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This paper is motivated by recent applications of Diophan-
tine approximation in electronics, in particular, in the rapidly 
developing area of Interference Alignment. Some remarkable 
advances in this area give substantial credit to the fundamen-
tal Khintchine–Groshev Theorem and, in particular, to its far 
reaching generalisation for submanifolds of a Euclidean space. 
With a view towards the aforementioned applications, here 
we introduce and prove quantitative explicit generalisations 
of the Khintchine–Groshev Theorem for non-degenerate sub-
manifolds of Rn. The importance of such quantitative state-
ments is explicitly discussed in Jafar’s monograph [12, §4.7.1].
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1. Introduction

The present paper is motivated by a recent series of publications, including [11,12,

14–17,21–23], which utilise the theory of metric Diophantine approximation to develop 

new approaches in interference alignment, a concept within the field of wireless com-

munication networks. This new link is both surprising and striking. The key ingredient 

from the number theoretic side is the fundamental Khintchine–Groshev Theorem and 

its variations. In this paper we seek to address certain problems in Diophantine ap-

proximation which crop up, or impinge upon, the applications to interference alignment. 

The results obtained represent quantitative refinements of the Khintchine–Groshev The-

orem that are relevant to the applications mentioned above. Indeed, the desirability of 

such quantitative statements is explicitly eluded to in Jafar’s monograph [12, §4.7.1]. 

While the main content of the paper is purely number theoretic, in Appendix A we 

attempt to illustrate at a basic level the manner in which Diophantine Approximation 

plays a natural role in Interference Alignment. The appendix is very much intended 

for the reader whose background is not in electronics but is nevertheless interested in 

applications.

Although the main emphasis will be on the Khintchine–Groshev Theorem for sub-

manifolds of Rn [2,5,7,8,13,20], we begin by considering the classical theory for systems 

of linear forms of independent variables. This approach has two benefits. Firstly, we are 

able to introduce the key ideas without too much technical machinery obscuring the 

picture. Secondly, the refinements of the classical theory produce effective results with 

much better constants.

In order to recall Khintchine’s theorem we first define the set W(ψ) of ψ-well approx-

imable numbers. To this end, denote by R+ the set of non-negative real numbers. Given 

a real positive function ψ : R+ → R+ with ψ(r) → 0 as r → ∞, let then

W(ψ) := {x ∈ R : |qx − p| < ψ(q) for i.m. (q, p) ∈ N × Z} ,

where ‘i.m.’ reads ‘infinitely many’. For obvious reasons the function ψ is often referred 

to as an approximating function. The points x in W(ψ) are characterised by the property 

that they admit approximation by rational points p/q with the error at most ψ(q)/q.
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A simple ‘volume’ argument together with the Borel–Cantelli Lemma from probability 

theory implies that

|W(ψ)| = 0 if
∞∑

q=1

ψ(q) < ∞ ,

where |X| stands for the Lebesgue measure of X ⊂ R. The above convergence statement 

represents the easier part of the following beautiful result due to Khintchine which gives 

a criterion for the size of the set W(ψ) in terms of Lebesgue measure. In what follows, we 

say that X ⊂ R is full in R and write |X| = Full if |R \X| = 0; that is, the complement 

of X in R is of Lebesgue measure zero. The following is a slightly more general version 

of Khintchine, see [4].

Theorem A (Khintchine, 1924). Let ψ be an approximating function. Then

|W(ψ)| =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if

∞∑

q=1

ψ(q) < ∞ ,

Full if

∞∑

q=1

ψ(q) = ∞ and ψ is monotonic.

Thus, given any monotonic approximating function ψ, for almost all1 x ∈ R the 

inequality |x − p/q| < ψ(q)/q holds for infinitely many rational numbers p/q if and only 

if the sum 
∑∞

q=1 ψ(q) diverges.

There are various generalisations of Khintchine’s theorem to higher dimensions — see 

[3] for an overview. Here we shall consider the case of systems of linear forms which 

originates from a paper by Groshev in 1938. In what follows, m and n will denote 

positive integers and Mm,n will stand for the set of m × n matrices over R. Given a 

function Ψ : Zn → R+, let

Wm,n(Ψ) := {X = (xi,j) ∈ Mm,n : ‖Xa‖ < Ψ(a) for i.m. a ∈ Z
n \ {0}} ,

where a = (a1, . . . , an),

‖Xa‖ := max
1≤i≤m

‖xi,1a1 + . . . + xi,nan‖

and ‖x‖ := min{|x − k| : k ∈ Z} is the distance of x ∈ R from the nearest integer. Given 

a subset X in Mm,n, we will write |X|mn for its ambient (i.e. mn-dimensional) Lebesgue 

measure. It is easily seen that W1,1(Ψ) coincides with W(ψ) when Ψ(q) = ψ(|q|). There-

fore the following result is the natural extension of Theorem A to higher dimensions. 

Notice that there is no monotonicity assumption on the approximating function.

1 ‘For almost all’ means for all except from a set of Lebesgue measure zero.
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Theorem B. Let m, n ∈ N with nm > 1, ψ : N → R+ be an approximating function and

Σψ :=
∞∑

q=1

qn−1ψ(q)m . (1)

Let Ψ : Zn → R+ be given by Ψ(a) := ψ(|a|) for a = (a1, . . . , an) ∈ Z
n \ {0}, where 

|a| = max1≤i≤n |ai|. Then

|Wm,n(Ψ)|mn =

⎧
⎨
⎩

0 if Σψ < ∞ ,

Full if Σψ = ∞ .

Theorem B was first obtained by Groshev under the assumption that qnψ(q)m is 

monotonic in the case of divergence. The redundancy of the monotonicity condition for 

n ≥ 3 follows from Schmidt’s paper [18, Theorem 2] and for n = 1 from Gallagher’s 

paper [10]. Theorem B as stated was eventually proved in [6] where the remaining case 

of n = 2 was addressed. The convergence case of Theorem B is a relatively simple 

application of the Borel–Cantelli Lemma and it holds for arbitrary functions Ψ. Thus 

together with Theorem A, we have the following extremely general statement in the case 

of convergence.

Theorem C. Let m, n ∈ N and Ψ : Zn → R+ be any function such that the sum

ΣΨ :=
∑

a∈Zn\{0}
Ψ(a)m (2)

converges. Then

|Wm,n(Ψ)|mn = 0 .

An immediate consequence of Theorem C is the following statement.

Corollary 1. Let Ψ be as in Theorem C. Then, for almost every X ∈ Mm,n there exists 

a constant κ(X) > 0 such that

‖Xa‖ > κ(X) Ψ(a) ∀ a ∈ Z
n \ {0} . (3)

In recent years estimates of this kind have become an important ingredient in the 

study of the achievable number of degrees of freedom in various schemes on Interference 

Alignment from electronics communication — see, e.g., [16]. The applications typically 

require that κ(X) is independent of X. Unfortunately, this is impossible to guarantee 

with probability 1, that is on a set of full Lebesgue measure. To demonstrate this claim, 

let us define the following set:
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Bm,n(Ψ, κ) :=
{

X ∈ Mm,n : ‖Xa‖ > κΨ(a) ∀ a ∈ Z
n \ {0}

}
. (4)

Then, for any κ and Ψ, the set B1,n(Ψ, κ) will not contain

[−κΨ(a), κΨ(a)] × R
n−1

with a = (1, 0, . . . , 0). This set is of positive probability. In the light of this example it 

becomes highly desirable to address the following problem:

Problem. Investigate the dependence between κ and the probability of Bm,n(Ψ, κ).

As the first step to understanding this problem we obtain the following straightforward 

consequence of Theorem C.

Theorem 1. Let m, n ∈ N and μ be a probability measure on Mm,n that is absolutely 

continuous with respect to Lebesgue measure on Mm,n. Let Ψ : Zn → R+ be any function 

such that (2) converges. Then for any δ ∈ (0, 1) there is a constant κ > 0 depending only 

on μ, Ψ and δ such that

μ (Bm,n(Ψ, κ)) ≥ 1 − δ. (5)

Prior to giving a proof of this theorem recall that a measure μ on Mm,n is absolutely 

continuous with respect to Lebesgue measure if there exists a Lebesgue integrable function 

f : Mm,n → R+ such that for every Lebesgue measurable subset A of Mm,n, one has 

that

μ(A) =

∫

A

f, (6)

where 
∫

A
f is the Lebesgue integral of f over A. The function f is often referred to as 

the distribution (or density) of μ.

Proof. Since μ is absolutely continuous with respect to Lebesgue measure, Theorem C

implies that μ(Wm,n(Ψ)) = 0. Hence μ(Mm,n \ Wm,n(Ψ)) = μ(Mm,n) = 1. Note that

⋃

κ>0

Bm,n(Ψ, κ) = Mm,n \ Wm,n(Ψ) .

Theorem 1 now follows on using the continuity of measures. ✷

In view of our previous discussion we have that κ → 0 as δ → 0. Then, the above prob-

lem specialises to the explicit understanding of the dependence of κ on δ. This will be the 

main content of the next section. Subsequent sections will be devoted to obtaining simi-

lar effective version of the convergence Khintchine–Groshev Theorem for non-degenerate 
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submanifolds of Rn. This constitutes the main substance of the paper. The results are 

obtained by exploiting the techniques of Bernik, Kleinbock and Margulis [8] originating 

from the seminal work of Kleinbock and Margulis [13] on the Baker–Sprindžuk conjec-

ture.

2. The theory for independent variables

To begin with we give an alternative proof of Theorem 1 which introduces an explicit 

construction that will be utilised for quantifying the dependence of κ on δ. Indeed, in 

the case that μ is a uniform distribution on a unit cube the proof already identifies the 

required dependence.

2.1. Theorem 1 revisited

By a unit cube in Mm,n we will mean a subset of Mm,n given by

{
(xi,j) ∈ Mm,n : αi,j ≤ xi,j < αi,j + 1

}

for some fixed matrix (αi,j) ∈ Mm,n. Given a ∈ Z
n \ {0} and ε > 0, let W(a, ε) denote 

the set of X ∈ Mm,n such that

‖Xa‖ ≤ ε . (7)

It is easily seen that W(a, ε) is invariant under additive translations by an integer matrix; 

that is,

W(a, ε) + B = W(a, ε)

for any B ∈ Mm,n(Z), where Mm,n(Z) denotes the set of m × n matrices with integer 

entries. Furthermore, we have that

|W(a, ε) ∩ P |mn = (2ε)m (8)

for any 0 ≤ ε ≤ 1
2 and any unit cube P in Mm,n. This follows, for example, from [19, 

Chapter 1, Lemma 8]. Then, since

ΣΨ :=
∑

a∈Zn\{0}
Ψ(a)m < ∞ (9)

we must have that

MΨ := sup{Ψ(a) : a ∈ Z
n \ {0}} < ∞. (10)
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In what follows we will assume that

2κMΨ ≤ 1 . (11)

This condition ensures that we can apply (8) with ε = κΨ(a).

Fix a unit cube P0 in Mm,n and for each Δ ∈ Mm,n(Z), let

P∆ := P0 + Δ

denote the additive translation of P0 by Δ. Clearly, P∆ itself is a unit cube. Furthermore,

Mm,n =
◦⋃

∆∈Mm,n(Z)

P∆ . (12)

Note that the union is disjoint. Using (8) and the fact that

Mm,n \ Bm,n(Ψ, κ) =
⋃

a∈Zn\{0}
W(a, κΨ(a)) ,

we obtain that for each Δ ∈ Mm,n(Z),

|P∆ \ Bm,n(Ψ, κ)|mn ≤
∑

a∈Zn\{0}
|W(a, κΨ(a)) ∩ P∆|mn

=
∑

a∈Zn\{0}
(2κΨ(a))m = (2κ)mΣΨ . (13)

Since μ is a probability measure, it follows from (12) that there exists a finite subset 

A ⊂ Mm,n(Z) such that

μ

(
⋃

∆∈A

P∆

)
> 1 − δ/2 . (14)

Let N = #A be the number of elements in A. Since μ is absolutely continuous with 

respect to Lebesgue measure, for every Δ ∈ A and any ε1 > 0, there exists ε2 such that 

for any measurable subset X of P∆,

|X|mn < ε2 ⇒ μ(X) < ε1 . (15)

In view of (13), applying (15) to X = P∆ \ Bm,n(Ψ, κ) and ε1 = δ/(2N) implies the 

existence of

ε2 = ε2(Δ, δ, N) > 0
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such that

μ(P∆ \ Bm,n(Ψ, κ)) < δ/(2N) if (2κ)mΣΨ ≤ ε2(Δ, δ, N) . (16)

In particular, the second inequality in (16) holds if

κ ≤ κ∆ :=
1

2

(
ε2(Δ, δ, N)

ΣΨ

)1/m

.

