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Abstract
The increasing rate of antibiotic resistance and slowing discovery of novel antibiotic treat-

ments presents a growing threat to public health. Here, we consider a simple model of evo-

lution in asexually reproducing populations which considers adaptation as a biased random

walk on a fitness landscape. This model associates the global properties of the fitness land-

scape with the algebraic properties of a Markov chain transition matrix and allows us to

derive general results on the non-commutativity and irreversibility of natural selection as

well as antibiotic cycling strategies. Using this formalism, we analyze 15 empirical fitness

landscapes of E. coli under selection by different β-lactam antibiotics and demonstrate that

the emergence of resistance to a given antibiotic can be either hindered or promoted by

different sequences of drug application. Specifically, we demonstrate that the majority,

approximately 70%, of sequential drug treatments with 2–4 drugs promote resistance to the

final antibiotic. Further, we derive optimal drug application sequences with which we can

probabilistically ‘steer’ the population through genotype space to avoid the emergence of

resistance. This suggests a new strategy in the war against antibiotic–resistant organisms:

drug sequencing to shepherd evolution through genotype space to states from which resis-

tance cannot emerge and by which to maximize the chance of successful therapy.

Author Summary

Increasing antibiotic resistance, coupled with the slowing rate of discovery of novel antibi-
otic agents, is a public health threat which could soon reach crisis point. Indeed, the last
decade has seen the emergence of deadly, highly resistant forms of pathogens, such as
Escherichia coli, Acenitobacter baumanii, Klebsiella pneumoniae, Enterococcus and
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Staphylococcus aureus as well as non–bacterial pathogens including malaria and viruses
such as HIV. Here, we develop a mathematical model of an evolving bacterial population,
which allows us to predict the probability of resistant strains emerging. Using this model
we show how sequences of drugs can be prescribed in order to prevent resistance where
each drug alone may fail. These model predictions suggest a novel treatment strategy:
using sequences of antibiotics to ‘steer’ the evolution of a pathogen to a configuration
from which resistance to a final antibiotic cannot emerge. Further, we test the likelihood of
resistance emerging when arbitrary sequences of antibiotics are prescribed, finding that
approximately 70% of arbitrary sequences of 2–4 drugs promote resistance to the final
drug. This result serves as a cautionary warning that we may be inadvertently promoting
resistance through careless (or random) prescription of drugs.

Introduction
Resistance to antibiotic treatments within bacterial pathogens poses an increasing threat to
public health, which, coupled with the slowing discovery of novel antibiotics, could soon reach
crisis point [1, 2]. Novel classes of antibiotics discovered since 1987 are few in number [3].
Thus, it is becoming ever clearer that if we are to combat highly resistant bacterial infections,
then we must find new ways to prevent resistance and new applications of existing antibiotics
to these pathogens. Public health efforts have attempted to stem the emergence of resistance by
reducing unnecessary prescription of antibiotics [4–6] and stopping the addition of sub-thera-
peutic antibiotics to livestock feed [7]. However, such policies require global adoption to be
truly effective [8], which they have not yet achieved, and is likely infeasible.

Recently, there have been efforts to explore how existing antibiotics can be used in new
ways to provide effective treatments for resistant pathogens, for example through combination
therapy [9–11] or drug sequencing. The emergence of drug resistance is governed by Darwin-
ian principles, with treatment imposing selective pressure on a population that selects for resis-
tant mutants. It has been suggested (in the realm of cancer therapy, but with arguments equally
applicable to treating bacterial infections) that we must design treatments which use sequences
of drugs to account for, or even exploit, evolution [12]. The number of possible sequential
treatments from even modest numbers of drugs is much too large for optimal therapies to be
identified through an exhaustive experimental search. As such, the development of sequential
treatment strategies has become a problem best approached with the aid of mathematical biol-
ogy. Indeed, sequential therapies have previously been explored in the field of cancer research
where early mathematical modeling tested drug sequences to derive the so–called “worst drug
rule” for sequential cancer therapies [13, 14] (see [15] for a recent extension of their methods).
In the thirty years since these results were published a number of mathematical models have
been developed which attempt to design optimal sequential or combination therapies. Many of
these techniques are applicable not only to cancers but also infectious disease (see [16–20] for
reviews).

