and Telatar [1],
[2] on the topic suggested that the new class of multiple-input
multiple-output (MIMO) systems allowed the transmission rate
to be increased roughly linearly in the number of antennas
available at the transmitter and receiver. Measurements both
indoors [3] and outdoors [4] have also confirmed the through-
put gains of the multi-antenna transmission.

The main price to pay for the benefits offered by multi-
antenna transmission is the hardware and signal processing
complexity at both the transmitter and receiver. It is therefore
of great importance to analyze the potential performance gains
of MIMO processing in realistic scenarios before employing
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Fig. 1. MIMO multiple-access channel in the presence of interference.

the techniques in practice. For example, in the uplink of a cel-
lular system, the effects ofco-channel interferenceemerging
from other cells need to be taken into account. As observed
in [5], such interference has also a surprising influence on the
optimal power allocation strategy at the transmitter. In addition
to co-channel interference,spatial correlation[6] and the type
of channel inputs [7] have a great impact on the achievable rate
of the channel. However, analysis of realistic scenarios tend to
be mathematically challenging and numerical simulations are
time consuming, especially if discrete signaling is employed
at the transmitter. Some simplifying assumptions are therefore
needed to make the problem tractable.

Asymptotic approaches developed within the field ofran-
dom matrix theorygreatly facilitate the analysis of achievable
ergodic rates (mutual information averaged over channel real-
izations) in MIMO systems. Such methods were used already
in the early works [1], [2] to assess the capacity of multi-
antenna transmission. At the same time, several approaches
using random matrix theory for the analysis of the spectral
efficiency of large code division multiple access (CDMA)
systems [8]–[12] were reported. The multi-antenna results
were later extended to the case of spatial correlation in [13]
and then toMIMO multiple-access channel(MIMO-MAC)
in [14] (vide Fig. 1). Some analysis of MIMO systems in
the case of co-channel interference have also been carried out
under the assumption of Gaussian channel inputs. The first

http://arxiv.org/abs/1305.4755v2
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analytical results using random matrix theory were obtained
in [15] assuming uncorrelated channels and interferers. Some
later efforts [16]–[18] have extended this analysis to differ-
ent assumptions about correlations and numbers of antennas
present in the system.

Although the above methods assume formally that the
system size grows without bound, they usually provide a good
approximation also for the performance of finite-sized systems.
Furthermore, the underlying large-system assumptionper se
has recently found a practical application in so-calledmassive
MIMO [19]–[22]. Typically this concept entails a multiuser
system where a single base station, equipped with a very large
antenna array, is used to serve a smaller number of terminals
simultaneously. Apart from the aforementioned throughput
gains, such systems allow for a significant reduction of the
transmit power and reduced-complexity signal processing [21].
Consequently, asymptotic random-matrix methods have been
widely applied for the analysis of various aspects of massive
MIMO [23]–[25] systems.

The aforementioned studies regarding MIMO systems with
co-channel interference have all concentrated on the special
case, where Gaussian signals are transmitted both by the
desired user and the interfering terminals. This is in contrast
to real-world systems, where discrete constellations suchas
QPSK and QAM are used. These realistic cases are, however,
out-of-bounds for random matrix theory, except for setups
where sub-optimal linear detection and per-stream decoding is
considered. To investigate the performance bounds of generic
systems withnon-Gaussian channel inputs, a tool borrowed
from the field of statistical physics, namely thereplica method,
has been recently used.

The replica method was invented by Kac [26], and is
widely known due to its early applications tospin glasses
[27], [28]. The replica framework provides a powerful set of
mathematical tools for computing average quantities within
large many-body systems and has since been applied to
various problems in science and engineering. In the context
of information theory, it was used to assess the spectral
efficiency of large CDMA systems with antipodal signaling
by Tanaka in [29], [30]. Later, Guo and Verdú generalized the
approach to CDMA with arbitrary signaling [31]. Meanwhile,
in [7] and [32] the method was applied to spatially correlated
MIMO channels with binary inputs. These works were further
generalized in [33] to the analysis of the sum-rate of a MIMO-
MAC. A somewhat different approach was taken in [34],
where the replica method was used to analyze the moments
of mutual information of a MIMO system with co-channel
interference. The results in [34] were obtained, however, under
the assumption of Gaussian signaling at all terminals.

In the present paper we extend our previous work [35]
and investigate the performance and sum-rate maximization
of a correlated MIMO-MAC using the replica method. The
analysis encompasses the presence of correlated non-Gaussian
interferers and arbitrary inputs at all terminals. As in [29]–
[34], the results are obtained under the technical assumption
of replica symmetric ansatz. To summarize, the following
contributions are reported:

• We derive an expression for the asymptotic sum-rate

of the MIMO-MAC with spatial correlation and in the
presence of spatially correlated multi-antenna interferers.
The analysis is valid for arbitrary channel inputs at all
terminals1 and is carried out in thelarge-system limit
(LSL), where the numbers of antennas at both ends of
each MIMO channel grow without bound at a constant
rate. As expected, several prior results are obtained as
special cases of the analysis. For instance, in the absence
of interferers, our results degenerate to those reported
in [14], [36] when Gaussian signals are employed and
to those provided in [33] when arbitrary signal constella-
tions are used. Finally, in the presence of interference and
under assumption of Gaussian signaling, our results partly
reduce to the expression of the mean mutual information
derived in [34].

• We address the precoder optimization problem for both
Gaussian and finite-alphabet signaling schemes under the
assumptions of full channel state information (CSI) at
the receiver2 and statistical CSI at the transmitter. By
using the asymptotic sum-rate as an objective function
for the corresponding optimization problem, we obtain
the precoding matrices for each user.

The remainder of the paper is organized as follows. In the
following section, we describe the system model and formulate
the main problem. In addition, we discuss the necessary
details regarding the MIMO channels with perfect CSI at the
transmitter. Next, in Section III, we present the main result of
the paper, that is, the asymptotic sum-rate of a MIMO-MAC
in the presence of interference. Section IV then addresses
the precoder optimization problem, followed by Section V,
where we present numerical results and discussion. Finally, in
Section VI, we conclude the paper. The proofs are relegated
to the appendices.

Notation: Throughout this paper we will use upper case
bold-faced letters to denote matrices,e.g., A, with elements
denoted by[A]i,j , lower case bold-faced letters to denote
column vectors,e.g., a, with elementsai, and lower case light-
faced letters to denote scalar variables,e.g., a. Superscripts
T and H denote transpose and Hermitian adjoint operators,
respectively. Meanwhile,A1/2, tr{A} anddet(A) denote the
principal square root, the trace and the determinant of matrix
A. We differentiate between operators diag(a), which denotes
a diagonal matrix containing the coefficients of vectora on its

1Throughout the paper, we assume that the signaling scheme used at each
interfering terminal is known to the receiver. In the cellular setting, such
information can be exchanged between neighboring base stations via an
existent backhaul link with a very small overhead. Alternatively, our results
provide an upper bound to the setting where the signaling schemes are not
known or the base station is misinformed about them.

2In practice, the CSI at the receiver is estimated by using known training
sequences sent by the users. In the cellular setting, the same procedure can
also be used to estimate the channels of the interferers if there is sufficient
synchronization and the base station is informed about the set of training
sequences that are in use in the neighboring cell. The lattercan be achieved
with a small overhead in the backhaul link. Furthermore, in order to implement
soft handover between the cells, the base stations tend to establish tight
synchronization with the users from other cells close to thecell border. Hence,
estimating the interfering users’ channels is possible also in practical systems.
The mathematical model considered in this paper provides thus an upper
bound for the performance of a practical systems that estimates the CSI or
has only partial knownledge of the latter.
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main diagonal, and Diag(A), which denotes a column vector
containing the diagonal entries of matrixA. Also, I, 0 and
1 denote the identity matrix, the zero matrix and the all-
ones vector of appropriate sizes. OperatorE{·} denotes the
expectation,1(·) denotes the indicator function,⊗ represents
the Kronecker product, andA � 0 implies that the matrix
A is positive semidefinite. Finally,Re{·} andIm{·} stand for
the real and imaginary parts of the argument.

