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Abstract 

A switched reluctance (SR) machine drive has many advantages over other competing drive technologies in terms of 

reliability and fault tolerance, which makes it particularly attractive for safety critical applications in more electric 

aircraft technologies.  However, an SR machine drive requires a large DC-link capacitor to buffer the de-fluxing 

magnetic energy during a phase commutation period and to filter out ac harmonic currents from contaminating the DC 

supply. This paper describes a switching technique for minimisation of the DC-link capacitance in SR machine drives 

and presents experimental results from a laboratory demonstrator. The proposed switching method aims to maintain a 

constant average DC-link current over a switching cycle, thus eliminating commutation-induced low frequency current 

harmonics. Consequently, the DC-link capacitance can be minimised. The effectiveness of the proposed technique is 

assessed through filter design and demonstrated by experiments with a dSPACE control platform. 

List of Symbols 

C DC-link filter capacitance, F 

Ic Capacitor current, A 

Idc DC-link current, A 

Idc,ave Average DC-link current, A 

Iph Phase current, A 

Iph,rms Rms value of phase current, A 

Is Supply current, A 

Is,p2p Peak-to-peak phase current, A 

L DC-link filter inductance, H 

P Power, W 
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R DC-link filter resistance, Ω 

Tc Period of a pulse width modulation cycle, s 

T Electromagnetic torque, Nm 

Tave Average electromagnetic torque, Nm 

Tp2p Peak-to-peak electromagnetic torque, Nm 

Vdc DC supply voltage, V 

Vc Voltage across DC-link capacitor, V 

Vc,p2p Peak-to-peak voltage across DC-link capacitor, V 

V0 Nominal DC-link voltage across capacitor, V 

ω* Demand speed, r/min 

Ȧ Motor speed, r/min 

θ Rotor angular displacement, mechanical degree 
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1 Introduction 

A switched reluctance (SR) machine drive is a potential candidate for safety critical applications in more electric 

aircraft technologies, such as a starter/generator system, due to a number of desirable features which include relatively 

high power density compared to induction machines, high speed, simple construction and their ability to tolerate faults 

and to operate in high temperature and in harsh environments [1-4]. However, due to doubly salient stator and rotor 

poles, and discrete phase commutation, significant torque ripple and air-gap radial force pulsation will be generated. 

Careful electromagnetic and mechanical design is required to minimize resultant noise and vibration. On a different 

aspect, the de-fluxing magnetic energy released from an outgoing phase winding when being switched off causes 

significant voltage and current ripples in the DC-link capacitor. The capacitance has to be designed sufficiently large in 

order to reduce the ripple contents to an acceptable level.  Consequently, the DC-link capacitor is one of the most bulky 

and unreliable parts in an SR machine drive system, and it seriously compromises the attainable system reliability and 

compactness [5]. 

It is possible to employ an actively controlled front-end converter or power factor corrector (PFC) to reduce the 

capacitor size, as has been proposed for both SR and other types of drive systems [6-11].  However, this increases 

system complexity, size, cost and weight as well as compromises system efficiency. An auxiliary winding and a 

capacitor are adopted in [12] to buffer and dissipate the de-fluxing energy. In this scheme, a part of the de-fluxing 

energy is absorbed by the auxiliary winding and the capacitor, instead of by the DC-link capacitor. The converter circuit 

is specially designed to cope with these changes.  The average torque is increased since the energy in the auxiliary 

winding is utilized. However, the extra winding increases the cost, alters the machine design and reduces power density. 

Two techniques which do not require additional winding and circuit components for minimisation of the DC-link 

capacitance in an SR machine drive have been reported.  The duty ratio of the phase currents is controlled in [13] to 

balance the power transfer between the outgoing phase and the incoming phase during a phase commutation whilst the 

voltage across the DC-link capacitor is controlled within a hysteresis band in [14].  When the capacitor voltage is higher 

than the upper voltage band, the de-fluxing current of the outgoing phase will not be allowed to flow back to the DC 

supply. However, both techniques are only effective in reducing peak-to-peak DC-link voltage ripple when the DC 

power supply is derived from a diode rectifier and when there is no inductive component between the DC power source 

and the DC-link capacitor. In many applications, however, the DC supply is derived from a DC power network and an 

inductive filter is often necessary to meet power quality and EMC requirements or the inductive effect of cables is not 

negligible. In addition, the current drawn by the SR drive from the DC source with these techniques contain significant 

harmonics at integer multiple of commutation frequency. Consequently, the power quality may be compromised and do 

not meet certain standards. 
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This paper proposes a new switching technique for minimisation of DC-link capacitance in SR machine drives. This 

is achieved by maintaining a constant average DC-link current over a switching cycle. The proposed technique has been 

implemented in a laboratory demonstrator and validated experimentally. The rest of the paper is organized as follows: 