Since A is finite, there exists κ satisfying (11) and

0 < κ ≤ min
∆∈A

κ∆ .

Clearly, for such a choice of κ the first inequality in (16) holds for any Δ ∈ A. Hence, by 

(14) and the additivity of μ we obtain that

μ(Mm,n \ Bm,n(Ψ, κ)) ≤ δ

2
+
∑

∆∈A

μ(P∆ \ Bm,n(Ψ, κ))

≤ δ

2
+
∑

∆∈A

δ

2N
=

δ

2
+ N

δ

2N
= δ .

The upshot of this is that

μ(Bm,n(Ψ, κ)) = 1 − μ(Mm,n \ Bm,n(Ψ, κ)) ≥ 1 − δ , (17)

which completes the proof of Theorem 1.

2.2. Quantifying the dependence of κ on δ

We now turn our attention to quantifying the dependence of κ on δ within the context 

of Theorem 1. To this end, we will make use of the Lp norm. Given a Lebesgue measurable 

function f : Mm,n → R+, a measurable subset X of Mm,n and p ≥ 1, we write f ∈ Lp(X)

if the Lebesgue integral

∫

X

|f |p :=

∫

Mm,n

|f |pχX

exists and is finite. Here χX is the characteristic function of X. For f ∈ Lp(X), the Lp

norm of f on X is defined by

‖f‖p,X :=

⎛
⎝
∫

X

|f |p
⎞
⎠

1/p

.
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In the case p = ∞, the L∞-norm on X is defined as the essential maximum of |f | on X; 

that is,

‖f‖∞,X := inf {c ∈ R : |f(x)| ≤ c for almost all x ∈ X} .

If ‖f‖∞,X < ∞, then we write f ∈ L∞(X). For example, if f is continuous and X is a 

non-empty open subset of Mm,n, then ‖f‖∞,X is simply the supremum of f on X. The 

following lemma gathers together two well know facts regarding the Lp norm.

Lemma 1.

(1) For any p ≥ 1 and any measurable subsets X ⊂ Y ,

‖f‖p,X ≤ ‖f‖p,Y .

(2) (Hölder’s inequality) For any 1 ≤ p, q ≤ ∞ satisfying 1
p + 1

q = 1,

∣∣∣∣∣∣

∫

X

fg

∣∣∣∣∣∣
≤ ‖f‖p,X‖g‖q,X .

The next lemma is a corollary of Lemma 1.

Lemma 2. Let p > 1 and μ be a probability measure on Mm,n with density f . Let X be 

a Lebesgue measurable subset of Mm,n. If f ∈ Lp(X), then

μ(X) ≤ ‖f‖p,X |X|1−1/p
mn .

Proof. By definition, we have that

μ(X) =

∫

X

f .

Define q by the equation 1
p + 1

q = 1. Then by Hölder’s inequality, we have that

μ(X) =

∫

X

f × 1 ≤ ‖f‖p,X‖1‖q,X = ‖f‖p,X

⎛
⎝
∫

X

1q

⎞
⎠

1/q

≤ ‖f‖p,X |X|1−1/p
mn

as required. ✷

We are now in the position to provide an effective version of Theorem 1. Let P0 and 

A be the same as in §2.1. In particular, assume that (14) holds. Furthermore, assume 
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that there exists some p > 1 such that for every Δ ∈ A, the density f of μ has finite Lp

norm on P∆.

Let κ be such that (11) is satisfied. In this case, (13) holds for every P∆ with Δ ∈ A. By 

Lemmas 1 and 2,

μ(P∆ \ Bm,n(Ψ, κ)) ≤ ‖f‖p,P∆
· |P∆ \ Bm,n(Ψ, κ)|1−1/p

mn .

Using (13), we obtain that

μ(P∆ \ Bm,n(Ψ, κ)) ≤ ‖f‖p,P∆
·
(

(2κ)mΣΨ

)1−1/p

(18)

where ΣΨ is given by (9). It follows that

μ(Mm,n \ Bm,n(Ψ, κ)) ≤ δ

2
+
∑

∆∈A

μ(P∆ \ Bm,n(Ψ, κ))

≤ δ

2
+
(

(2κ)mΣΨ

)1−1/p

Σf ≤ δ

if

κ ≤ 1

2

(
Σ−1

Ψ

(
δ

2Σf

) p
p−1

)1/m

,

where

Σf :=
∑

∆∈A

‖f‖p,P∆
. (19)

Since A is finite, the quantity Σf is also finite. The upshot of the above discussion is the 

following statement.

Theorem 2 (Effective version of Theorem 1). Let m, n ∈ N, μ, Ψ be as in Theorem 1, 

let MΨ be given by (10) and let f denote the density of μ. Furthermore, let P0 be any 

unit cube in Mm,n and A be any finite subset of Mm,n(Z) satisfying (14). Assume there 

exists p > 1 such that f ∈ Lp(P∆) for any Δ ∈ A and also assume that the quantity Σf

is given by (19). Then, for any δ ∈ (0, 1), inequality (5) holds with

κ :=
1

2
min

⎧
⎨
⎩

1

MΨ
,

(
Σ−1

Ψ

(
δ

2Σf

) p
p−1

)1/m
⎫
⎬
⎭ . (20)

In this formula, the quotient p/(p − 1) should be taken as equal to 1 when p = ∞.
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Remark 1. In the case when Ψ is even, that is Ψ(−a) = Ψ(a) for all a ∈ Z
n \{0}, one can 

improve formula (20) for κ by replacing ΣΨ with 1
2ΣΨ. This is an obvious consequence 

of the fact that in this case the sets W(a, κΨ(a)) and W(−a, κΨ(−a)) coincide and 

therefore do not have to be counted twice within the proof.

There are various simplifications and specialisations of Theorem 2 when we have 

extra information regarding the measure μ. The following is a natural corollary which is 

particularly relevant for probability measures μ with bounded distribution f and mean 

value about the origin.

Corollary 2. Let m, n ∈ N, μ, Ψ, MΨ be as in Theorem 1 and let the density f of μ be 

bounded above by a constant K > 0. Furthermore, let T be the smallest positive integer 

such that

μ ([−T, T )mn) ≥ 1 − δ/2. (21)

Then, for any δ ∈ (0, 1), inequality (5) holds with

κ :=
1

2
min

{
1

MΨ
,

(
δ

2K(2T )mnΣΨ

)1/m
}

. (22)

Proof. With respect to Theorem 2, let p = ∞ and A be the collection of cubes P∆

that exactly tiles [−T, T )mn. Then, #A = (2T )mn and thus Σf ≤ K(2T )mn. Now, (22)

trivially follows from (20). ✷

2.3. Numerical examples

In what follows, we will use the standard Gaussian error function

erf(x) :=
1√
2π

x∫

−∞

e−t2/2dt .

It is readily verified that the function erf is continuous, strictly increasing and that

lim
x→−∞

erf(x) = 0 and lim
x→+∞

erf(x) = 1.

As usual, for 0 < y < 1, define erf−1(y) to be the unique value x ∈ R such that erf(x) = y. 

Furthermore, define formally erf−1(0) := −∞ and erf−1(1) := +∞.

Consider now Corollary 2 in the case when m = n = 1 and when μ follows the 

standard Gaussian distribution N (0, 1). It can then be verified that Corollary 2 implies 

that inequality (5) holds with
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κ =
δ
√

2π

8 · N · ΣΨ
, (23)

where N := ⌈erf−1 (1 − δ/4)⌉. Here ⌈x⌉ is the “ceiling” of x, that is the smallest integer 

that is bigger than or equal to x ∈ R. We now consider explicit approximating functions. 

First, let Ψ be the function given by Ψ(q) = 0 if q ≤ 0,

Ψ(q) :=
1

2q · log2 q
if q ≥ 2 and Ψ(1) := 1/2 .

Then ΣΨ < 1.555 and on making use of (23) we obtain the following table for values of 

N and κ:

δ 0.5 0.25 0.1 0.01 10−3 10−5

N 2 2 3 4 4 5

κ 0.05 0.025 0.0067 5 · 10−4 5 · 10−5 4 · 10−7

It follows for instance from this set of data that for 99% of the values of the random 

variable x with normal distribution N (0, 1), one has that

‖qx‖ >
1

2000
· Ψ(q) for all q ∈ N.

In the next example, we fix a Q ∈ N and consider the approximating function Ψ given 

by

Ψ(q) :=

{
1
Q if 1 ≤ q ≤ Q,

0 otherwise.

Then ΣΨ = 1 and one can readily verify that

(i) for at least 75% of the values of the random variable x with normal distribution 

N (0, 1), one has that

‖qx‖ >
1

13Q
for all q ∈ [−Q, Q], q �= 0,

(ii) for at least 90% of the values of the random variable x with normal distribution 

N (0, 1), one has that

‖qx‖ >
1

50Q
for all q ∈ [−Q, Q], q �= 0.
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3. Diophantine approximation on manifolds

The aim is to establish an analogue of Theorem 2 for submanifolds M of Rn. More 

precisely, we consider the set Bn(Ψ, κ) ∩ M, where

Bn(Ψ, κ) := B1,n(Ψ, κ) .

The fact that the points of interest are of dependent variables, reflecting the fact that they 

lie on M, introduces major difficulties in attempting to describe the measure theoretic 

structure of Bn(Ψ, κ) ∩ M.

Non-degenerate manifolds. In order to make any reasonable progress with the above 

problems it is not unreasonable to assume that the manifolds M under consideration are 

non-degenerate. Essentially, these are smooth submanifolds of Rn which are sufficiently 

curved so as to deviate from any hyperplane. Formally, a manifold M of dimension d

embedded in Rn is said to be non-degenerate if it arises from a non-degenerate map 

f : U → R
n where U is an open subset of Rd and M := f(U). The map f : U →

R
n, x �→ f(x) = (f1(x), . . . , fn(x)) is said to be l-non-degenerate at x ∈ U, where l ∈ N, 

if f is l times continuously differentiable on some sufficiently small ball centred at x and 

the partial derivatives of f at x of orders up to l span Rn. The map f is non-degenerate

at x if it is l-non-degenerate at x for some l ∈ N. As is well known, any real connected 

analytic manifold not contained in any hyperplane of Rn is non-degenerate at every point 

[13].

Observe that if the dimension of the manifold M is strictly less than n then we have 

that |Bn(Ψ, κ) ∩M|n = 0 irrespective of the approximating function Ψ and κ. Thus, when 

referring to the Lebesgue measure of the set Bn(Ψ, κ) ∩ M it is always with reference to 

the induced Lebesgue measure on M. More generally, given a subset S of M we shall 

write |S|M for the measure of S with respect to the induced Lebesgue measure on M. 

Without loss of generality, we will assume that |M|M = 1 as otherwise the measure can 

be re-normalised accordingly.

The following statement is a straightforward consequence of the main result of Bernik, 

Kleinbock and Margulis in [8].

Theorem BKM. Let M be a non-degenerate submanifold of Rn. Let Ψ : Zn → R+ be 

monotonically decreasing in each variable and such that

ΣΨ :=
∑

q∈Zn\{0}
Ψ(q) < ∞ . (24)

Then, for any δ ∈ (0, 1), there is a constant κ > 0 depending on M, ΣΨ and δ only such 

that

|Bn(Ψ, κ) ∩ M|M ≥ 1 − δ. (25)
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Remark 2. Theorem BKM holds for arbitrary probability measures supported on M
that are absolutely continuous with respect to the induced Lebesgue measure on M, 

thus giving an analogue of Theorem 2 for manifolds. As in the case of Theorem 1, the 

more general result follows from the Lebesgue statement.

