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Lipschitz stratifications in power-bounded

o-minimal fields

Immanuel Halupczok Yimu Yin

9th Feb. 2016

Abstract

We propose to grok Lipschitz stratifications from a non-archimedean point of

view and thereby show that they exist for closed definable sets in any power-bounded

o-minimal structure on a real closed field. Unlike the previous approaches in the liter-

ature, our method bypasses resolution of singularities and Weierstraß preparation al-

together; it transfers the situation to a non-archimedean model, where the quantitative

estimates appearing in Lipschitz stratifications are sharpened into valuation-theoretic

inequalities. Applied to a uniform family of sets, this approach automatically yields

a family of stratifications which satisfy the Lipschitz conditions in a uniform way.

Keywords. Lipschitz stratifications, polynomially bounded fields, power-bounded

fields

In this paper we prove the existence of Lipschitz stratifications for any closed definable

set in a polynomially bounded o-minimal structure on R, and, in fact, even more generally,

in a power-bounded o-minimal structure on a real closed field R. The notion of a Lipschitz

stratification was introduced by Mostowski in his dissertation [Mos]. It is much stronger

than Whitney’s conditions or Verdier’s condition (w) formulated in [Ver]; it imposes a

global condition and ensures that the Lipschitz type of the stratified set is locally constant

along each stratum.

Throughout this paper, R is a power-bounded real closed field. A classical example of

such a structure is Ran: the reals with restricted analytic functions as described in [DMM];

beyond this (subanalytic) level, there is e.g. the class of quasianalytic structures; see [Rol].

If the field R is just R, then power-bounded is equivalent to polynomially bounded. In
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other real closed fields, power-boundedness is more general and more natural; we recall

that notion in Definition 1.1.1.

Here is a first version of our main result.

Theorem 1 (Lipschitz stratifications). Let X ⊆ Rn be a closed definable subset in a

power-bounded real closed field R. Then there exists a definable Lipschitz stratification

of X .

The notion of Lipschitz stratification is recalled in Definition 1.2.4, and Subsection 1.1

clarifies how the terminology should be adapted in the case R 6= R. For compact sets

X and in the case R = R, the semi-analytic case of this theorem was established in

[Par1] and the subanalytic case in [Par2]. Recently, Nguyen and Valette [NV] generalized

Parusinski’s proof to polynomially bounded structures on R. (In [NV] the result is stated

for compact X , but their proof also goes through for arbitrary closed X; see [Ngu].)

A main motivation for Lipschitz stratifications is that one has local bilipschitz triviality

along strata, which in turn implies that any two points within the same stratum have

neighborhoods which are in bilipschitz bijection. The proof of this result is rather easy

in R, but the argument uses integration along vector fields; this is highly non-definable,

and it does not generalize to other real closed fields. We believe that local bilipschitz

triviality (along strata of a Lipschitz stratification) can also be obtained in R 6= R, but

the argument might be much more involved. More precisely, a proof of the existence of

definable local bilipschitz trivializations within R would probably directly generalize to

R. Some results in that direction exist. For example, Valette [Val] proved the existence

of definable bilipschitz trivializations in polynomially bounded o-minimal structures, but

using certain triangulations instead of Lipschitz stratifications.

Using the existence of Skolem functions and the Compactness Theorem, one easily de-

duces that Theorem 1 also works uniformly in families, in the sense that given a uniformly

definable family of sets, one finds a uniformly definable family of Lipschitz stratifications.

However, the notion of Lipschitz stratifications involves a constant C (a stratification is

Lipschitz if some conditions hold for sufficiently big C), and a natural question is whether

that C can be chosen to be the same for an entire family. In this paper, we obtain uniform

Lipschitz stratifications in families in this strong sense; the precise statement is Theo-

rem 1.3.5.

Our approach to the construction of Lipschitz stratifications is quite different from all

previous ones. The main difference is that we use the technique from non-standard analy-

sis of replacing R by a bigger real closed field R′ (an elementary extension). The infinite

and infinitesimal elements in R′ make it possible to simplify the formulation of statements

involving limits. In particular, we obtain simpler characterizations of Lipschitz stratifica-

tions: Whereas the original definition of a Lipschitz stratification uses subtle inequalities
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depending on two different constants c and C, we obtain an equivalent definition, formu-

lated using R′, which needs neither c nor C (see Definition 1.6.5 and Proposition 1.6.11).

The aforementioned strong uniformity in families is obtained as a side effect of using

that approach: We prove that Lipschitz stratifications exist in families within R′. The fact

that the parameters of the family are allowed to run over the bigger field R′ allows us to

deduce the strong uniformity result within R.

On our way, we also obtain various other equivalent characterizations of Lipschitz

stratifications: Proposition 1.2.5 provides some characterizations purely within the stan-

dard model, where c and C are used in a less subtle way, and Proposition 1.8.3 provides a

new characterization of Lipschitz stratifications in terms of partial flags, which is invariant

under GLn. (To our knowledge, the only previously known GLn-invariant characteriza-

tion was the one terms of vector bundles given e.g. in [Par1, Proposition 1.5].)

Typically, proofs carried out using non-standard analysis in an elementary extension

R′ can be translated back to “classical” proofs within R (at the cost of making them

much less readable). However, for one key ingredient to our proof – a precise estimate

of the gradient of functions near a singular locus; cf. Corollary 2.2.2 and Remark 2.2.3 –

we use some deeper model theoretic results. More precisely, R′ naturally carries a valua-

tion, which specifies the order of magnitude of elements. The proof of our estimate builds

on model theory of R′ as a valued field, i.e., we consider definable sets in a language

including the valuation. This setting has been studied by van den Dries and Lewenberg

[DL, Dri1] under the name of “T -convex fields”. In that setting, the second author of

the present paper obtained a result which is somewhat related to Weierstraß Preparation

in valued fields (Proposition 2.2.1) and that in turn implies the above-mentioned Corol-

lary 2.2.2.

In Section 1 we recall the notion of Lipschitz stratifications and prove the equivalence

of its various characterizations. We also give an overview of the proof of existence of

Lipschitz stratifications (in Subsection 1.9). The entire remainder of the paper is devoted

to the details of that proof. Section 2 discusses the various ingredients and Section 3

contains the proof itself.
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1 Characterizations of Lipschitz Stratifications

In this section, we recall the definition of Lipschitz stratifications, we formulate several

alternative definitions and we prove that all those definitions are equivalent. This does not

yet use any deep model theory; the only model theoretic ingredient we use is the notion

of elementary extensions (and their existence).

1.1 Basic Notation

We fix some notation which will be used throughout this paper.

Recall that an o-minimal structure on R is polynomially bounded if every definable

function R → R is ultimately bounded by a polynomial. One essential aspect of this no-

tion is the dichotomy obtained by Miller [Mil2]: In any structure that is not polynomially

bounded, one can already define exponentiation. To obtain a similar dichotomy for other

real closed fields R, one needs a generalization of polynomially bounded [Mil1]: a defin-

able function only needs to be bounded by a kind of generalized power function. Here is

the precise definition.

Definition 1.1.1 (Power bounded). Suppose that R is an o-minimal real closed field. A

power function in R is a definable endomorphism of the multiplicative group R×. We

call R power bounded if for every definable function f : R −→ R, there exists a power

function g such that |f(x)| ≤ g(x) for all sufficiently big x.

There is a precise sense in which a power function is of the form x 7−→ xλ, where

λ is an element of a certain subfield of R. Since we will use power-boundedness only

indirectly, we do not elaborate on this; see [Mil1] for details.

Notation 1.1.2 (Structures and language). Throughout this paper, we fix a power-bounded

o-minimal real closed field R in a language L expanding the ring language. (At some

point, we will impose that R is, without loss, sufficiently big).

By definable we mean definable with arbitrary parameters; in contrast, L-definable

means definable without parameters (apart from those which are constants in the lan-

guage).

Remark 1.1.3. It is somewhat customary, in o-minimal geometry, to not specify a language

and only work with the notion of definable sets. However, specifying a language allows

us to keep track of the parameters needed to define sets, and this will be needed for some

model theoretic arguments. For the moment, the reader unfamiliar with our approach may

assume that L contains a constant for each element of R, so that L-definable means the

same as definable.
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Notation 1.1.4 (Coordinate projections). Given d ≤ n, we write prd : Rn −→ R for

the projection to the d-th coordinate, pr≤d : Rn −→ Rd for the projection to the first d

coordinates and pr>d : Rn −→ Rn−d the for projection to the last n− d coordinates.

We use the usual notation and conventions for o-minimal expansions of real closed

fields; see e.g. [Dri2]. We quickly recall the most important ones.

Notation 1.1.5 (Infima and suprema). By o-minimality, any definable subset X ⊆ R

has an infimum and a supremum (which may be ±∞); we denote them by inf(X) and

sup(X).

Notation 1.1.6 (Norms and distances). We write | · | for the absolute value on R, ‖a‖ for

the Euclidean Norm of a ∈ Rn (‖a‖ is an element of R≥0) and ‖M‖ for the operator

norm of a matrix M , i.e., ‖M‖ = sup{‖Ma‖ : ‖a‖ = 1}. Given a point a ∈ Rn and a

definable set X ⊆ Rn, we write dist(a,X) := inf{‖a − x‖ : x ∈ X} for the distance

from a to X; we define that distance to be ∞ if X is empty.

Notation 1.1.7 (Topology). The real closed field R comes with a natural topology in-

duced by the order on R; this also induces a topology on Rn. Given a definable set

X ⊆ Rn, we write cl(X) for its topological closure, int(X) for its interior, and ∂X :=

cl(X) \ X for its frontier (not to be mixed up with the boundary, which is also some-

times denoted by ∂X). We call X definably connected if X is not the disjoint union of

two relatively closed (in X) definable subsets. The definable connected components of X

are defined accordingly. (Any definable set in an o-minimal structure has finitely many

definable connected components.)

The topology on R might be totally disconnected, so the usual notion of connectedness

does not behave as desired. However, in the case R = R, definably connected is the same

as connected.

Notation 1.1.8 (Derivatives). For an open setX ⊆ Rn, derivatives of functions f : X −→

Rm are defined as the usual limits. By o-minimality, derivatives exist almost everywhere.

For functions f : X −→ R, we write ∂if for the derivative with respect to the i-th variable

(1 ≤ i ≤ n), and for f = (f1, . . . , fm) : X −→ Rm and a ∈ X , we write

Jaca f :=






∂1f1(a) · · · ∂nf1(a)
...

...

∂1fm(a) · · · ∂nfm(a)






for the Jacobian matrix of f at the point a. In the case m = 1, we also write ∇f(a)

instead of Jaca f . We define the class Cp of p-fold continuously differentiable functions

in the usual way.
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The notion of manifolds makes sense over (o-minimal) fields R 6= R only if one

restricts to definable manifolds. All manifolds we will encounter will moreover be em-

bedded.

Notation 1.1.9 (Manifolds and tangent spaces). A d-dimensional definable Cp submani-

fold of Rn (for d ≤ n and p ≥ 1) is a definable set X ⊆ Rn such that there exists a finite

definable open cover of X by sets Ui, each of which is in definable Cp-bijection with an

open set Vi ⊆ Rd. The tangent space of X at some a ∈ X is denoted by Ta(X). (We

consider Ta(X) as a subspace of Rn.)

Note that Ta(X) is definable uniformly in a.

1.2 Various definitions of Lipschitz stratifications

We use the following notation and conventions for stratifications:

Definition 1.2.1 (Stratifications). Let X ⊆ Rn be a definable subset of dimension d.

A definable stratification of X is a family X = (X0 ⊆ X1 ⊆ · · · ⊆ Xd = X) of

closed definable subsets of X satisfying the properties below. We set X−1 := ∅. For

0 ≤ i ≤ d, the set X̊ i := X i \ X i−1 is called the i-th skeleton, and each definably

connected component of each skeleton is called a stratum. We call X a stratification if the

following conditions hold.

• For each i, dimX i ≤ i;

• for each i, X̊ i is either empty or a definable C1 submanifold of Rn of dimension i

(not necessarily connected);

• for each stratum S, the topological closure cl(S) is a union of strata.

(Note that in the generality of power-bounded o-minimal structures, one cannot expect

to obtain smooth strata.)

Mostowski’s original definition of when a stratification is a Lipschitz stratification uses

the notion of a chain: a sequence of points (aℓ)0≤ℓ≤m that starts with an arbitrary point

a0 ∈ X , and where the remaining points lie in lower dimensional skeletons, but “not too

far from a0”, and only in “those skeletons X̊ i which are much closer to a0 thanX i−1”. The

precise inequalities specifying these distances are quite subtle. There exists an equivalent

definition involving Lipschitz vector fields [Par1, Proposition 1.5], which avoids the sub-

tleties of bounding the aforementioned distances. However, that definition quantifies over

vector fields, which makes it less suitable for our model theoretic approach. Therefore, in

this paper, we use the original definition in terms of chains. (More precisely, we use the

simplified variant of that original definition given in [Par1].)
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As already mentioned in the introduction, we will use methods from non-standard

analysis to simplify the definition of Lipschitz stratifications: After having replaced R by

an elementary extension, we will define a valuation on R, which will allow us to replace

the subtle bounds on distances by simple valuative inequalities. However, that valuative

definition is not a straight-forward translation of Mostowski’s definition in the usual non-

standard analysis way. To make such a translation possible, one needs to first modify

Mostowski’s definition in such a way that certain quantifiers become simpler.

To prove that our new definition is equivalent to the old one, our strategy is as follows.

We introduce two new variants of Mostowski’s definition: one of them a priori weaker

and one of them a priori stronger. Both variants have simpler quantifiers, so that they can

be translated to valuative versions. For those valuative versions, it will not be very hard

to prove that the weak one implies the strong one, hence implying that all definitions are

equivalent.

In the following, we start by giving all those definitions of Lipschitz stratifications

which do not use the valuation. The valuative versions are stated in Subsection 1.6, and

the proofs of the equivalences are given in Subsection 1.7.

Lipschitz stratifications are defined in terms of projections to the tangent spaces of the

skeletons X̊ i; we first fix notation for those projection maps.

Definition 1.2.2. Given a definable stratification X of a definable subset X ⊆ Rn and a

point a ∈ X̊ i, let

Pa : Rn −→ TaX̊
i

be the orthogonal projection onto the tangent space of X̊ i at a, considered as a map

Rn −→ Rn.

The various definitions of Lipschitz stratifications only differ in the way that certain

constants are treated. To avoid writing almost the same definition three times (and to make

it clear how exactly the definitions differ), we introduce a general notion of a stratification

X “satisfying the Mostowski Conditions for given constants”. For readers who just want

to understand one single definition of Lipschitz stratifications, one possible definition

is encoded in the notation used for the constants: Increasing lowercase constants and

decreasing uppercase constants both makes the Mostowski Conditions more restrictive;

and X is a Lipschitz stratification if no matter how big the lowercase constants are chosen,

one can find values for the uppercase constants such that the Mostowski Conditions are

satisfied (see Proposition 1.2.5 (2)).

Note: The Mostowski Conditions impose conditions on all chains, so a more restrictive

notion of chains yields a less restrictive notion of Mostowski Conditions.

Definition 1.2.3 (Chains and Mostowski Conditions). Let X = (X i)i be a definable

stratification (of a definable set X ⊆ Rn), and let c, c′, C ′, C ′′, C ′′′ ∈ R be given.
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A plain chain (in X ) is a sequence of points a0, a1, . . . , am (m ≥ 0) with aℓ ∈ X̊eℓ ,

e0 > e1 > · · · > em satisfying the following conditions.

1. For ℓ = 1, . . . ,m, we have:

‖a0 − aℓ‖ < c · dist(a0, Xeℓ).

2. For each iwith em ≤ i < e0, we have one of two different conditions (which should

be considered as specifying which i should be among the eℓ and which should not):

{

dist(a0, X i−1) ≥ C ′ · dist(a0, X i) if i ∈ {e1, . . . , em}

dist(a0, X i−1) < c′ · dist(a0, X i) if i /∈ {e1, . . . , em}.

An augmented chain (in X ) consists of a plain chain a0, a2, a3, . . . , am (m ≥ 1, aℓ ∈ X̊eℓ)

together with an additional point a1 ∈ X̊e1 , where e1 := e0, satisfying

‖a0 − a1‖ ≤
dist(a0, Xe1−1)

C ′′
. (1.1)

We say that X satisfies the Mostowski Conditions for (c, c′, C ′, C ′′, C ′′′) if the following

two conditions hold:

For every plain chain (ai)0≤i≤m with m ≥ 1, we have

‖(1 − Pa0)Pa1Pa2 . . . Pam‖ <
C ′′′‖a0 − a1‖

dist(a0, Xem−1)
, (m1)

For every augmented chain (ai)0≤i≤m (with m ≥ 1), we have

‖(Pa0 − Pa1)Pa2Pa3 . . . Pam‖ <
C ′′′‖a0 − a1‖

dist(a0, Xem−1)
. (m2)

We use the convention that if Xem−1 is empty, then in (m1) and (m2), we require the left

hand side to be equal to 0.

Concerning nomenclature, note that what Parusinski calls a c-chain in [Par1] is what

we would call a plain chain of maximal length, using the same constant c and c′ := C ′ :=

2c2. Also, we use different conventions regarding the case when Xem−1 is empty. (Our

convention seems more natural to us, though it almost implies X0 6= ∅.)

Parusinskis’s version of the definition of a Lipschitz stratification is the following:

Definition 1.2.4 (Lipschitz stratifications). Let c > 1 (c ∈ R) be given. A definable

stratification X is a Lipschitz stratification if there exists a C ∈ R such that X satisfies

the Mostowski Conditions for (c, 2c2, 2c2, 2c, C).
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A priori, this notion seems to depend on the choice of c. However, it turns out that dif-

ferent choices of c yield equivalent notions; this follows e.g. from [Par1, Proposition 1.5].

That we have c′ = C ′ in Definition 1.2.4 means that Condition (2) in Definition 1.2.3

uniquely specifies the set {e1, e2, . . . , em} in terms of the initial point a0 and the length

m of the chain. However, a side effect of identifying c′ with C ′ is that the strength of

the condition is not a monotone function in the value of the constant: a chain for some

c′ = C ′ might neither stay a chain when making c′ = C ′ bigger, nor when making them

smaller. This has various disadvantages, the main one for us being that only monotone

conditions can nicely be simplified by reformulating them in an elementary extension.