Goulart et al [21] used a search algorithm on graphs determined by fitness landscapes of
Escherichia coli to design antibiotic cycling strategies—long term hospital–scale treatment pro-
tocols that cycle antibiotics in sequence over timescales of weeks, months or years to prevent
resistance. However, our understanding of the mechanisms underlying these strategies remains
limited and mathematical models which consider the entire space of possible strategies suggest
that cycling may offer no significant benefit over mixed–drug strategies [22, 23]. These models
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have led the authors (and others [24, 25]) to suggest that more sophisticated techniques are
needed to determine optimal therapies.

In order to understand how to minimize the emergence of resistant pathogens, and to
decide how best to design sequential treatments, we must first understand how their evolution
is driven by the selective pressures of different antibiotic drugs—a fundamental problem of
biology [26]. In particular, if we understand which traits are likely to be selected for by which
treatments, then we may be able to avoid selecting for those traits that confer resistance. Recent
insights into the evolutionary process have yielded some actionable information. Weinreich
et al [27, 28] showed that if the genome of a pathogen exhibits sign epistasis, where a given
mutation is beneficial on some genetic backgrounds and deleterious on others, then there can
exist inaccessible evolutionary trajectories. Further, Tan et al [29] studied the evolutionary tra-
jectories of E. coli under different antibiotics and found that adaptive mutations gained under
one antibiotic are often irreversible when a second is applied. Such irreversible paths can occur
when resistance conferring mutations for one environment carry a cost in another that can be
mitigated by other compensatory mutations [30, 31]. These findings lead us to hypothesize
that one antibiotic could be used to irreversibly steer the evolution of a population of pathogens
to a genotype (or combination of genotypes) which is sensitive to a second antibiotic but also
from which it is unlikely to acquire resistance to that antibiotic. This hypothesis was partly ver-
ified by the work of Imamovic et al [32], who demonstrated that evolving E. coli to become
resistant to certain antibiotics can increase sensitivity to others. However, those experiments
did not exhaustively consider all evolutionary trajectories but instead highlighted only those
that arose in a small number of replicates; further, the authors do not consider how evolution
may proceed once a second drug is applied and whether resistance can then emerge.

Model Overview
In this study we present a model that abstracts the evolutionary dynamics of an asexually
reproducing population with unspecified, but variable, population size in which individuals
are subject to point mutation at reproduction. We model the genotype of each individual as a
length N sequence of 0s or 1s indicating the absence or presence of N known fitness conferring
mutations of interest. In particular, our results are derived from a model of E. coli with geno-
types of length N = 4, indicating the presence of four possible amino acid substitutions (specifi-
cally M69L, E104K, G238S and N276D) giving 24 = 16 possible genotypes in total. The fitness
values associated with individuals in this model are, in general, abstracted away from biological
reality but in the context of this work are empirically determined by average growth rates of
specific strains under different drugs (see [33] for details).

Our model builds on the well–studied Strong Selection Weak Mutation (SSWM) model
derived by Gillespie [34, 35] which assumes that the disease population is isogenic and that
evolution proceeds as the population genotype is periodically replaced by a fitter mutant. This
model is valid under a broad range of circumstances provided that the mutation rate is not
too high or the population size too small (a precise description of the necessary relationship
between population size and mutation rate is provided in the Materials and Methods). The
benefit of this abstraction is that, provided they fall within acceptable limits, we are able to
ignore the population size and mutation rate in predicting evolutionary trajectories. This allows
us to efficiently determine evolutionary trajectories and to consider trajectories either at the
patient scale or at the whole clinic scale as in Goulart et al [21], although without explicit
knowledge of the population parameters we are unable to predict the time taken to traverse
these evolutionary trajectories.
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Under the assumption of SSWM the evolutionary trajectory of a population can be viewed
as a weighted random walk through genotype space which is determined by the fitness land-
scape imposed by a drug. Our work differs from previous models that utilize the SSWMmodel
in that we encode this random walk formally as a Markov chain. This enables us to determine
the probability of evolutionary trajectories to the fitness optima of landscapes through matrix
multiplication. Specifically, we encode uncertainty about the current population genotype as a
probability distribution vector μ with length equal to the number of genotypes. We can then
determine the probability of reaching different fitness optima of a landscape by multiplying μ
by a limit matrix that is determined by successive multiplication of the Markov chain transition
matrix associated with that landscape. This encoding assumes that drugs are prescribed for suf-
ficiently long for evolution to proceed to equilibrium in the fitness landscape.