It is worth pointing out that the main result in [8] actually implies that the union ⋃
κ>0 Bn(Ψ, κ) ∩ M has full measure on M. Theorem BKM as stated above follows 

from [8, Theorem 1.1]2 on using the continuity of measures. Our main goal is to quantify 

the dependence of κ on δ. Theorem 6 of §5 below explicitly quantifies this dependence. 

However, the statement is rather technical and we prefer to state for now a cleaner result 

that shows that the dependency between κ and δ is polynomial.

Theorem 3. Let l ∈ N and let M be a compact d-dimensional Cl+1 submanifold of Rn

that is l-non-degenerate at every point. Let μ be a probability measure supported on 

M absolutely continuous with respect to | . |M. Let Ψ : Z
n → R+ be a monotonically 

decreasing function in each variable satisfying (24). Then there exist positive constants 

κ0, C1 depending on Ψ and M only and C0 depending on the dimension of M only such 

that for any 0 < δ < 1, the inequality

μ(Bn(Ψ, κ) ∩ M) ≥ 1 − δ (26)

holds with

κ := min
{

κ0, C0Σ−1
Ψ δ, C1δd(n+1)(2l−1)

}
. (27)

4. Preliminaries for Theorem 3

4.1. Localisation and parameterisation

Since M is non-degenerate everywhere, we can restrict ourself to considering a suffi-

ciently small neighbourhood of an arbitrary point on M. By compactness, M then can 

be covered with a finite subcollection of such neighbourhoods. Therefore, in view of the 

finiteness of the cover, the existence of κ0, C0 and C1 satisfying Theorem 3 globally will 

follow from the existence of these parameters for every neighbourhood in the finite cover: 

κ0, C0 and C1 should be taken to be the minimum of their local values.

Now as we can work with M locally, we can parameterise it with some map f : U → R
n

defined on a ball U in Rd, where d = dim M. Note that f must be at least C2 in order 

to ensure that M is non-degenerate. Without loss of generality we assume that

M = {f(x) : x ∈ U} .

2 Throughout, results and page numbers within [8] are with reference to the arXiv version: math/
0210298v1.
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Furthermore, using the Implicit Function Theorem if necessary, we can make f to be 

a Monge parametrisation, that is f(x) = (x1, . . . , xd, fd+1(x), . . . , fn(x)), where x =

(x1, . . . , xd). Note that f can be assumed to be bi-Lipschitz on U. This readily follows 

from the fact that f is C1 but possibly requires a further shrinking of U.

Let Bn(Ψ, κ, M) denote the orthogonal projection of Bn(Ψ, κ) ∩ M onto the set of 

parameters U. Thus,

Bn(Ψ, κ, M) := {x ∈ U : ‖a.f(x)‖ > κΨ(a) for all a ∈ Z
n, a �= 0} . (28)

The set Bn(Ψ, κ) ∩ M and its projection Bn(Ψ, κ, M) are related by the bi-Lipschitz 

map f . Since bi-Lipschitz maps only affect the Lebesgue measure of a set by a multi-

plicative constant (in this case the constant will depend on f only), it suffices to prove 

Theorem 3 for the project set. More precisely, Theorem 3 is equivalent to showing that 

there exist positive constants κ0, C0 and C1 > 0 depending on Ψ and f only such that 

for any 0 < δ < 1,

|Bn(Ψ, κ, M)|d ≥ (1 − δ)|U|d (29)

holds with κ given by (27).

4.2. Auxiliary statements

We will denote the standard L1 (resp. Euclidean, infinity) norm on Rd by ‖ . ‖1 (resp. 

‖ . ‖2, ‖ . ‖∞). Also as before, given an x ∈ R, ‖x‖ will denote the distance of x from the 

nearest integer. The notation B(x, r) will refer to the Euclidean open ball of radius r > 0

centred at x and Sd−1 will denote the unit sphere in dimension d ≥ 1 (with respect to 

the Euclidean norm). Furthermore, throughout

Vd :=
πd/2

Γ (1 + d/2)

is the volume of the d-dimensional unit ball and Nd denotes the Besicovitch covering 

constant.

Remark 3. For further details on the Besicovitch covering constant, cf. [9]. We will only 

need in what follows the inequality Nd ≤ 5d satisfied by this constant.

The proof of Theorem 3 involves two separate cases that take into consideration 

the relative size of the gradient of f(x) · q, where q = (q1, . . . , qn) ∈ Z
n \ {0} and 

f(x) · q = f1(x)q1 + · · · + fn(x)qn is the standard inner product of f(x) and q. The first 

case of ‘big gradient’ is considered within the next result and is an adaptation of [8, 

Theorem 1.3].
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In what follows, ∂β will denote partial derivation with respect to a multi-index β =

(β1, . . . , βd) ∈ N
d
0, where N0 will stand for the set of non-negative integers, that is 

N0 := {0, 1, 2, . . . }. Furthermore, |β| we will mean the order of derivation, that is |β| :=
β1 + · · · + βd. Also, ∂k

i will denote the differential operator corresponding to the kth

derivative with respect to the ith variable, that is, ∂k
i := ∂k/∂xk

i .

Theorem 4. Let U ⊂ R
d be a ball of radius r and f ∈ C2(2U), where 2U is the ball with 

the same centre as U and radius 2r. Let

L∗ := sup
|β|=2, x∈2U

‖∂βf(x)‖∞ and L := max

(
L∗,

1

4r2

)
. (30)

Then, for every δ′ > 0 and every q ∈ Z
n \ {0}, the set of x ∈ U such that

‖f(x) · q‖ < δ′

and

‖∇f(x)q‖∞ ≥
√

ndL‖q‖∞ (31)

has measure at most Kdδ′|U|d, where ∇f(x)q is the gradient of f(x) · q and

Kd :=
42d+1dd/2Nd

Vd
(32)

is a constant depending on d only.

Proof. The proof of Theorem 4 follows on appropriately applying [8, Lemma 2.2]. For 

convenience we refer to this lemma as L2.2. We take M in L2.2 to be equal to the quantity 

ndL, where L is defined by (30). We set δ in L2.2 to be equal to δ′ appearing in Theorem 4. 

Then, in view of (30) and the fact that n, d, ‖q‖∞ ≥ 1, it follows that the hypotheses 

of L2.2 (namely [8, Eq. (2.1a) & Eq. (2.1b)]) are satisfied. Thus, the conclusion of L2.2 

implies Theorem 4 with the constant Cd in L2.2 equal to Kd appearing in Theorem 4. 

The explicit value of Kd is calculated by ‘tracking’ the values of the auxiliary constants 

C ′
d, C ′′

d and C ′′′
d appearing in [8]. Namely,3

C ′
d =

Vd

22ddd/2
, C ′′

d = 2d+2, C ′′′
d =

C ′′
d

C ′
d

,

3 There are two typos in the proof of L2.2 that one should be aware of when verifying the values of the 
constants given here. On page 6 line −2, the inclusion regarding U(x) is the wrong way round, it should 
read U(x) ⊃ B(x, ρ

4
√

d
). Next, on page 7 line 11, in the rightmost term of the displayed set of inequalities 

the quantity δ is missing, it should read C′′′
d δ|U(x)|d. These typos do not affect the validity of the proof 

given in [8].
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and then

Kd = 2dC ′′′
d Nd =

2dC ′′
d Nd

C ′
d

=
24d+2dd/2Nd

Vd
· ✷

Next in Theorem 5 below we consider the case of ‘small gradient’. This is an explicit 

version of [8, Theorem 1.4]. First we introduce auxiliary constants.

Given a Cl map f : U → R
n defined on a ball U in Rd, the supremum of s ∈ R such 

that for any x ∈ U and any v ∈ S
n−1 there exists an integer k, 0 < k ≤ l, and a unit 

vector u ∈ S
d−1 satisfying

∣∣∣∣
∂k(f · v)

∂uk
(x)

∣∣∣∣ ≥ s (33)

will be called the measure of l-non-degeneracy of (f , U) and will be denoted by s(l; f , U). 

Here and elsewhere for a unit vector u ∈ S
d−1, ∂k/∂uk will denote the derivative in 

direction u of order k.

As in Theorem 4, the radius of the ball U will be denoted by r. Throughout, we let 

x0 denote the centre of U. Also, given a real number λ > 0, we let λU denote the scaled 

ball of radius λ r and with the same centre x0 as that of U. With this in mind, consider 

the balls

U+ := 3d+1U,

Ũ := 3n+1U,

Ũ+ := 3n+d+2U.

(34)

For technical reasons, that will soon become apparent, in order to deal with the ‘small 

gradient’ case we make the following assumption on the map f : U → R
n.

Assumption 1. The map f = (f1, . . . , fn) is an n-tuple of Cl+1 functions defined on the 

closure of Ũ+ which is l-non-degenerate everywhere on the closure of Ũ+.

Remark. In view of the discussion of §4.1, there is no loss of generality in imposing 

Assumption 1 within the context of Theorem 3.

We denote by s0 the measure of non-degeneracy of f on Ũ+. Note that Assumption 1 

ensures that

s0 := s(l; f , Ũ+) > 0. (35)

Also, notice that it ensures the existence of a constant M ≥ 1 such that for all k ≤ l + 1

and all u1, . . . , uk ∈ S
d−1,
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sup
x∈Ũ+

∥∥∥∥
∂kf

∂u1 . . . ∂uk
(x)

∥∥∥∥
2

≤ M , (36)

where ∂ui means differentiation in direction ui. Note that the left-hand side of (33) is 

the length of the projection of ∂kf(x)/∂uk on the line passing through v and hence it is 

no bigger than M . This implies that

s0 ≤ M .

Without loss of generality, we will assume that the radius r of the ball U satisfies

r ≤ min

{
s0 · σ(l, d)

2 · 3n+d+2
√

dM
,

ηs0

4 · 1073n+d+2 dMll+2(l + 1)!

}
, (37)

where

η := min

{
1

16
,

(
Vd

2d+2dl(l + 1)1/l5d

)d(2l−1)(2l−2)
}

(38)

and where

σ(l, d) :=
1

23l(d−1)/2
· φ

((√
2 · (2l)2+l(l−1)/2 · (l + 1)!

)−1

, 2, l

)d−1

(39)

with the quantity φ(ω, B, k) defined as

φ(ω, B, k) :=
ωk(k−1)/2

2
√

2 · Bk · (k + 1)!
(40)

for any integer k ≥ 1 and any real numbers ω, B > 0.

Furthermore, define the following constants determined by f and U:

ρ1 :=
s0

4ll(l + 1)!
√

d
(2r)l , (41)

τ :=
rls0

4ll(l + 1)!
,

and

ρ2 :=
s0

4ll(l + 1)!

( τ

M

)l−1
(
τ
(
1 − 1/

√
2
))2

√(
s0

4ll(l+1)!

(
τ
M

)l)2

+
(

τ
(

1 + 1√
2

))2
· (42)

Finally, let

ρ :=
ρ1ρ2√

ρ2
1 + (ρ2 + 2M2)2

· (43)
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Theorem 5. Let U ⊂ R
d be a ball and f = (f1, . . . , fn) be an n-tuple of Cl+1 functions 

satisfying Assumption 1. Then, for any 0 < δ′ ≤ 1, any n-tuple T = (T1, . . . , Tn) of real 

numbers ≥ 1 and any K > 0 satisfying

δ′KT1 · · · · · Tn

maxi=1,...,n Ti
≤ 1, (44)

define the set A(δ′, K, T) to be

A(δ′, K, T) :=

⎧
⎪⎪⎨
⎪⎪⎩

x ∈ U : ∃ q ∈ Z
n \ {0} such that

⎧
⎪⎪⎨
⎪⎪⎩

‖f(x) · q‖ < δ′

‖∇f(x)q‖∞ < K

|qi| < Ti, i = 1, . . . , n

⎫
⎪⎪⎬
⎪⎪⎭

. (45)

Then

|A(δ′, K, T)|d ≤ E
(√

n + d + 1 · ε1

)1/d(2l−1)

|U|d ,

where

ε1 := max

⎛
⎜⎝δ′,

⎛
⎝δ′KT1 · · · · · Tn

max
1≤i≤n

Ti

⎞
⎠

1
n+1

⎞
⎟⎠ (46)

and

E := C(n + 1)(3dNd)n+1ρ−1/d(2l−1) , (47)

in which ρ is given by (43) and C is the constant explicitly given by (62) below.