Another consequence is that one has to be quite precise about the relations between the

various constants: c vs. 2c2 vs. 2c.

In contrast, the following two equivalent characterizations are monotone in c and C

in the above sense, and they are much more robust with respect to small modifications of

Definition 1.2.3.

Proposition 1.2.5 (Characterizations of Lipschitz stratifications). The following condi-

tions on an L-definable stratification X are equivalent:

1. X is a Lipschitz stratification (in the sense of Definition 1.2.4).

2. For every c ∈ R, there exists a C ∈ R such that X satisfies the Mostowski Condi-

tions for (c, c, C, C,C).

3. For every c ∈ R, there exists a C ∈ R such that X satisfies the Mostowski Condi-

tions for (c, c, 1, 1
c
, C).

The monotonicity in c and C means that both (2) and (3) in the proposition can be con-

sidered as statements about big c and C, namely: “No matter how big c is, the Mostowski

Conditions hold for all sufficiently big C.”

Characterization (2) imposes conditions only on very few chains: since C can be as-

sumed to be big compared to c, for most points a0 ∈ X , neither of the two inequalities

in Definition 1.2.3 (2) holds, hence forbidding those a0 as starting points of chains. In

contrast, every sequence of points in decreasing skeletons is relevant in (3) for some c.

(Note that putting C ′ = 1 makes the first condition of Definition 1.2.3 (2) trivially true.)

For these reasons, the implications (3) ⇒ (1) ⇒ (2) are very easy to prove, assuming that

we read Definition 1.2.4 as “for every c > 1 there exists C” (which we can, using the

result that it is independent of c). The proof (2) ⇒ (3) is harder; this will follow from

Proposition 1.6.11. In fact, this is a good example of a proof which becomes much easier

after translating the statements to valuative ones in an elementary extension.
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Proof of Proposition 1.2.5 (3) ⇒ (1). Let c > 1 be given (from Definition 1.2.4). Then

(3) yields a C such that the Mostowski Conditions hold for (2c2, 2c2, 1, 1
2c2
, C). Thus they

also hold for (c, 2c2, 2c2, 2c, C).

Proof of Proposition 1.2.5 (1) ⇒ (2). Let c be given (from (2)); without loss, c > 1. By

Definition 1.2.4, there existsC such that the Mostowski Conditions hold for (c, 2c2, 2c2, 2c, C).

Hence they also hold for (c, c, C ′, C ′, C ′), where C ′ := max{C, 2c2}.

Remark 1.2.6. It is possible to translate the valuative proof of (2) ⇒ (3) given in Subsec-

tion 1.7 into a “conventional” proof within the original field R; we leave the details of this

to the interested reader as an exercise. Such a translation in particular yields how, given

a function f(2) : c 7−→ C witnessing (2), one obtains a function f(3) : c 7−→ C witnessing

(3). Roughly, f(3) = (f(2) ◦ g) ◦ · · · ◦ (f(2) ◦ g)
︸ ︷︷ ︸

dim X times

for some simple function g.

1.3 Uniform families of Lipschitz stratifications

As mentioned in the introduction, we will obtain Lipschitz stratifications uniformly in

families, in a very strong sense. We now make this precise.

Notation 1.3.1 (Definable families). For the whole subsection, we fix a definable set Q

(say, a subset of RN ); all definable families are parametrized by Q: A definable family of

subsets of Rn is simply a definable subset X ⊆ Rn ×Q, where we write

Xq := {x ∈ Rn : (x, q) ∈ X}

for the fiber at q ∈ Q.

We also define families of stratifications in the obvious way:

Definition 1.3.2. Suppose thatX is a definable family of d-dimensional subsets of Rn (for

some fixed d ≤ n). A definable family of stratifications of X is a tuple X = (X i)0≤i≤d

of families of definable sets such that for each q ∈ Q, Xq := (X i
q)0≤i≤d is a stratifica-

tion of Xq; X is a definable family of Lipschitz stratifications if each Xq is a Lipschitz

stratification.

The more interesting concept is that of a family of stratifications that are uniformly

Lipschitz; this says that the constant C appearing in the definition of Lipschitz stratifica-

tions can be chosen uniformly for the entire family. Here is the precise definition.

Definition 1.3.3 (Uniformly Lipschitz stratifications). A definable family X of stratifica-

tions (of a definable family X of sets) is a family of uniformly Lipschitz stratifications if

one of the following equivalent conditions holds:
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1. For every c ∈ R there exists a C ∈ R such that for every q ∈ Q, Xq satisfies the

Mostowski Conditions for (c, 2c2, 2c2, 2c, C).

2. For every c ∈ R there exists a C ∈ R such that for every q ∈ Q, Xq satisfies the

Mostowski Conditions for (c, c, C, C, C).

3. For every c ∈ R there exists a C ∈ R such that for every q ∈ Q, Xq satisfies the

Mostowski Conditions for (c, c, 1, 1
c
, C).

The above proofs of the non-uniform implications (3) ⇒ (1) ⇒ (2) (of Proposi-

tion 1.2.5) also work without modification in the uniform case. The implication (2) ⇒

(3) is re-stated as (a part of) Proposition 1.6.11 and will be proved in Subsection 1.7.

Remark 1.3.4. The reader may have noticed that in Definition 1.3.3 (1), we wrote “for

every c”, instead of fixing a c > 1, as in Definition 1.2.4. We believe that also the a priori

weaker versions with fixed c are equivalent, but we didn’t check that carefully.

Now we can finally state the full version of the main result of this paper.

Theorem 1.3.5 (Uniformly Lipschitz stratifications). Fix a power-bounded real closed

field R in a language L. Suppose thatX is an L-definable family of closed, d-dimensional

subsets of Rn (i.e., X is an L-definable subset of Rn × Q, whose fibers Xq ⊆ Rn are

closed and d-dimensional, for q ∈ Q). Then there exists an L-definable family X =

(X i)0≤i≤d of uniformly Lipschitz stratifications of X (in the sense of Definition 1.3.3).

1.4 Enlarging the model

The conditions in Definition 1.3.3 are clearly first order properties. Therefore, when prov-

ing the implication (2) ⇒ (3) and the existence of uniformly Lipschitz stratifications, we

may work in an elementary extension. More precisely, we will take the point of view that

without loss, R itself is already large, so that in particular, it possesses an elementary

substructure R0 � R. It is not difficult to check that the convex closure of R0 within R

is a (non-trivial) valuation ring of R; we denote it by OR. Intuitively, elements of R\OR

may be regarded as “infinite” and elements in the maximal ideal of OR as “infinitesimal”;

more generally, bigger valuation means smaller order of magnitude, where two elements

are considered as having the same order of magnitude if they differ at most by a factor

from R×
0 . (Note that even if R0 is non-archimedean, we consider all its elements as having

the same order of magnitude.)

It is a standard technique to study R by passing to an elementary extension. This

implicitly uses the above valuation, but one usually considers definability only in the

original language L. In contrast, in this paper, we will explicitly consider R as a structure

in the language expanded by a predicate for OR. The model theory of such structures has
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been studied by van den Dries and Lewenberg [DL, Dri1], and a key ingredient to our

proof of existence of Lipschitz stratifications builds on those results.

Notation 1.4.1 (Valuation). For the remainder of Section 1, we suppose that we have two

L-structures R0 � R. We write OR ⊆ R for the valuation ring obtained as the convex

closure of R0 in R, i.e.,

OR = {a ∈ R : −b < a < b for some b ∈ R0}.

We write Γ := R×/O×
R for the value group and val : R −→ Γ ∪ {∞} for the valuation.

Let Lval be the expansion of the language L by a predicate for OR.

In [DL, Dri1], the language Lval is denoted by Lconvex and an Lval -structure obtained

from o-minimal structures R0 � R as in Notation 1.4.1 is called “T -convex”, where T is

the theory of R as an L-structure. It has been proved in [DL] that being T -convex is an

elementary property, i.e., that for any Lval -structure R′ which is elementarily equivalent to

R, the valuation ring OR′ ⊆ R′ is also the convex closure of an L-elementary substructure

R′
0 � R′. In particular, we can assume that R is sufficiently saturated as an Lval -structure

(by possibly further enlarging both, R0 and R); this will be useful for (model theoretic)

compactness arguments.

Assumption 1.4.2. For the remainder of the paper, we assume that R is sufficiently satu-

rated, as a structure in the language Lval .

(To be precise, we will need R to be |Lval |
+-saturated.)

Remark 1.4.3. The result that being T -convex is an elementary property is only used

for convenience, to be able to fix R once and for all. In reality, in those parts of the

paper where we do need to consider elementary extensions of R as an Lval -structure

(namely Theorem 1.6.7 and its proof), we do not need OR to be the convex closure of an

elementary substructure.

1.5 Valuative Notation

We fix some notation related to the newly introduced valuation. First of all, note that

even when working with the language Lval , all stratifications we consider are L-definable

(instead of Lval -definable), and the notions of definable connectedness and definable man-

ifolds still refer to the language L.

Now that we have a valuation, it is useful to also have valuative versions of norms and

distances; we use the following notation. Note that by [Dri1, Proposition 4.3], the value

group Γ (with the induced structure) is o-minimal. In particular, suprema and infima of

definable subsets of Γ exist.
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Notation 1.5.1 (Valuative norms and distances). For a = (a1, . . . , an) ∈ Rn, we set

val(a) := mini val(ai) = val(‖a‖). If in addition, we have a definable set X ⊆ Rn, we

set valdist(a,X) := supx∈X val(a − x) = val(dist(a,X)), where valdist(a, ∅) := −∞.

For a matrix M = (mij)ij , we set val(M) := mini,j val(mij).

We recall some facts about those definitions.

Lemma 1.5.2. LetM andN be matrices with coefficients on R. Then we have the follow-

ing (where some statements implicitly impose conditions on the numbers of rows/columns

of M and N ):

1. We have val(MN) ≥ val(M) + val(N) (and in particular val(Ma) ≥ val(M) +

val(a) for a ∈ Rn).

2. The matrix M lies in GLn(OR) iff M ∈ GLn(R) and we have both val(M) ≥ 0

and val(M−1) ≥ 0.

3. If M ∈ GLn(OR), then val(MN) = val(N) (and in particular val(Ma) = val(a)

for a ∈ Rn).

4. We have val(M) = val(‖M‖), where ‖M‖ is the operator norm of M (or, in fact,

any other of the usual norms).

Proof. (1) Easy computation.

(2) Clear.

(3) Follows from (1) and (2).

(4) We have

val(‖M‖) + val(‖a‖)
(⋆)

≤ val(‖Ma‖)
(⋆⋆)

≥ val(M) + val(‖a‖) (1.2)

(using the definition of the operator norm to get (⋆), and using (1) to get (⋆⋆)). By

choosing a such that ‖Ma‖ = ‖M‖ · ‖a‖, we obtain an equality at (⋆) and hence

val(‖M‖) ≥ val(M). To obtain val(‖M‖) ≤ val(M), we choose an a which yields an

equality at (⋆⋆): if the j-th column of M has an entry mij satisfying val(M) = val(mij),

then we can take a to be the j-th standard basis vector.

All balls we consider in this paper are valuative balls. We use the following notation.

Notation 1.5.3 (Balls). Given a ∈ Rn and λ ∈ Γ, we write

B>λ(a) := {x ∈ Rn : val(x− a) > λ} and

B≥λ(a) := {x ∈ Rn : val(x− a) ≥ λ}

for the open and closed ball of valuative radius λ.
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1.6 Valuative Lipschitz Stratifications

The valuation allows us to simplify Conditions (2) and (3) of Definition 1.3.3 in the “usual

non-standard analysis way”. This leads to a valuative version of chains and Lipschitz

stratifications, which we now introduce.

Definition 1.6.1 (val-chains). Fix a definable stratification X = (X i)i of a definable set

X ⊆ Rn. A plain val-chain (in X ) is a sequence of points a0, . . . , am (m ≥ 0) with

aℓ ∈ X̊eℓ , e0 > e1 > · · · > em such that for all 1 ≤ ℓ ≤ m, we have

λℓ := val(a0 − aℓ) > valdist(a0, Xeℓ−1) and (1.3)

val(a0 − aℓ) = valdist(a0, Xeℓ−1−1). (1.4)

An augmented val-chain (in X ) is a sequence of points a0, . . . , am (m ≥ 1) with aℓ ∈ X̊eℓ ,

e0 = e1 > · · · > em such that (1.3) holds for 1 ≤ ℓ ≤ m and (1.4) holds for 2 ≤ ℓ ≤ m.

By a val-chain, we mean either a plain or an augmented one.

The numbers eℓ (for 0 ≤ ℓ ≤ m) are the dimensions of the val-chain, and its distances

are the valuations λℓ (1 ≤ ℓ ≤ m) together with λm+1 := valdist(a0, Xem−1) (which

might be −∞).

Remark 1.6.2. An equivalent way of characterizing a plain val-chain is the following.

Choose any point a0 in any skeleton X̊e0 . Then choose the remaining points aℓ (1 ≤ ℓ ≤

m) in skeletons X̊eℓ as close as possible to a0 in the valuative sense, where {e1, . . . , em}

consists of them biggest elements of the set {j ≤ e0 : valdist(a0, Xj) > valdist(a0, Xj−1)}.

Remark 1.6.3. By (1.3), we have λ1 > · · · > λm+1. This implies

val(ak − aℓ) = val(a0 − aℓ) for 0 ≤ k < ℓ ≤ m and

valdist(ak, Xj) = valdist(a0, Xj) for 0 ≤ k ≤ m and j < ek.

In particular, if (aℓ)0≤ℓ≤m is a val-chain, then any sub-sequence of the form (aℓ)k≤ℓ≤m′

for 0 ≤ k ≤ m′ ≤ m is also a val-chain (which is always plain if k ≥ 1). Moreover,

if (aℓ)0≤ℓ≤m is an augmented val-chain, then a0, a2, a3, . . . , am′

is a plain val-chain (for

1 ≤ m′ ≤ m).

Definition 1.6.4 (valuative Mostowski Conditions). Let X be a definable stratification

and (aℓ)0≤ℓ≤m a val-chain with distances λℓ. By the valuative Mostowski Condition at

(aℓ)ℓ, we mean one of the following two properties of X . If (aℓ)ℓ is a plain val-chain, the

condition is

val((1 − Pa0)Pa1 · · ·Pam) ≥ λ1 − λm+1; (vm1)

if (aℓ)ℓ is an augmented val-chain, the condition is

val((Pa0 − Pa1)Pa2 · · ·Pam) ≥ λ1 − λm+1. (vm2)
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In the case λm+1 = −∞, the conditions are supposed to be read as “val(. . .) = ∞”,

i.e., the composition of the maps is 0. If X0 6= ∅, then λm+1 = −∞ implies am ∈ X0,

and we anyway have Pam = 0. However, if X0 = ∅, then this is a very strong condition,

so as for classical Lipschitz stratifications, one can almost never have X0 = ∅.

Definition 1.6.5 (valuative Lipschitz stratifications). A definable stratification X = (X i)i

(of a definable setX ⊆ Rn) is a valuative Lipschitz stratification if it satisfies the valuative

Mostowski conditions at every val-chain.

Remark 1.6.6. Whether or not in Definition 1.6.5 one considers val-chains consisting of

a single point (i.e., with m = 0) does not make a difference, since in that case, (vm1) is

trivially true (since the right hand side is 0).

This is the notion of stratification we will use in the main proof in this paper, i.e., we

will prove the existence of valuative Lipschitz stratifications. We will do this not only

for L-definable sets X , but also for sets definable with additional parameters from R.

By usual compactness arguments, this implies a family version of the result, and that in

turn implies Theorem 1.3.5 about the existence of uniformly Lipschitz stratifications. The

details of these implications are given at the end of this subsection.

Theorem 1.6.7 (valuative Lipschitz stratifications). Suppose that R is a real closed field

which is o-minimal and power-bounded as a structure in a language L, and suppose

that Lval is an expansion of L by a predicate for the convex closure of an elementary

substructure R0 � R (so R is T -convex in the sense of [DL]). Suppose that X ⊆ Rn

is a closed, L(A)-definable set for some parameter set A ⊆ R. Then there exists an

L(A)-definable valuative Lipschitz stratification of X .

The notion of a valuative Lipschitz stratification is just a reformulation of Proposi-

tion 1.2.5 (2) using the valuation, as we shall see below. To provide a similar reformula-

tion of Proposition 1.2.5 (3), we introduce “weak val-chains”. (Those are only used here

and in the next subsection.) Roughly, a weak val-chain is the same as a val-chain, except

that additional intermediate points in skeletons of intermediate dimensions are allowed.

Definition 1.6.8. A weak val-chain (plain or augmented) is the same as a val-chain, except

that the (strict) inequality (1.3) is replaced by a weak one:

val(a0 − aℓ) ≥ valdist(a0, Xeℓ−1). (1.5)

The val-chains from Definition 1.6.1 will sometimes be called strict val-chains, to em-

phasize the difference. The dimensions eℓ, the distances λℓ and the valuative Mostowski

Conditions are defined in the same way as for strict val-chains.

Remark 1.6.9. In fact, imposing (1.5) is necessary only for ℓ = 1 in augmented val-chains;

in all other cases, (1.5) follows from (1.4) and Xeℓ−1−1 ⊇ Xeℓ−1.
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Figure 1.1: This is a Lipschitz stratification but not a valuative Lipschitz stratification,

since the two tangent spaces of the augmented val-chain a0 = (1, 0, r), a1 = (1, r, 0) are

too far apart from each other; see Example 1.6.12.

Remark 1.6.10. For weak val-chains, we only have weak inequalities λ1 ≥ · · · ≥ λm+1,

and a weak val-chain is strict iff all those inequalities between the λi are strict.

Proposition 1.6.11. Suppose that X is an L-definable family of stratifications (of an

L-definable family X of subsets of Rn), parametrized by q ∈ Q for some L-definable

Q ⊆ RN . Then following conditions are equivalent:

(2) Condition (2) of Definition 1.3.3.

(3) Condition (3) of Definition 1.3.3.

(2’) For each q, Xq is a valuative Lipschitz stratification (in the sense of Definition 1.6.5).

(3’) For each q, Xq satisfies the valuative Mostowski Condition at every weak val-chain.