Section 2 describes the principle of operation. Section 3 presents simulation results and comparisons with typical 

techniques in the current state-of-the art. Section 4 assesses the impact of the proposed techniques on the reduction of 

capacitor and filter size. Section 5 presents experimental results before drawing conclusion in Section 6. 

2 Principle of operation and control modes 

Figure 1 (a) shows the schematic of an SR machine drive in which asymmetric H-bridges are connected to the DC 

power source via a LRC filter which represents the combined effect of the cable and filter. In some applications, the DC 

power is derived from a diode rectifier, and a simplified representative circuit is shown in Fig. 1 (b).  

When conventional hysteresis current control is employed the resulting DC-link current, Idc, contains high frequency 

switching harmonics as well as commutation-induced low frequency harmonics which are caused by fluxing of the 

incoming phase and de-fluxing of the outgoing phase during a commutation period. 
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Fig. 1 Schematic of SR drive supply circuits and DC-link capacitor voltage (a) DC bus bar supply circuit, (b) 
Simplified diode rectifier supply circuit, (c) DC-link capacitor voltages 

The DC-link current harmonic is therefore composed of high frequency switching harmonics and low frequency 

commutation harmonics. This causes significant voltage ripples across the DC-link capacitor as shown in Fig. 1 (c) for 

the two supply-filter circuits in Figs. 1 (a) and (b), and current ripples in the filter inductor or the DC supply. The 

frequency of the commutation harmonics decreases with machine speeds.  At low speeds, a large DC-link capacitor is 



 5 

necessary to limit the voltage and current ripples below their permissible levels. Thus, commutation-induced low 

frequency current harmonics are the fundamental cause of the large capacitor size in SR drives.   
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Fig. 2.  Control diagram of proposed method 

 
However, if the power transfer between the DC-link and the SR converter is kept constant, the voltage and current 

ripples can be greatly reduced. The new switching technique for SR machine drives is based on this concept. The DC-

link current is measured and integrated over a switching period. The resultant average DC-link current is compared to 

the demand and the output of the comparison is used to control the switching process as schematically illustrated in Fig. 

2. 

To keep a constant average DC-link current during the operation, the proposed switching technique operates in two 

modes: one-phase active mode and commutation mode, depending on the status of the SR drives. 

2.1 One-phase active mode 

This mode arises when a phase commutation has been completed and only one phase is excited in a dwell period. 

I
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Fig. 3. One active phase mode (a) turn on (b) turn off in freewheeling mode 
 

At the beginning of a switching cycle, two active switches of the converter are turned on, as shown in Fig.3 (a).  The 

phase current rises and so does the dc-link current. The dc-link current is integrated to obtain the average DC-link 

current (DCavg) as follows:  

∫=
t

dc
c

avg dtI
T

DC
0

1
 (1) 

 
where Tc is the pulse width modulation (PWM) period.  Since Tc is constant, DCavg increases with the time integration 

of Idc.  When it reaches the demand value, DCdmd, one of the active switches, e.g, S1,n, turns off and the converter now 
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operates in a free-wheeling mode, as shown in Fig.3 (b). The resulting DC-link current becomes zero, and the integrator 

output is maintained at DCdmd. The switching process repeats in each PWM cycle by resetting the integrator at the start 

of each cycle. 