At first glance the statement of Theorem 5 looks very similar to [8, Theorem 1.4]. 

We stress that the key difference is that in our statement the constants are made fully 

explicit. The proof of Theorem 5 is rather involved and will be the subject of §6.

5. A strengthening and proof of Theorem 3

In view of the discussion of §4.1, Theorem 3 will follow immediately on establishing a 

stronger result (Theorem 6 below), which explicitly characterises the dependence on Ψ

and M of the constants κ0, C0 and C1 appearing within the statement of Theorem 3. 

In the case that the function f defining the manifold under consideration is explicitly 

given, the values of these constants may be improved by following the methodology of 

the proof of Theorem 6 as many computations will then be made simpler.
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Let

CΨ := sup
q=(q1,...,qn)∈Zn\{0}

Ψ(q)
n∏

i=1

q+
i , where q+

i := max{1, |qi|} . (48)

It is a well known fact that, under the assumption that Ψ is monotonically decreasing 

in each variable, relation (24) implies that 0 < CΨ < ∞. Also define the constant

Sn :=
∑

t∈Zn

2− ‖t‖∞
2d(2l−1)(n+1) ,

which is clearly finite and positive as the sum converges.

Theorem 6. Let U ⊂ R
d be a ball whose radius satisfies (37) and let f = (f1, . . . , fn) be 

an n-tuple of Cl+1 functions satisfying Assumption 1. Let ΣΨ, L, Kd and E be given by 

(24), (30), (32) and (47) respectively and let

K0 = E

(√
n + d + 1 ·

(
CΨ2n−1/2

√
ndL
) 1

n+1

)1/d(2l−1)

.

Given any δ > 0, let

κ := min

{
1

CΨ2n−1/2
√

ndL
,

δ

2KdΣΨ
,

(
δ

2K0Sn

)d(n+1)(2l−1)
}

.

Then

|Bn(Ψ, κ, M)|d ≥ (1 − δ)|U|d. (49)

Clearly the above is an explicit version of Theorem 3 in the case when μ is Lebesgue 

measure. The arguments given in the proof of Theorem 2 are easily adapted to deal with 

the general situation.

5.1. Proof of Theorem 6 modulo Theorem 5

For κ > 0 and any q ∈ Z
n, define

A(κ; q) := {x ∈ U : ‖f(x) · q‖ < κΨ(q) & (31) holds}

and

Ac(κ; q) := {x ∈ U : ‖f(x) · q‖ < κΨ(q) & (31) does not hold} .
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Clearly it suffices to prove that

∣∣∣∣∣∣

⋃

q∈Zn\{0}
A(κ; q)

∣∣∣∣∣∣
d

≤ δ

2
|U|d and

∣∣∣∣∣∣

⋃

q∈Zn\{0}
Ac(κ; q)

∣∣∣∣∣∣
d

≤ δ

2
|U|d . (50)

By Theorem 4 with δ′ = κΨ(q), we immediately have that |A(κ; q)|d ≤ KdκΨ(q)|U|d. 

Then, summing over all q ∈ Z
n \ {0} gives

∣∣∣∣∣∣

⋃

q∈Zn\{0}
A(κ; q)

∣∣∣∣∣∣
d

≤ KdΣΨκ|U|d ≤ δ

2
|U|d. (51)

Now to establish the second inequality in (50), given an n-tuple t = (t1, . . . , tn) ∈ N
n
0 , 

define the set

Ac
t :=

⋃

q=(q1,...,qn)∈Z
n\{0}

2ti ≤q+
i <2ti+1

Ac(κ; q) , (52)

where q+
i = max{1, |qi|}. Observe that

⋃

q∈Zn

Ac(κ; q) =
⋃

t∈Nn
0

Ac
t . (53)

By (48) and the monotonicity of Ψ in each variable, for every q = (q1, . . . , qn) ∈ Z
n \{0}

satisfying the inequalities 2ti ≤ q+
i < 2ti+1, we have that

Ψ(q) ≤ CΨ

(
n∏

i=1

q+
i

)−1

≤ CΨ

n∏

i=1

2−ti = CΨ2−
∑n

i=1 ti

and

‖q‖∞ ≤ 2maxi ti+1 .

Now let

δ′ = κCΨ2−
∑n

i=1 ti , K =
√

ndL2maxi ti+1 and Ti = 2ti+1 (1 ≤ i ≤ n) .

Then, Ac
t is easily seen to be contained in the set A(δ′, K, T) defined within Theorem 5. 

Clearly T1, . . . , Tn ≥ 1 and K > 0. Since κ < C−1
Ψ , we have that 0 < δ′ < 1. Finally, (44)

is satisfied, since

δ′KT1 · · · · · Tn

maxi=1,...,n Ti
=

κCΨ2−
∑n

i=1 ti

√
ndL2maxi ti+1

∏
i 2ti+1

2maxi ti+1
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=
κCΨ2n

√
ndL

2(maxi ti+1)/2
=

κCΨ2n−1/2
√

ndL

2‖t‖∞/2
< 1 , (54)

where the last inequality follows from the definition of κ. Therefore, Theorem 5 is appli-

cable and it follows that

|Ac
t|d ≤ |A(δ′, K, T)|d ≤ E

(√
n + d + 1 · ε1

)1/d(2l−1)

|U|d ,

where E is given by (47) and where, from (54), the definition of δ′ and the fact that 

κCΨ < 1,

ε1 = max

⎛
⎝κCΨ2−∑n

i=1 ti ,

(
κCΨ2n−1

√
ndL

2‖t‖∞/2

) 1
n+1

⎞
⎠ =

(
κCΨ2n−1

√
ndL

2‖t‖∞/2

) 1
n+1

.

Then, using (53) and summing over all t ∈ N
n
0 , we find that

∣∣∣∣∣∣

⋃

q∈Zn

Ac(κ; q)

∣∣∣∣∣∣
d

≤
∑

t∈Nn
0

E

⎛
⎝√

n + d + 1 ·
(

κCΨ2n−1
√

ndL

2‖t‖∞/2

) 1
n+1

⎞
⎠

1/d(2l−1)

|U|d

= K0Snκ1/d(n+1)(2l−1)|U|d ≤ δ

2
|U|d ,

where the latter inequality follows from the definition of κ. This establishes the second

inequality in (50) and thus completes the proof of Theorem 6 modulo Theorem 5.

6. Proof of Theorem 5

To establish Theorem 5, we will follow the basic strategy set out in the proof of [8, 

Theorem 1.4]. We stress that non-trivial modifications and additions are required to make 

the constants explicit. To begin with, we state a simplified form of [8, Theorem 6.2] and, 

to this end, various notions are now introduced.

Given a finite dimensional real vector space W , ν will denote a submultiplicative 

function on the exterior algebra 
∧

W ; that is, ν is a continuous function from 
∧

W to 

R+ such that

ν(tw) = |t| ν(w) and ν(u ∧ w) ≤ ν(u)ν(w) (55)

for any t ∈ R and u, w ∈ ∧W . Given a discrete subgroup Λ of W of rank k ≥ 1, let 

ν(Λ) := ν(v1 ∧ · · · ∧ vk), where v1, . . . , vk is a basis of Λ (this definition makes sense 

from the first equation in (55)). Also, L(Λ) will denote the set of all non-zero primitive 

subgroups of Λ. Furthermore, given C, α > 0 and V ⊂ R
d, a function f : x ∈ V �→

f(x) ∈ R is said to be (C, α)-good on V if for any open ball B ⊂ V and any ǫ > 0,

|{x ∈ B : |f(x)| < ǫ sup
x∈B

|f(x)|}|d ≤ Cǫα|B|d.
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Theorem 7. ([8, Theorem 6.2]) Let W be a d + n + 1 dimensional real vector space and 

Λ be a discrete subgroup of W of rank k. Let a ball B = B(x0, r) ⊂ R
d and a map 

H : B̂ → GL(W ) be given, where B̂ := 3kB. Take C, α > 0, 0 < ρ̃ < 1 and let ν be a 

submultiplicative function on 
∧

W . Assume that for any Γ ∈ L(Λ),

(i) the function x → ν(H(x)Γ) is (C, α)-good on B̂,

(ii) there exists x ∈ B such that ν(H(x)Γ) ≥ ρ̃, and

(iii) for all x ∈ B̂, #{Γ ∈ L(Λ) | ν(H(x)Γ) < ρ̃} < ∞.

Then, for any positive ε ≤ ρ, one has

|{x ∈ B : ∃ v ∈ Λ \ {0} such that ν(H(x)v) < ε}|d ≤ k(3dNd)kC

(
ε

ρ

)α

|B|d. (56)

Theorem 5 is now deduced from Theorem 7 in the following manner. With respect to 

the parameters appearing in Theorem 7, we let

W = R
n+d+1

and

ν∗ be the submultiplicative function introduced in [8, §7].

There is nothing to gain in formally recalling the definition of ν∗. All we need to know 

is that ν∗ as given in [8] has the property that

ν∗(w) ≤ ‖w‖2 ∀ w ∈ ∧W (57)

and that its restriction to W coincides with the Euclidean norm. Next, the discrete 

subgroup Λ appearing in Theorem 7 is defined as

Λ :=

{(
p
0
q

)
∈ R

n+d+1 : p ∈ Z, q ∈ Z
n

}
. (58)

Note that it has rank k = n + 1, therefore the ball B̂ appearing in the statement of 

Theorem 7 coincides with the ball Ũ defined by (34). Finally, we let the map H send 

x ∈ Ũ to the product of matrices

H(x) := DUx, (59)

where

Ux :=

(
1 0 f(x)
0 Id ∇f(x)
0 0 In

)
∈ SLn+d+1(R) (60)
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and D is the diagonal matrix

D := diag
(ε1

δ′ ,
ε1

K
, . . . ,

ε1

K︸ ︷︷ ︸
d times

,
ε1

T1
, . . . ,

ε1

Tn

)
(61)

defined via the constants δ′, K, T1, . . . , Tn, and ε1 appearing in Theorem 5.

With the above choice of parameters, on using (57), it is easily verified that the set 

A(δ′, K, T) defined by (45) within the context of Theorem 5 is contained in the set on the 

left-hand side of (56) with ε := ε1

√
n + d + 1. The upshot is that Theorem 5 follows from 

Theorem 7 on verifying conditions (i), (ii) and (iii) therein with appropriate constants 

C, α and ρ. With this in mind, we note that condition (iii) is already established in [8, 

§7] for any ρ̃ ≤ 1. In §7 below, we will verify the remaining conditions (i) & (ii) with the 

following explicit constants:

C :=

(
d(n + 2)(d(n + 1) + 2)

2

)α/2

max (C∗
1 , 2Cd,l) , (62)

where

C∗
1 := max

(
2M

s0 · σ(l, d)
,

2d+2

Vd
· dl(l + 1) · M

s0
·
(

2ll + 1

σ(l, d)

)1/l
)

(63)

(here, σ(l, d) is the quantity defined in (39)),

Cd,l :=
2d+1dl(l + 1)1/l

Vd
, (64)

α :=
1

d(2l − 1)
(65)

and ρ̃ = ρ as defined by (43) (note that ρ < 1). This will establish Theorem 5.

7. Verifying conditions (i) & (ii) of Theorem 7

Unless stated otherwise, throughout this section, Λ will be the discrete subgroup of 

R
n+d+1 given by (58) and Γ ∈ L(Λ) will be a primitive subgroup of Λ. Verifying condition 

(i) of Theorem 7 is based on two separate cases: one when the rank of Γ is one and the 

other case of rank ≥ 2.

7.1. Rank one case of condition (i)

The key to verifying condition (i) in the case that Γ is of rank one is the following 

explicit version of [8, Proposition 3.4]. Notice that it and its corollary are themselves 

independent of rank and indeed Γ.
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Proposition 1. Let U ⊂ R
d be a ball, F ⊂ Cl+1

(
Ũ+
)

be a family of real valued functions 

and λ and γ be positive real numbers such that:

(1) the set {∇f : f ∈ F} is compact in Cl−1
(
Ũ+
)
,

(2) sup
f∈F

sup
x∈Ũ+

|∂βf(x)| ≤ λ for any multi-index β ∈ N
d
0 with 1 ≤ |β| ≤ l + 1,

(3) inf
f∈F

sup
u∈Sd−1

sup
1≤k≤l

∣∣∣ ∂
kf

∂uk (x0)
∣∣∣ ≥ γ, where x0 is the centre of U,

(4)
γ · σ(l, d)

2 · 3n+d+2
√

dλ
≥ r , where r is the radius of U as defined in (37) and σ(l, d) is 

defined in (39).