Note that for the implications (x) ⇒ (x’) to hold (x = 2, 3), it is essential that X

is L-definable without parameters outside of R0; cf. Remark 1.7.2 below. However, the

implications (x’) ⇒ (x) seem to hold even for L(A)-definable X , where A ⊆ R. (We did

not check the details.)

Example 1.6.12. If X ⊆ R3 is the cone defined by r2x2 = y2 + z2 for some r ∈ R of

strictly positive valuation, then X0 = X1 = {(0, 0, 0)} defines a Lipschitz stratification

of X , but not a valuative Lipschitz stratification; see Figure 1.1.

As promised, here is the precise argument on how to deduce Theorem 1.3.5 from

Theorem 1.6.7 and Proposition 1.6.11.

Proof of Theorem 1.3.5. Let an L-definable family X of closed d-dimensional subsets of

Rn be given (parametrized by q ∈ Q); we would like to find a family X of uniformly

Lipschitz stratifications (Defintion 1.3.3) of X . By Proposition 1.6.11, this is equivalent

to Xq being a valuative Lipschitz stratification for each q ∈ Q.

For each q ∈ Q, Theorem 1.6.7 provides an L(q)-definable valuative Lipschitz strat-

ification Xq of Xq. By a standard compactness argument, we may assume that those Xq

are definable uniformly in q, i.e., that they are the fibers of an L-definable family X of

stratifications, as desired.
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The details of the compactness argument are as follows. For each q̂ ∈ Q, there exist

L-formulas φi
q̂(x, y) (0 ≤ i ≤ d) such that the φi

q̂(x, q̂) define a valuative Lipschitz stratifi-

cation ofXq̂. Fix one q̂ and consider the set Uq̂ of those q ∈ Q such that (φi
q̂(x, q))i defines

a valuative Lipschitz stratification of Xq. Since being a valuative Lipschitz stratification

is a first order property, Uq̂ is L-definable. Finitely many sets Uq̂1 , . . . , Uq̂ℓ
suffice to cover

Q, since otherwise, the complements Q \ Uq̂ would form a partial type, which is satisfied

by some q0 ∈ Q (since R is sufficiently saturated by Assumption 1.4.2), contradicting

q0 ∈ Uq0 . Now use the formulas φi
q̂1

(x, y), . . . , φi
q̂ℓ

(x, y) to define X ; more precisely,

given q ∈ Q, let X i
q be defined by φi

q̂j
(x, q), where j is minimal with q ∈ Uq̂j

.

1.7 Equivalence of various definitions

We will now prove Proposition 1.6.11. More precisely, we will prove the following im-

plications:

(2) ⇐⇒ (2′)
⇓

(3) ⇐⇒ (3′)
(1.6)

Note that the right hand ⇑ is trivial, and anyway, we already proved ⇑ on the left hand side.

Both horizontal ⇐⇒ are simple applications of a standard method from non-standard

analysis which we recall now:

Lemma 1.7.1 (Translating: with/without valuation). Suppose that Z is L-definable and

that f, g : Z −→ R≥0 are two L-definable functions. Then the following are equivalent:

1. For every c ∈ R≥0, there exists C ∈ R≥0 such that for every z ∈ Z, f(z) ≤ c

implies g(z) ≤ C.

2. For every z ∈ Z, val(f(z)) ≥ 0 implies val(g(z)) ≥ 0.

Proof. Statement (1) is an L-sentence in R, so it is equivalent to the same sentence in

R0; we will use this version of (1). For the proof of this lemma, we assume without loss

that all elements of R0 are constants of L.

(1) ⇒ (2): Let z0 ∈ Z be given such that val(f(z0)) ≥ 0. Then f(z0) ≤ c for some

c ∈ R0 (by definition of the valuation). By (1) in R0, there exists a C ∈ (R0)≥0 such that

R0 |= ∀z ∈ Z : (f(z) ≤ c → g(z) ≤ C). This sentence also holds in R (where c, C

are considered as constants from L), hence f(z0) ≤ c implies g(z0) ≤ C. This in turn

implies val(g(z0)) ≥ 0.

(2) ⇒ (1): Let c ∈ (R0)≥0 be given. We consider “∃C : ∀z ∈ Z : (f(z) ≤ c→ g(z) ≤

C)” as a sentence where c is a constant from L; it suffices to prove that this sentence holds

in R. But indeed: since f(z) ≤ c implies val(f(z)) ≥ 0, we have val(g(z)) ≥ 0, so we

can take any C ∈ R≥0 of negative valuation.
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Remark 1.7.2. For this lemma to be true, it is important that Z, f and g are definable using

parameters only from R0.

Remark 1.7.3. An easy special case of Lemma 1.7.1 is the one with f = 0: An L-definable

function g : Z −→ R is bounded iff it satisfies val(g(z)) ≥ 0 for all z ∈ Z.

Proof of Proposition 1.6.11, (2) ⇐⇒ (2’). This is just a straight-forward application of

Lemma 1.7.1. The details are as follows.

Let the family X = (X i)i of stratifications be fixed (parametrized by q ∈ Q), and let

Z be the set of all tuples z of the form (q, (aℓ)0≤ℓ≤m), with q ∈ Q, aℓ ∈ X̊eℓ
q , e0 ≥ e1 >

e2 > · · · > em, and m ≥ 1. (We consider Z as an L-definable set.) Given c, C ∈ R, such

a z ∈ Z witnesses that our family X violates the Mostowski conditions for (c, c, C, C,C)

if

• (aℓ)0≤ℓ≤m is a chain in Xq (either plain or augmented), i.e.:

‖a0 − aℓ‖

dist(a0, Xeℓ
q )

< c for ℓ =

{

1, . . . ,m if e0 > e1

2, . . . ,m if e0 = e1
(1.7)

dist(a0, X i−1
q )

dist(a0, X i
q)

≥ C for i ∈

{

{e1, . . . , em} if e0 > e1

{e2, . . . , em} if e0 = e1
(1.8)

dist(a0, X i−1
q )

dist(a0, X i
q)

< c for em ≤ i ≤ e0, i /∈ {e0, . . . , em} (1.9)

dist(a0, Xe1−1
q )

‖a0 − a1‖
≥ C in the case e0 = e1 (1.10)

• and either (m1) or (m2) is violated:

‖(1 − Pa0)Pa1 . . . Pam‖ dist(a0, Xem−1
q )

‖a0 − a1‖
≥ C in the case e0 > e1 (1.11)

‖(Pa0 − Pa1)Pa2 . . . Pam‖ dist(a0, Xem−1
q )

‖a0 − a1‖
≥ C in the case e0 = e1. (1.12)

Define f(z) to be the maximum of all the left hand sides of (1.7) and (1.9) (for all ℓ and

i) and g(z) to be the minimum of all the (relevant) left hand sides of (1.8), (1.10), (1.11),

(1.12). Then Condition (2) of Definition 1.3.3 is exactly (1) of Lemma 1.7.1, and (2) of

Lemma 1.7.1 says that there is no z ∈ Z satisfying the following modification of (1.7) –

(1.12): replace “⋆ < c” by “val(⋆) ≥ 0” and “⋆ ≥ C” by “val(⋆) < 0”.

In this modified version, (1.7) – (1.10) state that (ai)i is a val-chain and (1.11), (1.12)

state that the corresponding valuative Mostowksi Condition is violated. Thus Lemma 1.7.1 (2)

expresses that X is a valuative Lipschitz stratification.
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Proof of Proposition 1.6.11, (3) ⇐⇒ (3’). The proof is almost the same as for for (2)

⇐⇒ (2’). The only differences are that (1.8) disappears and that (1.10) is replaced by

‖a0 − a1‖

dist(a0, Xe1−1
q )

≤ c. (1.13)

Lemma 1.7.1 turns (1.13) into (1.5) for ℓ = 1, so we obtain exactly weak val-chains (see

also Remark 1.6.9).

Proof of Proposition 1.6.11, (2’) ⇒ (3’). We assume that every strict val-chain satisfies

the valuative Mostowski Conditions, and we have to prove the same for weak val-chains.

Let a0, . . . , am be a weak val-chain with dimensions ei and distances λi. We do an in-

duction over m. If this is already a strict val-chain, there is nothing to prove. Otherwise,

choose any ℓ such that λℓ = λℓ+1 (1 ≤ ℓ ≤ m). Let us first suppose that (ai)i is a plain

(weak) val-chain. Set

Q := (1 − Pa0)Pa1 · · ·Paℓ−1 and

Q′ := Paℓ+1 · · ·Pam ;

we need to show that

val(QPaℓQ′) ≥ λ1 − λm+1. (1.14)

The sub-sequence a0, . . . , aℓ−1, aℓ+1, . . . , am is still a weak val-chain, and by induction, it

satisfies the Mostowski Conditions, i.e.:

val(QQ′) ≥ λ1 − λm+1.

Moreover, we have val(Q) ≥ λ1 − λℓ (by the inductive hypothesis for a0, . . . , aℓ−1) and

val((1−Paℓ)Q′) ≥ λℓ+1−λm+1 (by the inductive hypothesis for aℓ, . . . , am). Combining

these three inequalities (and using λℓ = λℓ+1) yields (1.14), since QPaℓQ′ = Q(1 −

Paℓ)Q′ −QQ′.

Now suppose that a0, . . . , am is an augmented val-chain. If ℓ ≥ 2, then the argument

is exactly the same as for plain val-chains, with

Q = (Pa0 − Pa1)Pa2 · · ·Paℓ−1 .

In the case ℓ = 1, define Q′ := Pa2 · · ·Pam (as before). The Mostowski conditions for

a0, a2, . . . , am and a1, a2, . . . , am imply val((1 − Pa0)Q′) ≥ λ1 − λm+1 and val((1 −

Pa1)Q′) ≥ λ1 − λm+1; this implies

val((Pa0 − Pa1)Q′) ≥ λ1 − λm+1,

which is what we had to show.
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1.8 A GLn-invariant definition

To prove the existence of valuative Lipschitz stratifications, we will use yet another (equiv-

alent) definition, which is more natural in the sense that it is clearly invariant under

GLn(OR). Note that Definition 1.6.5 (the definition of valuative Lipschitz stratifications)

is already pretty close to being GLn(OR)-invariant, since GLn(OR) preserves valuations

(by Lemma 1.5.2). To make it entirely GLn(OR)-invariant, one only needs to get rid of

the orthogonal projections used to express that certain tangent spaces are close to each

other; this is what we will do now.

That valuative Lipschitz stratifications are GLn(OR)-invariant directly implies that

classical Lipschitz stratifications are GLn(R)-invariant; even though this is not a new

result, we formulate it as Corollary 1.8.7.

There exists a natural valuative metric on the Grassmannians. It can be defined in

many equivalent ways, some of which use orthogonal projections, and others being clearly

GLn(OR)-invariant. We leave the proof of the equivalences to the reader.

Definition 1.8.1. For subspaces W1,W2 ⊆ Rn of the same dimension, set ∆(W1,W2) :=

val(P1 − P2), where Pi is the orthogonal projection onto Wi.

Lemma 1.8.2. For subspaces W1,W2 ⊆ Rn, both of dimension d and for any λ ∈ Γ, the

following are equivalent:

1. ∆(W1,W2) ≥ λ

2. There exist φ1, φ2 ∈ Hom(Rd,Rn) with val(φ1 − φ2) ≥ λ and imφi = Wi.

3. For every w1 ∈ W1 there exists w2 ∈ W2 such that val(w2 − w1) ≥ val(w1) + λ.

The Mostowski Condition bounding val((1−Pa0)Pa1) can be considered as the state-

ment that Ta0X̊0 contains a subspace which is a good approximation of Ta1X̊1. The fol-

lowing characterization of valuative Lipschitz stratifications is a generalization of this

point of view to arbitrary val-chains; see Figure 1.2 for an overview over all sub-spaces.

Proposition 1.8.3 (Valuative Lipschitz stratifications using flags). The following condi-

tions on a definable stratification X = (X i)i are equivalent:

1. X is a valuative Lipschitz stratification (in the sense of Definition 1.6.5).

2. For every val-chain (ai)i≤m (plain or augmented) with dimensions ei and distances

λi, there exist vector spaces Vk,ℓ for 0 ≤ k ≤ ℓ ≤ m with the following properties:

Vk,m ⊆ Vk,m−1 ⊆ . . . ⊆ Vk,k+1 ⊆ Vk,k = TakX̊ek for 0 ≤ k ≤ m (1.15)

dimVk,ℓ = eℓ for 0 ≤ k ≤ ℓ ≤ m (1.16)

∆(Vk,ℓ, Vk+1,ℓ) ≥ λk+1 − λℓ+1 for 0 ≤ k < ℓ ≤ m, (1.17)
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Figure 1.2: Diagramatic representation of the vector spaces appearing in Proposition 1.8.3

(and Lemma 1.8.5); the labels of the vertical lines indicate the distance between the two

corresponding spaces.

Remark 1.8.4. As in Definition 1.6.5, the above Condition (2) is trivial for val-chains

consisting of a single point.

The proof of (1) ⇒ (2) is easy:

Proof of Proposition 1.8.3, (1) ⇒ (2). Given a val-chain (ai)i, we set Vk,ℓ := im(Qk.ℓ),

where

Qk,ℓ :=

{

PakPak+1 · · ·Paℓ if (ai)k≤i≤ℓ is a plain val-chain

PakPak+2Pak+3 · · ·Paℓ if (ai)k≤i≤ℓ is an augmented val-chain.
(1.18)

Note that (ai)k≤i≤ℓ is an augmented val-chain iff the entire sequence (ai)0≤i≤m is aug-

mented, k = 0 and ℓ ≥ 1. In particular, if (ai)0≤i≤m is augmented, then Q0,1 = Pa0 .

Condition (1.15) follows directly from this definition of Vk,ℓ. Now fix 0 ≤ k < ℓ ≤ m.

Then the valuative Mostowski Conditions for the subchain (ai)k≤i≤ℓ imply

val(Qk,ℓ −Qk+1,ℓ) ≥ λk+1 − λℓ+1; (1.19)

indeed, we have

Qk,ℓ −Qk+1,ℓ =

{

−(1 − Pak)Pak+1 · · ·Paℓ if (ai)k≤i≤ℓ is plain

(Pak − Pak+1)Pak+2 · · ·Paℓ if (ai)k≤i≤ℓ is augmented.

From (1.19), we first deduce (1.16): On the one hand, (1.18) directly implies dimVk,ℓ ≤

eℓ. (Note that in the above case where Q0,1 = Pa0 , we have e0 = e1.) On the other hand,
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repeatedly using (1.19) yields val(Qk,ℓ − Qℓ,ℓ) ≥ mink≤i<ℓ(λi+1 − λℓ+1) > 0, so since

Qℓ,ℓ = Paℓ is the identity on Vℓ,ℓ = TaℓX̊ℓ, we have kerQk,ℓ ∩ Vℓ,ℓ = 0 and hence

dimVk,ℓ = rkQk,ℓ ≥ eℓ.

Finally, (1.19) implies (1.17) using Lemma 1.8.2 (2) ⇒ (1).

We formulate the main part of the proof of the other direction as a general lemma

about flags.

Lemma 1.8.5. Fix m ≥ 1 and λ1 ≥ · · · ≥ λm+1 ∈ Γ. Suppose that for each 0 ≤ k ≤ m,

we have a (partial) flag

Vk,m ⊆ Vk,m−1 ⊆ · · · ⊆ Vk,k+1 ⊆ Vk,k ⊆ Rn (1.20)

satisfying

∆(Vk,ℓ, Vk+1,ℓ) ≥ λk+1 − λℓ+1 for 0 ≤ k < ℓ ≤ m. (1.21)

(In particular, we assume dimVk,ℓ = dimVk+1,ℓ.) Let Pk,ℓ : R
n −→ Rn denote the or-

thogonal projection onto Vk,ℓ. Under those assumptions, we have

val((1 − P0,0)P1,1P2,2 · · ·Pm,m) ≥ λ1 − λm+1. (1.22)

If moreover dimV1,1 = dimV0,0 (which in particular implies dimV0,1 = dimV0,0 and

hence V0,1 = V0,0), then we moreover have

val((P0,0 − P1,1)P2,2P3,3 · · ·Pm,m) ≥ λ1 − λm+1. (1.23)

Before proving that lemma, we quickly check that it indeed implies the other direction

of the proposition.

Proof of Proposition 1.8.3, (2) ⇒ (1). Let (ai)i be a val-chain. By (2) of the proposi-

tion, we have vector spaces Vk,ℓ for 0 ≤ k ≤ ℓ ≤ m satisfying the prerequisites of

Lemma 1.8.5. If (ai)i is plain, then the Mostowski Condition (vm1) is (1.22); if (ai)i is

augmented, then dimV1,1 = dimV0,0 and the Mostowski Condition (vm2) is (1.23).

Proof of Lemma 1.8.5. We will prove the following two inequalities by downwards in-

duction on k:

val((1 − Pk,k) · Pk+1,k+1 · · ·Pm,m) ≥ λk+1 − λm+1 for 0 ≤ k ≤ m and (1.24)

val((Pk,i − Pk,i+1) · Pk+1,k+1 · · ·Pm,m) ≥ λi+1 − λm+1 for 0 ≤ k ≤ i < m. (1.25)

Note that (1.25) will be needed in the inductive proof of (1.24). Before we carry out this

induction, let us already check that (1.24) implies the lemma: (1.22) is just (1.24) for

k = 0. To get (1.23), we plug in

P0,0 − P1,1 = P0,0 · (1 − P1,1) + (P0,0 − 1) · P1,1. (1.26)
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The second summand obtained in this way is just (1.22) (up to sign) and hence has valu-

ation as required. In the first summand, we repeat the factor (1 − P1,1) twice (which we

may, since it is a projection), so it is equal to

P0,0 · (1 − P1,1)
︸ ︷︷ ︸

(a)

· (1 − P1,1)P2,2P3,3 · · ·Pm,m
︸ ︷︷ ︸

(b)

. (1.27)

By (1.24), (b) has valuation at least λ2 −λm+1 so it suffices to show that (a) has valuation

at least λ1 − λ2. But indeed, val(P1,1 − P0,1) ≥ λ1 − λ2 and P0,0 · (1 − P0,1) = 0 since

V0,1 = V0,0 (by the assumption dimV1,1 = dimV0,0). Thus it remains to prove (1.24) and

(1.25).