2.2 Commutation mode 

A commutation mode takes place when an outgoing phase is switched off, releasing the de-fluxing energy and an 

incoming phase is switched on. In this mode, the switches of both the incoming and outgoing phases are controlled by 

comparison of the demand and the output of the DC-link current integrator in the similar manner as those described 

previously. 
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Fig. 4. Commutation mode and resultant waveforms (a) incoming phase turned on, outgoing phase in freewheeling mode, (b) 
incoming phase turned on, outgoing phase turned off, (c) both incoming phase and outgoing phases in freewheeling mode, (d) 
waveforms of phase current, dc-link currents contributed by incoming and outgoing phases, net dc-link current and integrator 
output 
 

However, if the current in the incoming phase is less than that of the outgoing phase, the outgoing phase is turned off 

in the freewheeling mode, as shown in Fig. 4 (a). Otherwise, it is turned off in the hard switching mode as shown in Fig. 

4 (b). The de-fluxing energy of the outgoing phase is therefore fed to the incoming phase. When the output of the 

integrator or the average DC-link current reaches the demand DCdmd, both the incoming and outgoing phases are turned 

off in the freewheeling mode, as shown in Fig. 4 (c). The process repeats in each PWM cycle. Thus the de-fluxing 
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energy released by the outgoing phase is either dissipated by itself through freewheeling or fed to the incoming phase. 

Consequently, the average DC-link current over a PWM cycle is maintained constant during phase commutations. 

The resultant waveforms of the phase currents and DC-link currents in one phase active mode and commutation 

mode are shown in Fig. 4 (d). In one phase active mode where the rotor angle θ is less than 18 mechanical degrees, the 

DC-link current flows to the active phase when the integrator output has not reached the demand. During phase 

commutation, the DC-link current is contributed by the incoming phase only, when the current in the outgoing phase is 

greater than that in the incoming phase. When this condition is reversed, the de-fluxing energy of the outgoing phase is 

allowed to feed into the incoming phase, and the net DC-link current drawn by the converter is reduced.  The DC-link 

current becomes zero in both modes when the integrator output reaches the demand. Consequently, the average DC-link 

current over a switching cycle is kept constant.  

3 Simulation studies 
 
The proposed switching technique, referred to as DC-link current integration control (DLCIC), is further investigated 

by extensive simulations in MATLAB/Simulink environment in conjunction with SimPowerSystemTM Toolbox. The 

schematic of the simulation block diagram is shown in Fig. 5. For the purpose of comparison, simulations were also 

performed for the conventional hysteresis current control (HCC), the power balance control (PBC) [13] and the voltage 

hysteresis control (VHC) [14]. The parameters of the SR machine and the DC filters used in the simulation are listed in 

Table 1. The SR machine model is derived from electromagnetic finite element analysis. The switching frequency is set 

at 10 kHz and the machine speed is 1000 r/min.   
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Fig. 5 Schematic of simulation block diagram 

 

 
 
 
 
 

TABLE 1 
Parameters of SR machine and filter 

SR Machine Filter 
Number of phases 3 Resistance (Ω) 0.1 
Number of stator poles 8 Inductance (mH) 0.46 
Number of rotor poles 6 Capacitance (µF) 1000 
Rated power (kW) 15 DC voltage supply (V) 270 
Rated torque (Nm) 20 Maximum speed (r/min) 12000 
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Each technique was simulated with two supply circuits, DC bus bar circuit, and diode rectifier circuit, as shown in 

Figs. 1 (a) and (b), respectively.  

Fig. 6 (a) shows the simulation results of the HCC with the diode rectifier supply circuit. As will be seen, the 

negative DC-link current as a result of de-fluxing during the commutation period gives rise to a significant increase in 

the capacitor voltage. Consequently, the diode rectifier will be reverse-biased and the supply current, Is, becomes zero 

during the commutation period. Both the capacitor voltage, Vc, and supply current, Is, contain significant harmonics at 

the commutation frequency and its integer multiples. The peak-to-peak voltage ripple is 4.82 V. 

Fig. 6 (b) shows the simulation results of the VHC with the diode rectifier supply circuit. Due to voltage hysteresis 

control, de-fluxing energy is not allowed to feed back to the DC-link when the capacitor voltage is greater than a 

specified upper band. As a result, the capacitor voltage is kept within the hysteresis band, but harmonics in the supply 

current is still very significant. In addition, the current tail of the outgoing phase is slightly increased as compared to 

that of the HCC due to the fact that the outgoing phase is turned off in freewheeling mode when the capacitor voltage is 

greater than the specified upper band. 