Then, for any f ∈ F , we have that

(a) f is 
(
C1, 1

dl

)
-good on Ũ,

(b) ‖∇f‖∞ is 
(

C1, 1
d(l−1)

)
-good on Ũ,

where

C1 = C1(γ, λ) := max

(
2λ

γ · σ(l, d)
,

2d+2

Vd
dl(l + 1)

λ

γ

(
2ll + 1

σ(l, d)

)1/l
)

. (66)

Remark. Hypothesis (2) is additional to those made in [8, Proposition 3.4]. In short, it 

is this “extra” hypothesis that yields an explicit formula for the constant C1. Note that 

by the definition of C∗
1 as given by (63), we have that

C∗
1 = C1(s0, M) .

Using the explicit constant C1 appearing in Proposition 1, it is possible to adapt the 

proof of [8, Corollary 3.5] to give the following statement.

Corollary 3. Let U ⊂ R
d be a ball and f = (f1, . . . , fn) be an n-tuple of Cl+1 functions 

satisfying Assumption 1. With reference to Proposition 1, let

γ := s0 and λ := M.

Then, for any linear combination f = c0 +
∑n

i=1 cifi with c0, . . . , cn ∈ R, we have that

(a) f is 
(
C∗

1 , 1
dl

)
-good on Ũ,

(b) ‖∇f‖∞ is 
(

C∗
1 , 1

d(l−1)

)
-good on Ũ.

Corollary 3 allows us to verify condition (i) of Theorem 7 in the case that Γ is a 

primitive subgroup of Λ of rank 1. Indeed, in view of (59) and of the discussions following 
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equations (55) and (57), ν∗(H(x)Γ) is the Euclidean norm of H(x)w = DUxw, where 

w is a basis vector of Γ. It is readily seen that the coordinate functions of H(x)w are 

either constants, or f(x), or ∂f(x)/∂xi for some f = c0 +
∑n

i=1 cifi with c0, . . . , cn ∈ R. 

Hence, by Corollary 3 and [8, Lemma 3.1 (b,d)] we obtain that the function ‖H(·)Γ‖∞
is (C∗

1 , α)-good on Ũ, where α is given by (65). In turn, on using [8, Lemma 3.1(c)] and 

the fact that

1√
n + d + 1

≤ ‖H(x)w‖∞
‖H(x)w‖2

≤ 1,

we have that ν∗ (H( . )Γ) is
(
C∗

1 (n + d + 1)α/2, α
)

-good on Ũ. It then follows from [8, 

Lemma 3.1(d)] that

ν∗ (H( . )Γ) is (C, α) -good on Ũ.

Proof of Corollary 3. In view of [8, Lemma 3.1.a], it suffices to prove the corollary under 

the assumption that ‖(c1, . . . , cn)‖2 = 1. Thus, with reference to Proposition 1, define

F :=

{
c0 +

n∑

i=1

cifi : ‖(c1, . . . , cn)‖2 = 1

}
.

The corollary will follow on verifying the four hypotheses of Proposition 1. Thus, hy-

pothesis (1) is easily seen to be satisfied. Hypothesis (2) is a consequence of (36) and of 

the Cauchy–Schwarz inequality while hypothesis (3) follows straightforwardly from the 

definition of the measure of non-degeneracy s0 in (33) and (35). Finally, hypothesis (4) 

is guaranteed by (37) and the choices of γ and λ. ✷

7.2. Proof of Proposition 1

The proof of Proposition 1 relies on the following lemma:

Lemma 3. Let f be a real-valued function of class Ck (k ≥ 1) defined in a neighbourhood 

of x ∈ R
d (d ≥ 1). Assume that there exists an index 1 ≤ i0 ≤ d and a real number 

μ > 0 such that

∣∣∣∣∣
∂kf

∂xk
i0

(x)

∣∣∣∣∣ ≥ μ.

Then there exists a rotation S : Rd → R
d such that

∣∣∣∣
∂k (f ◦ S)

∂xk
i

(x)

∣∣∣∣ ≥ μ · σ(k, d)

for all indices 1 ≤ i ≤ d, where the quantity σ(k, d) is defined in (39).
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As the proof of Lemma 3 is lengthy, before giving it, we show how to deduce Propo-

sition 1 from it.

Deduction of Proposition 1 from Lemma 3. Let x0 = (v1, v2, . . . , vd) denote the centre 

of U. Hypothesis (3) of Proposition 1 implies that for any f ∈ F , there exists a unit 

vector u ∈ S
d−1 and an index 1 ≤ k ≤ l such that

∣∣∣∣
∂kf

∂uk
(x0)

∣∣∣∣ ≥ γ.

Even if it means applying a first rotation to the coordinate system that brings the x1

axis onto the line spanned by the vector u, it may be assumed, without loss of generality, 

that the above inequality reads as

∣∣∂k
1 f(x0)

∣∣ ≥ γ.

From Lemma 3, up to another rotation of the coordinate system, one can guarantee that

∣∣∂k
i f(x0)

∣∣ ≥ γ · σ(k, d) := C2

for all indices 1 ≤ i ≤ d. Now, for a fixed index i, it follows from a Taylor expansion at 

x0 that, for any x = (x1, . . . , xd) ∈ Ũ+,

∂k
i f (x) = ∂k

i f (x0) +

d∑

j=1

Rj(x; x0) (xj − vj) ,

where, by hypothesis (2), Rj(x; x0) satisfies the inequality

|Rj(x; x0)| ≤ sup
x∈Ũ+

∣∣(∂j ◦ ∂k
i

)
f(x)
∣∣ ≤ λ.

In view of hypothesis (4), we have furthermore that

‖x − x0‖2 ≤ 3n+d+2r ≤ γ · σ(l, d)

2
√

dλ
≤ C2

2
√

dλ
·

Thus, for all indices 1 ≤ i ≤ d,

∣∣∂k
i f (x)

∣∣ ≥ C2 −
d∑

i=1

|xj − uj | λ = C2 − λ ‖x − x0‖1

≥ C2 − λ
√

d ‖x − x0‖2 ≥ C2

2
· (67)
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Next, observe that any cube circumscribed about Ũ lies inside of Ũ+. It then follows on 

applying [8, Lemma 3.3] with A1 = λ and A2 = C2/2 that the function f is 
(
C ′, 1

dk

)
-good 

on Ũ, where

C ′ :=
2d

Vd
dk(k + 1)

(
2λ

γ · σ(k, d)
(k + 1)

(
2kk + 1

))1/k

≤ 2d+2

Vd
dk(k + 1)

λ

γ

(
2kk + 1

σ(k, d)

)1/k

.

A computation then shows that

C ′ ≤ 2d+2

Vd
dl(l + 1)

λ

γ

(
2ll + 1

σ(l, d)

)1/l

.

Part (a) of Proposition 1 is now a consequence of [8, Lemma 3.1.d]. Regarding part (b), 

the proof is essentially the same as that of [8, Proposition 3.4.b] with the constant C

replaced with the explicit constant C1 given by (66). ✷

We now proceed with the proof of Lemma 3 which requires several intermediate results. 

The first one is rather intuitive.

Lemma 4. Let C > 0 be a real number and p ≥ 1 be an integer. Then every section of the 

cube [0, C]p with a (p − 1)-dimensional subspace of Rp has a volume at most 
√

2Cp−1.

Proof. See [1, Theorem 4]. ✷

Lemma 5. Let k ≥ 1 denote an integer and let w := (w0, . . . , wk) ∈ R
k+1. Let ω, B > 0

be real numbers. Furthermore, assume that the k + 1 real numbers 0 < t0 < · · · < tk

satisfy the following two assumptions:

(1) min
0≤i �=j≤k

|ti − tj | ≥ ω,

(2) max
0≤i≤k

|ti|k ≤ B.

Then, there exists an index 0 ≤ j ≤ k such that

∣∣∣∣∣

k∑

i=0

wit
i
j

∣∣∣∣∣ ≥ φ(ω, B; k) · ‖w‖2 ,

where φ(ω, B; k) is the quantity defined in (40).
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The following notation will be used in the course of the proof of Lemma 5: given a 

point x ∈ R
n and a set A ⊂ R

n, dist(x, A) will denote the quantity

dist(x, A) := inf{‖x − a‖2 : a ∈ A}. (68)

Proof. Let X := (x1, · · · , xk+1) ∈ Mk+1,k+1 denote the matrix defined by the following 

k + 1 column vectors in Rk+1:

x1 := (1, t0, . . . , tk
0)T ,

...

xk+1 := (1, tk, . . . , tk
k)T .

Together with the origin, these points form a simplex S(X) in Rk+1 whose volume 

|S(X)|k+1 satisfies the well-known equation

|S(X)|k+1 =
1

(k + 1)!
det

(
x1 . . . xk+1 0

1 . . . 1 1

)
.

The formula for the determinant of a Vandermonde matrix together with hypothesis (1) 

then yields the inequality

|S(X)|k+1 ≥ ωk(k−1)/2

(k + 1)!
·

Note that hypothesis (2) implies that all the vectors x1, · · · , xk+1 lie in the hypercube 

B := [0, B]k+1. As a consequence, the volume of the section of the simplex S(X) with 

any hyperplane does not exceed the volume of the section of S(X) with B which, from 

Lemma 4, is at most 
√

2Bk. Also, given a hyperplane P, it should be clear that

|S(X)|k+1 ≤ 2 · max
1≤j≤k+1

dist (xj , P) · |P ∩ S(X)|k .

The upshot of this discussion is that the following inequality holds:

max
1≤j≤k

dist (xj , P) ≥ ωk(k−1)/2

2
√

2Bk(k + 1)!
:= φ(ω, B, k). (69)

Consider now the hyperplane P = w⊥ and let j be one of the indices realising the 

maximum in (69). The conclusion of the lemma is then a direct consequence of the 

equation

dist
(
xj , w⊥) =

∣∣∣
∑k

i=0 wit
i
j

∣∣∣
‖w‖2

· ✷
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The next result contains the main substance of the proof of Lemma 3.

Lemma 6. Let f be a real valued function of class Ck (k ≥ 1) defined in a neighbourhood 

of (x0, y0) ∈ R
2. Let c > 0 be a real number such that

∣∣∣∣
∂kf

∂xk
(x0, y0)

∣∣∣∣ ≥ c.

Then, there exist two orthonormal vectors u, v ∈ S
1 such that

min

{∣∣∣∣
∂kf

∂uk
(x0, y0)

∣∣∣∣ ,
∣∣∣∣
∂kf

∂vk
(x0, y0)

∣∣∣∣
}

≥ c

23k/2
· φ

((√
2(2k)2+k(k−1)/2(k + 1)!

)−1

, 2, k

)

= c · σ(k, 2).

Proof. Set

w = (w0, . . . , wk) :=

((
k

j

)
∂kf

∂xk−j∂yj
(x0, y0)

)

0≤j≤k

∈ R
k+1.

It readily follows from the assumptions of the lemma that

‖w‖2 ≥ c.

Let λ > 0 be a real number such that, for all indices 0 ≤ j ≤ k,

∣∣∣∣
∂kf

∂xk−j∂yj
(x0, y0)

∣∣∣∣ ≤ λ.

We thus have the inequality

‖w‖2 ≤ 2k(k + 1)λ. (70)

Define now k + 1 real numbers t0, . . . , tk as follows:

ti :=
1

2
+

i

2k
,

where i = 0, . . . , k.

With the choices of the parameters ω := 1/(2k) and B = 1, Lemma 5 applied to the 

vector w and to the system of points (ti)0≤i≤k yields the existence of a point tj ∈ [1/2, 1]

such that

∣∣∣∣∣

k∑

i=0

wit
i
j

∣∣∣∣∣ ≥ ‖w‖2 · φ

(
1

2k
, 1, k

)
. (71)
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Let

ǫ :=
1

2k
· φ

(
1

2k
, 1, k

)
≤ 1

2k
(72)

denote a constant and

g : t ∈ [0, 1] �→
k∑

i=0

wit
i

a function. Note that for all t ∈ [0, 1],

|g′(t)| =

∣∣∣∣∣

k∑

i=1

wiit
i−1

∣∣∣∣∣ ≤ 2kλ · k(k + 1)

2
= 2k−1λk(k + 1).