For k = m, (1.24) is trivial (since λm+1 − λm+1 = 0) and (1.25) is void, so suppose

k < m. We give the details for (1.25); the proof of (1.24) works analogously; see below.

We will prove

val((Pk,i − Pk,i+1) ·Q · Pk+2,k+2 · · ·Pm,m) ≥ λi+1 − λm+1 (1.28)

for Q = Pk+1,j − Pk+1,j+1 (j = k + 1, . . . ,m − 1) and for Q = Pk+1,m. The sum of all

those Q is equal to Pk+1,k+1, so taking the sum of (1.28) for all those Q then yields (1.25).

Case Q = Pk+1,m: Since val(Pk,m − Pk+1,m) ≥ λk+1 − λm+1 ≥ λi+1 − λm+1, we

can replace Q by Pk,m in (1.28). Now (1.28) follows, since (Pk,i − Pk,i+1)Pk,m = Pk,m −

Pk,m = 0.

Case Q = Pk+1,j − Pk+1,j+1: By induction, we have

val(Q · Pk+2,k+2 · · ·Pm,m) ≥ λj+1 − λm+1. (1.29)

If j ≤ i, we are done, since λj+1 − λm ≥ λi+1 − λm+1, so suppose now j > i. In that

case, we have the following (“≈” explained below):

(Pk,i − Pk,i+1) ·Q · Pk+2,k+2 · · ·Pm,m

= (Pk,i − Pk,i+1) ·Q ·Q · Pk+2,k+2 · · ·Pm,m

≈ (Pk,i − Pk,i+1) · (Pk,j − Pk,j+1) ·Q · Pk+2,k+2 · · ·Pm,m

Since i 6= j, we have (Pk,i − Pk,i+1)(Pk,j − Pk,j+1) = 0, so to obtain (1.28), it remains to

verify that the difference between the two sides of “≈” has valuation at least λi+1−λm+1.

This follows from (1.29) and the following:

val(Q− (Pk,j − Pk,j+1)) ≥ min{val(Pk+1,j − Pk,j), val(Pk+1,j+1 − Pk,j+1)}

≥ min{λk+1 − λj+1, λk+1 − λj+2} ≥ λi+1 − λj+1.

This finishes the proof of (1.25). The proof of (1.24) is exactly the same: just replace

(Pk,i−Pk,i+1) by (1−Pk,k) everywhere in the proof and then plug in k for the remaining i’s

in the proof. (Concerning the caseQ = Pk+1,j−Pk+1,j+1, note that one then automatically

has j > i = k.)
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From Proposition 1.8.3, one can easily deduce that the notion of Lipschitz stratifica-

tions is invariant under GLn. More precisely, we obtain the following.

Corollary 1.8.6 (GLn(OR)-invariance). If X = (X i)i is a valuative Lipschitz stratifi-

cation of a definable set X ⊆ Rn and M ∈ GLn(OR), then M(X ) := (M(X i))i is a

valuative Lipschitz stratification of M(X).

Proof. We use the characterization of valuative Lipschitz stratification from Proposi-

tion 1.8.3 (2). By Lemma 1.5.2, M preserves valuations, so applying M to a val-chain

(ai)i for X yields a val-chain for M(X ). Moreover, if Vk,ℓ are vector spaces satisfying the

conditions (1.15) – (1.17) with Vk,k = TakX̊ek , then the spaces M(Vk,ℓ) satisfy the same

conditions with M(Vk,k) = TM(ak)M(X̊ek).

Corollary 1.8.7. If X = (X i)i is a Lipschitz stratification of a definable set X ⊆ Rn and

M ∈ GLn(R), then M(X ) := (M(X i))i is a Lipschitz stratification of M(X).

Proof. We may assume that X and M are L-definable. (This works in the same way as

in the proof of Theorem 1 from Theorem 1.6.7: We first choose a language containing all

the constants we need, and then we choose the models R0 � R.)

By Proposition 1.6.11, X is a valuative Lipschitz stratification; by Corollary 1.8.6,

M(X ) is a valuative Lipschitz stratification (which is still L-definable, since M is), and

finally, using Proposition 1.6.11 again, we deduce that M(X ) is a Lipschitz stratification.

1.9 Overview of the main proof

Here is an overview of the proof of Theorem 1.6.7, describing the main ideas in an infor-

mal way. Several technicalities are omitted.

We can easily stratify the given set X ⊆ Rn in such a way that each stratum is the

graph of a function. More precisely, given a d-dimensional stratum S, after a suitable

coordinate transformation, S is the graph of some function ρ : S̄ −→ Rn−d, where S̄ :=

pr≤d(S) ⊆ Rd. Our final goal is to obtain bounds on valuative distances ∆(V1, V2) (see

Definition 1.8.1) between certain subspaces Vi of tangent spaces. To be able to easily

express those distances in terms of the functions ρ, we need that ρ satisfies

val(Jacā ρ) ≥ 0 for every ā ∈ S̄. (1.30)

Indeed, for instance, under this assumption, we have, for a1, a2 ∈ S:

∆(Ta1S,Ta2S) = val(Jacā1 ρ− Jacā2 ρ),

where āi = pr≤d(ai).
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S̄0
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Figure 1.3: In this example, we consider a plain val-chain a0, a1 with dimensions e0 = 2
and e1 = 1. We assume that pr≤e1

(a0) = pr≤e1
(a1). (a) We need to find a subspace of

the tangent plane Ta0(S0) which is close to the tangent line Ta1(S1). (b) To simplify this,

we first deform the whole picture in such a way that the projection pr≤e0
(S1) becomes a

straight line.

Most of the bounds of the form ∆(V1, V2) we aim for involve more than one stratum:

Given a val-chain a0, . . . , am with aℓ ∈ Sℓ, we need to relate the tangent spaces of all

those strata S0, . . . , Sm. To be able to apply our above approach (of considering strata as

graphs of functions and expressing distances of spaces in terms of Jacobians), we need

to find a single coordinate transformation such that afterwards, each Sℓ is the graph of

a function ρℓ satisfying (1.30). (We call such a coordinate transformation an “aligner”

of S0, . . . Sm.) In Subsection 2.1 (Proposition 2.1.5), we obtain stratifications admitting

aligners for any choice of n + 2 strata. This is enough, since a val-chain consists of at

most n+ 2 points.

To illustrate the remainder of the proof, we start by considering a plain val-chain con-

sisting of only two points a0 ∈ S0, a1 ∈ S1. We suppose that we have already applied an

aligner, so that Sℓ, ℓ = 1, 2, is the graph of some function ρℓ on S̄ℓ := pr≤eℓ
Sℓ, where

eℓ := dimSℓ.

The next step in the proof consists in reducing the case of arbitrary plain val-chains

(of length 2) to plain val-chains satisfying pr≤e1
(a0) = pr≤e1

(a1); in the following, we

assume this. In particular, this means that a0 determines a1 (assuming that S0 and S1 are

fixed).



Lipschitz stratifications in power-bounded o-minimal fields 26

To establish the conditions from Proposition 1.8.3 concerning the val-chain a0, a1, we

need to find a subspace V ⊆ Ta0S0 that is sufficiently close to Ta1S1; see Figure 1.3 (a).

We choose V to be the subspace of Ta0S0 satisfying pr≤e0
(V ) = pr≤e0

(Ta1S1). (From

(1.30), one can deduce that this is a best possible approximation to Ta1S1.) The distance

∆(V,Ta1S1) can directly be expressed in terms of Jacobians of the functions ρ0 and ρ1,

but this becomes simpler if we first apply a “rectilinearization”: a transformation which

translates the coordinates e1 + 1, . . . , e0 in such a way that pr≤e0
(S1) is sent to a subset

of Re1 ×{0}e0−e1 and which preserves all the other coordinates; see Figure 1.3 (b). After

the rectilinearization has been applied, V is determined by the first e1 derivatives of ρ0,

and we obtain

∆(V,Ta1S1) = val((Jacā0 δ) ↾ Re1 × {0}e0−e1) = min
1≤i≤e1

val(∂iδ(ā0)),

where ā0 := pr≤e0
(a0) and δ : S̄0 → Rn−e0 is the difference of ρ0 and the last n − e0

coordinates of ρ1.

The desired bound on ∆(V,Ta1S1) depends on the valuative distance of a1 to a lower-

dimensional stratum. We ensure that this bound holds by removing a lower-dimensional

subset from S̄1. In terms of the function δ defined above, this means that we need to find

a set Z ⊆ Re1 of dimension less than e1 such that the first e1 partial derivatives of δ at

x ∈ S̄0 are bounded in terms of the distance of pr≤e1
(x) to Z. More precisely, the bound

we end up needing is

val(∂iδ(x)) ≥ min{val(pr>e1
(x)), val(δ(x))}

︸ ︷︷ ︸

=val(a0−a1)

− valdist(pr≤e1
(x), Z) for 1 ≤ i ≤ e1.

(1.31)

The heart of the construction of valuative Lipschitz stratifications is Proposition 2.3.6,

which provides such a lower-dimensional set Z for arbitrary functions δ.

For longer val-chains, the arguments are similar: Given a plain val-chain a0 ∈ S0, . . . , am ∈

Sm (with dimSℓ = eℓ), we rectilinearize with respect to some of the coordinates of Sℓ

for ℓ = 1, . . . ,m and we obtain a function δ on (a certain subset of) S̄0 whose first em

derivatives need to be bounded by removing a lower-dimensional subset Z from S̄m. To-

gether with an inductive assumption that everything already works well for the sub-chain

a0, . . . , am−1, we obtain the subspaces Vk,ℓ needed by Proposition 1.8.3.

For augmented val-chains, the outline of the argument is the same; the biggest dif-

ferences arise when the two first points a0, a1 lie in the same stratum S0, which, say, is

the graph of ρ0. In that case, instead of bounding first derivatives, we need to bound the

second derivatives of ρ0 to obtain a bound ∆(Ta0S0,Ta1S0). Those bounds are obtained

in essentially the same way as (1.31), namely by applying Proposition 2.3.6 to all first

derivatives of ρ.
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We end this overview by mentioning an issue related to aligners (i.e., the coordinate

transformation ensuring (1.30)). Given a sequence S0, . . . , Sm of strata, the set Z to be

removed from Sm according to the above procedure may depend on the chosen aligner.

When inductively assuming that this has already been done for S0, . . . , Sm−1, we need

that it has been done using the same aligner as the one we use for S0, . . . , Sm. However,

an aligner for S0, . . . , Sm−1 might not be suitable for Sm. The solution is that Proposi-

tion 2.1.5 states that all aligners can be found in a finite set Cn of coordinate transforma-

tions (depending only on the ambient dimension n). By applying the above procedure to

every possible aligner of S0, . . . , Sm−1 in Cn, we in particular ensure that we included

aligners working for S0, . . . , Sm.

2 Ingredients to the main proof

The entire remainder of the article is devoted to the proof of Theorem 1.6.7. We continue

to use the notation introduced in Subsections 1.1, 1.4 and 1.5, though we make a slight

change concerning the language: to avoid having to mention the parameters A from The-

orem 1.6.7 everywhere, we now allow L to contain additional constants from R. Thus the

general assumptions for the remainder of the paper are the following.

Assumption 2.0.1. For the remainder of the paper, we assume that R is a real closed

field which is power-bounded and o-minimal as an L0-structure and T -convex as an L0
val -

structure. Moreover, we set L := L0(A) and Lval := L0
val (A) for some finite set of

parameters A ⊆ R, and we assume (without loss) that R is sufficiently saturated.

Note that there is a hidden quantifier here: We will prove everything for every finite

set A of parameters. This in particular means that we can use previously proved results

for different A.

2.1 Alignable Bradycell Decompositions

The first step in the construction of a valuative Lipschitz stratification of a set X consists

in partitioning X into pieces that can be “aligned”: After a suitable transformation of

the coordinate system, they are graphs of functions whose derivatives have non-negative

valuation.

Definition 2.1.1 (Aligned sets). Let S be an L-definable subset of Rn. We say that S is

aligned if, for d := dimS, the set S̄ := pr≤d(S) is open in Rd and S is the graph of an

L-definable C1 function f : S̄ −→ Rn−d satisfying

val(Jaca f) ≥ 0 for all a ∈ S̄. (2.1)
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The open set S̄ is referred to as the base of S. We say that κ ∈ GLn(OR) is an aligner of

an L-definable set S ⊆ Rn if κ(S) is aligned.

Remark 2.1.2. If such an aligned set S is a lowest dimensional stratum of a stratification

of a closed definable set X ⊆ Rn, then S̄ is both, open and closed and hence S̄ = Rdim S .

This fits together with the fact that Lipschitz stratifications almost never have X0 = ∅

and it will also fit together with the convention that in val-chains, we set λm+1 = −∞ if

Xem−1 = ∅.

Remark 2.1.3. These aligned sets are somewhat related to the L-regular cells of [KP, §1],

to the regular M -cells of [Paw, §1], and to the Λm-regular cells of [Fis, Definition 1.2],

though the latter are more sophisticated and control more derivatives, and all of these

notions impose additional conditions on the base.

It will not be enough to partition our given set X into sets which can be aligned using

some arbitrary κ ∈ GLn(OR); we will also need some good control of these κ:

1. We need to find a finite set Cn ⊆ GLn(OR), depending only on n, such that all

aligners κ can be taken from Cn. The precise set Cn does not matter, so we postpone

choosing it to Definition 2.1.10.

2. We need all κ to be L-definable without additional parameters. To ensure this, we

will choose Cn ⊆ GLn(Q).

3. We need that a single κ works for several (given) pieces of the partition at once.

More precisely, any n+2 pieces should have a common aligner in Cn. (This number

n + 2 is what we need for the proof of existence of Lipschitz stratifications. The

proofs in Subsection 2.1 would work equally well for any other fixed number.)

It is problematic that Item (3) above is not a condition on individual pieces, but on

the partition as a whole: This makes it unclear whether, given a partition S = (Si)i

satisfying (3), one can refine parts of S in a way that (3) is preserved without modifying

the remainder of S. To solve this problem, we will introduce the notion of “bradycells”

(Definition 2.1.11). Bradycells will have the property that n + 2 of them always have a

common aligner. Using that notion, we can state the main result of this subsection, which

provides the desired partitions. Since the precise notion of bradycells is irrelevant for the

remainder of the article, we postpone it.

Definition 2.1.4. A bradycell decomposition is a partition of Rn into bradycells (see

Definition 2.1.11).

Proposition 2.1.5 (Bradycell decompositions). 1. Every finite partition of Rn into L-

definable sets can be refined to a bradycell decomposition.
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2. For any set of at most n + 2 bradycells S1, . . . , Sk ⊆ Rn, there exists a common

aligner κ ∈ Cn.

Remark 2.1.6. This entire subsection would become much simpler if all S1, . . . , Sk in

Proposition 2.1.5 (2) could be assumed to have different dimension; in particular, one

could then choose Cn to consist only of the coordinate permutations. In applications of

the proposition, this will almost be the case: at most two of the bradycells will have the

same dimension. It would probably be possible to also get rid of this (an approach like

this has been used in [Hal]), but this would require considerably more work.

For the remainder of this subsection, we fix the following notation.

Notation 2.1.7. For d ≤ n, we write Grn,d(R) for the Grassmannian variety, i.e., for the

space of d-dimensional sub-vector spaces of Rn.

Definition 2.1.8. For d ≤ n, let Gr◦n,d(R) ⊆ Grn,d(R) be the open subset of those V ⊆

Rn such that pr≤d(V ) = Rd, i.e., which project surjectively onto the first d coordinates.

Such a V ∈ Gr◦n,d(R) can be considered as the graph of a linear mapMV : Rd −→ Rn−d;

we set J(V ) := ‖MV ‖ (the operator norm of the matrix); for V ∈ Grn,d(R) \ Gr◦n,d(R),

we set J(V ) := ∞.

The following lemma is the main tool to find the finitely many transformations κ ∈

GLn(Q). It is a purely geometrical-combinatorial result, closely related to [KP, Lemma 1.8].

Even though formulated in R, it is just a statement about R (as will become visible in the

proof). Note also that the κ provided by the lemma are even elements of On(Q) (and not

just in GLn(Q)).

Lemma 2.1.9. Fix arbitrary natural numbers n and ℓ. Then we can find, for each d ≤ n,

a finite open covering of Grn,d(R) by L-definable sets Θd
ν such that for any choice of ℓ

many of these sets Θd1
ν1

, . . . , Θdℓ
νℓ

, there exists an orthogonal transformation κ ∈ On(Q)

such that for every i ≤ ℓ, we have val(J(κΘdi
νi

)) ≥ 0.

(Here, val(∞) := −∞ and val(J(κΘdi
νi

)) ≥ 0 is a short hand notation for: val(J(κV )) ≥

0 for every V ∈ Θdi
νi

.)

Proof of Lemma 2.1.9. We will prove the stronger claim that the sets Θd
ν can be taken

definable in the pure ring language. In that case, to get val(J(κΘdi
νi

)) ≥ 0, it suffices to

prove that the map V 7−→ J(V ) is bounded on κΘdi
νi

(by Remark 1.7.3). This boundedness

is also a statement in the ring language, so we may as well assume R = R. In particular,

any closed subset of Grn,di
(R) is compact, so we can obtain boundedness of V 7−→ J(V )

by proving

cl(κΘdi
νi

) ⊆ Gr◦n,di
(R).
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Given a subset Ξ ⊆ Grn,d(R) (for any d ≤ n), we write Fo(Ξ) for the set of orthogonal

transformations κ “forbidden by a space in cl(Ξ)”, i.e.:

Fo(Ξ) := {κ ∈ On(R) : cl(κΞ) 6⊆ Gr◦n,d(R)}.

Intuitively, we just need to choose the sets Θd
ν so small that no ℓ of the sets Fo

d
ν := Fo(Θd

ν)

cover all of On(Q). To make this argument precise, let µ be the Haar measure on the

compact group On(R), normalized such that µ(On(R)) = 1. It is enough to ensure that

µ(Fo
d
ν) < 1/ℓ for each ν and d. (Then On(R) \

⋃ℓ
i=1 Fo

di
νi

is non-empty and open, and

hence contains a κ ∈ On(Q), as desired.)