Fig. 6 (c) shows the simulation waveforms of the PBC when supplied by the diode rectifier.  The resultant voltage 

ripple is much lower than that of the HCC as the duty ratio of the phase currents is controlled to balance the power 

transfer between the outgoing phase and the incoming phase during commutation. Similar to the VHC, significant 

supply current harmonics is present, and the commutation period is slightly longer than that of the HCC. 

The simulation results of the proposed DLCIC supplied from the same diode rectifier circuit are shown in Fig. 6 (d).  

It is evident that both the capacitor voltage and supply current only contain harmonics at switching frequency and the 

harmonics at integer multiple of the commutation frequency have been virtually eliminated. Another noticeable 

difference from the other three techniques is that the current tail in the outgoing phase is much longer and the phase 

current is not constant, being larger in the first half of the dwell period. Both are due to the fact that the de-flux energy 

in the outgoing phase is only allowed to feed into the incoming phase under the DLCIC. This eliminates negative DC-

link current, but gives rise to longer commutation periods.   

Table 2 compares the performance indicators among the techniques being studied.  It is evident that the DLCIC 

yields the lowest voltage ripple, being 5 times and 3 times lower than that of the HCC and the other two, respectively. It 

is also evident that the peak-to-peak torque ripples which result from all the techniques are quite high, due to relatively 

lower number of phases being employed in the SR machine. Nevertheless, the torque ripple of the DLCIC is lower than 

that of the HCC and VHC, and slightly greater than that of the PBC. 
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Fig. 6 Simulated waveforms of four switching control schemes of SR converter at 1000 r/min supplied from diode 
rectifier (a) HCC, (b) VHC, (c) PBC, (d) DLCIC 
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The supply current ripple from the DLCIC is also much lower and mainly due to PWM switching. The high 

frequency current harmonics can be easily filtered as will be discussed subsequently.  While the capacitor voltage 

ripples of the VHC and PBC are lower than that of the HCC, their current ripples are still as high as that of the HCC. 

From Table 2, the rms phase current, the average DC-link current, and the average torque of all techniques are close 

except for the PBC whose values are slightly lower.  The torque per rms phase current which is indicative of efficiency 

is also close albeit the value of the DLCIC is marginally lower due to its longer current tail in the outgoing phase.  
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TABLE 2 
Comparison of performance indicator from diode rectifier supply 

circuit 

Performance HCC VHC PBC DLCIC 

Vc,p2p (V) 4.82 2.68 2.35 0.89 

Is,p2p (A) 18.56 18.56 18.86 8.77 

Idc,avg (A) 9.74 9.98 8.77 9.83 

Tavg (Nǜm) 17.08 17.54 15.73 17.03 

Tp2p (Nǜm) 19.24 17.24 13.35 15.93 

Iph,rms (A) 40.41 40.75 37.18 40.77 

T/ Iph,rms ( Nǜm/A) 0.423 0.430 0.423 0.418 
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Fig. 7 Simulated waveforms of four switching control schemes of SR converter at 1000 r/min supplied from DC bus bar 
(a) HCC, (b) VHC, (c) PBC, (d) DLCIC 

 
Simulations were repeated with the DC bus bar supply circuit shown in Fig. 1 (a) under the same operating condition.   

Fig. 7 (a) shows the resultant waveforms of the HCC.  As will be seen, the dwell angle, the phase current, the dc-link 

current and torque waveforms are essentially the same as those in Fig. 6. However, the absence of diodes allows the de-

fluxing energy being stored in the filter inductor or exchanged with the DC supply. The resulting capacitor voltage 

ripple is increased and the supply current (Is) also contains commutation induced low frequency harmonics. 

Figure 7 (b) and Figure 6 (c) show the waveforms which result with the VHC and PBC, respectively. Compared to 

the waveforms in Figs.6 (b) and (c) obtained from the diode rectifier supply circuit, the capacitor voltage ripple is 

increased while supply current ripple is reduced, due to the fact that the energy in the DC-link can be either stored in the 

inductor or exchanged with the DC supply. This implies that the ability of the VHC and PBC to minimise the capacitor 

voltage ripple in the DC bus bar circuit is not as good as that in the diode rectifier circuit. In addition, the commutation 

period of the VHC is also noticeably increased.  