This implies that for all t ∈ [tj − ǫ, tj + ǫ], where tj is the constant appearing in (71), 

the following inequalities hold:

|g(t)| =

∣∣∣∣∣

k∑

i=0

wit
i

∣∣∣∣∣ ≥ |g(tj)| − |g(t) − g(tj)|

≥ |g(tj)| − ǫ · 2k−1λk(k + 1)

≥
(71)&(72)

φ

(
1

2k
, 1, k

)
·
(
‖w‖2 − 2k−2λ(k + 1)

)

≥
(70)

‖w‖2

2
· φ

(
1

2k
, 1, k

)
.

Consider now the image [a, b] ⊂ [1, 2] of the interval [tj − ǫ, tj + ǫ] ∩ [1/2, 1] under the 

map t �→ 1/t. It is then readily verified that

|b − a| ≥ ǫ.

With the choices of the parameters

ω :=
ǫ

k
=

1

2k2
· φ

(
1

2k
, 1, k

)

and B = 2, apply once more Lemma 5, this time to the vector 
(
(−1)iwi

)
0≤i≤k

and to 

the set of points

t̃i = a +
b − a

k
· i, 0 ≤ i ≤ k.
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This yields the existence of t̃j ∈ [a, b] such that

∣∣∣∣∣

k∑

i=0

(−1)iwit̃
i
j

∣∣∣∣∣ ≥ ‖w‖2 · φ
( ǫ

k
, 2, k
)

.

The upshot of this is that, when considering the point s := 1/t̃j , the following two 

inequalities hold simultaneously:

∣∣∣∣∣

k∑

i=0

wis
i

∣∣∣∣∣ ≥ ‖w‖2

2
· φ

(
1

2k
, 1, k

)

and

∣∣∣∣∣

k∑

i=0

(−1)iwis
−i

∣∣∣∣∣ ≥ ‖w‖2 · φ

(
1

2k2
· φ

(
1

2k
, 1, k

)
, 2, k

)
.

Since s ∈ [1/2, 1], it is easily seen that one can find a unit vector (u1, u2) ∈ S
1 such that 

s = u2/u1 and u1, u2 ∈ [1/(2
√

2), 1]. Let u ∈ S
1 and v ∈ S

1 denote the two orthonormal 

vectors defined as u := (u1, u2) and v := (u2, −u1).

Note then that

∣∣∣∣∣

k∑

i=0

wiu
k−i
1 ui

2

∣∣∣∣∣ = uk
1

∣∣∣∣∣

k∑

i=0

wis
i

∣∣∣∣∣ ≥ 1

21+3k/2
· ‖w‖2 · φ

(
1

2k
, 1, k

)

≥ c

21+3k/2
· φ

(
1

2k
, 1, k

)

and, similarly,

∣∣∣∣∣

k∑

i=0

(−1)iwiu
k−i
2 ui

1

∣∣∣∣∣ = uk
2

∣∣∣∣∣

k∑

i=0

(−1)iwis
−i

∣∣∣∣∣ ≥ c

23k/2
· φ

(
1

2k2
· φ

(
1

2k
, 1, k

)
, 2, k

)
.

Since, from the definition of the vector w,

∂kf

∂uk
(x0, y0) =

k∑

i=0

wiu
k−i
1 ui

2

and

∂kf

∂vk
(x0, y0) =

k∑

i=0

(−1)iwiu
k−i
2 ui

1,

this completes the proof of the lemma from the definition of φ in (40). ✷
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We now have all the ingredients at our disposal to prove Lemma 3.

Proof of Lemma 3. Denote the coordinates of the vector x ∈ R
d as x = (x1, . . . , xd). 

Even if it means relabelling the axes, assume furthermore without loss of generality that 

i0 = 1 in the statement of the lemma. The proof then goes by induction on d ≥ 1, the 

conclusion being trivial when d = 1. When d = 2, Lemma 3 reduces to Lemma 6. Assume 

therefore that d ≥ 3. It then readily follows from the induction hypothesis applied to 

the function (x1, . . . , xd−1) ∈ R
d−1 �→ f(x1, . . . , xd−1, xd) that there exists a rotation 

S1 : Rd → R
d such that

∣∣∣∣
∂k(f ◦ S1)

∂xk
i

(x)

∣∣∣∣ ≥ μ · σ(k, d − 1) (1 ≤ i ≤ d − 1).

Consider now the function (x1, xd) ∈ R
2 �→ f(x1, . . . , xd−1, xd). Applying Lemma 6

to this function with c = μ · σ(k, d − 1) therein provides the existence of a rotation 

S2 : Rd �→ R
d acting on the plane (x1, xd) and leaving its orthogonal unchanged such 

that

min

{
∂(f ◦ S1 ◦ S2)

∂xk
1

(x),
∂(f ◦ S1 ◦ S2)

∂xk
d

(x)

}
≥ μ · σ(k, d − 1) · σ(k, 2) = μ · σ(k, d).

The lemma follows upon setting S = S1 ◦ S2. ✷

7.3. Higher rank case of condition (i)

The key to verifying condition (i) of Theorem 7 in the case when Γ is of rank greater 

than one is Proposition 2 below. In short, it is an explicit version of [8, Proposition 4.1]

in the particular case when the set G appearing therein is given by

G :=
{

(u1 · f , u2 · f + u0) : u0 ∈ R, u1, u2 ∈ S
n−1, u1 ⊥ u2

}
. (73)

The statement is concerned with the skew gradient of a map as defined in [8, §4]. We 

recall the definition. Let g = (g1, g2) : Ũ+ → R
2 be a differentiable function. The skew 

gradient ∇̃g : Ũ+ → R
2 is defined by

∇̃g(x) := g1(x)∇g2(x) − g2(x)∇g1(x).

If we write g(x) in terms of polar coordinates; i.e. via the usual functions ρ(x) and θ(x), 

it is then readily verified that

∇̃g(x) = ρ2(x)∇θ(x). (74)

Essentially, the skew gradient measures how different the pair of functions g1 and g2 are 

from being proportional to each other.
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Proposition 2. Let U ⊂ R
d be a ball and f = (f1, . . . , fn) be an n-tuple of Cl+1 functions 

satisfying Assumption 1. Let ρ2, Cd,l and G be given by (42), (64) and (73) respectively. 

Then,

(a) for all g ∈ G,

‖∇̃g‖2 is

(
2Cd,l,

1

d(2l − 1)

)
-good on Ũ

(b) for all g ∈ G,

sup
x∈U

‖∇̃g(x)‖2 ≥ ρ2 . (75)

This proposition together with Corollary 3 and the basic properties of (C, α)-good 

functions given in [8, Lemma 3.1] enables us to deduce the following statement, which 

establishes condition (i) in the higher rank case.

Corollary 4. Let U ⊂ R
d be a ball and f = (f1, . . . , fn) be an n-tuple of Cl+1 functions 

satisfying Assumption 1. Let Λ be the discrete subgroup given by (58) and Γ ∈ L(Λ)

be a primitive subgroup of Λ. Furthermore, let H be the map given by (59). Then, the 

function

x �→ ν∗ (H(x)Γ) (76)

is (C, α)-good on the ball Ũ with constants C and α given by (62) and (65) respectively.

Proof. Let k denote the rank of Γ. The case k = 1 has already been established as a conse-

quence of Corollary 3 in §7.1. Assume therefore that k ≥ 2. It is shown in [8, §7, Eq. (7.3)]

that there exist real numbers a, b, μ ∈ R such that, for all x ∈ Ũ, ν∗ (H(x)Γ) given by 

(76) can be expressed as the Euclidean norm of a vector w(x). Furthermore, there exists 

an orthonormal system of vectors of the form S = {e0, e∗
1, . . . , e∗

d, v1, . . . , vk−1} when 

k ≤ n or of the form S = {e0, e∗
1, . . . , e∗

d, v0, . . . , vk−1} when k = n + 1 such that w(x)

is a linear combination of

Ld(k) :=
(k + 1)(dk + 2)

2

skew products of elements of S whose coefficients are of any of the following form:

a + bf · v0 (77)

b (78)

b f · vi (1 ≤ i ≤ k − 1) (79)

b μ ∂s(f · vi) (1 ≤ i ≤ k, 1 ≤ s ≤ d) (80)
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μ X(i, s) (1 ≤ i ≤ k − 1, 1 ≤ s ≤ d) (81)

b μ Y (i, j, s) (1 ≤ i < j ≤ k − 1, 1 ≤ s ≤ d), (82)

where

X(i, s) := (f · vi) ∂s (a + bf · v0) − (a + bf · v0) ∂s (f · vi)

and

Y (i, j, s) := (f · vi) ∂s (f · vj) − (f · vj) ∂s (f · vi) .

• It follows from part (a) of Corollary 3 and [8, Lemma 3.1(a,d)] that the coordinate 

functions given by (77), (78) and (79) are (C ′, α)-good, where

C ′ :=
C

(Ld(n + 1) · d)
α/2

·

• It follows from part (b) of Corollary 3 and [8, Lemma 3.1(a,d)] that, when the index 

i is fixed, the maximum over s of the coordinate functions given by (80), that is, the 

quantity ‖b μ ∇(f · vi)‖∞, is (C ′, α)-good.

• It follows from Proposition 2 and [8, Lemma 3.1(a,d)] that, for fixed indices i and j, 

the Euclidean norm over s of the coordinate functions given by (81) and (82), that 

is, the quantities ‖μ ∇̃(f · vi, a + bf · v0)‖2 and ‖b μ ∇̃(f · vi, f · vj)‖2 respectively, are 

(C ′, α)-good. On using the relation

1√
d

≤ ‖ · ‖∞
‖ · ‖2

≤ 1

valid in Rd and [8, Lemma 3.1(c)], it follows that ‖μ ∇̃(f · vi, a + bf · v0)‖∞ and 

‖b μ ∇̃(f · vi, f · vj)‖∞ are (dα/2C ′, α)-good.

The upshot of the above together with [8, Lemma 3.1(b)] is that the maximum of the 

coordinate functions (77)–(82) is (dα/2C ′, α)-good. In turn, on using the relation

1√
Ld(k)

≤ ‖ · ‖∞
‖ · ‖2

≤ 1

valid in RLd(k) and [8, Lemma 3.1(c)], we have that

ν∗ (H( . )Γ) is
(

C ′(d · Ld(k))α/2, α
)

-good.

As k ≤ n + 1, the desired statement follows. ✷
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Modulo the proof of Proposition 2, we have completed the task of verifying condition 

(i) of Theorem 7. The proof of the proposition is rather lengthy and therefore is postponed 

till after we have verified condition (ii) of Theorem 7.

7.4. Verifying condition (ii) of Theorem 7 modulo Proposition 2

The following lemma, which although not explicitly stated, is essentially proved in [8, 

§7], see [8, Eq. (7.5)] and onwards. The key difference is that we make use of Proposition 2

in place of [8, Proposition 4.1] and so are able to give explicit values of ρ1 and ρ.

Lemma 7. Let U ⊂ R
d be a ball and f = (f1, . . . , fn) be an n-tuple of Cl+1 functions 

satisfying Assumption 1. Let ρ1, ρ > 0 be given by (41) and (43) respectively and assume 

that for any v ∈ S
n−1 and p ∈ R we have that

sup
x∈U

|f(x)·v + p| ≥ ρ1 and sup
x∈U

‖∇ (f(x)·v)‖∞ ≥ ρ1. (83)

Furthermore, let Λ be the discrete subgroup given by (58), Γ ∈ L(Λ) be a primitive 

subgroup of Λ and H be the map given by (59). Then

sup
x∈U

ν∗(H(x)Γ) ≥ ρ.

The following statement immediately verifies condition (ii) of Theorem 7. It is the 

above lemma without the assumptions made in (83).