II. PRELIMINARIES

A. System Model

Consider the scenario whereK multi-antenna terminals
communicate to a single multi-antenna receiver in the presence
of L multi-antenna interferers, as depicted in Fig. 1. An uplink
cellular communication system in the presence of inter-cell
interference can be regarded as an example of such a scenario.
The numbers of antennas at transmitterk, interfererℓ and the
receiver, are denoted byMs,k, Mi,ℓ, andN , respectively. The
discrete-time received vector is given by

y =

K
∑

k=1

Hs,kxs,k +

L
∑

ℓ=1

H i,ℓxi,ℓ + n, (1)

wherexs,k ∈ CMs,k is the zero-mean transmitted signal vector
of the kth user with covariance matrixE{xs,kx

H
s,k} = P s,k

andxi,ℓ ∈ CMi,ℓ is the transmitted signal vector of theℓth in-
terferer having zero-mean and covarianceE{xi,ℓx

H
i,ℓ} = P i,ℓ.

To satisfy long-term power constraints at the transmitters, we
require thattr{P s,k} ≤ Ms,k andtr{P i,ℓ} ≤ Mi,ℓ. The noise
vectorn ∈ CN has independent circularly symmetric complex
Gaussian (CSCG) entries with unit variance. MatricesHs,k ∈
CN×Ms,k and H i,ℓ ∈ CN×Mi,ℓ denote the MIMO channels
between userk and the receiver and between interfererℓ and
the receiver, respectively. The channels are assumed to be flat-
fading and are modeledvia the Kronecker model [37], that is

Hs,k =

√

ρs,k

Ms,k
R

1/2
s,k W s,kT

1/2
s,k , (2a)

H i,ℓ =

√

ρi,ℓ

Mi,ℓ
R

1/2
i,ℓ W i,ℓT

1/2
i,ℓ , (2b)

where ρs,k and ρi,ℓ represent average signal-to-noise ratios
(SNRs) of the corresponding links and matricesW s,k and
W i,ℓ have i.i.d. CSCG entries of unit variance. The correlation
matrices at the receive end are denoted byRs,k and Ri,ℓ,
while T s,k andT i,ℓ represent the correlation matrices at the
transmit end of the corresponding channels. To ensure that the
correlation matrices do not influence the average path gains,
they are normalized as

tr{Rs,k} = N, tr{T s,k} = Ms,k, (3a)

tr{Ri,ℓ} = N, tr{T i,ℓ} = Mi,ℓ. (3b)

For later convenience, we write the input covariance ma-
trices in terms of twoprecoder matrices, that is, P s,k =
Gs,kG

H
s,k and P i,ℓ = Gi,ℓG

H
i,ℓ, and let them depend on the

statistical CSI,i.e., the knowledge of{ρs,k,T s,k,Rs,k} and
{ρi,ℓ,T i,ℓ,Ri,ℓ}, respectively. Thus, denotingss,k and si,ℓ

for independent vectors with i.i.d. zero-mean unit variance
entries, we may writexs,k = Gs,kss,k and xi,ℓ = Gi,ℓsi,ℓ

without loss of generality. This formulation is especiallyuseful
when we consider the optimization of the input covariance
for discrete signals. For notational simplicity, we also denote
Ms ,

∑K
k=1 Ms,k and Mi ,

∑L
ℓ=1 Mi,ℓ, and rewrite the

input-output relation of the resulting MIMO channel as

y = Hsxs +H ixi + n, (4)

where Hs , [Hs,1, . . . ,Hs,K ] ∈ C
N×Ms, H i ,

[H i,1, . . . ,H i,L] ∈ CN×Mi , xs , [xT
s,1, . . . ,x

T
s,K ]T ∈ CMs,

xi , [xT
i,1, . . . ,x

T
i,L]

T ∈ CMi .

B. Problem Statement

Define the instantaneous CSI at the receiver as
H , {Hs,H i}. Given that all channels are ergodic
and the receiver knowsH, the distribution ofxs, as well as
the distribution ofxi , we can write down the average mutual
information

I(y;xs) = h (y|H)− h (y|xs,H) , (5)

where the differential entropy terms are given by

h (y|H) =− Ey,H lnExs,xip (y|xs,xi ,H) , (6a)

h (y|xs,H) =− Ey,xs,H lnExip (y|xs,xi ,H) , (6b)

and the conditional distribution of the channel (4) reads

p (y|xs,xi ,H) =
1

πN
e−‖y−Hsxs−H ixi‖2

. (7)

The mutual information in (5) represents an achievable sum-
rate of the MIMO-MAC (1) when the receiver does not
decode the interference signalxi . Given statistical knowledge
of the channels, the sum-rate could then, in principle, be
maximized by designing the precoder matricesGs,k, ∀k.
Unfortunately, the explicit expression for (5) is not knownin
general. Moreover, its numerical evaluation is computationally
expensive due to averaging of (6a) and (6b) over the channel
realizations. Even more serious difficulty arises when the data
symbols are non-Gaussian. In this case, one needs to compute
two sums over an exponential number (w.r.t. the numbers of
transmit antennas and bits in the constellation) of terms for
every realization of the channel.

The aim of the present paper is to find a computationally
feasible expression for the ergodic mutual information (5)
given arbitrary channel inputs. To make the analysis tractable,
we consider the asymptotic regime where the system size
grows large and use the replica method to compute the
individual entropy terms. These expressions (vide Section III)
are then used to optimize the covariance matrices so that the
mutual information is maximized (vide Section IV). Finally,
the large system result is used to give an approximation for
the original quantity (5) when the system size is finite.

C. Mutual Information and the MMSE of a Fixed MIMO
Channel

To finish this section, we discuss the problem of finding
the mutual information and the minimum mean squared error
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(MMSE) of a fixed MIMO channel. These results are used later
in the paper to evaluate the asymptotic mutual information
obtainedvia the replica method.

1) General Case:Consider the following multi-antenna
communication channel

z = Ax+w, (8)

whereA is a fixedN × M channel matrix andw ∈ CN

has i.i.d. CSCG elements of unit variance. The channel inputs
x = Gs ∈ CM are a combination of a precoder matrixG and
vector s that has i.i.d. zero-mean unit variance entries, with
constrainttr {P } ≤ M whereE{xxH} = P . The conditional
distribution of this fixedsingle-user(su) channel3 is given by

psu (z|x,A) =
1

πM
e−‖z−Ax‖2

. (9)

The posterior mean estimate ofx is denoted 〈x〉 ,

E {x|z,A}, where the expectation is taken over the posterior
densitypsu (x|z,A) obtained from the prior distributionp(x)
and (9)via Bayes’ theorem. For future convenience, the con-
ditional MMSE matrixis defined here through parametrization

mmsesu (x,A) , Ez,x

{

(x− 〈x〉)(x− 〈x〉)H
}

∈ C
M×M ,

(10)

where the expectation is w.r.t. the joint distribution
psu (z,x|A). Similarly, the mutual information reads

Isu (z;x|A) = Ez,x ln psu (z|x,A)− Ez lnEx psu (z|x,A) ,
(11)

where the expectations are again w.r.t.psu (z,x|A).

Below we present two important special cases and provide
the corresponding expressions for the mutual information and
the MMSE.