Here, we present the construction of the Markov chain from fitness landscapes and use this
construction to derive mathematical results regarding drug ordering and cycling from the alge-
braic properties of its transition matrix. In particular, we demonstrate that the order in which
drugs are prescribed can have significant effects on the final population configuration—a phe-
nomenon we call non–commutativity of selective pressures. Using previously measured land-
scapes for 15 β-lactam antibiotics we illustrate how the emergence of high resistance, which we
take throughout the following to mean evolution to the highest fitness peak of the landscape,
can be both hindered and promoted by different orderings of selective pressures. Finally, we
exhaustively explore all possible ordered sequences of two, three and four antibiotics, finding
that the majority, approximately 70%, of arbitrary drug sequences promote the emergence of
resistance. These findings suggest new treatment strategies which use rational orderings of
drugs to shepherd evolution through genotype space to a configuration that is sensitive to treat-
ment, as in the work of Imamovic et al [32], but also from which resistance cannot emerge.

Results

Non-commutativity and Cycling of Natural Selection
Using the Markov chain model presented in the Materials and Methods, we can formally prove
that for a large class of fitness landscape pairs there is non-commutativity in the evolutionary
process as described by the SSWM assumptions. Suppose that there are two drugs, X and Y,
with corresponding fitness landscapes x and y, and that we wish to determine what, if any, dif-
ference there is between applying X followed by Y to a population as opposed to applying Y fol-
lowed by X. We can construct the Markov chain transition matrices Px and Py corresponding,
respectively, to x and y according to Eq 3 and take the limits P�

x and P
�
y of these matrices under

successive multiplication. For a given initial population distribution vector μ, we can find the
distribution over genotypes after evolution proceeds to equilibrium in the fitness landscapes by
matrix multiplication. For example, the distribution after drug X is prescribed is given by
m0 ¼ mP�

x . Hence, our model predicts that the ordering makes no difference to the final popula-
tion distribution on an initial population with genotype i if, and only if,

miP
�
xP

�
y ¼ miP

�
yP

�
x ; ð1Þ

where μi is the population vector whose ith component is one and all of whose other compo-
nents are zero.

Supposing we do not know the initial population genotype, we can only guarantee that the
order of application is irrelevant when the outcome is the same regardless of the starting geno-
type. We thus require that miP

�
xP

�
y ¼ miP

�
yP

�
x for each genotype i. Since these unit vectors form a

basis of RN this occurs precisely when P�
xP

�
y ¼ P�

yP
�
x . It follows that drug application will
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commute precisely when the corresponding limit matrices commute. In practice we may be
able to narrow down which genotypes are likely to constitute the population through bacterial
genotyping or by observing that certain strains are not viable in the wild due to the high fitness
cost of certain mutations.

Mira et al [33] empirically determined the fitness landscapes for E. coli in the presence of
N = 4 resistance–conferring mutations under 15 commonly used antibiotics using average
growth rates as a proxy for fitness. We tested commutativity between each pair of these 15 anti-
biotics and found no commuting pairs. We then tested 106 pairs of random fitness landscapes
with varying ruggedness generated according to Kauffman’s NK model for generating “tunably
rugged” fitness landscapes [36, 37] using a random neighborhood Boolean function for deter-
mining the fitness contributions of each locus. We fixed N = 5 and generated each landscape by
first drawing K uniformly from {0,. . .,N − 1} and then using Kauffman’s model to build a land-
scape. We found that 0.132% of the landscape pairs generated had limit matrices which com-
muted, suggesting that commutativity is rare and the order in which drugs are prescribed will
be significant in almost all instances.