To find finitely many sets Θd
ν with that property covering Grn,d(R), we fix any de-

finable metric on Grn,d(R) inducing the usual topology. Moreover, we fix any element

V0 ∈ Grn,d(Q). Since the set Fo({V0}) ⊆ On(R) is a compact subset of lower dimen-

sion, we can find an open ball Ξ ⊆ Grn,d(R) around V0 such that µ(Fo(Ξ)) < 1/ℓ. (First

choose any open set U ⊇ Fo({V0}) with µ(U) < 1/ℓ, and then, using compactness of

Fo({V0}), choose the radius of Ξ small enough to ensure Fo(Ξ) ⊆ U .) We may moreover

assume that Ξ has rational radius.

Now choose finitely many κν ∈ On(Q) such that the sets Θd
ν := κν(Ξ) cover Grn,d(R).

Then indeed, µ(Fo
d
ν) = µ(Fo(κν(Ξ))) < 1/ℓ.

Using Lemma 2.1.9, we can now choose our finite set Cn ⊆ GLn(Q) and introduce

the notion of bradycells.

Definition 2.1.10 (The set Cn). For the remainder of this subsection, fix subsets Θd
ν ⊆

Grn,d(R) as provided by Lemma 2.1.9 using ℓ = n+ 2. Moreover, let Cn ⊆ GLn(Q) be a

finite subset containing, for each choice of n+ 2 many sets Θd1
ν1
, . . . ,Θdn+2

νn+2
, an element κ

satisfying val(J(κΘdi
νi

)) ≥ 0 (i = 1, . . . , n + 2). (For any n + 2 of the sets, the existence

of such κ ∈ GLn(Q) is asserted by the lemma, and there are only finitely many choices

of n+ 2 sets.)

Definition 2.1.11 (Bradycells). A bradycell is an L-definable set S ⊆ Rn such that for

(at least) one of the sets Θd
ν chosen in Definition 2.1.10 (where d = dimS), we have the

following:

1. For every x ∈ S, the tangent space TxS is an element of Θd
ν .

2. For every κ ∈ Cn satisfying val(J(κΘd
ν)) ≥ 0, κ(S) is aligned.

The content of Condition (2) is just that the projection pr≤d(κ(S)) is open and that

κ(S) is the graph of a function on that projection; the bound on the derivatives of the

function is automatic by val(J(κΘd
ν)) ≥ 0 and Condition (1).

Now that Cn and bradycells are defined, we can finally prove the main result of this

subsection.
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Proof of Proposition 2.1.5. (1) We repeatedly refine the partition, ensuring that each piece

of dimension d becomes a bradycell, proceeding from d = n downwards to d = 0. Thus

fix d ≤ n, and fix any d-dimensional piece S. It suffices to check that we can subdivide S

into (finitely many) d-dimensional bradycells and an arbitrary lower-dimensional set.

After a first partitioning, we may assume that S is a definableC1 manifold and satisfies

Condition (1) from Definition 2.1.11 for some set Θd
ν . To obtain Condition (2), we further

partition S for each of those κ ∈ Cn for which val(J(κΘd
ν)) ≥ 0: By a first partition, we

ensure that κ(S) is the graph of a function f : pr≤d(κ(S)) → Rn−d. Then we remove a

lower-dimensional set to ensure that pr≤d(κ(S)) is open and that f is C1.

(2) Consider bradycells S1, . . . , Sk for some k ≤ n + 2; for each i ≤ k, let Θdi
νi

be a

corresponding set provided by Definition 2.1.11. By our choice of Cn (Definition 2.1.10),

there exists a κ ∈ Cn such that for each i, we have val(J(κΘdi
νi

)) ≥ 0. By Definition 2.1.11

(2), κ(Si) is aligned.

We end this subsection by proving a useful property of aligned sets.

Lemma 2.1.12. Let S ⊆ Rn be a d-dimensional aligned set, and suppose that B ⊆ Rn

is a valuative ball (open or closed) with B ∩ S 6= ∅ but B ∩ ∂S = ∅. Then B̄ := pr≤d(B)

is a subset of the base S̄ = pr≤d(S) of S.

Proof. Suppose that B̄ 6⊆ S̄. Choose a ∈ B ∩ S, set ā := pr≤d(a) ∈ B̄ ∩ S̄ and choose

b̄ ∈ B̄ \ S̄. Let L := {(1 − t)ā + tb̄ | 0 < t < 1} be the open line segment connecting

ā and b̄. We may assume L ⊆ S̄; otherwise, replace b̄ by the point of L ∩ ∂S̄ which is

closest to ā. (Such a point exists by o-minimality, and using that ∂S̄ is L-definable.)

Let f be the function whose graph is S, and consider the function g : [0, 1) → S

sending t to f((1 − t)ā + tb̄). Using val(Jac f) ≥ 0, we obtain val(g′(t)) ≥ val(b̄ − ā),

so using the Mean Value Theorem, we deduce, for any t1, t2 ∈ [0, 1):

val(g(t2) − g(t1)) ≥ val(t2 − t1) + val(b̄− ā) ≥ rad(B),

where the last inequality is strict if B is an open ball. This implies that b′ := limt→1 g(t)

exists and that b := (b̄, b′) satisfies val(b − a) ≥ val(b̄ − ā). In particular, b ∈ B ∩ ∂S,

contradicting the assumption that this intersection is empty.

Remark 2.1.13. Given an L-definable C1 function f : X −→ Rn−d on an L-definable set

X ⊆ Rd, a similar kind of Mean Value Theorem argument on a line segment allows us to

bound val(f(a1)− f(a2)) by val(a1 − a2) + val(Jac f) under suitable assumptions: If a1

and a2 both lie in a valuative ball B that is entirely contained in X , and val(Jaca f) ≥ λ

for all a ∈ B, then

val(f(a1) − f(a2)) ≥ val(a1 − a2) + λ.

In particular, for S and B as in Lemma 2.1.12, the entire preimage pr−1
≤d(B̄) ∩ S is con-

tained in B.
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2.2 Bounding derivatives using power-boundedness

A key ingredient to our proof of the existence of Lipschitz stratifications is the following

proposition, which has been proved in [Yin]. This is the only (but crucial) place in the

present paper where power-boundedness is used.

Proposition 2.2.1 ([Yin, Corollary 2.17]). Suppose that f : Rn −→ R is an L-definable

function. Then there exists a finite L-definable partition of Rn into sets Yν such that if B

is an open valuative ball entirely contained in one of the sets Yν , then either f(B) = {0}

or f(B) is an open valuative ball not containing 0.

Note that if f(B) is an open valuative ball not containing 0, then for any y1, y2 ∈ B,

we have val(f(y1)) = val(f(y2)), and even val(f(y1) − f(y2)) > val(f(y1)).

Here, we have rewritten Proposition 2.2.1 in the language of the present paper; the map

rv appearing in [Yin] is defined in such a way that rv(a) = rv(a′) iff either a = a′ = 0

or val(a − a′) > val(a) for a, a′ ∈ R (and a valuative polydisc is just a product of

valuative balls of possibly different radii). Note that the language used in [Yin] is, up to

interdefinability, the same as ours; see [Yin, Definition 1.2 and Convention 1.11].

Instead of using Proposition 2.2.1 directly, we will use the following corollary:

Corollary 2.2.2. Suppose that f : Rn −→ R is an L-definable function. Then there exists

an L-definable set Z ⊆ Rn of dimension less than n such that for every y ∈ Rn \ Z,

∂if(y) exists and we have

val(∂if(y)) ≥ val(f(y)) − valdist(y, Z) (2.2)

for i = 1, . . . , n.

Proof. Apply Proposition 2.2.1 to f, ∂1f, . . . , ∂nf , where the partial derivatives are ex-

tended by 0 to those points of Rn where they do not exist; then set Z := Z0 ∪
⋃

i,ν ∂Yi,ν ,

where (Yi,ν)ν is the partition obtained for the ith of the above functions (i = 1, . . . , n+1)

and Z0 is the set of points where f is not differentiable; we claim that this set Z works.

Fix a y ∈ Rn \ Z and set ζ := valdist(y, Z) and B := B>ζ(y). Then for each i, there

exists a ν such that B ⊆ Yi,ν for some ν; in particular, val(f(B)) and val(∂if(B)) are

singletons.

To prove (2.2), we use an Mean Value Theorem argument similar to the one in Re-

mark 2.1.13, but in the opposite direction: Suppose for contradiction that y is a witness to

the failure of (2.2), i.e., val(f(B)) − val(∂if(B)) > ζ for some i. We choose y1, y2 ∈ B

differing only in the i-th coordinate with val(y1 − y2) = val(f(B)) − val(∂if(B)). The

Mean Value Theorem yields a y3 ∈ B such that

f(y1) − f(y2) = (y1 − y2) · ∂if(y3).
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This leads to a contradiction: On the one hand, we have val(f(y1) − f(y2)) > val(f(B))

(by our application of Proposition 2.2.1 to f ); on the other hand,

val((y1 − y2) · ∂if(y3)) = val(f(B)) − val(∂if(B)) + val(∂if(B)) = val(f(B)).

Remark 2.2.3. Using Remark 1.7.3, Corollary 2.2.2 may be reformulated without making

reference to the valuation. Since Remark 1.7.3 only applies to functions defined without

parameters outside of R0 (but we have made the change at the beginning of this section

so that L now might contain such parameters), one first needs to formulate the corollary

for families of functions. In this way, one obtains that Corollary 2.2.2 is equivalent to the

following statement: For any L-definable family of functions fq : Rn → R (where q runs

over some L-definable set Q), there exists a constant c ∈ R (not depending on q) and an

L-definable family of sets Zq ⊆ Rn of dimension less than n such that

|∂ifq(y))| ≤
c|fq(y)|

dist(y, Zq)
for all i ≤ n, all q ∈ Q and all y ∈ Rn \ Zq. (2.3)

Note that this bears some similarities to the Λ1
L-regular functions in [Fis, Definition 1.1]

(though (2.3) is false in, e.g., structures with exponential function). One has the feeling

that there should be a more direct proof of (2.3), avoiding the machinery of T -convexity.

For n = 1 and when Q is a singleton, it is not too difficult to deduce it from power-

boundedness. However, we do not know how to prove the general case more directly.

Here is another lemma, which does not really have anything to do with the previous

results of this subsection, but which will be useful in conjunction with them.

Lemma 2.2.4. Suppose that X ⊆ Rn is a non-empty L-definable set and f : X −→ R is

an L-definable function such that |f | is bounded (by an element of R). Then there exists

an L-definable element x0 ∈ X such that val(f(x0)) = min{val(f(x)) : x ∈ X}. In

particular, that minimum exists.

Proof. Set s := supx |f(x)|. The set X ′ := {x ∈ X : |f(x)| ≥ 1
2
s} is L-definable and

non-empty, and every x ∈ X ′ satisfies val(x) = val(s). Using definable choice (in the

o-minimal language L), we find an L-definable x0 ∈ X ′.

2.3 Sedating functions

To construct Lipschitz stratifications, we will need precise bounds on the valuations of

the first derivatives of certain functions. The goal of this subsection it to prove the key

tool for this: Proposition 2.3.6, which will allow us to obtain the desired bounds for any

definable function after refining our stratification. We will also need bounds on second

derivatives; those will be obtained in Corollary 2.3.10, by applying Proposition 2.3.6 to

the first derivatives. Functions satisfying the desired bounds will be called “sedated”.
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Before going into the details, here is an informal explanation. Given an L-definable

function f : X → R on an L-definable set X ⊆ Rn, we can remove a lower-dimensional

subset from X using Corollary 2.2.2 to obtain a bound on val(∇f(x)) which is good

whenever x is not too close to the boundary of X:

val(∇f(x)) ≥ val(f(x)) − valdist(x,Rn \X). (2.4)

As a bound on ∇f(x), this is in some sense optimal, but it is often possible to get better

bounds on individual partial derivatives: Very roughly, even near the boundary of X , one

should be able to obtain good bounds on the partial derivatives in those directions which

do not point towards the boundary; see Figure 2.1 (a). To construct stratifications, we will

need such better bounds.

It is not so clear how to make this precise in general. Instead, the result in this sub-

section will provide the better bounds only in the rather specific situation we are in after

the rectilinearization explained in Subsection 1.9: We only need a bound on the partial

derivatives parallel to W := Rn′

× {0}n−n′

, and that bound should not be affected by

dist(x,W ) being small even if W contains a boundary segment of X . (Such a bound

makes most sense if X indeed has a boundary segment in W ; however, we will also

prove and use the result when it doesn’t.) The precise statement is that after removing a

lower-dimensional subset from X , we obtain the estimate

val(∂if(x)) ≥ val(f(x))−valdist(pr≤n′(x),Rn′

\pr≤n′(X)) for i = 1, . . . , n′ (2.5)

for points x ∈ X satisfying

valdist(x,Rn \X) ≤ val(pr>n′(x)). (2.6)

Condition (2.6) ensures that x it not too close to a border of X different from W ; indeed,

(2.5) cannot be expected for points close to a “diagonal border” like x2 in Figure 2.1.

Since it is pr≤n′(X) which appears in (2.5) and notX itself, the only lower-dimensional

sets it makes sense to remove from X are sets of the form pr−1
≤n′(Z) for some Z ⊆

pr≤n′(X) (see Figure 2.1 (b)). This is how Proposition 2.3.6 is stated, and it is this set Z

which will be used in the strategy outlined in Subsection 1.9 to shrink the n′-dimensional

stratum.

The bound (2.5) is the one we will need to treat those augmented val-chains whose

first two points a0, a1 lie in two different strata; functions satisfying this bound will be

called (a)-sedated. Proposition 2.3.6 also provides two variants of this, which are needed

for other kinds of val-chains: to treat plain val-chains, we will need (b)-sedated functions,

which satisfy a bound like (1.31), and to treat augmented val-chains whose first two points

lie in the same stratum, we will need functions whose derivatives are (c)-sedated (see

below).
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(a)

Xx1

x2

pr≤1(X)ζ

(b)

Xx1

x2

pr≤1(X)ζ

Z

pr−1
≤1(Z)

Figure 2.1: (a) At x1 and x2, one can expect good bounds on the partial derivatives of f
in the dashed directions, but not in the directions perpendicular to that. Proposition 2.3.6

provides good bounds on horizontal derivatives at points close to the x-axis: the bound on

∂1f(x1) is computed using the distance ζ in the projection pr≤1(X). Such a bound cannot

be expected for ∂1(x2), since x2 is close to a border of X different from the x-axis. (b) To

obtain the bounds, it might be necessary to remove a lower-dimensional subset Z from

pr≤1(X). This in effect weakens the condition on ∂1(x1), since ζ becomes smaller.

Everything described so far is what we need for short val-chains. For longer val-chains,

say, living in strata of dimensions e1 > · · · > em, we still need to bound the partial deriva-

tives ∂1f(x), . . . , ∂emf(x) of a function f with domain X ⊆ Re1 , but all the intermediate

dimensions eℓ also play a role, namely for the conditions specifying to which boundaries

of X the point x is allowed to be close. To make this precise, we start by fixing some

notation. In the whole subsection, we assume the following.

Assumption 2.3.1. Let the following be given:

• an integer m ≥ 1;

• integers 0 < em < · · · < e1;

• an open L-definable set X ⊆ Re1 .

Notation 2.3.2. We set Y := pr≤em
(X). For x ∈ X , we define:

• ζℓ := ζℓ(x) := dist(pr≤eℓ
(x),Reℓ \ pr≤eℓ

(X)) for 1 ≤ ℓ ≤ m

• σℓ := σℓ(x) := max{1, ‖pr>eℓ
(x)‖ · ζℓ−1(x)

−1} for 2 ≤ ℓ ≤ m.

The shorter notation ζℓ, σℓ will implicitly refer to a given point x ∈ X in context. Note

that ζℓ and σℓ implicitly also depend on X .

Some of this notation is illustrated in Figure 2.2. The purpose of σℓ is the following.

One can only expect to obtain the best bounds on ∂1f(x), . . . , ∂emf(x) at those x satis-

fying val(σℓ) = 0 for all ℓ. (Note that in the case m = 2, the condition val(σ2) = 0 is
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x1

x2
ζ2

pr≤e2
(x) pr≤e2

(X)

pr≤e2

x1

x2Xx

ζ1
x3

x1

Y = pr≤e3
(X)pr≤e3

(x)

ζ3 pr≤e3

Figure 2.2: A picture illustrating some of Notation 2.3.2, in the case m = 3, e1 = 3,

e2 = 2, e3 = 1.

exactly equivalent to (2.6).) However, even for x ∈ X not satisfying those conditions, it

is possible to obtain a weakened bound, where the weakening is expressed in terms of the

valuations of the σℓ. This leads to the following definition of sedated functions.

Definition 2.3.3 (Sedated functions). Suppose that m, eℓ and X are given as in As-

sumption 2.3.1, and suppose that f : X −→ R is an L-definable function. We consider

three different versions: (v) ∈ {(a), (b), (c)}. In Version (b), we additionally assume

m ≥ 2. We call f e[1,m]-(v)-sedated (on X) if it is C1 and if, for every x ∈ X and every

1 ≤ i ≤ em, we have

val(∂if(x)) ≥ val(u(v)(x)) − val(ζm(x)) +
m∑

ℓ=2

val(σℓ(x)), where (2.7)

u(a)(x) = f(x), u(b)(x) = max{|f(x)|, ‖pr>e2
(x)‖}, u(c)(x) = 1. (2.8)

We call an L-definable function X −→ Rn e[1,m]-(v)-sedated if each of its coordinate

functions is e[1,m]-(v)-sedated.

In this notation, “e[1,m]” is supposed to be considered as a short hand notation for the

tuple (e1, . . . , em). In particular, for 1 ≤ k ≤ ℓ ≤ m and f a function on a subset of Rek ,

we also have a notion of being e[k,ℓ]-(v)-sedated.
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Remark 2.3.4. Equation (2.7) depends on the domain X , since ζℓ does. Nevertheless, if f

is e[1,m]-(v)-sedated, then so is the restriction of f to any subset ofX . Indeed, by shrinking

X , ζℓ can only become smaller and σℓ can only become bigger, both of which make (2.7)

easier to be satisfied.

Remark 2.3.5. If, in (b)-sedation, one allows e1 = e2, then (a) can be considered as a

special case of (b) via some renumbering. However, for clarity, we wrote down the two

cases separately.