Example 1 (Gaussian inputs). The MMSE detector becomes
linear if the channel inputx is a CSCG vector givenG. In
this case, the output of the MMSE detector reads

〈x〉 =
(

P−1 +AHA
)−1

AHz, (12)

and the MMSE matrix is given by

mmsesu (x,A) =
(

P−1 +AHA
)−1

. (13)

The mutual information reduces also to the well-known for-
mula

Isu (z;x|A) = ln det
(

IN +APAH
)

. (14)

Example 2 (Discrete channel inputs). Let the entries ofs be
independently drawn from a discrete constellation (e.g., QPSK,
QAM) of cardinalityC, so thats is uniformly distributed over
the set{s1, . . . , sCM }. For fixedG we may then treat also
x as being uniformly drawn from a set{x1, . . . ,xCM } of

3In this and the following sections, the probabilities related to the chan-
nel (8) are denotedpsu. This is to make a clear separation to the probabilities
related to the original channel (4).

possible input vectors. Denoting

psu(z|A) =
1

CM

CM

∑

i=1

1

πM
e−‖z−Axi‖2

, (15)

the MMSE estimate ofx is by definition given as

〈x〉 = 1

CM

CM

∑

i=1

xi psu(z|xi,A)

psu(z|A)
. (16)

The MMSE matrix is thus obtained from

mmsesu (x,A) = P −
∫

〈x〉〈x〉Hpsu(z|A)dz, (17)

while the mutual information betweenz andx reads

Isu (z;x|A, psu) = N +M lnC

− 1

CM

CM

∑

i=1

Ew

{

ln

CM

∑

j=1

e−‖A(xi−xj)+w‖2

}

. (18)

2) Parallel Gaussian Channels:Assume that the channel
matrixA is diagonal with real-valued entriesa1, . . . , aM . Let
G also be a real diagonal matrix formed byg1, . . . , gM so
that the MIMO channel (8) decouples into a bank of parallel
channels

zm = amxm + wm. (19)

The MMSE estimate ofxm for the mth channel is then
〈xm〉 = E {xm|zm, am}, while the MMSE matrix is diagonal
with Ezm,xm

{

|xm − 〈xm〉|2|am
}

as its (m,m)th element.
The mutual information (11) reduces in this case to a form

Isu (z;x|A) =

M
∑

m=1

I (zm;xm|am, psu) . (20)

In the following examples we discuss three analytically
tractable special cases, which will be useful later in Section V.

Example 3(Gaussian inputs). In this scenario, we havexm ∼
CN (0, g2m) so that the MMSE estimate ofxm becomes

〈xm〉 = g2mamzm
1 + g2ma2m

, (21)

leading to

Ezm,xm

{

|xm − 〈xm〉|2|am
}

=
g2m

1 + g2ma2m
. (22)

The mutual information between the input and output of (19),
on the other hand, is quantified as

Isu (zm;xm|am) = ln
(

1 + g2ma2m
)

, (23)

so that using (20) we obtain the total achievable sum-rate (11)
of a single-user MIMO system with fixed diagonal channel.

Example 4 (QPSK inputs). When the prior distribution of the
elements ofs is given byp(s) = 1/4 δ(s ± 1/

√
2 ± j/

√
2),

we have

〈xm〉 = gm√
2
tanh

(√
2gmam Re{zm}

)

+ j
gm√
2
tanh

(√
2gmam Im{zm}

)

. (24)
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Ezm,xm

{

|xm − 〈xm〉|2|am
}

= g2m − g2m
10

√
π

∫

R

(

3e−
4g2ma2

m
5 sinh

(

6gmam√
10

s
)

+ sinh
(

2gmam√
10

s
)

)2

e−
4gmam

5 cosh
(

6gmam√
10

s
)

+ cosh
(

2gmam√
10

s
) e−

10s2+g2ma2
m

10 ds, (27)

Furthermore, the(m,m)th element of the MMSE matrix is
given by

Ezm,xm

{

|xm − 〈xm〉|2|am
}

= g2m − g2m√
2π

∫

R

tanh
(

g2ma2m − gmam s
)

e−
s2

2 ds, (25)

and the per-stream mutual information is evaluated as

Isu (zm;xm|am) = 2g2ma2m

−
√

2

π

∫

R

ln cosh
(

g2ma2m − gmam s
)

e−
s2

2 ds. (26)

Example 5 (16-QAM inputs). When the elements ofs, are
uniformly drawn from the standard 16-QAM constellation, the
diagonal terms of the MMSE matrix are evaluated as in (27)
on the top of the page (the minor typo in [38, (27) – (28)]
is corrected there). The mutual information is then obtained
numerically through the I-MMSE relation [39].

III. A SYMPTOTIC ACHIEVABLE SUM-RATE

In this section, we present the main findings of the paper,
namely, the asymptotic sum-rate of reliable communication
over a multi-access MIMO channel in the presence of interfer-
ers. The expression is derived in the large-system limit (LSL),
where the numbers of antennas at each terminal grow without
bounds at constant ratios,i.e., βs,kMs,k = N → ∞, ∀k ∈
{1, . . . ,K} andβi,ℓMi,ℓ = N → ∞, ∀ℓ ∈ {1, . . . , L}, where
βs,k andβi,ℓ are finite positive constants.

In the remainder of the section, we first present the asymp-
totic result for a general (correlated) MIMO-MAC, and then
specialize to the uncorrelated case where the expression are
much simpler.

A. General Case

The main result of the paper is given in the following
proposition4.

Proposition 1. Let the input distributionsp(xs,k) andp(xi,ℓ),
as well as the spatial correlation matricesT s,k, Rs,k, T i,ℓ

andRi,ℓ, be given. Then, the ergodic mutual information(5)
normalized by the number of antennas at the receiver reads
in the LSL as

1

N
I(y;xs) = hs − hi +O

(

1

N

)

, (28)

4Even though some of the steps in the replica method are still lacking rig-
orous proof, the key results of the present paper are presented as propositions,
being a convention in the replica calculus literature.

where

hs =
1

N

K
∑

k=1

Isu
(

zs,k;xs,k

∣

∣As,k
)

−
K
∑

k=1

1

βs,k
ξs,kεs,k

+
1

N

L
∑

ℓ=1

Isu
(

zi,ℓ;xi,ℓ

∣

∣Ai,ℓ
)

−
L
∑

ℓ=1

1

βi,ℓ
ξi,ℓεi,ℓ

+
1

N
ln det

(

IN+

K
∑

k=1

εs,kRs,k+

L
∑

ℓ=1

εi,ℓRi,ℓ

)

+ 1 + lnπ, (29)

hi =
1

N

L
∑

ℓ=1

Isu
(

z i,ℓ;xi,ℓ|Āi,ℓ
)

−
L
∑

ℓ=1

1

βi,ℓ
ξi,ℓεi,ℓ

+
1

N
ln det

(

IN +
L
∑

ℓ=1

εi,ℓRi,ℓ

)

+ 1 + lnπ. (30)

The parametersεs,k, ξs,k, εi,ℓ, ξi,ℓ, εi,ℓ and ξi,ℓ satisfy the
following set of fixed-point equations5

ξs,k =
1

Ms,k
tr







Rs,k

[

IN +

K
∑

k=1

εs,kRs,k +

L
∑

ℓ=1

εi,ℓRi,ℓ

]−1






,

(31a)

ξi,ℓ =
1

Mi,ℓ
tr







Ri,ℓ

[

IN +

K
∑

k=1

εs,kRs,k +

L
∑

ℓ=1

εi,ℓRi,ℓ

]−1






,

(31b)

ξi,ℓ =
1

Mi,ℓ
tr







Ri,ℓ

[

IN +
L
∑

ℓ=1

εi,ℓRi,ℓ

]−1






, (31c)

εs,k =
ρs,k

Ms,k
tr {mmsesu (xs,k,As,k)T s,k} , (31d)

εi,ℓ =
ρi,ℓ

Mi,ℓ
tr {mmsesu (xi,ℓ,Ai,ℓ)T i,ℓ} , (31e)

εi,ℓ =
ρi,ℓ

Mi,ℓ
tr
{

mmsesu

(

xi,ℓ, Āi,ℓ
)

T i,ℓ
}

, (31f)

whereAs,k =
√

ρs,kξs,kT
1/2
s,k , Ai,ℓ =

√

ρi,ℓξi,ℓT
1/2
i,ℓ , Āi,ℓ =

√

ρi,ℓξi,ℓT
1/2
i,ℓ and the MMSE matrices are obtained via(10).