We now turn our attention to finding antibiotic cycling strategies as considered by Goulart
et al [21]. Unless x is a flat landscape (taking equal values for all genotypes) there must exist at
least one genotype j whose fitness is a minimum and which has a fitter neighbor. Such a geno-
type satisfies P[(i! j)] = 0 for all genotypes i. Hence if x is not flat, the limit matrix P�

x has at
least one column of all zeros and is singular, so there cannot exist a second landscape y for
which P�

xP
�
y ¼ I. Hence for any second landscape y there must exist a unit row vector μi for

which miP
�
xP

�
y 6¼ mi. This means that natural selection in our model is irreversible, in the sense

that for a given (non-flat) landscape we cannot find a second which is guaranteed to reverse its
effects unless we first measure the population genotype—a measurement which is non–trivial
and not currently common clinical practice. This result precludes the existence of a general
cycling strategy that returns the disease population to its original genotype regardless of that
starting genotype. If we do in fact know the starting genotype, as we might if the disease is
contracted in the wild where resistance–conferring mutations often carry a cost [38] which
makes the wild–type genotype most likely, then cycling strategies can be found efficiently by
our model. If the initial genotype is known to be i, the initial population distribution will be μi
and a sequence of drugs X1,. . .Xk with fitness landscapes x1,. . .xk will constitute a cycling
strategy precisely when miP

�
x1
. . . P�

xk
¼ mi. This criterion will be satisfied when μi is a left 1–

eigenvector of P�
x1
. . . P�

xk
. As such, we can find cycling strategies directly using algebra and

avoid the graph–search technique used by Goulart et al [21].

Evolutionary Steering Can Both Prevent and Promote Resistance
Prescriptions of sequences of drugs occur frequently in the clinic, and often without any guide-
lines as to which orderings are preferable. Common examples of this include treatment ofH.
pylori [39], Hepatitis B [40] and the ubiquitous change from broad to narrow spectrum antibi-
otics [41]. The ordering of the sequence is therefore often determined arbitrarily, by the indi-
vidual clinician’s personal, or historical experience or from laboratory data. However, our
model predicts the order in which the drugs are given is likely to have an effect on how the dis-
ease evolves and further, once a drug has been given it is not guaranteed that we will be able to
reverse the effects. Ideally, we would like to be able to identify drug orderings that lower the
probability of a highly resistant disease population emerging during treatment. To consider
optimal drug orderings in the context of our model we first need to know the fitness landscapes
(or proxies of the fitness landscapes) of a number of antibiotics used to treat a given bacterial
infection. Experimentally determining these landscapes requires one to consider all possible 2N

Steering Evolution to Prevent the Emergence of Drug Resistance

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004493 September 11, 2015 5 / 19



combinations of genotypes in a set of N loci, a task which is prohibitively difficult for all but
small values of N. De Visser and Krug found that there have been less than 20 systematic
empirical studies of fitness landscapes [26] and that landscapes have been calculated for a num-
ber of model organisms including E. coli [21, 29, 42, 43], Saccharomyces cerevisiae [44], Plasmo-
dium falciparum [45] and type 1 Human Immunodeficiency Virus [46]. Recent work by
Hinkley et al [47], which utilizes regression methods to approximate large fitness landscapes
from samples of the space, could help ameliorate the complexity of experimentally determining
fitness landscapes.