Corollary 5. Let U ⊂ R
d be a ball and f = (f1, . . . , fn) be an n-tuple of Cl+1 functions 

satisfying Assumption 1. Let Λ be the discrete subgroup given by (58) and Γ ∈ L(Λ) be a 

primitive subgroup of Λ. Furthermore, let H be the map given by (59). Then

sup
x∈U

ν∗(H(x)Γ) ≥ ρ, (84)

where ρ is given by (43).

Proof of Corollary 5. The desired statement follows directly from Lemma 7 on verifying 

the inequalities associated with (83). Let v ∈ S
n−1. By the definition of s0 := s(l; f , Ũ+), 

there exists a u ∈ S
d−1 and 1 ≤ k ≤ l such that

∣∣∣∣
∂k(f · v)

∂uk
(x0)

∣∣∣∣ ≥ s0. (85)

Recall, that x0 is the centre of U. It follows that for any x ∈ U, we have that:
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∣∣∣∣v· ∂kf

∂uk
(x)

∣∣∣∣ =

∣∣∣∣v· ∂kf

∂uk
(x0)

∣∣∣∣−
∣∣∣∣v·
(

∂kf

∂uk
(x0) − ∂kf

∂uk
(x)

)∣∣∣∣

≥ s0 −
∥∥∥∥

∂kf

∂uk
(x0) − ∂kf

∂uk
(x)

∥∥∥∥
2

. (86)

Let s′ denote the unit vector

s′ :=
x − x0

‖x − x0‖2

·

By Lagrange’s Theorem, there exists x′ between x0 and x such that

∂kf

∂uk
(x0) =

∂kf

∂uk
(x) + ‖x − x0‖2

∂

∂s′

(
∂kf

∂uk

)
(x′).

It then follows from (86) and the definition of M in (36) that

∣∣∣∣v· ∂kf

∂uk
(x)

∣∣∣∣ ≥ s0 − M ‖x − x0‖2 .

This together with the fact that r < s0/2M — a direct consequence of (37) —, implies 

that

∣∣∣∣
∂k(f · v)

∂uk
(x)

∣∣∣∣ ≥ s0/2 ∀ x ∈ U . (87)

The upshot is that the hypotheses of [8, Lemma 3.6] are satisfied. A straightforward 

application of [8, Lemma 3.6] together with (41) implies that

sup
x∈U

|f(x) · v + p| ≥ s0/2

2kk(k + 1)!
(2r)k ≥ s0

4ll(l + 1)!
(2r)l = ρ1

√
d ≥ ρ1

for any p ∈ R. Thus the first inequality appearing in (83) is established.

It remains to prove the second inequality in (83); that is, that for any v ∈ S
n−1,

sup
x∈U

‖∇ (f(x)·v)‖∞ ≥ ρ1 =
s0

4ll(l + 1)!
√

d
(2r)l. (88)

Recall from above that for any v ∈ S
n−1 we can find a vector u ∈ S

d−1 such that (85)

and (87) hold. Furthermore, observe that

∂(f · v)

∂u
(x) = ut · ∇ (f(x) · v) . (89)

We proceed by considering two cases, depending on whether or not k = 1 in (85).
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• Suppose k = 1 in (85). Then it follows from (87) and (89) that

∣∣ut · ∇ (f(x) · v)
∣∣ ≥ s0

2
∀ x ∈ U .

On applying the Cauchy–Schwartz inequality, we obtain that

‖∇ (f(x) · v)‖2 ≥ s0

2
∀ x ∈ U .

This together with the fact that ‖ . ‖2 ≤
√

d ‖ . ‖∞ implies the second inequality 

appearing in (83).

• Suppose k ≥ 2 in (85). Consider the function g(x) := ∂(f ·v)
∂u

(x) defined on U. Then 

by (87), we have that

∣∣∣∣
∂k−1g

∂uk−1
(x)

∣∣∣∣ ≥ s0

2
∀ x ∈ U .

Thus, the hypotheses of [8, Lemma 3.6] are satisfied for the function g(x) and a 

straightforward application of that lemma together with (41) implies that

sup
x∈U

|g(x)| ≥ s0

4(l − 1)l−1l!
(2r)l−1 > ρ1

√
d. (90)

Now the Cauchy–Schwartz inequality and (89) imply that

‖∇ (f(x) · v)‖2 ≥
∣∣ut · ∇ (f(x) · v)

∣∣ = |g(x)| ∀ x ∈ U .

This together with (90) and the fact that ‖ . ‖2 ≤
√

d ‖ . ‖∞ imply the desired state-

ment; namely that

sup
x∈U

‖∇ (f(x) · v)‖∞ ≥ ρ1 . ✷

The upshot of §7 is that we have verified conditions (i) & (ii) of Theorem 7 as desired 

modulo Proposition 2.

8. Proof of Proposition 2

In order to prove Proposition 2, we first establish an explicit version of [8, Lemma 

4.3]. Throughout this section, the notation introduced in (68) will be used.

Lemma 8. Let B ⊂ R
d be a ball of radius 1 and let B∞ denote the hypercube circumscribed 

around B with edges parallel to the coordinate axes. Assume further that p = (p1, p2) :

B �→ R
2 is a polynomial map of degree at most l ≥ 1 such that
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sup
x,y∈B∞

‖p(x) − p(y)‖2 ≤ 2 (91)

and

sup
x∈B

dist (L, p(x)) ≥ 1

8
(92)

for any straight line L ⊂ R
2. Then,

sup
x∈B

‖∇̃p(x)‖2 ≥ 1

86 016
√

10

(
1 + sup

x∈B
‖p(x)‖2

)
(93)

and

sup
x∈B, i=1,2

‖∇pi(x)‖2 ≤ 2l2
√

d. (94)

Proof. Regarding (93), if we assume that supx∈B ‖p(x)‖2 > 6, the argument used 

to prove [8, Lemma 4.3] gives the stronger inequality in which the constant factor 

1/(86 016
√

10) is replaced by 1/64. Thus, without loss of generality, assume that

supx∈B ‖p(x)‖2 ≤ 6 . (95)

It is easily inferred from (92) that there exists x1 ∈ B, the closure of B, such that 

‖p (x1)‖2 ≥ 1/8. Working in polar coordinates and choosing the straight line L1 joining 

the origin to p (x1) to be the polar axis, let (ρ(x), θ(x)) denote the polar coordinates 

of a vector x ∈ R
2. Thus, ρ(p(x1)) ≥ 1/8. Furthermore, from (92), there exists x2 ∈ B

such that dist (L1, p(x2)) ≥ 1/8 and therefore, together with (95), we have that

|θ (p (x2))| ≥ |sin θ (p (x2))| =
dist (L1, p(x2))

ρ (p(x2))

≥ 1/8

6
=

1

48
· (96)

Now let Δ be the straight line joining p(x1) and p(x2). Furthermore, let L2 denote 

the x-coordinate axis, (x1, y1) the Cartesian coordinates of p(x2) and (ρ(p(x1)), 0) the 

Cartesian coordinates of p(x1). Then the Cartesian equation of Δ is

Δ : y1x − (x1 − ρ(p(x1)))y − ρ(p(x1))y1 = 0.

It follows from the choice of the points x1 and x2 together with (91), (92) and (95) that

1

8
≤ |y1| ≤ 6, ρ(p(x1)) ≥ 1

8
and |x1 − ρ(p(x1))| ≤ 2.
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Therefore, the distance from the origin O to Δ satisfies the inequality

dist (Δ, O) =
|(ρ(p(x1))y1|√

y2
1 + (x1 − ρ(p(x1))

2
≥ (1/8)2

√
62 + 22

=
1

128
√

10
· (97)

Let J denote the straight line segment [x1, x2] and let u be the unit vector

u :=
x2 − x1

‖x2 − x1‖2

·

Restricting p to J , Lagrange’s Theorem guarantees the existence of y ∈ (x1, x2) such 

that

θ (p(x2)) =
∂θ

∂u
(y) |J | .

It then follows via (74), (96) and (97) that

‖∇̃p(y)‖2 ≥ |u · ∇̃p(y)| = ρ2 (y)

∣∣∣∣
∂θ

∂u
(y)

∣∣∣∣

≥ dist (Δ, O)
|θ(p(x2))|

|J | = dist (Δ, O)
|θ(p(x2))|
‖x2 − x1‖2

≥ 1

128
√

10 × 48 × 2
=

1

12 288
√

10
·

Thus,

sup
x∈B

‖∇̃p(x)‖2 ≥ 1

12 288
√

10
=

7

86 016
√

10
≥ 1

86 016
√

10

(
1 + sup

x∈B
‖p(x)‖2

)
.

This completes the proof of (93). We now turn out attention to (94).

Let i ∈ {1, 2}. It may be assumed without loss of generality that pi (0, . . . , 0) = 0

and that the ball B is centred at the origin. Then, for given x2, . . . , xd in R, consider 

the polynomial in one variable p (x) := pi (x, x2, . . . , xd), which is of degree at most l. It 

follows from (91) that

sup
|x|≤1

|p (x)| ≤ 2.

Hence by Markov’s inequality for polynomials, we have that

sup
|x|≤1

∣∣∣∣
dp

dx
(x)

∣∣∣∣ = sup
|x1|≤1

∣∣∣∣
∂pi

∂x1
(x1, x2, . . . , xd)

∣∣∣∣ ≤ 2l2 .
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This together with the fact that ‖ . ‖2 ≤
√

d ‖ . ‖∞ implies that

max

{
sup
x∈B

‖∇p1(x)‖2 , sup
x∈B

‖∇p2(x)‖2

}
≤ 2l2

√
d

and therefore completes the proof of the lemma. ✷

We now have all the ingredients in place to prove Proposition 2.

Proof of Proposition 2. The proposition is an explicit version of [8, Proposition 4.1]. 

Within our setup in which G is given by (73), the starting point for the proof of part (a) 

of [8, Proposition 4.1] corresponds to the existence of positive constants δ, c, and α with

0 < δ < 1/8 and 2Cd,lNdδ1/(d(2l−1)(2l−2)) ≤ 1 (98)

such that for every g ∈ G one has

∀ v ∈ S
1 ∃ u ∈ S

d−1 ∃ k ≤ l : inf
x∈Ũ

∣∣∣∣v · ∂kg

∂uk
(x)

∣∣∣∣ ≥ c (99)

and

sup
x,y∈Ũ

‖∂βg(x) − ∂βg(y)‖ ≤ δcα

8ξll(l + 1)!
=

δcα

16ll+2(l + 1)!
√

d
(100)

for all multi-indices β with |β| = l. Here, ξ = 2l2
√

d is the quantity in right-hand side 

of (94) and the real number α is required to be less than the constant appearing in the 

right-hand side of (93), that is,

α ≤ 1

86 016
√

10
· (101)

The statements (99) and (100) correspond exactly to [8, Eq. (4.5a) & Eq. (4.5b)] with 

V replaced by Ũ.

The proof of part (a) of Proposition 2 follows from the existence of the constants δ, c, 

and α as established in the proof of part (a) of [8, Proposition 4.1]. It remains for us to 

show that, given the definition of r in (37), it is indeed possible to choose such constants 

in such a way that the relations (98)–(101) hold.

With this in mind, set

δ := η,

where η is defined by (38). It follows from the definition of η and the well known bound 

Nd ≤ 5d for the Besicovitch constant (cf. Remark 3 p.245) that (98) is satisfied with 

δ = η. We proceed with verifying (99) and (100).
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Regarding (99), let g = (u1 · f , u2 · f + u0) ∈ G. Also, let u := (u1, u2) with u1, u2 ∈
S

n−1 and let v := (v1, v2) ∈ S
1. Furthermore, let w denote the vector w := v1u1 + v2u2. 

Since by the definition of G, the vectors u1 and u2 are orthogonal, it follows that w ∈
Sn−1. Now observe that for any multi-index β such that |β| ≤ l,

v · ∂βg = w · ∂βf .

By the definition of s0 = s(l; f , Ũ+), there exists s ∈ S
d−1 and 1 ≤ k ≤ l such that

∣∣∣∣v· ∂kg

∂sk
(x0)

∣∣∣∣ =

∣∣∣∣w· ∂kf

∂sk
(x0)

∣∣∣∣ ≥ s0 .