Proof: In the mutual information expression of (5),
term (6a) represents the sum-rate of an uplink system with
all interferers considered as being desired users and Gaussian
noise being the only source of disturbance. The asymptotic

5In general, the fixed-point equations may have more than one set of
solutions. Among those, the one minimizing both (29) and (30), corresponding
to entropy termsh(y|H) and h(y|xs,H), respectively. In physics, this
phenomenon is referred to asphase coexistence[40]. Note, however, that
according to [41], one should expect the number of coexisting solutions to be
finite since the phase space of a related problem in CDMA is known to be
simple.
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1

N
I(y;xs) =

K
∑

k=1

1

βs,k
Isu

(

zs,k;xs,k

∣

∣

√

ρs,kξs,k

)

+

L
∑

ℓ=1

1

βi,ℓ
Isu

(

zi,l;xi,ℓ

∣

∣

√

ρi,ℓξi,ℓ

)

+ ln

(

1 +

K
∑

k=1

εs,k +

L
∑

ℓ=1

εi,ℓ

)

−
K
∑

k=1

1

βs,k
ξs,kεs,k −

L
∑

ℓ=1

1

βi,ℓ
ξi,ℓεi,ℓ −

L
∑

ℓ=1

1

βi,ℓ
Isu

(

z̄i,ℓ;xi,ℓ

∣

∣

∣

∣

√

ρi,ℓξi,ℓ

)

− ln

(

1 +

L
∑

ℓ=1

εi,ℓ

)

+

L
∑

ℓ=1

1

βi,ℓ
ξ i,ℓεi,ℓ +O

(

1

N

)

,

(32)

expression (29), corresponding to this term can therefore be
derived following the lines of [33], where the sum-rate of
a MIMO-MAC without interferers is considered. Hence, we
omit the part of the proof related to (29) and present only the
part related to (30) in the Appendix.

Here the mutual information terms in (29) and (30), as
well as terms (31d), (31e) and (31e), are associated with
two different fixed channels given by (8) with corresponding
channel matricesAs,k, Ai,ℓ and Āi,ℓ. Hence, the termsεs,k,
εi,ℓ and εi,ℓ include the MMSE matrix of a fixed single-user
channel discussed in Subsection II-C1, and transmit correlation
of the original multiuser-MIMO channel (2). Despite looking
a bit cumbersome, the two asymptotic expressions above
have a simple interpretation. For instance, (29) represents the
contributions of both users and interferers to the sum-rateof
the MIMO-MAC presented in (1). Meanwhile, (30) describes
the amount of information discarded at the receiver due to
noise and interference removal.

Here we emphasize the difference from the MAC system
studied in [33], where interferers were absent and white noise
was the only source of disturbance. In contrast, our result,
given in Proposition 1, describes the sum-rate of the MIMO-
MAC in the presence of interference. In the case of a single
user and a single interferer, both using Gaussian signals,
the above result immediately reduces to the mean mutual
information reported in [34], where it was obtained in a
slightly different way. Note, though, that in contrast to [34],
our result is not restricted to Gaussian channel inputs, while
the authors there computed also higher moments of mutual
information.

B. Uncorrelated Channels

The next result provides the sum-rate for the special case
whereT s,k, T i,ℓ, Rs,k andRi,ℓ are all identities.

Corollary 1. In the LSL, the asymptotic average sum-rate
of an uncorrelated MIMO-MAC given in(4) in the presence
of interference is given by (32) on the top of the page, where
parametersεs,k, ξs,k, εi,ℓ, ξi,ℓ, εi,ℓ andξ i,ℓ satisfy the following
set of fixed-point equations

ξs,k = βs,k

(

1 +
K
∑

k=1

εs,k +
L
∑

ℓ=1

εi,ℓ

)−1

, (33a)

ξi,ℓ = βi,ℓ

(

1 +

K
∑

k=1

εs,k +

L
∑

ℓ=1

εi,ℓ

)−1

, (33b)

εs,k =
ρs,k

Ms,k
tr
{

mmsesu

(

xs,k,
√

ρs,kξs,kIMs,k

)}

, (33c)

εi,ℓ =
ρi,ℓ

Mi,ℓ
tr
{

mmsesu

(

xi,ℓ,
√

ρi,ℓξi,ℓIMi,ℓ

)}

, (33d)

ξi,ℓ = βi,ℓ

(

1 +

L
∑

ℓ=1

εi,ℓ

)−1

, (33e)

εi,ℓ =
ρi,ℓ

Mi,ℓ
tr

{

mmsesu

(

xi,ℓ,
√

ρi,ℓξi,ℓIMi,ℓ

)}

, (33f)

and the mutual information terms are obtained using(20).

Proof: The proof follows directly from Proposition 1. The
result was also reported in our previous work [35].

IV. PRECODEROPTIMIZATION

As each transmitter has statistical CSI, by carefully choos-
ing the precoder matrix, the transmitters could, in principle,
maximize the sum mutual information between the inputs
and outputs of their channels. The corresponding optimization
problem is described as

max
Gs

I(y;xs)

s.t. tr{Gs,kG
H
s,k} ≤ Ms,k, k ∈ K

Gs,kG
H
s,k � 0Ms,k , k ∈ K,

(34)

where K , {1, . . . ,K}, Gs , {Gs,k, ∀k ∈ K} and the
objective function is given in (5). However, as mentioned in
previous sections, working directly with the ergodic mutual
information (5) is difficult. Thus, we next use the asymptotic
results obtained in the previous section to simplify the opti-
mization problem.

When examining Proposition 1, we see that the random
parts of the channels,W s,k and W i,ℓ, play no role in the
mutual information when the system is sufficiently large.
Therefore, instead of the objective function (5), we maximize
its asymptotic counterpart. Problem (34) then decouples into
a set of individual per-transmitter optimization problems

max
Gs,k

Isu
(

zs,k;xs,k

∣

∣As,k
)

s.t. tr{Gs,kG
H
s,k} ≤ Ms,k,

Gs,kG
H
s,k � 0Ms,k ,

(35)

where As,k =
√

ρs,kξs,kT
1/2
s,k . Namely, each transmitterk

adjusts its own precoder matrixGs,k according to its own
transmit correlation matrixT s,k, which is available by the
statistical-CSI assumption.

Note that here we need to maximize only the termhs

in (29) sincehi does not depend on the precoding matrices
Gs,k, ∀k ∈ K. On the other hand, the parametersεs,k,
ξs,k, ∀k, andεi,ℓ, ξi,ℓ ∀ℓ do depend on the precoders inGs.



7

To obtain a feasible point satisfying the KKT conditions [42],
we have to set to zero the derivatives of the objective w.r.t.
the precoder matricesGs,k, given by

1

N
∇Gs,kI(y;xs) = ∇Gs,khs(Gs,k)

+

K
∑

j=1

∂hs

∂εs,j
∇Gs,kεs,j(Gs,k) +

K
∑

j=1

∂hs

∂ξs,j
∇Gs,kξs,j(Gs,k)

+

L
∑

ℓ=1

∂hs

∂εi,ℓ
∇Gs,kεi,ℓ(Gs,k) +

L
∑

ℓ=1

∂hs

∂εi,ℓ
∇Gs,kξi,ℓ(Gs,k).