Fig. 7 (d) shows the simulated waveforms of the DLCIC from the DC bus bar circuit.  They are virtually the same as 

those with the diode rectifier circuit except that the switching harmonics in the supply current is significantly reduced 

by the filter inductor. 

Table 3 summarises the performance indicators of the simulated techniques. Due to the filtering effect of the 

inductor, the supply current ripple of all techniques is reduced, compared with those from the diode rectifier circuit. In 
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particular, the current ripple of the DLCIC is more than an order of magnitude lower than those of the other three. In 

contrast, the capacitor voltage ripple has been increased except for the proposed DLCIC.  The voltage ripples of the 

HCC and PBC are similar while the voltage ripple of the DLCIC is also an order of magnitude lower. 

The average torque per rms current of the DLCIC is slightly low than that of the HCC and PBC because the longer 

current tail of the outgoing phase. However, the difference is very small, being around 2%. 

 
 
 
 
 
 
 
 
 

 

 

 

 

It follows that the proposed technique is very effective with both the diode rectifier and DC bus bar supply circuits in 

minimising the capacitor voltage and supply current ripples. 

Fig. 8 (a) compares DC-link current spectrums of the HCC and DLCIC. The commutation frequency of the machine 

at a speed of 1000 r/min is at 400 Hz. It is evident that the current spectrum of the HCC contains harmonics at the 

integer multiples of the commutation frequency while the harmonics of the DLCIC at these frequencies are virtually 

zero.  
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Fig. 8 Comparison of DC-link current harmonics and average torque per rms phase current between DLCIC and HCC. 
(a) DC-link current in the commutation frequency range, (b) average torque per rms phase current 

 

TABLE 3 
Comparison of performance indicator from dc bus bar supply 

circuit 

Performance HCC VHC PBC DLCIC 

Vc,p2p (V) 10.96 7.70 9.62 1.03 

Is,p2p (A) 8.73 5.11 6.94 0.33 

Idc,avg (A) 9.75 9.82 8.77 9.86 

Tavg (Nm) 17.10 16.99 15.73 16.99 

Tp2p (Nm) 19.24 17.90 13.88 16.44 

Iph,rms (A) 40.42 41.09 37.18 41.06 

T/ Iph,rms (Nm/A) 0.423 0.414 0.423 0.414 
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The average torque per rms phase current of the proposed technique can be improved by optimizing the turn-on and 

turn-off angle as has been done for the HCC and other two techniques [15][16]. Fig. 8 (b) compares the average torque 

per rms ampere of phase current between the DLCIC and the HCC. As can be seen, when the speed is below 3000 

r/min, the torque per ampere in rms phase current of the DLCIC is higher than that of the HCC because the optimal 

dwell period of the DLCIC at low speeds is now shorter than that of the hysteresis. Better torque production capability 

of the DLCIC can also be understood from the fact that a significant amount of de-fluxing energy is fed into the 

incoming phase. Consequently, the torque is boosted.   

When the speed is greater than 3000 r/min, however, the torque per ampere of the DLCIC becomes lower than that of 

the HCC because the current tail of the DLCIC is longer with further advance in the turn-on angle. This leads to a small 

negative torque due to longer current tail, and hence reduction in the average torque. Therefore, the proposed technique 

can be used in conjunction with the HCC. When speed is below 3000 r/min DLCIC will be used otherwise the HCC 

used. The change of the switching techniques can be easily managed by a digital controller. 

4 Capacitor sizing 

Since frequencies of commutation induced voltage and current ripples can be very low at low operating speeds, the 

SR drive will require a very bulky filter to satisfy power quality requirements in aerospace applications, such as those 

specified in [17] and [18]  when employing the HCC. By combining the DLCIC with the HCC, the minimum operating 

speed of HCC has been increased to 3000 r/min for the SR drive under study and the resulting commutation frequency 

of the drive is 1200 Hz. Further, since the voltage and current harmonics of the DLCIC is at a much high PWM 

frequency (10 kHz), a filter designed to satisfy power quality at 1200 kHz for the HCC operation will be sufficient for 

DLCIC operation at lower speeds. Hence, the worst scenario for the filter design is HCC operation at 3000 r/min for the 

SR drive under study. 