Proposition 2.3.6 (Sedating functions). Fix (v) ∈ {(a), (b), (c)}. Let m, eℓ, X , Y be as

in Assumption 2.3.1 and Notation 2.3.2 (with m ≥ 2 in Version (b)) and suppose that

f : X −→ R is an L-definable function which is e[1,m′]-(v)-sedated for 1 ≤ m′ < m (or

2 ≤ m′ < m, in Version (b)). Suppose moreover that







(a) (no additional condition)

(b) f is C1 and val(∇f(x)) ≥ 0

(c) val(f(x)) ≥ 0.

(2.9)

Then there exists an L-definable set Z ⊆ Y of dimension less than em such that the

restriction of f to X \ pr−1
≤em

(Z) is e[1,m]-(v)-sedated.

Remark 2.3.7. The proposition direcly implies the corresponding result for functions with

range Rn, by applying it to each of the coordinate functions.

Remark 2.3.8. In our application of this proposition, the bound (2.7) will only be needed

on the subset X ′ := {x ∈ X : val(σ2) = · · · = val(σm) = 0}, i.e., where the sum

disappears and the bound is “best possible”. Nevertheless, we need to work with a notion

of sedated functions imposing a bound on all of X for the following somewhat strange

reason. The proof of Proposition 2.3.6 only works if X and f both are L-definable; in

particular, the “induction hypothesis” (that f is e[1,m′]-(v)-sedated for m′ < m) is needed

on an L-definable set, so we need a formulation of that hypothesis which we can prove

on all of X , and not just on X ′.

The strategy of the proof of Proposition 2.3.6 is as follows. We will use Lemma 2.2.4

to choose, for each y ∈ Y , an element x = τ(y) ∈ Xy := {x ∈ X : pr≤em
(x) = y} where

the difference between the two sides of (2.7) is worst, i.e., where the left hand side minus

the right hand side is minimal. In particular, it suffices to prove that (2.7) holds for those

x. Corollary 2.2.2 allows us to shrink Y in such a way that we obtain good bounds on the

derivatives of f(τ(y)) in terms of valdist(y,Rem \ Y ) = val(ζm). We then obtain (2.7)

by combining these bounds with the assumption about e[1,m′]-(v)-sedation for m′ < m.

To be able to apply Lemma 2.2.4 as described above, we need the difference of the

two sides of (2.7) to be bounded on each fiber Xy. Such a bound can be obtained from

Equation (2.7) for e[1,m−1]-sedation, provided that we fix a lower bound on ‖pr>em
(x)‖.
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Thus, before applying the above strategy, we will treat points x with small ‖pr>em
(x)‖

separately. The idea for this is that for each fixed (small) d ≥ 0, we can apply the same

strategy as before to the subset {x ∈ X : ‖pr>em
(x)‖ = d}. Different d yield different

sets Zd to be removed from Y for (2.7) to hold. Instead of removing all of them from Y

(which would be too much), we remove the limit (in a suitable sense) of Zd for d → 0;

this does not imply (2.7) b itself, but it does allow us to bound by how much it fails, and

that is enough for applying the above strategy to the remainder of X .

Here are the details.

Proof of Proposition 2.3.6. During the proof, we will construct a set Z of dimension less

than em which we will successively enlarge until the proposition is satisfied. More pre-

cisely, we will obtain something slightly stronger: We will find a Z ⊆ Rem of dimension

less than em such that

val(∂if(x)) ≥ val(u(v)(x)) − valdist(pr≤em
(x), Z) +

m∑

ℓ=2

val(σℓ(x)) (2.10)

holds for every x ∈ X̂ := X \ pr−1
≤em

(Z). This then implies that f ↾ X̂ is (v)-sedated

(using Remark 2.3.4 concerning the σℓ).

In a very first step, we ensure that f is C1: In Version (b), this is an assumption; in the

other versions, if m ≥ 2, it follows from the assumption that f is (say) e[1,1]-(v)-sedated,

and if m = 1, this can be achieved by removing a suitable subset from X = Y .

Fix i ≤ em. Equation (2.10) can be rewritten as

val(gi(x)) ≥ − valdist(pr≤em
(x), Z), (2.11)

where

gi(x) := ∂if(x) · u(v)(x)
−1 ·

m∏

ℓ=2

σ−1
ℓ . (2.12)

As in the above sketch of proof, given y ∈ Y , we write Xy for the fiber over X above

y, and similarly, if X ′ ⊆ X is a subset, we set X ′
y := X ′ ∩Xy.

We will prove the following.

Claim 1: Suppose that Z ⊆ Rem is an L-definable set of dimension less than em and

that X ′ ⊆ X is an L-definable subset such that for every y ∈ Y \ Z and every i ≤ em,

|gi| is bounded on the fiber X ′
y. Then there exists an L-definable set Ẑ ⊇ Z of dimension

less than em such that we have

val(gi(x)) ≥ − valdist(pr≤em
(x), Ẑ) for every x ∈ X ′. (2.13)

Before proving Claim 1, we show how it implies the proposition. It suffices to prove

that the set Z of y ∈ Y such that |gi(x)| is unbounded on the fiber Xy has dimension less

than m. Indeed, then we obtain (2.11) by applying the claim to X ′ := X .
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If m = 1, then |gi(x)| is bounded on each Xy for the trivial reason that Xy is a

singleton; thus assume m ≥ 2.

To bound |gi(x)|, we first check that for every x ∈ X , we have

val(gi(x)) ≥ − val(pr>em
(x)). (2.14)

We have

val(gi(x)) = val(∂if(x)) − val(u(v)(x)) −
m−1∑

ℓ=2

val(σℓ)

︸ ︷︷ ︸

(∗)

− val(σm).

In Version (b), if m = 2 then the last term in (∗) disappears, and hence (2.14) follows

from the following three items: the assumption (2.9), val(u(b)(x)) ≤ val(pr>e2
(x)), and

val(σ2) ≤ 0. In all other cases, the assumption that f is e[1,m−1]-(v)-sedated implies

(∗) ≥ − val(ζm−1), which, together with val(σm) ≤ val(pr>em
(x)) − val(ζm−1) (by the

definition of σm), implies (2.14).

For d ∈ R≥0, set

X ′
d := {x ∈ X : ‖pr>em

(x)‖ = d};

by (2.14), |gi| is bounded on X ′
d for each fixed d, so Claim 1 (used in the language L(d))

yields an L(d)-definable set Zd ⊆ Rem of dimension less than m and such that we have

val(gi(x)) ≥ − valdist(y, Zd) (2.15)

for x ∈ X ′
d and y := pr≤em

(x). By the Compactness Theorem, we may assume that the

sets Zd are defined uniformly in d, so that the following sets are L-definable:

Z• :=
⋃

d≥0

(Zd × {d}) ⊆ Rem ×R≥0 and

Z := {y ∈ Rem : (y, 0) ∈ cl(Z•)},

(where cl(Z•) denotes the topological closure of Z•). Since Zd has dimension less than

em for every d, we have dim ∂Z• < dimZ• ≤ em and hence dimZ < em (since Z ⊆

∂Z• ∪ Z0). We claim that |gi| is bounded on each fiber Xy with y 6= Z.

Fix y ∈ Y \Z and consider x ∈ Xy with y ∈ Y rZ and set d := ‖pr>em
(x)‖ (so that

x ∈ X ′
d). Inequality (2.14) provides a bound on |gi(x)| for big d, and for small d, we will

obtain a bound from (2.15). More precisely, set

d0 := dist((y, 0), Z•)
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(which is strictly positive, by definition of Z). By (2.14) it suffices to bound |gi(x)| for

those x satisfying val(pr>em
(x)) > val(d0). This implies valdist((y, d), Z•) = valdist((y, 0), Z•),

and hence we must have

valdist(y, Zd) = valdist((y, d), Zd × {d}) ≤ valdist((y, d), Z•) = val(d0).

So for such a d, we obtain

val(gi(x))
(2.15)

≥ − valdist(y, Zd) ≥ − val(d0).

Thus |gi| is bounded on all of Xy, which finishes the proof that Claim 1 implies the

proposition.

Proof of Claim 1: Even though the case m = 1 (Versions (a), (c)) does not need to

be treated separately, we do note that for m = 1, Claim 1 follows directly by applying

Corollary 2.2.2 to f (and using (2.9) in Version (c)).

Fix i ≤ em for the entire proof of the claim. (We can treat each gi separately.)

Set Y ′ := pr≤em
(X ′) \ Z. For y ∈ Y ′, |gi| is bounded on X ′

y, so we can apply

Lemma 2.2.4 to the restriction gi ↾ X ′
y, using the language L(y). Doing this for all y ∈ Y ′

(and applying the Compactness Theorem) yields an L-definable function τ : Y ′ −→ X

with τ(y) ∈ X ′
y such that

val(gi(x)) ≥ val(gi(τ(y))) for all x ∈ X ′
y and y ∈ Y ′. (2.16)

We will prove that after a suitable enlargement of Z, we obtain

val(gi(τ(y))) ≥ − valdist(y, Z) for every y ∈ Y ′; (2.17)

together with (2.16), this implies (2.13).

In the remainder of the proof, ζℓ and σℓ always refer to the point x := τ(y). Plugging

(2.12) (the definition of gi) into (2.17) yields a condition on ∂if :

val(∂if(τ(y))) ≥ val(u(v)(τ(y))) − valdist(y, Z) +
m∑

ℓ=2

val(σℓ). (2.18)

Consider the derivative of the function h(y) := f(τ(y)) with respect to the ith coordinate.

Using the notation

τ(y) = (y, τem+1(y), . . . , τe1(y)), (2.19)

we can write it as

∂ih(y) = ∂if(τ(y)) +

e1∑

k=em+1

∂kf(τ(y)) · ∂iτk(y), (2.20)
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so to obtain (2.18), it suffices to prove that in (2.20), (i) the left hand side and (ii) all

summands of the sum over k have valuation at least that of the right hand side of (2.18).

For (i), apply Corollay 2.2.2 to h (extended trivially outside of Y ′). This yields that,

by enlarging Z, we can achieve

val(∂ih(y)) ≥ val(h(y)) − valdist(y, Z). (2.21)

Since the sum in (2.18) is at most 0 (by definition of σℓ), it remains to check that val(f(τ(y))) ≥

val(u(v)(τ(y))); this follows from the definition of u(v), and, in Version (c), (2.9).

For (ii), fix k (with em < k ≤ e1) and choose m′ such that em′+1 < k ≤ em′; note that

m′ < m. Our goal is to prove

val(∂kf(x)) + val(∂iτk(y)) ≥ val(u(v)(x)) − valdist(y, Z) +
m∑

ℓ=2

val(σℓ) (2.22)

(where x = τ(y)). Applying Corollay 2.2.2 to τk (again, extended trivially outside of Y ′)

yields, after further enlarging Z,

val(∂iτk(y)) ≥ val(τk(y)) − valdist(y, Z) ≥ val(pr>em′+1
(x)) − valdist(y, Z). (2.23)

In the case m′ = 1 of Version (b), (2.22) now follows from these three items: (2.9)

(which implies val(∂kf(x)) ≥ 0), val(u(v)(x)) ≤ val(pr>e2
(x)), and val(σℓ) ≤ 0. Thus

we may now suppose that either m′ ≥ 2 or that we are not in Version (b). Then the

assumption that f is e[1,m′]-(v)-sedated implies

val(∂kf(x)) ≥ val(u(v)(x)) − val(ζm′) +
m′

∑

ℓ=2

val(σℓ), (2.24)

and (2.22) follows by taking the sum of (2.23) and (2.24) and then noting that val(pr>em′+1
(x))−

val(ζm′) ≥ val(σm′+1) and val(σℓ) ≤ 0.

This finishes the proof of (ii), and hence of (2.18), and hence of Claim 1, and hence of

Proposition 2.3.6.

The notion of (c)-sedation will be applied to the first derivatives of a function, to

control its second derivatives. We introduce a corresponding notion. (Note that similar

kinds of bounds also appear in [NV].)

Definition 2.3.9 ((c2)-sedated functions). Suppose that m, eℓ and X are given as in As-

sumption 2.3.1. We call an L-definable function f : X −→ R e[1,m]-(c2)-sedated if it is

C2, val(Jacx f) ≥ 0 for every x ∈ X , and for 1 ≤ i ≤ em, 1 ≤ j ≤ e1, we have

val(∂ijf(x)) ≥ − val(ζm(x)) +
m∑

ℓ=2

val(σℓ(x)), (2.25)

where ζm and σℓ are as in Notation 2.3.2. We call an L-definable function X −→ Rn

e≤m-(c2)-sedated if each of its coordinate functions is e[1,m]-(c2)-sedated.
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Corollary 2.3.10 ((c2)-sedating functions). Let m, eℓ, X , Y be as above, and suppose

that f : X −→ R is an L-definable function which is e[1,m′]-(c2)-sedated for all m′ < m.

Suppose moreover that val(∇f) ≥ 0 (this follows anyway if m ≥ 2). Then there exists

an L-definable set Z ⊆ Y of dimension less than em such that the restriction of f to

X \ pr−1
≤em

(Z) is e[1,m]-(c2)-sedated.

Proof. Ifm = 1, we start by removing a lower-dimensional subset fromX = Y to ensure

that f is C2. (If m ≥ 2, f is already C2.) Then we apply Proposition 2.3.6 (c) to each of

the derivatives ∂jf (1 ≤ j ≤ e1).

We finish this subsection by proving that being sedated is preserved under certain

kinds of transformations, which will be the building blocks of the rectilinearization maps

mentioned in Subsection 1.9.

Lemma 2.3.11 (Sedation and rectilinearization). Fix (v) ∈ {(a), (b), (c2)}, and let the

following be given:

• integers 1 ≤ m′ < m (2 ≤ m′ < m in Version (b)),

• integers e1 > · · · > em > 0,

• L-definable sets X, X̂ ⊆ Re1 ,

• L-definable functions f : X −→ R and f̂ : X̂ −→ R.

Suppose that there exists an L-definable bijection ψ : X̂ −→ X such that f̂ = f ◦ ψ and

which sends

x̂ =(xm, x̂m−1, x⋆) ∈ Rem ×Rem−1−em ×Re1−em−1 to

x =(xm, xm−1, x⋆) = (xm, x̂m−1 + g(xm), x⋆),

where g : pr≤em
(X) −→ Rem−1−em is e[m,m]-(c2)-sedated. Then f is e[1,m′]-(v)-sedated

iff f̂ is e[1,m′]-(v)-sedated.

Proof. The lemma is symmetric with respect to swapping X̂ and X; we will carry out

various arguments only in one direction without further notice.

We start by verifying that for ℓ ≤ m−1, the valuations val(ζℓ) and val(σℓ) from Nota-

tion 2.3.2 are preserved by ψ. More precisely, we show that, for x̂ = (xm, x̂m−1, x⋆) ∈ X̂

and x = (xm, xm−1, x⋆) = ψ(x̂), we have

valdist(pr≤eℓ
(x̂),Reℓ \ pr≤eℓ

(X̂)) = valdist(pr≤eℓ
(x),Reℓ \ pr≤eℓ

(X)) (2.26)

for 1 ≤ ℓ ≤ m− 1. Since pr>em−1
◦ψ = pr>em−1

, this then also implies

val(σℓ(x̂)) = val(σℓ(x)), (2.27)
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where σℓ(x̂) is computed with respect to X̂ and σℓ(x) is computed with respect to X .

To prove (2.26), we assume ℓ = 1; for other ℓ, the same proof applies, after replacing

x, x̂, X , X̂ by their projections to Reℓ .

Both sides of (2.26) are no less than µ := valdist(xm,R
em \ pr≤em

(X)), so it suffices

to verify that given an element ŷ ∈ Re1 \ X̂ satisfying val(ŷ − x̂) > µ, we can find an

element y ∈ Re1 \X satisfying val(y − x) = val(ŷ − x̂).

We write ŷ = (ym, ŷm−1, y⋆) ∈ Rem × Rem−1−em × Re1−em−1 . By definition of µ,

the function g is defined on the entire ball B := B>µ(xm). This means that, first of all,

y := (ym, ŷm−1 + g(ym), y⋆) is well-defined, and secondly, the Mean Value Theorem

argument from Remark 2.1.13 applies, yielding

val(g(ym) − g(xm)) ≥ val(ym − xm);

now an easy computation yields val(y − x) = val(ŷ − x̂), as desired.

From (2.26) and (2.27), we obtain, for x = ψ(x̂):

− val(ζm′(x)) +
m′

∑

ℓ=2

val(σℓ(x)) = − val(ζm′(x̂)) +
m′

∑

ℓ=2

val(σℓ(x̂)) =: λ(x).

That the function g is (c2)-sedated in particular means that val(Jac g) ≥ 0. This

yields the following equations concerning the partial derivatives of f̂(xm, x̂m−1, x⋆) =

f(xm, x̂m−1 + g(xm), x⋆):

min
1≤i≤em−1

val(∂if̂(x̂)) = min
1≤i≤em−1

val(∂if(x)) and

val(∂if̂(x̂)) = val(∂if(x)) for em−1 < i ≤ e1.
(2.28)

Now we are ready to prove the claims of the lemma. For (v) = (a), (b), f is e[1,m′]-

(v)-sedated iff

min
1≤i≤em′

val(∂if(x)) ≥ val(u(v)(x)) + λ(x) for every x ∈ X, (2.29)

and similarly for f̂ . The left hand sides of (2.29) are equal for f and f̂ by (2.28), and the

right hand sides are equal since f̂(x̂) = f(x) and, in Version (b) (which implies m ≥ 3),

pr>e2
(x) = pr>e2

(x̂).

Finally, suppose that f is e[1,m′]-(c2)-sedated, i.e.,

val(Jac f) ≥ 0 and val(∂ijf) ≥ λ(x) for 1 ≤ i ≤ em′ , 1 ≤ j ≤ e1.

(To simplify notation, from now on, we omit the points at which the derivatives are taken.)

Using (2.28), we obtain val(Jac f̂) ≥ 0, and it remains to verify that val(∂ij f̂) ≥ λ. Direct



Lipschitz stratifications in power-bounded o-minimal fields 44

computation of this second derivative yields the following, where g = (gem+1, . . . , gem−1)

and where we set ∂kg := 0 for k > em:

∂ij(f ◦ ψ) = ∂ijf +
∑

em<ℓ≤em−1

∂jℓf · ∂igℓ +
∑

em<ℓ≤em−1

∂iℓf · ∂jgℓ

+
∑

em<ℓ,ℓ′≤em−1

∂ℓℓ′f · ∂igℓ · ∂jgℓ′ +
∑

em<ℓ≤em−1

∂ℓf · ∂ijgℓ.