Mira et al [33] investigated the fitness landscapes of E. coli under 15 different β-lactam anti-
biotics using the average growth rates of isogenic populations of each genotype under the drug
as a proxy for fitness for a total of N = 4 resistance conferring mutations. Fig 1 shows the evolu-
tionary graphs of the fitness landscapes for three of these antibiotics, Ampicillin (Amp), Ampi-
cillin+Sulbactam (Sam) and Cefprozil (Cpr). We will first use these three fitness landscapes to
demonstrate the steering hypothesis explicitly. In the case of a single peaked landscape, such as
that for Sam, we cannot reduce the likelihood of resistance as all evolutionary trajectories lead
to the global fitness optimum. It is only when a drug has a multi–peaked landscape that we
may be able to avoid resistance through careful choice of preceding drug. Of the 15 landscapes
determined empirically by Mira et al [33] only the landscape for Sam is single peaked. In their
review of empirical fitness landscapes, de Visser et al [26] find that biological landscapes show
a variable but substantial level of ruggedness, suggesting that multi–peaked landscapes could
be quite common.

In the following we take the parameter r in Eq (3), which determines how the probability of
a mutation fixing is biased by the fitness increase it confers, to be zero. Note that changing
the value of r will not change the accessibility of an evolutionary trajectory, hence by taking a
different value of r� 0 we will only change the result quantitatively (the probabilities may
change) but not qualitatively. We begin by supposing that we do not know the initial popula-
tion genotype. This assumption gives us worst case scenario results, and allows pre–existence
of any resistant genotype. We model this situation by taking as our prior population distribu-
tion μ = [1/2N,. . .,1/2N] specifying that each genotype is equally likely to constitute the starting
population.

If we apply the drug Amp to this population distribution we find that in the expected distri-
bution m� ¼ mP�

Amp (shown in the first diamond in the top row of Fig 2) each of the fitness

peaks can be found. In particular, the most highly resistant genotype 1111 can arise in the pop-
ulation with probability 0.62. Suppose instead we apply Sam first. In this case as the landscape
is single peaked the population will converge to the global optimum genotype 1111. This geno-
type is also the global optimum of the Amp landscape and hence if we apply Amp after Sam we
will encounter high resistance. We have steered the population with one drug to a configura-
tion which increases the probability of resistance to a second. Next suppose that we instead
apply Cpr after Sam; in this case the population is guaranteed to evolve to a local optimum
0110 of the Cpr landscape. 0110 is the least fit local optimum of the Amp landscape. Thus if we
apply Amp to the population primed by Sam! Cpr then evolution to the global optimum
1111 is not possible. This example demonstrates the steering hypothesis, that evolution can be
shepherded through careful orderings of multiple drugs to increase or decrease the likelihood
of resistance emerging.

To test our steering hypothesis more rigorously, we performed an in silico test of steering
using combinations of one, two or three preceding drugs for each of the 15 drugs for which we
know the landscapes. Table 1 shows, for each of the 15 antibiotics, the steering combinations
predicted to minimize the probability of evolution to the most resistant genotype in the
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landscape of that antibiotic when applied in order before it. Again we took μ = [1/2N,. . .,1/2N]
to model the worst case scenario for pre–existing resistance. We found that for 3 of the 15
drugs there exists another which steers the initial population μ to a configuration from which
evolution to the global fitness optimum of the drug landscape is prevented entirely. This num-
ber rose to 6 when pairs of drugs applied sequentially are used to steer the population and to 7
when triples were applied in sequence.

We then performed a second in silico experiment to find combinations of steering antibiot-
ics maximizing the probability that evolution proceeds to the least fit local optima in the

Fig 1. Example fitness landscapes. The evolutionary graphs for the fitness landscapes of E. coli with the antibiotics (a) Ampicillin, (b) Ampicillin +
Sulbactam and (c) Cefprozil for 4 possible substitutions found in blaTEM-50. Arrows represent fitness–conferring mutations which can fix under the Strong
SelectionWeak Mutation assumptions. The absence of an arrow in either direction corresponds to a neutral mutation which cannot fix under these
assumptions. Each genotype is shaded according to its fitness normalized to a 0–1 scale.