(36)

However, sincehs represents the free energy given by an
equation similar to (66) in the Appendix, parametersεs,k,
ξs,k, εi,ℓ and ξi,ℓ constitute itssaddle-point. Therefore, the
corresponding derivatives reduce to (see also [43] for further
discussion)

∂hs

∂εs,k
=

∂hs

∂ξs,k
=

∂hs

∂εi,ℓ
=

∂hs

∂εi,ℓ
= 0, ∀k, ℓ (37)

and it follows that

∇Gs,kI(y;xs) = ∇Gs,kIsu
(

zs,k;xs,k

∣

∣As,k
)

, ∀k. (38)

Thus, for the sum-rate maximization we may considerεs,k,
ξs,k, εi,ℓ andξi,ℓ as being independent ofGs.

Albeit optimization problem (35) is, in general, non-convex,
it can still be efficiently solved for the following (most
practically relevant) special cases.

A. Gaussian Inputs

In the case of Gaussian channel inputs, it is convenient to
work with covariance matrices instead of precoders since the
objective function of the optimization problem (35) reduces to

Isu
(

zs,k;xs,k

∣

∣As,k
)

= ln det
(

IM +As,kP s,kA
H
s,k

)

. (39)

Let the singular-value decomposition(SVD) of the effective
fixed channel be given byAs,k = UAs,kΣAs,kV

H
As,k

, where
UAs,k and V As,k are orthonormal matrices andΣAs,k =
diag([σ1(As,k), . . . , σMs,k(As,k)]

T) is the matrix with the sin-
gular values on the diagonal. Given the solution to the fixed-
point equations (ξs,k and εs,k), the optimal input covariance
matrix is then given by thewater-filling solution [44]

P ⋆
s,k = V As,kΣP s,kV

H
As,k

, (40)

whereΣP s,k is a diagonal matrix whose non-zero entries are

[ΣP s,k ]m,m =

[

1

ν
− 1

σm(As,k)

]+

, (41)

whereν is chosen so that the power constrainttr{P s,k} =
Ms,k is satisfied.

We remark here that, as pointed out in [14], to obtain
the optimal transmit covariance matrix one has to iterate the
solution to the fixed-point equations with the above statistical
water-filling until the stopping criterion is reached.

B. Discrete Inputs

Unlike the previous case, finding the optimal precoder for
discrete constellations is a difficult task. For such cases (35)
is no longer a convex optimization problem. It has been
shown in [45], [46] that the mutual information is a concave
function in the quadratic formF s,k , As,kGs,kG

H
s,kA

H
s,k;

yet, due to the power constraint,tr{Gs,kG
H
s,k} = Ms,k, one

cannot directly apply convex optimization tools for solving the
problem. For instance, when using thegradient ascentmethod
for solving (35), one updatesF s,k iteratively as

F
(l+1)
s,k = F

(l)
s,k + µF∆F s,k, (42)

with µF being the step size and∆F s,k being the gradient of
Isu
(

zs,k;xs,k

∣

∣As,k
)

w.r.t. F s,k. It is shown in [47] that the
gradient of the mutual information in the single-user setupis

∇F s,kIsu
(

zs,k;xs,k

∣

∣As,k
)

= Es,k, (43)

where we denoted for notational convenienceEs,k ,

mmsesu (xs,k,As,k) for the MMSE matrix defined in (10).
Nonetheless, in practice, precoder matrixGs,k is updated
subject to a power constraint, which limits its feasible region
and complicates the problem.

Here we apply an algorithm similar to that proposed in [45],
[46], based on the alternating optimization between the follow-
ing two subproblems.

1) Per-Eigenmode Power Allocation:Let the SVD of the
precoder matrix be given byGs,k = UGs,kΣGs,kV

H
Gs,k

. For
fixed V Gs,k the first subproblem is

max
Σ2

Gs,k

I
(

zs,k;xs,k

∣

∣As,k, psu
)

s.t. tr{Σ2
Gs,k

} ≤ Ms,k,

Σ
2
Gs,k

� 0Ms,k .

(44)

According to [48], this problem is convex, provided that the
precoder has an optimal structure.

Since the matrix of interest,Σ2
Gs,k

, is a diagonal matrix, we
introduce for notational convenience a vectorgk, such that
Σ

2
Gs,k

= diag(gk). We then choose an initial value forgk,

e.g., g(1)
k = 1/Ms,k 1Ms,k , and perform the gradient update6

g
(l+1)
k = g

(l)
k +µg

(

Diag(Σ2
Gs,k

V H
Gs,k

Es,kV Gs,k)− γ1Ms,k

)

,

(45)
with γ = 1/Ms,k1

T
Ms,k

Diag(Σ2
Gs,k

V H
Gs,k

Es,kV Gs,k) and µg

being an appropriately chosen step size,e.g., obtained by
the backtracking line searchalgorithm [42]. If g(l+1)

k has
negative entries, one sets those to zero and renormalizes
g
(l+1)
k so that the power constraint is satisfied and then sets

Σ
2
Gs,k

= diag(g(l+1)
k ).

2) Optimization of the Eigenvectors ofF s,k: In this sub-
problem, for fixedΣ2

Gs,k
we optimize the eigenvectors of the

quadratic formF s,k = As,kGs,kG
H
s,kA

H
s,k. Let ΛF ,k be the

diagonal matrix, whose entries are eigenvalues ofF s,k. The

6We remind the reader that Diag(A) denotes a column vector containing
the diagonal entries of matrixA, whereas diag(a) denotes a diagonal matrix
containing the entries of vectora.
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Fig. 2. Average mutual information per dimensionvs.SNR for the single-
user single-interferer scenario. Both, the user and interferer, have the same
type of signaling. The terminals are equipped withM = N = 4 antennas.
Solid curves denote analytic results, markers denote the results of Monte-Carlo
simulation.

second subproblem is then formulated as

max
F s,k

I
(

zs,k;xs,k

∣

∣As,k, psu
)

s.t. ΛF s,k = Σ
2
Gs,k

Σ
2
As,k

.
(46)

The gradient of the mutual information is given by (43), and
hence the gradient update forF s,k becomes

F
(l+1)
s,k = F

(l)
s,k + µFEs,k. (47)

The obtained update has to be further projected into a matrix
with the prescribed eigenvalues, which is as close toF

(l+1)
s,k

as possible [45], [46].

V. NUMERICAL RESULTS

In this section, we provide numerical results alongside with
some discussion. For the simulations, the spatial correlation
at the transmitter side is assumed to be generated by a
uniform linear antenna array withGaussian power azimuth
spectrum[43]. Hence, correlation matrices (T s,k and T i,ℓ)
consist of entries given by

[T ]a,b =
1

2πδ2

∫ π

−π

e2πjdλ(a−b) sin(ϕ)− (ϕ−θ)2

2δ2 dϕ, (48)

wheredλ is the nearest neighbor antenna spacing (in wave-
lengthsλ), θ is the mean angle andδ2 is the mean-square
angle spread. For the sake of simplicity, we assume that there
is no correlation at the receiver side, that is,Rs,k = IMs,k , ∀k
andRi,ℓ = IMi,ℓ , ∀ℓ.

A. Uncorrelated Channels

To begin with, we complement the obtained expression (32)
for the uncorrelated case with Monte-Carlo simulations [49].
We consider the setup, where a single user transmits its signal
towards the receiver in the presence of a single interferer.
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1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

1/M

I(
y
;x

s
)/

M
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User, Int.: QPSK, simulation
User, Int.: QPSK, quadratic fit
User, Int.: QPSK, analytic
User, Int.: Gauss, simulation
User, Int.: Gauss, quadratic fit
User, Int.: Gauss, analytic

Fig. 3. Average mutual information per dimensionvs. the inverse of the
number of antennasM = N ∈ {4, . . . , 11} at terminals for both Gaussian
and QPSK signaling schemes at SNRρ = 10 dB. The asterisk markers at
1/M → 0 denote the predictions obtained by the replica analysis in the LSL.