All the second derivatives of f appearing on the right hand side have valuation at least λ

(note that ℓ, ℓ′ ≤ em′). Together with val(Jac g) ≥ 0, we get the desired bound for every-

thing except the last sum. In that one, we have val(∂ℓf) ≥ 0 and val(∂ijgℓ) ≥ − val(ζm)

(since g is e[m,m]-(c2)-sedated). Now − val(ζm) ≥ − val(ζm′) ≥ λ since val(σℓ) ≤ 0 for

all ℓ, so also here, we get the desired bound.

3 The main proof

This entire section constitutes the proof of Theorem 1.6.7. We fix, once and for all, a

closed, L-definable set X ⊆ Rn.

3.1 Some notation

We fix some notation which will be useful at various places in the proof. Suppose that we

have already fixed a stratification X of X (in the sense of Definition 1.2.1); in particular,

we assume that each X i is closed. We moreover assume that the strata, i.e., the definably

connected components of the skeletons X̊ i, form a bradycell decomposition in the sense

of Definition 2.1.4. (Recall that definably connectedness always refers to the language L.)

Notation 3.1.1 (Aligning and groups of coordinates). Suppose that S = (Sℓ)0≤ℓ≤m is a

sequence of strata with Sℓ ⊆ X̊eℓ for some e0 ≥ e1 > e2 > · · · > em. These inequalities,

together with e0 ≤ n, imply m ≤ n + 1, so Proposition 2.1.5 provides an aligner κ ∈ Cn

such that each transformed set κ(Sℓ) is aligned in the sense of Definition 2.1.1. In such a

situation, i.e., when S and an appropriate κ are given, we will assume that the strata Sℓ are

already aligned by transforming our coordinate system using κ. (Why this assumption is

harmless will be explained at the appropriate places.) We will moreover use the following

notation, where 0 ≤ ℓ ≤ m:

• We write S̄ℓ := pr≤eℓ
(Sℓ) for the base of Sℓ and ρℓ : S̄ℓ −→ Rn−eℓ for the map

whose graph is Sℓ.

• We introduce a notation for “groups of coordinates” of points x = (x1, . . . , xn) ∈
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ρ0♭

Y ♭

ā1♭

φ0

ā0♭

a0♭

a1♭φ1 = idS̄1

ρ0

B̄0 Y

S̄0 ⊆ Re0

ā1 S̄1 ⊆ Re1B̄1

S0

S1

ā0

a0

a1

X0

λ1 λ2

ρ1
0

ρ1

Figure 3.1: An overview of some of the notation from Subsections 3.1 and 3.2 (for a plain

val-chain a0, a1) and a bit of additional notation used later.

Rn:

xm := (x1, x2, . . . , xem),

xℓ := (xeℓ+1+1, . . . , xeℓ
) for 0 ≤ ℓ < m and

x⋆ := (xe0+1, . . . , xn).

In other words,

x = (xm, xm−1, . . . , x0, x⋆).

(Note that x0 might be the empty tuple since possibly e0 = e1.) We use a similar

notation for points in Reℓ and for the functions ρℓ (0 ≤ ℓ ≤ m):

x = (xm, xm−1, . . . , xℓ+1, xℓ) for x ∈ Reℓ ;

ρℓ = (ρℓ
ℓ−1, . . . , ρ

ℓ
0, ρ

ℓ
⋆).

Now suppose that we additionally have a val-chain a0, . . . , am with aℓ ∈ Sℓ and with

distances λ1 > · · · > λm+1 (and dimensions e0 ≥ e1 > · · · > em). There are natural balls

B̄ℓ ⊆ S̄ℓ associated with such a val-chain, though it requires an argument to see that the

balls, as defined below, are really subsets of S̄ℓ.

Notation 3.1.2. Given a val-chain a0, . . . , am with aℓ ∈ Sℓ and with distances λ1 > · · · >

λm+1, we set

B̄ℓ := B>λℓ+1
(pr≤eℓ

(a0)) ⊆ Reℓ for 0 ≤ ℓ ≤ m.
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(If λm+1 = −∞, we set B̄m = Rem .)

Note that B̄ℓ also contains the projections pr≤eℓ
(a1), . . . , pr≤eℓ

(aℓ) and that it is the

projection of the largest ball around a0 which is disjoint from Xeℓ−1.

Lemma 3.1.3. In the situation of Notations 3.1.1 and 3.1.2, the following hold for 0 ≤

ℓ ≤ m.

1. The ball B̄ℓ is contained in S̄ℓ. In particular, pr≤eℓ
(a0) ∈ S̄ℓ, so the function ρℓ is

defined at the point pr≤eℓ
(a0).

2. The function ρℓ satisfies

val(ρℓ(x1) − ρℓ(x2)) ≥ val(x1 − x2) for x1, x2 ∈ B̄ℓ.

3. For ¯̄a0 := pr≤eℓ
(a0) and a[ℓ] := (¯̄a0, ρℓ(¯̄a0)) ∈ Sℓ, we have val(a0 − a[ℓ]) = λℓ. In

particular, the sequences a0, a[1], a2, . . . , am and a[1], a1, a2, . . . , am are val-chains.

Note that in the last statement, we might have a[1] = a0, namely when S0 = S1.

Proof of Lemma 3.1.3. (1) We have B := B>λℓ+1
(a0) ∩ Sℓ 6= ∅ but B ∩ ∂Sℓ = ∅

(since ∂Sℓ ⊆ Xeℓ−1 and valdist(a0, Xeℓ−1) = λℓ+1), so Lemma 2.1.12 implies B̄ℓ =

pr≤eℓ
(B) ⊆ S̄ℓ.

(2) This is just the Mean Value Theorem argument from Remark 2.1.13.

(3) The inequality val(a0 − a[ℓ]) ≤ λℓ follows from the definition of val-chain, since

a[ℓ] ∈ Xeℓ . For the other inequality, set ¯̄aℓ := pr≤eℓ
(aℓ). Then val(a0 − aℓ) = λℓ implies

val(¯̄a0−¯̄aℓ) ≥ λℓ, and then (2) yields val(a[ℓ]−aℓ) ≥ λℓ. This together with val(a0−aℓ) =

λℓ implies val(a0 − a[ℓ]) ≥ λℓ.

The “in particular” part is clear from the definition of val-chains. (Note that the second

one is an augmented val-chain).

3.2 Rectilinearization

In the setting of Notation 3.1.1, we will sometimes need to “rectilinearize” along the

lower-dimensional strata: We will apply a map that translates the coordinates xℓ by ρℓ+1
ℓ .

(Note that the maps ρℓ+1
j for j ≤ ℓ − 1 are not used for rectilinearization.) Here is our

notation for this:
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Notation 3.2.1 (Rectilinearization). For 0 ≤ ℓ ≤ m, and suitable x = (xm, . . . , xℓ) ∈

Reℓ , we define

φℓ(x) := x♭ where x♭ is given by

x♭
m := xm,

x♭
m−1 := xm−1 − ρm

m−1(xm),

x♭
m−2 := xm−2 − ρm−1

m−2(xm, xm−1),

...

x♭
ℓ := xℓ − ρℓ+1

ℓ (xm, . . . , xℓ+1).

Here, “suitable x” means that all the involved maps ρj+1
j are defined, i.e., φℓ(x) is defined

if pr≤ej
(x) ∈ S̄j for ℓ < j ≤ m.

Remark 3.2.2. The definition of φℓ can also be written inductively:

φm(x) = x for x ∈ Rem and

φℓ((x̄, xℓ)) = (φℓ+1(x̄), xℓ − ρℓ+1
ℓ (x̄)) for (x̄, xℓ) ∈ Reℓ+1 ×Reℓ−eℓ+1 , 0 ≤ ℓ < m.

Note that if e0 = e1, then φ0 = φ1.

We fix some more notation:

Notation 3.2.3. We set

Y := {x ∈ Re0 : pr≤eℓ
(x) ∈ S̄ℓ for 0 ≤ ℓ ≤ m},

which is a subset of the domain of φ0. We write Y ♭ := φ0(Y ) for the rectilinearization of

Y (note that φ0 induces a bijection Y −→ Y ♭) and

ρℓ♭ := ρℓ ◦ φ−1
ℓ

for the rectilinearization of ρℓ, where 0 ≤ ℓ ≤ m.

Note that the domain of ρ0♭ is Y ♭.

Remark 3.2.4. From val(Jac ρℓ) ≥ 0, one easily deduces Jacφℓ ∈ GLeℓ
(OR) (at every

point of the domain of φℓ), using Remark 3.2.2. (Intuitively, this follows because the

expression of Jacφℓ in terms of the partial derivatives of ρi, ℓ < i ≤ m, is a “lower

triangular matrix with identities on the diagonal”.)

To transfer arguments between the rectilinearized and the unrectilinearized setting, we

need the maps φℓ to be isometries with respect to the valuation. This is not true every-

where, but it is true on the balls B̄ℓ = B>λℓ+1
(pr≤eℓ

(a0)) introduced in Notation 3.1.2,

which is what we really need. Here is the precise statement.
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Lemma 3.2.5. Suppose that a0, . . . , am is a val-chain with aℓ ∈ Sℓ and with distances

λℓ. For 0 ≤ ℓ ≤ m, φℓ is defined on B̄ℓ and the restriction φℓ ↾ B̄ℓ is a valuative isometry

(i.e., val(φℓ(x
1) − φℓ(x

2)) = val(x1 − x2)) with image B>λℓ+1
(φℓ(pr≤eℓ

(a0))).

Proof. Use induction and Remark 3.2.2. That φℓ ↾ B̄ℓ is defined follows from Lemma 3.1.3

(1), that it is an isometry follows from Lemma 3.1.3 (2), and to obtain that the image is all

of B>λℓ+1
(φℓ(pr≤eℓ

(a0))), consider its inverse (which is easy to specify explicitly).

3.3 Defining the stratification

In this section, we construct a stratification of the given set X ⊆ Rn. (Afterwards, we

will prove that this stratification has the desired properties.) The stratification is obtained

by constructing the skeletons X̊s one after another, starting with X̊dim X . More precisely,

suppose that X̊s+1, . . . , X̊dim X have already been constructed. We obtain X̊s by starting

with X̊s := X \
⋃

i>s X̊
i and by removing closed subsets of dimension less than s in four

steps.

Step R1: We start by partitioning X̊s into bradycells (using Proposition 2.1.5) and

remove all bradycells of dimension less than s. Moreover, for each bradycell S ⊆ Xs of

dimension s, we remove its frontier ∂S from X̊s. This ensures that afterwards, each defin-

ably connected component of X̊s is a bradycell. (Recall that “definably connected” refers

to the language L.) Even though X̊s is not yet final, let us already call those connected

components strata.

By removing an additional closed subset of lower dimension from X̊s, we ensure that

the “border condition” holds, i.e., that for any strata S ⊆ X̊s, S ′ ⊆ X̊s′ , where s′ > s, we

have either S ⊆ cl(S ′) or S ∩ cl(S ′) = ∅. (In the end, this will imply that cl(S ′) is a union

of strata.)

Note that none of the properties achieved in this step can be destroyed by removing

further closed, lower-dimensional subsets from X̊s.

Step R2: Next, we choose a stratum S ⊆ X̊s (i.e., a bradycell of dimension s) and an

aligner κ ∈ Cn of S (see Definition 2.1.1). For each of these (finitely many) choices, we

remove an L-definable subset from X̊s as follows.

As explained in Notation 3.1.1, we assume that S itself is a aligned. This assumption

does not cause definability issues of the sets we remove, since κ is (by definition of Cn)

L-definable. Set S̄ := pr≤s(S) and denote by ρ : S̄ −→ Rn−s the function whose graph is

S. Moreover, set e1 := s. By Corollary 2.3.10, there is a subset Z ⊆ S̄ of lower dimension

such that ρ is e[1,1]-(c2)-sedated on S̄ \ Z. The preimage S ∩ pr−1
≤s(Z) is a subset of S of

dimension less than s; we remove its closure cl(S ∩ pr−1
≤s(Z)) from X̊s.

Step R3: The next shrinking of X̊s is similar, but instead of considering a single

stratum in X̊s, we consider a whole sequence S = (Sℓ)0≤ℓ≤m, with Sℓ ⊆ X̊eℓ for some
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e0 ≥ e1 > e2 > · · · > em = s, m ≥ 0. (In fact, Step R2 is a special case of Step R3, but

for R3 to work, we will need that this special case has been carried out before.) Similarly

to Step R2, for any such sequence S and any aligner κ ∈ Cn of S, we will obtain a subset

Z ⊆ S̄m of dimension less than s (where we use Notation 3.1.1), and for each S and κ as

above, we remove the corresponding set cl(Sm ∩ pr−1
≤s(Z)) from X̊s.

The goal of Step R3 is to ensure that certain functions on the set Y ♭ ⊆ Re0 from

Notation 3.2.3 are e[j,m]-(v)-sedated. This will be achieved using Proposition 2.3.6 and

Corollary 2.3.10, so we need to ensure that the functions are already e[j,m′]-(v)-sedated

for m′ < m. We use Notation 3.2.3 and set

δ♭ := ρ0♭ − ρ1♭
⋆ ◦ pr≤e1

: Y ♭ −→ Rn−e0 . (3.1)

(If e0 = e1, then δ♭ = ρ0♭ − ρ1♭.) The precise goal of Step R3 is to ensure the following:

If m = 0 or e0 > e1: ρ0♭ is e[0,m′]-(c2)-sedated on Y ♭ for 0 ≤ m′ ≤ m;

If m ≥ 1 and e0 > e1: δ♭ is e[0,m′]-(b)-sedated on Y ♭ for 1 ≤ m′ ≤ m;

If m ≥ 1 and e0 = e1: δ♭ is e[1,m′]-(a)-sedated on Y ♭ for 1 ≤ m′ ≤ m.

(3.2)

(Note that in Subsection 2.3, the numbering starts with e1, whereas for (c2)- and (b)-

sedation, we now start with e0.)

To obtain (3.2) for m′ < m, nothing needs to be removed from Sm; instead, we de-

duce this inductively from the corresponding result obtained in the construction of X̊em−1

(using Lemma 2.3.11 and Step R2); then we can e[j,m]-(v)-sedate the functions using

Proposition 2.3.6 and Corollary 2.3.10. This is straightforward; here are the details.

Proof of (3.2) for m′ < m. Fix m′ < m. For any statement related to δ♭, we shall implic-

itly assume m′ ≥ 1. We keep Notation 3.2.3 with respect to S, but we now additionally

consider the shortened sequence Ŝ = (Sℓ)0≤ℓ≤m−1 and put a hat on various objects rela-

tive to Ŝ introduced in Notations 3.2.1 and 3.2.3 and in (3.1): φ̂ℓ, Ŷ , Ŷ ♭, ρ̂ℓ♭, δ̂♭. Note that

we have Y ⊆ Ŷ and φℓ = ψℓ ◦ φ̂ℓ (for 0 ≤ ℓ < m), where ψℓ = φm−1 × idR
eℓ−em−1 is the

map that rectilinearizes only with respect to ρm
m−1. In particular,

ρ̂0♭ = ρ0♭ ◦ ψ0, ρ̂1♭ = ρ1♭ ◦ ψ1, and δ̂♭ = δ♭ ◦ ψ0.

By Step R3 for Ŝ (which has already been carried out when constructing X̊em−1), ρ̂0♭ is

e[0,m′]-(c2)-sedated if e0 > e1 and δ̂♭ is e[1,m′]-(a)-sedated or e[0,m′]-(b)-sedated (depend-

ing on whether e0 > e1). The map ψ0 is of the form required by Lemma 2.3.11, since

ρm
m−1 is e[m,m]-(c2)-sedated by Step R2, so that lemma implies (3.2) for m′ < m.

Obtaining (3.2) for m′ = m. Suppose first thatm = 0 or e0 > e1. Using val(Jacx ρ
0) ≥ 0

(for x ∈ Y ) and val(Jacx φ0) = 0 (by Remark 3.2.4), we obtain val(Jacx♭ ρ0♭) ≥ 0, so
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we can apply Corollary 2.3.10 to ρ0♭ using e[0,m]. This yields a subset Z ⊆ pr≤em
(Y ♭) =

pr≤em
(Y ) ⊆ S̄m of dimension less than em = s such that ρ0♭ is e[0,m]-(c2)-sedated on

Y ♭ \ Z ′, where Z ′ is the preimage of Z in Re0 under the projection. We shrink Y ♭ to

Y ♭ \ Z ′ by removing cl(Sm ∩ pr−1
≤em

(Z)) from Sm.

In a similar way (but using Proposition 2.3.6 (b)), we ensure that δ♭ is e[0,m]-(b)-

sedated if m ≥ 1. For this, we have to check that val(Jacx♭ δ♭) ≥ 0; this follows from the

corresponding statements for ρ0♭ and ρ1♭.

Finally, if m ≥ 1 and e0 = e1, then without checking any additional condition, we

can apply Proposition 2.3.6 (a) to shrink Sm in such a way that δ♭ becomes e[1,m]-(a)-

sedated.

Step R4: We keep the notation from Step R3 and remove one more set from Sm (again,

for each choice of S and κ), namely Sm ∩ pr−1
≤em

(∂(pr≤em
(Y ))). This ensures that if we

choose a sequence (Sℓ)ℓ of strata after this step has been carried out and write Y for the

set corresponding to this new sequence, then ∂(pr≤em
(Y )) ∩ S̄m = ∅ and hence, since

Sm is connected, we have either S̄m ⊆ pr≤em
(Y ) or S̄m ∩ pr≤em

(Y ) = ∅. (Later, only

sequences for which the first of these cases occurs will be relevant.)

This finishes the construction of X̊s and hence of the stratification of X . We will now

prove that this stratification is indeed a valuative Lipschitz stratification.

3.4 Relating the stratification to val-chains

We fix a val-chain a0, . . . , am with aℓ ∈ Sℓ ⊆ X̊eℓ , dimensions e0 ≥ e1 > · · · > em, and

distances λ1 > · · · > λm+1. We use Notations 3.1.1, 3.1.2, 3.2.1 and 3.2.3. The main goal

of this subsection is to prove Lemma 3.4.4, which can be considered as a bound on some

kind of distance between the tangent spaces Ta0(X̊e0) and Ta1(X̊e1). The three different

properties obtained in (3.2) will roughly correspond to the following three different kinds

of val-chains (in this order): augmented val-chains with S0 = S1, plain val-chains, and

augmented val-chains with S0 6= S1.