It is essential that EMI noise of a SR converter is sufficiently attenuated by a filter. However, such a filter design also 

needs to ensure drive system stability, as the tightly regulated converter behaves like a constant power load and exhibits 

negative impedance at the input terminal of the converter [19]-[21]. The representative circuit with the 2nd order LRC 

filter is illustrated in Fig. 9 (a), where the constant power load is represented by the current source i0. The transfer 

function of the system is expressed by 
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where P is the input power to the drive. 
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Fig. 9 Stability and power quality constraints for filter design (a) Equivalent circuit with constant power load, (b) 
Stability lines with varied input resistances, (c) Stability line and power quality boundary when R = 0.1 Ω. 

 

The stability requirement of eqn. (2) can be expressed by a linear relationship between the filter capacitance and 

inductance for a minimum system damping of 0.03 [22] for a given R at the nominal supply voltage of 270V, as shown 

in Fig. 9 (b) where the filter resistance R is varied from 0.01, 0.05, 0.1 and 0.2 Ω. For a given R, any combination of C 

and L above the corresponding line will satisfy the stability requirement. 

To satisfy the power quality the variation of the minimum capacitance as a function of inductance for a given R, 

which meets 3 conditions listed below: 

(i) peak-to-peak capacitor voltage is less than 10% of the supply voltage;   

(ii)  harmonic spectra of normalized capacitor voltage are within MIL-STD-704F standard [17]; and   

(iii)  harmonic spectra of normalized supply current are within MIL-STD-416E standard [18]. 

was obtained by simulations. 

The power quality line for HCC operation at 3000 r/min is plotted together with the stability line for R = 0.1Ω in Fig. 

9 (c). The intersection of the two lines represents the best combination which satisfies both the power quality and 

stability requirements.  

To obtain a filter design with minimum weight, the filter weights which results with the four resistor values are 

estimated.  The resistor weight is estimated by a range of power dissipation from a suitable commercially available 
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power resistor series.  The inductor weight is minimized and then calculated by an optimal design procedure described 

in [23 - 24].  The capacitor weight is estimated according to the data sheet of a suitable commercially available metal 

film capacitor series which has good reliability at the nominal voltage for safety critical applications.  

The weights of all filter components are given in Table IV. If the SR drive employs the HCC and operates at a 

minimum speed of 100 r/min, the resultant filter parameters and weights which satisfy both the power quality and 

stability are given in Table V for comparison purpose. From Tables 4 and 5, the minimum filter weight is obtained with 

R = 0.1Ω.  It is also evident that the proposed technique in combination with the HCC yields a minimum filter weight of 

3.74 kg, which is almost 20 times less than that of the HCC operation. It should also be noted that the smaller filter size 

with the proposed control is conducive to significant cost reduction. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

5 Experimental validation 

The proposed switching technique for minimising the DC link capacitance has been implemented and tested. Fig. 10 

shows the testing rig of the experimental SR motor drive system whose parameters are given in Table 1. The objective 

of the experiment is to verify that the proposed switching technique can be realized in a practical system for an effective 

reduction of the DC-link voltage ripple hence minimising the required DC-link capacitance when compared with the 

conventional hysteresis control. The motor is loaded in the experiment by an induction machine based dynamometer at 

its rated torque of 4 Nm. 

 

TABLE 5 
Filter Component Weight with HCC 

Component Weight (kg.) 
Total weight 

(kg.) 
R 0.01Ω 0.05  
L 0.89mH 4.56 172.2 
C 68870 µF 167.60  
R 0.05Ω 0.19  
L 0.25mH 16.19 77.13 
C 24934 µF 60.75  
R 0.1Ω 0.51  
L 3.60mH 26.80 69.17 
C 17170 µF 41.86  
R 0.2Ω 1.22  
L 5.17mH 42.88 72.89 
C 11797 µF 28.79  

 