All terminals have equal numbers of antennas, that is,N =
Ms = Mi = M . Both the user and interferer utilize the
same type of signals (either Gaussian or QPSK), and have
the same total transmit power, that is,ρs = ρi = ρ. In
Fig. 2, we plot the average mutual information per transmit
antenna in bits per channel use (cu) as a function of SNR.
Both the asymptotic results obtainedvia the replica method
and Monte Carlo simulations forM = 4 antennas are shown.
For QPSK, the simulations and asymptotic results are the
farthest apart at SNRs aroundρ = 10 dB due to thephase
transition phenomenon. Namely, in this region the system
instantly switches from one state to another, mimicking the
“water-ice” transition in physics [7]. For Gaussian inputs, the
plotted curve does not experience a phase transition and the
asymptotic results are accurate already for small numbers of
antennas.

To illustrate how the small scale simulations converge to the
asymptotic result obtained using the replica method, Fig. 3
plots the simulated values of the mutual information (5)
vs.1/M for M ∈ {4, . . . , 11} at ρ = 10 dB. The markers
at 1/M = 0 represent the results obtained using Corollary 1
and quadratic curves are fitted to the simulated data using
non-linear least-squares regression. From the extrapolation we
observe that the simulated per-antenna mutual information
approaches close to the value predicted by the replica analysis
also in the region nearby the phase transition.

Next, we consider the effect of signal constellations on the
achievable sum-rate. Fig. 4 depicts the mutual informationof
the desired user when the Gaussian and/or QPSK signaling
are used by the terminals. The interference-free case is also
drawn for comparison. We directly see that for the desired
user it is always best to employ Gaussian signaling. On the
other hand, Gaussian signaling, when used by the interferer,
creates more disturbance. Hence, in a cellular system where
inter-cell interference is present, the network might be able
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Fig. 4. Average mutual information per dimensionvs.SNR for different
combinations of user’s and interferer’s signaling schemes. The terminals are
equipped withM = N = 4 antennas.
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Fig. 5. Average mutual information per dimensionvs.SNR for a single
user with Gaussian signaling andL ∈ {1, 2, 3} interferers using different
signaling schemes. The terminals haveM = N = 4 antennas.

to handle more users if some of them are assigned discrete
constellations. This is due to the fact that the most severe
(unoptimized) interference is in fact Gaussian7 [51].

Fig. 5 presents the average mutual information per transmit
antenna of a single user in the presence ofL ∈ {1, 2, 3}
interferers using different signaling schemes (Gaussian,QPSK
and 16-QAM). We see thatL = 2 interferers using QPSK
constellations create roughly the same performance degrada-
tion as a single interferer with 16-QAM signaling at high
SNR. On ther other hand, at SNR higher than 20 dB,L = 3

7Note that here we do not consider the optimization of the interferer’s signal
constellation aiming to jam the user. In the latter case, Gaussian signaling
would not cause the worst-case interference, whereas an optimized discrete
signaling would degrade the user’s performance the most [50].
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Fig. 6. Average mutual information per dimensionvs.SNR for a single-user
system without interference. Both correlated (T 6= IM ) and i.i.d. (T = IM )
MIMO channels with (P 6= IM ) and without (P = IM ) precoding are
considered. Gaussian or QPSK signaling is employed by the terminals that
each are equipped withM = N = 3 antennas.
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Fig. 7. Achievable rate region for the 2-user MIMO-MAC undera power
constraint of ρ ∈ {0, 20} dB. Both correlated (T 6= IM ) and i.i.d.
(T = IM ) channels with (P 6= IM ) and without (P = IM ) precoding
are considered. The terminals haveM = N = 3 antennas.

interferers with QPSK create smaller performance degradation
than L = 2 interferers with 16-QAM. Again, we see that
Gaussian signaling causes the worst-case degradation in the
desired user’s performance.

B. Correlated Channels

In this section, we study the behavior of the system un-
der spatial correlation and quantify the gains of precoding.
Fig. 6 depicts the normalized ergodic mutual information given
Gaussian and QPSK inputs as a function of SNR of a single-
user (no interference) MIMO channel withN = Ms = M = 3
antennas under various conditions. Namely, we consider the
cases of correlated and uncorrelated channels with and without
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Fig. 8. Average mutual information per dimensionvs.SNR for a single-user correlated MIMO channel with (P s 6= IM ) and without (P s = IM ) precoding.
A single interferer using precoded (P i 6= IM ) or isotropic (P i = IM ) channel inputs is present. The terminals haveM = N = 3 antennas.

precoding at the transmitter. The transmit side correlation
parameters are set to the terminals as follows. The antenna
spacing is set todλ = 1, the mean angle is set toθ = 0◦ and
the root-mean-square angle spread is chosen to beδ = 5◦. The
receive side correlation matrix is set to identity,i.e., R = IN .
As expected, at low SNR the curves representing the two
constellations coincide. Moreover, for the case of Gaussian
inputs, transmit correlation decreases the achievable rate at
high SNR regardless of precoding. Quite remarkably though,
at low SNR transmit correlation together with precoding based
on the statistical water-filling (40) is beneficial in terms of the
mutual information. Somewhat similar behavior is observed
for the case of QPSK signals. At low SNR a precoder in
combination with transmitter-side correlation allows to im-
prove the system performance as compared to the case of
an uncorrelated channel. However, since in this case the per-
stream mutual information saturates at 2 bits/cu at high SNR,
transmit correlation does not affect the rates too much in
this region. To optimize the precoder matrix for the case
of QPSK signals, we have used the algorithm described in
Subsection IV-B.

Next, we investigate the performance of a correlated MIMO-
MAC. The rate region of a genericK-user MIMO-MAC using
Gaussian signaling is given by [52]

CMAC =
⋃

tr{P s,k}≤Ms,k
P s,k�0Ms,k

∀k∈K

{

{Rk}, ∀k ∈ K :

∑

i∈S
Ri ≤ ln det

(

IN +
∑

i∈S
Hs,iP s,iH

H
s,i

)

, ∀S ⊂ K
}

.

(49)

Note that the corresponding large-system ergodic mutual in-
formation terms can be directly obtained from Proposition 1.
To illustrate this region, we consider a symmetric setup with

two users who both haveM = Ms,1 = Ms,2 = 3 antennas.
We further fix the available transmit powersρ = ρs,1 = ρs,2

to ρ ∈ {0, 20} dB and evaluate the achievable rate regions for
the given 2-user MAC. The result is depicted in Fig. 7 where
both uncorrelated and correlated channels with and without
precoding are present. It is clear that using precoding at both
terminals is beneficial when transmit correlation is present.
As expected though, at high SNR the rate region is largest
for the uncorrelated MAC. On the contrary, at low SNR the
largest rate region is achieved in the presence of correlation
and optimal precoding.

To finish this section, we return to the case of one desired
user and add an interferer withMi = 3 antennas, having the
same transmit power,ρi = ρ, and same correlation parameters.
Fig. 8 depicts the average mutual information as a function of
SNR for this scenario under Gaussian and QPSK signaling
schemes. Both the user and interferer either do or do not
realize precoding. Note that the scenario is symmetric and
hence the precoders used by the terminals are the same.
Moreover, the terminals adapt to their own correlation matrices
aiming to increase their own rates. From Fig. 8(a) we see that,
quite expectedly, for the case of Gaussian signals, precoding at
the user increases its own ergodic rate. At the same time, we
also see that utilizing the optimal precoder at the interferer
results in higher rate at the user’s terminal at high SNR,
degrading the performance of the latter in the low-SNR region
only slightly. This observation falls along the lines of [53],
where spatially colored noise was shown to be less harmful
than white Gaussian noise. Interestingly, similar behavior is
observed for the case of QPSK inputs (cf. Fig. 8(b)), apart
from expected saturation at 2 bits/cu at high SNR.