Notation 3.4.1. We set a := a0 and ā := pr≤e0
(a). By Lemma 3.1.3 (1), we have

pr≤eℓ
(a) ∈ S̄ℓ for 0 ≤ ℓ ≤ m, so ā ∈ Y and we can define ā♭ := φ0(ā) ∈ Y ♭.

Remark 3.4.2. Since pr≤em
(a) ∈ pr≤em

(Y ) ∩ S̄m, this intersection is non-empty, so

Step R4 implies S̄m ⊆ pr≤em
(Y ) and hence S̄m = pr≤em

(Y ).

We apply Notation 2.3.2 to ā♭, relative to the set Y ♭, starting with e0 instead of e1, and

we allow ourselves to use that notation even if e0 = e1:

ζℓ(ā
♭) = dist(pr≤eℓ

(ā♭),Reℓ \ pr≤eℓ
(Y ♭)) for 0 ≤ ℓ ≤ m (3.3)

σℓ(ā
♭) = max{1, ‖pr>eℓ

(ā♭)‖ · ζℓ−1(ā
♭)−1} for 1 ≤ ℓ ≤ m. (3.4)



Lipschitz stratifications in power-bounded o-minimal fields 51

(Concerning the case e0 = e1, we consider the norm of the empty tuple as being 0 and its

valuation as being ∞.)

Lemma 3.4.3. We have

val(pr>eℓ+1
(ā♭))

(1)

≥ λℓ+1

(2)

≥ val(ζℓ(ā
♭)) (3.5)

for 0 ≤ ℓ ≤ m− 1 at (1) and 0 ≤ ℓ ≤ m at (2). In particular,

val(σℓ(ā
♭)) = 0 for 1 ≤ ℓ ≤ m. (3.6)

Proof. The “in particular” part follows directly from (3.5) and (3.4).

(1) We have pr>eℓ+1
(ā♭) = (a♭

ℓ, . . . , a
♭
0), so it suffices to check that val(a♭

j) ≥ λj+1 (≥

λℓ+1) for 0 ≤ j ≤ ℓ. This follows from Lemma 3.1.3 (3); indeed, a♭
j = aj−ρ

j+1
j (pr≤ej+1

(a)))

is just one of the coordinates of a − a[j+1], where the notation a[j+1] is the one from the

Lemma 3.1.3.

(2) It is enough to check that we have an inclusion

B>λℓ+1
(pr≤eℓ

(ā♭))) ⊆ pr≤eℓ
(Y ♭) = φℓ(pr≤eℓ

(Y )). (3.7)

By Lemma 3.2.5, we have B>λℓ+1
(pr≤eℓ

(ā♭))) = φℓ(B̄
ℓ) (where B̄ℓ was defined as

B>λℓ+1
(pr≤eℓ

(ā))); see Notation 3.1.2), so (3.7) is equivalent to

B̄ℓ ⊆ pr≤eℓ
(Y ). (3.8)

The definition of Y yields

pr≤eℓ
(Y ) = pr≤eℓ

(Y ′) ∩ Yℓ+1 ∩ · · · ∩ Ym, (3.9)

where

Y ′ = {x ∈ Re0 : pr≤ej
(x) ∈ S̄j for 0 ≤ j ≤ ℓ}. (3.10)

and where Yj is the preimage of S̄j under the projection Reℓ −→ Rej (for ℓ+1 ≤ j ≤ m).

By Lemma 3.1.3 (1), for j ≥ ℓ + 1 we have pr≤ej
(B̄ℓ) ⊆ B̄j ⊆ S̄j and hence B̄ℓ ⊆ Yj .

By Remark 3.4.2 applied to the val-chain a0, . . . , aℓ, we have S̄ℓ ⊆ pr≤eℓ
(Y ′). Together

with B̄ℓ ⊆ S̄ℓ this implies (3.8).

Suppose now that m ≥ 1. We keep Notation 3.4.1 and additionally set b := a1, b̄ :=

pr≤e1
(b) and b̄♭ := φ1(b̄). (This is well-defined by the same argument as for ā♭, applied to

the val-chain a1, . . . am). Recall that in Notation 3.2.3, we introduced the rectilinearized

maps ρℓ♭ := ρℓ ◦ φ−1
ℓ . The following is a key intermediate result.

Lemma 3.4.4 (Bounding the difference of derivatives). Suppose that m ≥ 1. Then for

1 ≤ i ≤ em, we have

val(∂iρ
0♭(ā♭) − ∂iρ

1♭
⋆ (b̄♭)) ≥ λ1 − λm+1.
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Proof. Set c̄ := pr≤e1
(a), c := (c̄, ρ1(c̄)) and c̄♭ := φ1(c̄). Note that c = a[1] in the notation

of Lemma 3.1.3, so c, a2, . . . am is a val-chain and hence well-definedness of c̄♭ follows

as for ā♭ and b̄♭.

To prove the lemma, we “use c as an intermediate step”, i.e., it suffices to prove

val(∂iρ
0♭(ā♭) − ∂iρ

1♭
⋆ (c̄♭)) ≥ λ1 − λm+1 and (3.11)

val(∂iρ
1♭
⋆ (c̄♭) − ∂iρ

1♭
⋆ (b̄♭)) ≥ λ1 − λm+1. (3.12)

Since a, c, a2, . . . , am and c, b, a2, . . . , am are val-chains (by Lemma 3.1.3), these two

inequalities follow from two special cases of the lemma itself: (3.11) is just the special

case b = a[1], and (3.12) follows from the special case where S0 = S1. (The special case

yields (3.12) with ρ1♭
⋆ replaced by ρ1♭.) Thus we will now prove the lemma in these two

cases.

Case b = a[1]: In this case, pr≤e1
(ā) = b̄ and hence also pr≤e1

(ā♭) = b̄♭. Recall the

definition of δ♭ from Step R3; we have

δ♭(x♭) = ρ0♭(x♭) − ρ1♭
⋆ (pr≤e1

(x♭)) for x♭ ∈ Y ♭

and hence

∂iρ
0♭(ā♭) − ∂iρ

1♭
⋆ (b̄♭) = ∂iδ

♭(ā♭).

We now distinguish two sub-cases. If e0 > e1, then since δ♭ is e[0,m]-(b)-sedated on Y ♭

(by (3.2)), we get (for 1 ≤ i ≤ em)

val(∂iδ
♭(ā♭))

(2.7)

≥ min{val(δ♭(ā♭)), val(pr>e1
(ā♭))} − val(ζm(ā♭)) +

m∑

ℓ=1

val(σℓ(ā
♭))

(3.5),(3.6)

≥ min{val(δ♭(ā♭)), λ1} − λm+1.

If, on the other hand, e0 = e1, then δ♭ is e[1,m]-(a)-sedated on Y ♭ and we get

val(∂iδ
♭(ā♭))

(2.7)

≥ val(δ♭(ā♭)) − val(ζm(ā♭)) +
m∑

ℓ=2

val(σℓ(ā
♭))

(3.5),(3.6)

≥ val(δ♭(ā♭)) − λm+1.

In both cases, δ♭(ā♭) = ρ0(ā) − ρ1
⋆(b̄) = (a− b)⋆, so the valuation of this is at least λ1

(since a = a0 and b = a1) and we get val(∂iδ
♭(ā♭)) ≥ λ1 − λm+1, as desired.

Case S0 = S1: In that case, we have ρ1♭
⋆ = ρ0♭, so the claim of the lemma is

val(∂iρ
0♭(ā♭) − ∂iρ

0♭(b̄♭)) ≥ λ1 − λm+1; (3.13)

we will prove this using the Mean Value Theorem argument from Remark 2.1.13.
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Set B := B≥λ1(ā). By Lemma 3.2.5, B♭ := φ0(B) is also a ball (note that φ0 = φ1

and that B̄0 ⊆ B ⊆ B̄1) and, since B contains ā and b̄ and φ0 is a valuative isometry on

B, we have val(ā♭ − b̄♭) = λ1. Thus for Remark 2.1.13 to yield (3.13), it remains to verify

that on the entire ball B♭, we have

val(Jac ∂iρ
0♭) ≥ −λm+1.

Given any c̄♭ ∈ B♭, let c̄ be its preimage in B and c := (c̄, ρ0(c̄)) ∈ S0. Applying (3.2)

to the strata S1, . . . , Sm yields that ρ0♭ = ρ1♭ is e[1,m]-(c2)-sedated on Y ♭. (Note that the

set Y ♭ corresponding to S1, . . . , Sm is the same as the one corresponding to S0, . . . , Sm.)

Together with Lemma 3.4.3, this yields

val(Jac ∂iρ
0♭(c̄♭))

(2.25)

≥ − val(ζm(c̄♭)) +
m∑

ℓ=2

val(σℓ(c̄
♭))

(3.5),(3.6)

≥ −λm+1.

which is what we had to prove.

3.5 Proving that we have a valuative Lipschitz stratification

We will use the characterization of valuative Lipschiz Stratifications given by Proposi-

tion 1.8.3. Thus suppose that a0, . . . , am is a val-chain with aℓ ∈ Sℓ ⊆ X̊eℓ , with dimen-

sions e0 ≥ e1 > · · · > em, and with distances λ1 > · · · > λm+1. We need to find vector

spaces

Vk,m ⊆ Vk,m−1 ⊆ · · · ⊆ Vk,k+1 ⊆ Vk,k = TakSk for 0 ≤ k ≤ m (3.14)

with dimVk,ℓ = eℓ satisfying

∆(Vk,ℓ, Vk+1,ℓ) ≥ λk+1 − λℓ+1 for 0 ≤ k < ℓ ≤ m, (3.15)

(where ∆(W1,W2) is the valuative metric on the Grassmannian; see Definition 1.8.1).

The strategy is as follows. Given any val-chain as above and any aligner κ ∈ Cn of

(Sℓ)0≤ℓ≤m, we will define an em-dimensional space denoted by V0,m depending only on

the val-chain and on κ. Let Vk,ℓ be the space obtained by applying the same definition to

the sub-val-chain ak, ak+1, . . . , aℓ (and the same aligner κ). Once the spaces are defined,

we will prove:

V0,0 = Ta0S0 (in the case m = 0); (3.16)

V0,m ⊆ V0,m−1 if m ≥ 1; (3.17)

∆(V0,m, V1,m) ≥ λ1 − λm+1 if m ≥ 1. (3.18)
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By applying these results to various sub-val-chains of a0, . . . , am one then obtains (3.14)

and (3.15), i.e., we then are done with the proof of the theorem.

We start by defining V0,m. As usual, we use Notation 3.1.1, 3.1.2, 3.2.1 and 3.2.3. In

particular, we assume that the coordinate system has been transformed using κ. This is

harmless, since such a transformation preserves the notion of val-chains on the one hand,

and the properties we are about to prove on the other hand.

Notation 3.5.1. For 0 ≤ ℓ ≤ m and suitable x = (x̄, x′) ∈ Reℓ × Rn−eℓ , we define a

variant of the rectilinearization maps, where “all coordinates of Rn−eℓ are rectilinearized

along Sℓ”:

φ̃ℓ(x) := (φℓ(x̄), x
′ − ρℓ(x̄)). (3.19)

(Note that if S0 = S1, then φ̃0 = φ̃1.) We moreover set

a := a0,

W := Rem × {0}n−em and

V0,m := (Jaca φ̃0)
−1(W ).

That φ̃0 is defined at a follows from Remark 3.4.2. As required, we have dimV0,m =

em, so to finish the proof of the theorem, it remains to prove (3.16), (3.17) and (3.18).

Proof of (3.16). In the case m = 0, φ̃−1
0 sends S̄0 × {0}n−e0 to S0, and we have W =

Re0 × {0}n−e0 . Thus (Jaca φ̃0)
−1(W ) is the tangent space to S0 at a, as required.

Proof of (3.17). Suppose that m ≥ 1. We have

V0,m−1 = (Jaca
ˆ̃φ0)

−1(Ŵ ) (3.20)

where

Ŵ = Rem−1 × {0}n−em−1 and (3.21)

ˆ̃φ0 : (xm, xm−1, xm−2 . . . , x0, x⋆) 7−→ (xm, xm−1, x
♭
m−2, . . . , x

♭
0, x⋆ − ρ0(pr≤e0

(x))).(3.22)

An easy computation shows that (Jaca
ˆ̃φ0)

−1(Ŵ ) = (Jaca φ̃0)
−1(Ŵ ); indeed, we have

φ̃0 = ψ ◦ ˆ̃φ0, where ψ = φm−1 × idR
n−em−1 , and (Jacx ψ)−1(Ŵ ) = Ŵ for any x.

Together with Ŵ ⊇ W , this implies V0,m−1 ⊇ V0,m, as required.

Proof of (3.18). We have V1,m = (Jacb φ̃1)
−1(W ) where b := a1 (and φ̃1 has been defined

in (3.19)). To obtain ∆(V0,m, V1,m) ≥ λ1 − λm+1, it suffices to prove that

val
(

(Jaca φ̃0)
−1 ↾ W − (Jacb φ̃1)

−1 ↾ W
)

≥ λ1 − λm+1 (3.23)

(by Lemma 1.8.2).
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From the definition of φ̃0, we get

Jaca φ̃0 =

(
Jacā φ0 0
− Jacā ρ

0 1

)

and hence (3.24)

(Jaca φ̃0)
−1 =

(
(Jacā φ0)

−1 0
(Jacā ρ

0) ◦ (Jacā φ0)
−1 1

)

=

(
(Jacā φ0)

−1 0
Jacā♭(ρ0 ◦ φ−1

0 ) 1

)

,(3.25)

where ā♭ = φ0(ā). If we moreover set ¯̄a = pr≤e1
(ā) and ¯̄a♭ = φ1(¯̄a), then we have

φ0(ā) =
(
φ1(¯̄a), ā0 − ρ1

0(¯̄a)
)
, and exactly the same computation as in (3.24) and (3.25)

yields

(Jacā φ0)
−1 =

(
(Jac¯̄a φ1)

−1 0
Jac¯̄a♭(ρ1

0 ◦ φ
−1
1 ) 1

)

. (3.26)

Combining (3.25) with (3.26) yields

(Jaca φ̃0)
−1 =






(Jac¯̄a φ1)
−1 0 0

Jac¯̄a♭(ρ1
0 ◦ φ

−1
1 ) 1 0

Jacā♭(ρ0 ◦ φ−1
0 ) 1




 =






(Jac¯̄a φ1)
−1 0 0

Jac¯̄a♭ ρ1♭
0 1 0

Jacā♭ ρ0♭ 1




 , (3.27)

where the coordinates are grouped according to Re1 ×Re0−e1 ×Rn−e0 .

We also do the computation from (3.24) and (3.25) for φ̃1(b) = (φ1(b̄), (b0, b⋆)−ρ
1(b̄)),

where b̄ = pr≤e1
(b) and b̄♭ = φ1(b̄), and obtain (with the same grouping of coordinates as

before)

(Jacb φ̃1)
−1 =






(Jacb̄ φ1)
−1 0 0

Jacb̄♭(ρ1
0 ◦ φ

−1
1 ) 1 0

Jacb̄♭(ρ1
⋆ ◦ φ

−1
1 ) 0 1




 =






(Jacb̄ φ1)
−1 0 0

Jacb̄♭ ρ1♭
0 1 0

Jacb̄♭ ρ1♭
⋆ 0 1




 . (3.28)

To prove (3.23), we have to prove the corresponding statements for the three sub-matrices

where (3.27) and (3.28) differ.

For the lower most, this is exactly the statement of Lemma 3.4.4. For the middle

sub-matrix, the result is obtained by applying Lemma 3.4.4 to the augmented val-chain

a[1], a1, a2, . . . , am, where a[1] = (¯̄a, ρ1(¯̄a)) ∈ S1 and val(a[1] − a1) ≥ λ1 by Lemma 3.1.3

(3).

Finally, for the upper-most sub-matrix, we use an inductive argument. If m = 1, then

φ1 is the identity, so suppose now m ≥ 2. Set ¯̄̄a := pr≤e2
(a), a[2] := (¯̄̄a, ρ2(¯̄̄a)) ∈ S2

and similarly
¯̄̄
b := pr≤e2

(b), b[2] := (
¯̄̄
b, ρ2(

¯̄̄
b)) ∈ S2. Using Lemma 3.1.3, we obtain that

a[2], b[2], a3, . . . , am is a val-chain with val(a[2]−b[2]) ≥ λ1. By induction, we may assume

that (3.23) holds for this shorter val-chain, i.e.,

val
(

(Jaca[2] φ̃2)
−1 ↾ W − (Jacb[2] φ̃2)

−1 ↾ W
)

≥ λ1 − λm+1. (3.29)

This implies the desired inequality

val
(
(Jac¯̄a φ1)

−1 ↾ W − (Jacb̄ φ1)
−1 ↾ W

)
≥ λ1 − λm+1, (3.30)
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using that φ1 is obtained from φ̃2 by omitting some coordinates and that the derivatives

of these functions only depend on the first e2 coordinates. More precisely, a computation

as in (3.25) and (3.26) (applied to φ̃2 and φ1) yields that (Jac¯̄x φ1)
−1 is a sub-matrix of

(Jacx φ̃2)
−1 (for suitable x ∈ Rn and ¯̄x = pr≤e1

(x)) and that this sub-matrix only depends

on pr≤e2
(x).

This finishes the proof of Theorem 1.6.7, and hence also of Theorem 1.
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de l’École Normale Suprieure 27 (1994), no. 6, 661–696.

[Paw] Wiesław Pawłucki: Lipschitz cell decomposition in o-minimal structures. I. Ill. J.

Math. 52 (2009), no. 3, 1045–1063.

[Rol] Jean-Philippe Rolin: Construction of o-minimal structures from quasianalytic

classes. (English summary) Lecture notes on O-minimal structures and real ana-

lytic geometry, 71–109, Fields Inst. Commun., 62, Springer, New York, 2012.

[Val] Guillaume Valette: Lipschitz triangulations. Illinois J. Math., 49, (2005), no. 3,

953–979 (electronic).

[Ver] Jean-Louis Verdier: Stratifications de Whitney et théorème de Bertini-Sard. Invent.
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