TABLE 4 
Filter Component Weight with Combined DLCIC and 

HCC Control 

Component Weight (kg.) 
Total weight 

(kg.) 
R 0.01Ω 0.05  
L 0.048mH 0.25 9.55 
C 3760 µF 9.25  
R 0.05Ω 0.19  
L 0.134mH 0.60 4.2 
C 1361 µF 3.41  
R 0.1Ω 0.51  
L 0.195mH 0.86 3.74 
C 933 µF 2.37  
R 0.2Ω 1.22  
L 0.282mH 1.25 4.16 
C 653 µF 1.69  
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Fig. 10 Experimental set-up 
 

The SR converter is comprised of 3 standard IGBT modules.  Each module uses 2 active switches and 2 diodes to 

form an asymmetric H-bridge.  The phase current transducer and the DC-link capacitor are also integrated in the 

converter module.  The DC-link capacitor bank contains eight 40-µF metal film-foil capacitors with a total capacitance 

of 320 µF.  The capacitors are installed beneath the IGBT modules via two planar bus bars. The DC-link current is 

reconstructed from phase current measurements and converter switching states according to eqn. (3): 

 

∑ ⋅⋅+⋅⋅−= )()( ,2,1,2,1 nnphnnphdc SSiSSiI  (3) 

 

This signal is fed into a resettable analogue integrator for the DLCIC operation.  

A 270V DC power supply is connected to the converter via 25-m cable with estimated parasitic inductance of 100 µH 

[25]. The proposed technique is implemented in dSPACE system at 10 kHz PWM frequency. For comparison, the 

hysteresis control is also implemented and tested. 

During the tests, the SR drive operated in closed-loop speed control at a constant speed and the load torque was 

controlled by the dynamometer. Since the proposed method is most effective when operating in speeds at or below 3000 

r/min, the experimental results are presented for the 4 Nm and 3000 r/min operating condition. The experimental 

waveforms for voltage, current and logical signals are measured by high bandwidth voltage and current probes and they 

are recorded in Yokokawa Digital Scope DL750 with a sampling rate of 10 MHz.  

The dwell signal, the phase current (Iph),  the DC-link capacitor voltage (Vc), the supply current (Is), and the machine 

torque (T) obtained from the conventional hysteresis current control are shown in Fig. 11 (a) and those from the 

proposed technique are shown in Fig. 11 (b).  Both the experiments have the same turned-on and turned-off angles, 

being 3° and 18° respectively. 
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Fig. 10. Experimental waveforms at 4 Nm, 3000 r/min. (a) HCC, (b) Proposed DLCIC 

 

As can been seen, the peak-to-peak capacitor voltage which results from the hysteresis control is 20.67V and is much 

higher than that from the proposed method 11.33V.  More importantly, the proposed switching technique prevents the 

negative DC current during the de-fluxing period of an outgoing phase and hence effectively removes the commutation 

induced low frequency harmonics 

Not only the capacitor voltage ripple is reduced, the ripple in the supply current which results from the proposed 

switching technique is much lower compared to that from the hysteresis control.  The peak-to-peak value of Is from the 

hysteresis control is 22.08A while that from the proposed technique is 5.16A.  It should also be noted that although the 

commutation period of the proposed technique is longer than that of the hysteresis control, the rms phase currents of 

both the techniques are very close, being  17.08A for the hysteresis and 17.97A for the proposed technique. 

The measured torque waveforms for both the hysteresis and proposed control techniques appear to be smooth. This is 

due to the fact that the output of the torque transducer is processed by a built-in low pass filter with a cut-off frequency 

of 40 Hz. Thus the torque ripple of the SR machine is smoothed out by the filter. 
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6 Conclusion 

A new switching technique aimed for minimising the DC-link capacitance in an SR machine drive has been 

described. By maintaining a constant average DC-link current over a PWM switching cycle, the commutation induced 

low frequency harmonics in the DC-link current can be eliminated. Thus, the proposed technique can significantly 

reduce the capacitor voltage ripple and the supply current ripple in the DC-link of an SR drive when operating at low 

speeds. It has been shown that by combining the proposed technique with the conventional hysteresis current control, 

the capacitor size and filter weight can be 18 times less than that of the conventional hysteresis control for the same 

power quality and stability requirements. The utility and effectiveness of the proposed switching technique have been 

validated by experimental results. The developed switching technique facilitates size and cost reduction of SR drives, 

and removes one of the barriers for the realisation of its full potential in safety critical applications. 
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