VI. CONCLUSIONS

In this paper, we derived an explicit expression for the
asymptotic achievable sum-rate of the MIMO multiple-access
channel in the presence of interference. The result accounts
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for the spatial correlation at the terminals and, in contrast
to the previous results, is not restricted to Gaussian signals.
Although derived in the large system limit, it approximates
relatively well the achievable sum-rate of small systems. We
have also studied the impact of the number of interferers,
their signaling scheme and spatial correlation structure on
the system performance. For instance, Gaussian signaling is
seen to create the worst-case (unoptimized) interference.Thus,
the system may handle more interferers if they use discrete
signal constellation, as compared to the case of Gaussian
interferers. The obtained large-system approximation hasbeen
further used to find precoder matrices for maximizing the sum-
rate for both Gaussian and finite-alphabet signaling schemes.
It has been demonstrated that properly optimized precoder
significantly increases the achievable rates. More interestingly,
in the low-SNR region the presence of spatial correlation, in
combination with an optimal precoder, is beneficial and can in
fact improve the system performance as compared to the case
of uncorrelated channels. The proposed approach is general
and degenerates to many well-known results as special cases.

APPENDIX

In general, direct computation of (6b) is very difficult if we
allow arbitrary channel input distributions. To overcome this
obstacle we use the replica method to compute the entropy in
the LSL. To stay coherent with the existing work, we partially
keep the statistical physics terminology, avoiding unnecessary
jargon whenever possible.

Let us define thepartition functionrelated to (6b) as

Z(y,xs,H) , Exi

{

1

πN
e−‖y−Hsxs−H ixi‖2

}

. (50)

In statistical physics, virtually all interesting macroscopic
quantities can be derived from the partition function of the
system. Often, however, it is more convenient to work with
the logarithm of the partition function, orfree energy, instead.
If we further average the (normalized) free energy w.r.t. the
remaining randomness in the MIMO setup (50), we get

F , − 1

N
Ey,xs,H lnZ (y,xs,H) , (51)

that is, just the normalized equivocation term,1
N h(y|xs,H).

Then, we take the first step towards making the evaluation of
F solvable by writing

F = − 1

N
lim

u→0+

∂

∂u
lnEy,xs,H {Zu (y,xs,H)} , (52)

and implicitly assuming that the system size also grows large
as discussed in Section III. This identity is exact whenu is
a real number, but on its own it does not solve the problem.
Thus, we invoke thereplica trick and write the under-log term
as

Ey,xs,H {Zu (y,xs,H)}

= Exs,X i,H

{

∫

1

πN

u
∏

a=0

e−‖y−Hsxs−H ix
(a)
i ‖2

dy

}

, (53)

wherex(a)
i is theath replica of the signal vector transmitted

by the interferers. Its distribution,p(x(a)
i ), is identical top(xi)

and conditionally independent fora ∈ {0, 1, . . . , u} given
y and H. For ease of exposition, we have also defined the
vector X i , [x

(0)T
i , . . . ,x

(u)T
i ]T ∈ CLMi(u+1) that contains

the replicated interferers’ signals. Note that since the partition
function (50) has an expectation overxi and not xs, we
introduce only the replicas related to the former.

After applying the replica trick, the problem of finding the
free energy reduces to evaluatingEy,xs,H{Zu(y,xs,H)} for
integer-valuedu using techniques from large deviations theory
and then assuming that the result generalizes to real positive
values, at least in the vicinity of zero8.

Let us now define the following set of random vectors

vs,k ,

√

ρs,k

Ms,k
Hs,kxs,k ∈ C

N , (54a)

v
(a)
i,ℓ ,

√

ρi,ℓ

Mi,ℓ
H i,ℓx

(a)
i,ℓ ∈ C

N . (54b)

Denote alsovs ,
∑K

k=1 vs,k and v
(a)
i ,

∑L
ℓ=1 v

(a)
i,ℓ , and

group them into a concatenated vector

V , [vT
s + v

(0)T
i , . . . ,vT

s + v
(u)T
i ]T ∈ C

N(u+1). (55)

Conditioned on the interferers’ signalsX i , we know by the
central limit theorem that as the dimensions of the channel
matricesHs,k andH i,ℓ grow large,V converges to a zero-
mean Gaussian random vector with conditional covariance

Q =

K
∑

k=1

(Qs,k ⊗Rs,k) +

L
∑

ℓ=1

(Qi,ℓ ⊗Ri,ℓ). (56)

The auxiliary matrixQi,ℓ has entries

[Qi,ℓ]a,b =
ρi,ℓ

Mi
x
(b)H
i,k T i,ℓx

(a)
i,ℓ , (57)

for a, b ∈ {0, 1, . . . , u}, while Qs,k = qs,k1u+11
T
u+1 with

qs,k =
ρs,k

Ms
xH

s,kT s,kxs,k. (58)

Note that here we used (2) and the assumption thatW s,k and
W i,ℓ have i.i.d. CSCG entries of unit variance to derive the
result.

Let us defineQ , {(Qs,k,Qi,ℓ), ∀k, ℓ}, so that the
expectation over replicated vectorsX i may be rewritten as
an integral over a probability measure ofQ. TreatingV as a
Gaussian random vector, it can be shownvia the Edgeworth
expansion that in the LSL [30]

Ey,xs,H{Zu(y,xs,H)} =

∫

eG
(u)(Q)dµ(u)(Q), (59)

where we have omitted constant terms andµ(u)(Q) reads

µ(u)(Q) = E

{

K
∏

k=1

1

(

ρs,kx
H
s,kT s,kxs,k −Msqs,k

)

8Note that mathematical rigor of this step is still an open problem. However,
some results obtained by the replica method are confirmed to match the ones
derivedvia systematic approaches (e.g., [54], [40]). Moreover, the results can
be further verifiedvia Monte-Carlo simulations, as we saw in Section V.
Therefore, we regard the replica analysis as a valid mathematical tool.
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T
(u)
1 (Q, Q̃) = u ln det

(

IN(u+1) +

L
∑

ℓ=1

(pi,ℓ − qi,ℓ)Ri,ℓ

)

, (67a)

T
(u)
2 (Q, Q̃) =

K
∑

k=1

Ms,k(u + 1)(p̃s,k + uq̃s,k)qs,k +

L
∑

ℓ=1

Mi,ℓ(u+ 1)(p̃i,ℓpi,ℓ + uq̃i,ℓqi,ℓ), (67b)

T
(u)
3 (Q, Q̃) =

K
∑

k=1

Ms,k ln
(

1− u(u+ 1)Ā
2
s,k

)

−
L
∑

ℓ=1

lnEX i

{

exp

(

∥

∥

∥

∥

u
∑

a=0

Āi,ℓx
(a)
i,ℓ

∥

∥

∥

∥

2

−
u
∑

a=0

x
(a)H
i,ℓ (Ā

2
i,ℓ − B̄ i,ℓ)x

(a)
i,ℓ

)}

(67c)

×
u
∏

a,b=0

L
∏

ℓ=1

1

(

ρi,ℓx
(b)H
i,k T i,ℓx

(a)
i,ℓ −Mi [Qi,ℓ]a,b

)

}

.

(60)

with the above expectation being w.r.t.{X i ,H}. If we plug
V into (53) and assess the expectations w.r.t.V andy using
Gaussian integration, we get

G(u)(Q) = −Nu lnπ −N ln(u+ 1)

− ln det

[

IN(u+1) +

K
∑

k=1

Qs,kΣ⊗Rs,k +

L
∑

ℓ=1

Qi,ℓΣ⊗Ri,ℓ

]

,

(61)

whereΣ , Iu+1 − 1
u+11u+11

T
u+1 ∈ R(u+1)×(u+1).