As per usual, x0 denotes here the centre of U. It follows that for any x ∈ Ũ+, we have 

that

∣∣∣∣v· ∂kg

∂sk
(x)

∣∣∣∣ ≥
∣∣∣∣w· ∂kf

∂sk
(x0)

∣∣∣∣−
∣∣∣∣w·
(

∂kf

∂sk
(x0) − ∂kf

∂sk
(x)

)∣∣∣∣

≥ s0 −
∥∥∥∥

∂kf

∂sk
(x0) − ∂kf

∂sk
(x)

∥∥∥∥
2

. (102)

The same arguments as those used to prove (87) can be employed to show that

∣∣∣∣v · ∂kg

∂sk
(x)

∣∣∣∣ ≥ s0

2
∀ x ∈ Ũ+ .

This proves (99) with

c :=
s0

2
·

We now turn our attention to (100). With g and u as above, first note that for any 

x ∈ Ũ+ and for any multi-index β such that |β| = l, we have that

‖∂βg (x) −∂βg (x0) ‖2 = ‖(u1 · (∂βf(x) − ∂βf(x0)) , u2 · (∂βf(x) − ∂βf(x0)))‖2 .

(103)

Next, note that from the Cauchy–Schwarz inequality, we have that, for i = 1, 2,

(ui · (∂βf(x) − ∂βf(x0)))
2 ≤ ‖∂βf(x) − ∂βf(x0)‖2

2. (104)

On combining (103) and (104), we find that

‖∂βg (x) − ∂βg (x0)‖2 ≤
√

2‖∂βf(x) − ∂βf(x0)‖2.
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Now, since f satisfies Assumption 1, in view of (36), we obtain that

‖∂βf(x) − ∂βf(x0)‖2 ≤ M
√

2 ‖x − x0‖2 .

Hence, for any x, y ∈ Ũ+ we have that

‖∂βg (x) − ∂βg (y)‖2 ≤ 2M (‖x − x0‖2 + ‖y − x0‖2) .

In view of (37), we also have that

‖x − x0‖2 + ‖y − x0‖2 ≤ 2 · 3n+d+2 · r

≤ 2 · 3n+d+2 · ηs0

4 · 1073n+d+2 dMll+2(l + 1)!

=
ηs0

2 · 107 dMll+2(l + 1)!
·

The upshot is that

sup
x,y∈Ũ+

‖∂βg (x) − ∂βg (y)‖2 ≤ ηs0

107 dll+2(l + 1)!
(105)

for any multi-index β with |β| = l. This proves (100) with

α :=
32

107
√

d
,

which clearly satisfies (101).

To prove part (b) of Proposition 2, we closely follow the proof of part (b) of [8, 

Proposition 4.1]. The new ingredient in our proof is the calculation of explicit constants 

at appropriate places. With this in mind, let g = (g1, g2) ∈ G and take B appearing at 

the start of the proof of [8, Proposition 4.1(b)] to be U, so that B̂ = 1
2U. We claim that 

there exists a point y ∈ B̂ such that

‖g(y)‖2 ≥ τ :=
rls0

4ll(l + 1)!
· (106)

To see that this is so, take v := (1, 0) ∈ S
1. In view of (99), there exists a vector u ∈ S

d−1

and 1 ≤ k ≤ l such that

∣∣∣∣v · ∂kg

∂uk
(x)

∣∣∣∣ =

∣∣∣∣
∂kg1

∂uk
(x)

∣∣∣∣ ≥ c :=
s0

2
∀ x ∈ U .
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Thus, on applying [8, Lemma 3.6] to the function g1 and the ball B̂, we obtain that

sup
x,y∈B̂

|g1(x) − g1(y)| ≥ rlc

ll(l + 1)!
=

rls0

2ll(l + 1)!
·

This implies the existence of a point y ∈ B̂ such that

‖g(y)‖2 ≥ |g1 (y)| ≥ τ

as claimed. Next, observe that for any w ∈ S
d−1 and any x ∈ U,

∂g

∂w
(x) =

(
u1 · ∂f

∂w
(x)

u2 · ∂f
∂w

(x)

)
.

Therefore, on using the Cauchy–Schwarz inequality, we obtain via (36) that

∥∥∥∥
∂g

∂w
(x)

∥∥∥∥
2

≤
√

2

∥∥∥∥
∂f

∂w
(x)

∥∥∥∥
2

≤
√

2M . (107)

Now, observe that, in view of (37), of the definition of τ and of the fact that s0 ≤ M , 

we have that

τ ≤ r M.

Consider the ball B′ ⊂ B = U with radius τ/(2M) ≤ r/2 centred at y, where y satisfies 

(106). Take a vector v ∈ S
1 orthogonal to g(y). In view of (99), there exists a vector 

u ∈ S
d−1 and 1 ≤ k ≤ l such that

∣∣∣∣v · ∂kg

∂uk
(x)

∣∣∣∣ ≥ c =
s0

2
∀ x ∈ U .

Thus, on applying [8, Lemma 3.6] to the function x → v ·g(x) and the ball B′, we obtain 

that

sup
x∈B′

|v · g(x)| ≥ s0

4ll(l + 1)!

( τ

M

)l

. (108)

On the other hand, the upper bound (107) implies that

sup
x∈B′

‖g(x) − g(y)‖2 ≤ τ

2M

√
2M =

τ√
2

· (109)

The upshot of (108) and (109) is that we are able to apply [8, Lemma 4.2] to the map 

g : B′ → R
2 to yield (75) and thereby complete the proof of part (b) of Proposition 2. 

For ease of comparison, we point out that the quantities a, δ and w appearing in the 

statement of [8, Lemma 4.2] correspond to τ , τ/
√

2 and the right-hand side of (108)

respectively. ✷
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Appendix A. Diophantine approximation on manifolds and wireless technology

In short, interference alignment is a linear precoding technique that attempts to align 

signals in time, frequency, or space. The following exposition is an attempt to illustrate 

at a basic level the role of Diophantine approximation in implementing this technique. 

We stress that this section is not meant for the “electronics” experts. We consider two 

examples. The first basic example brings into play the theory of Diophantine approx-

imation while the second slightly more complicated example also brings into play the 

manifold theory.

Example 1. There are two people (users) S1 and S2 who wish to send (transmit) a 

message (signal) u ∈ {0, 1} and v ∈ {0, 1} respectively along a single communication 

channel (could be a cable or radio channel) to a person (receiver) R. Suppose there 

is a certain degree of fading (channel coefficients) associated with the messages during 

transmission along the channel. This for instance could be dependent on the distance 
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of the users to the receiver and in the case of a radio channel, the reflection caused 

by obstacles such as buildings in the path of the signal. It is worth stressing that this 

aspect of “fading” associated with a signal should not be confused with the more familiar 

aspect of a signal being corrupted by “noise” that will be discussed a little later. Let 

h1 and h2 denote the fading factors associated with the messages being sent by S1 and 

S2 respectively. These are strictly positive numbers and assume their sum is one. Also, 

assume that the channel is additive. That is to say that R receives the message:

y = h1x1 + h2x2 where x1 = u and x2 = v . (110)

Specifically, the outcomes of y are

y =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if u = v = 0

h1 if u = 0 and v = 1

h2 if u = 1 and v = 0

1 = h1 + h2 if u = v = 1 ,

(111)

and if h1 �= h2, the receiver is obviously able to recover the messages u and v. Moreover, 

the greater the mutual separation of the above four outcomes in the unit interval I =

[0, 1], the better the tolerance for error (noise) during the transmission of the signal. The 

noise can be a combinations of various factors but often the largest contributing factor 

is the interference caused by other communication channels. If z denotes the noise, then 

instead of (110), in practice R receives the message:

y = h1x1 + h2x2 + z where x1 = u and x2 = v . (112)

Now let d denote the minimum distance between the four outcomes of y ∈ I which 

are explicitly given by (111). Then as long as the absolute value |z| of the noise is 

strictly less than d/2, the receiver is able to recover the messages u and v. This is 

simply due to the fact that intervals of radius d/2 centred at the four outcomes of 

y are disjoint. In this basic example, it is easy to see that the maximum separation 

between the four outcomes is attained when h1 = 1/3 and h2 = 2/3. In this case 

d = 1/3, and we are able to recover the messages u and v as long as |z| < 1/6. The 

upshot is that the closer the real numbers h1 and h2 are to 1/3 and 2/3 the better 

the tolerance for noise. Hence, at the most fundamental level we are interested in the 

simultaneous approximation property of real numbers by rational numbers. In practice, 

it is the probabilistic aspect of the approximation property that is important — knowing 

that the numbers h1 and h2 lie within a ‘desirable’ neighbourhood of the points 1/3 and 

2/3 with reasonably high probability is key. This naturally brings into play the theory 

of metric Diophantine approximation.
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Note that from a probabilistic point of view, the chances that h1 = h2 is zero 

and is therefore insignificant. Furthermore, within the context of this basic example, 

by weighting (precoding) the messages u and v appropriately before the transmission 

stage it is possible to ensure optimal separation (d = 1/3) at the receiver regardless of 

the values of h1 and h2. Indeed, suppose x1 = 1
3h−1

1 u and y2 = 2
3h−1

2 v are transmit-

ted instead of u and v. Then, without taking noise into consideration, R receives the 

message

y = h1x1 + h2x2 = 1
3u + 2

3v (113)

and so the specifics outcomes are

y =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if u = v = 0

1/3 if u = 0 and v = 1

2/3 if u = 1 and v = 0

1 if u = v = 1 .

(114)

Example 2. There are two users S1 and S2 as before but this time there are also two 

receivers R1 and R2. Suppose S1 wishes to simultaneously transmit independent signals 

u1 and v1 as a single signal, say x1 = u1 + v1 where u1 is intended for R1 and v1 for R2. 

Similarly, suppose S2 wishes to simultaneously transmit independent signals u2 and v2 as 

a single signal, say x2 = u2 +v2 where u2 is intended for R1 and v2 for R2. As in the first 

example, for the sake of simplicity, we can assume that the signals u1, u2, v1, v2 ∈ {0, 1}. 

Now let h11 and h21 denote the channel coefficients associated with signals being sent by 

S1 to R1 and R2 respectively. Similarly, let h12 and h22 denote the channel coefficients 

associated with signals being sent by S2 to R1 and R2. Assume that the channel is 

additive and let y1 (respectively y2) denote the signal at receiver R1 (respectively R2). 

Thus,

y1 = h11x1 + h12x2 (115)

y2 = h21x1 + h22x2 (116)

where

x1 = u1 + v1 and x2 = u2 + v2 . (117)
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Recall, that R1 (respectively R2) only cares about recovering the signals u1 and u2

(respectively v1 and v2) from y1 (respectively y2). For the moment, let us just concentrate 

on the signal received by R1; namely

y1 = h11u1 + h12u2 + h11v1 + h12v2 .

It is easily seen that this corresponds to a received signal in Example 1 modified to 

incorporate four users and one receiver. This time there are potentially 16 different 

outcomes. In short, the more users, the more outcomes and therefore the smaller the 

mutual separation between them and in turn the smaller the tolerance for noise. Now 

there is one aspect of the setup in this example that we have not yet exploited. The 

receiver R1 is not interested in the signals v1 and v2. So if they could be deliberately 

aligned via precoding into a single component v1 + v2, then y1 would look like a received 

signal associated with just 3 users rather than 4. With this in mind, suppose instead of 

transmitting x1 and x2 given by (117), S1 and S2 transmit the signals

x1 = h22u1 + h12v1 and x2 = h21u2 + h11v2 (118)

respectively. Then, it can be verified that the received signals given by (115) and (116)

can be written as

y1 = (h11h22)u1 + (h21h12)u2 + (h11h12)(v1 + v2)

y2 = (h21h12)v1 + (h11h22)v2 + (h21h22)(u1 + u2) .

In other words, the unwanted, interfering signals at either receiver are aligned to a one 

dimensional subspace of four dimensional space. Notice that in the above equations the 

six coefficients are only of four variables, namely hi,j , i, j = 1, 2, and thus represent 

dependent quantities. This, together with our findings from Example 1, naturally brings 

into play the manifold theory of metric Diophantine approximation.

Example 2 is a simplified version of Example 3 appearing in [16, §III]. For a deeper 

and more practical understanding of the link between interference alignment and metric 
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Diophantine approximation on manifolds the reader is urged to look at [16] and [12, 

§4.7].
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