To compute the integral in (59), we note that since both
Qs,k andQi,ℓ are formed by summing independent random
variables, measure (60) satisfies the large deviations property
and by Varadhan’s theorem [55]

1

N
lnEy,xs,H{Zu(y,xs,H)}

− 1

N
max
Q

(

G(u)(Q)− I(u)(Q)
)

→ 0, (62)

in the LSL. The second term inside the maximization is
referred to as the rate function and can be obtainedvia
Cramér’s theorem [55]

I(u)(Q) = max
Q̃

{

K
∑

k=1

Ms,ktr{Q̃s,kQs,k}

+

L
∑

ℓ=1

Mi,ℓtr{Q̃i,ℓQi,ℓ} − lnM (u)(Q̃)

}

, (63)

where the moment-generating function ofµ(u)(Qs,Qi) reads

M (u)(Q̃) = EX i

{

K
∏

k=1

eρs,kX
H
s,k(Q̃s,k⊗T s,k)Xs,k

×
L
∏

ℓ=1

eρi,ℓX
H
i,ℓ(Q̃i,ℓ⊗T i,ℓ)X i,ℓ

}

, (64)

and we denotedXs,k , [xT
s,k, . . . ,x

T
s,k]

T ∈ CMs,k(u+1),

X i,ℓ , [x
(0)T
i,ℓ , . . . ,x

(u)T
i,ℓ ]T ∈ CMi,ℓ(u+1). As before, we group

the auxiliary “Q-matrices” as̃Q , {(Q̃s,k, Q̃i,ℓ), ∀k, ℓ}.

To make the optimization problems in (62) and (63)
tractable, we next assume that the saddle-point solutions are

invariant under the permutation of the replica indices. This
is known as thereplica symmetric(RS) ansatz9 and here it
implies that we can write the members ofQ andQ̃ as

Q̃s,k =q̃s,k1u+11
T
u+1 + (p̃s,k − q̃s,k)Iu+1, (65a)

Qi,ℓ =qi,ℓ1u+11
T
u+1 + (pi,ℓ − qi,ℓ)Iu+1, (65b)

Q̃i,ℓ =q̃i,ℓ1u+11
T
u+1 + (p̃i,ℓ − q̃i,ℓ)Iu+1. (65c)

Under the RS assumption, the free energy in the LSL becomes

F = 1+lnπ+
1

N
lim

u→0+

∂

∂u
min
Q

max
Q̃

3
∑

i=1

T
(u)
i (Q, Q̃), (66)

where the terms ofT (u)
i (Q, Q̃) are given in (67), on the top

of the page, where we denoted̄As,k ,
√

ρs,k q̃s,kT
1/2
s,k , Āi,ℓ ,

√

ρi,ℓq̃i,ℓT
1/2
i,ℓ and B̄ i,ℓ , ρi,ℓp̃i,ℓT i,ℓ. We also assumed there

that all terminals have independent channel inputs. Performing
the Hubbard-Stratonovich transform [58], [59] on (67c), we
decouple the quadratic terms

T
(u)
3 (Q, Q̃)

=

K
∑

k=1

Ms,k ln det
(

1− u(u+ 1)Ā
2
s,k

)

−
L
∑

ℓ=1

ln
1

πMi

∫

Exi,ℓ

{

e−‖zi,ℓ−Āi,ℓxi,ℓ‖2

ex
H
i,ℓB̄i,ℓxi,ℓ

}

×
[

Exi,ℓ

{

e2Re{zH
i,ℓĀi,ℓxi,ℓ}−xH

i,ℓ(Ā
2
i,ℓ−B̄i,ℓ)xi,ℓ

}]u

dzi,ℓ,

(68)

wherezi,ℓ ∈ CMi,ℓ is an auxiliary variable.

To solve (66), we find the conditions under which the
derivatives of the argument w.r.t. all the RS parameters vanish.
After taking u → 0, we get

p̃s,k = q̃s,k = p̃i,ℓ = 0, ∀k, ℓ, (69a)

q̃i,ℓ =
ρi,ℓ

Mi,ℓ
tr
{

S−1Ri,ℓ
}

, (69b)

pi,ℓ− qi,ℓ =
1

Mi,ℓ
tr
{

mmsesu

(

xi,ℓ, Āi,ℓ
)

T i,ℓ
}

, (69c)

9This assumption has been widely accepted in the field of statistical
physics [40] and information theory [7], [31], [33]. However, the cases of
replica-symmetry breakingare known in the literature [56], [57].
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where we wrote for notational convenience

S , IN +
L
∑

ℓ=1

(pi,ℓ − qi,ℓ)Ri,ℓ, (70)

and the MMSE matrix is defined in (10). Finally, taking the
derivative w.r.t.u and lettingu → 0 we get

F = ln detS +

L
∑

ℓ=1

Isu
(

zi,ℓ;xi,ℓ

∣

∣Āi,ℓ
)

+

L
∑

ℓ=1

Mi,ℓq̃i,ℓ(qi,ℓ − pi,ℓ) + 1 + lnπ, (71)

where we used the fact thatpi,ℓ = ρi,ℓ. Denotingξi,ℓ , q̃i,ℓ

and εi,ℓ , pi,ℓ − qi,ℓ, we obtainhi from (30), as well as a
system of fixed-point equations given by (31f) and (31c).

ACKNOWLEDGEMENT

The authors thank the anonymous reviewers for their
suggestions that have greatly improved the quality of the
manuscript. In addition, the authors are grateful to Peter Lars-
son for the discussions on practical considerations regarding
the scenario investigated here.

REFERENCES

[1] G. J. Foschini and M. J. Gans, “On limits of wireless communications in
a fading environment when using multiple antennas,”Wireless Personal
Commun., vol. 6, no. 3, pp. 311–335, Mar. 1998.

[2] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Europ. Trans.
Telecommun., vol. 10, no. 6, pp. 585–595, Nov. 1999.

[3] K. Werner, H. Asplund, D. V. Figueiredo, N. Jaldén, and B. Halvarsson,
“LTE-advanced8 × 8 MIMO measurements in an indoor scenario,” in
Proc. Int. Symp. Antennas and Propagation (ISAP), Nanjing, China, May
2012, pp. 750–753.

[4] C. Oikonomopoulos-Zachos, T. Ould, and M. Arnold, “Outdoor channel
characterization of MIMO-LTE antenna configurations through mea-
surements,” inProc. IEEE Vehic. Tech. Conf. (VTC Spring), Jokohama,
Japan, May 2012, pp. 1–4.

[5] R. S. Blum, “MIMO capacity with interference,”IEEE J. Select. Areas
Commun., vol. 21, no. 5, pp. 793–801, June 2003.

[6] A. M. Tulino, A. Lozano, and S. Verdú, “Impact of antennacorrelation
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[35] M. A. Girnyk, M. Vehkaperä, and L. K. Rasmussen, “On theasymptotic
sum-rate of uplink MIMO cellular systems in the presence of non-
Gaussian inter-cell interference,” inProc. IEEE Global Commun. Conf.
(GLOBECOM), Anaheim, U.S.A., Dec. 2012.

[36] D. Aktas, M. N. Bacha, J. S. Evans, and S. V. Hanly, “Scaling results on
the sum capacity of cellular networks with MIMO links,”IEEE Trans.
Inf. Theory, vol. 52, no. 7, pp. 3264–3274, Jul. 2006.

[37] D. Chizhik, F. Rashid-Farrokhi, J. Ling, and A. Lozano,“Effect of
antenna separation on the capacity of BLAST in correlated channels,”
IEEE Commun. Lett., vol. 4, no. 11, pp. 337–339, Nov. 2000.

[38] A. Lozano, A. M. Tulino, and S. Verdú, “Optimum power allocation
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