doi:10.1371/journal.pcbi.1004493.g001

Fig 2. Steering evolution to prevent resistance. The probability distributions for accessibility of the peaks of the Amp landscape for different steering
regimes. The initial distribution is μ = [1/2N,. . .,1/2N]. When Amp is given first any of the three peaks of the landscape are accessible, with the most resistant
genotype 1111 being most likely. If Sam is given first to steer the population to its sole peak 1111, then resistance to Amp will be guaranteed when it is
applied. Alternatively, if Sam is given followed by Cpr, then the population evolves to the local optimum genotype 0110 of the Cpr landscape. If Amp is
applied to this primed population the global optimum, 1111, is inaccessible.

doi:10.1371/journal.pcbi.1004493.g002
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landscape of a final antibiotic (Table 2). We found that, excluding the single peaked landscape
for Ampicillin with Sulbactam, there exist 0 drugs for which a single other drug is able to steer
the population to a configuration from which evolution to only the least fit optimum is possi-
ble. If pairs of drugs are used to steer there are 3 such drugs (including the example presented
in the above demonstration) and if triples of steering drugs are considered there remains only
3. These findings suggest that through careful choice of steering drugs we may be able to pre-
vent the emergence of resistance. During these experiments we found that 14 of the 15 antibiot-
ics in our experiment (Cefpodoxime (CPD) being excluded) appeared in an optimal steering
combination of some length.

Whilst careful selection of drugs for steering can prevent the emergence of resistance, arbi-
trary drug orderings can also promote it. We performed an exhaustive in silico search of all sin-
gles, pairs, and triples of steering drugs applied sequentially to prime the initial population μ
for a final application of each of the 15 antibiotics (Table 3). We found that steering with a sin-
gle drug increased the likelihood of the most resistant genotype emerging in 57.3% of cases and
decreased the likelihood in 29.8% of cases. Steering with pairs of drugs increased the likelihood
in 64.1% of cases and decreased it in 28.4% of cases and steering with triples increased the like-
lihood in 65.6% of cases and decreased it in 27.5%. We tested the robustness of these results to
changes in the value of r in Eq (3) and found that each of these values are changed by less than
2% for r = 1. For r!1 we found that 56.0%, 68.1% and 71.2% of singles, doubles and triples
(respectively) of steering drugs increased the likelihood of the most highly resistant genotype
being found whereas only 22.2%, 20.0% and 19.2% of singles, pairs and triples (respectively)
decreased it.

For each of the antibiotics, except Cefaclor, Cefprozil and Ampicillin+Sulbactam (which is
single peaked making steering irrelevant), we found that a random steering combination of
length one, two or three is more likely to increase the chances of resistance than to reduce it.
Indeed, for Piperacillin+Tazobactam and Ceftizoxime we found that a random steering combi-
nation will increase the probability of the most highly resistance genotype occurring in more
than 80% of cases, suggesting that sequential multidrug treatments which use these very com-
mon antibiotics should proceed with caution. These findings suggest that the present system of
determining sequential drug orderings without quantitative optimization based guidelines
could in fact be promoting drug resistance and that to avoid resistance we must carefully con-
sider the order in which drugs are applied.

Discussion
We have reduced the evolutionary dynamics of an asexually reproducing population to a biased
random walk on a fitness landscape. Through this reduction we explored the evolutionary tra-
jectories of a population by considering the algebraic properties of the Markov chain transition
matrix associated with the random walk. We have demonstrated that evolution on fitness land-
scapes is non-commutative, in the sense that the same drugs applied in different orders can
result in different final population configurations, through parallels with the non-commutativ-
ity of matrix multiplication. Further, we demonstrated that it is possible to find sequences of
drugs that can be applied to both avoid and promote the emergence of resistance. In particular,
we performed an exhaustive analysis of the evolutionary trajectories of E. coli under short drug
sequences (two to four drugs) chosen from 15 β–lactam antibiotics using empirically deter-
mined fitness landscapes and found that the majority, approximately 70%, of sequential treat-
ments with 2–4 drugs increase the likelihood of resistance emerging.

In light of the slow pace of novel antibiotic discovery and the rapid emergence of resistance
to the presently most utilized antibiotics, these findings suggest a new treatment strategy—one
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in which we use a sequence of drugs (or even treatment breaks which themselves impose a
selective pressure [38]) to steer, in an evolutionary sense, the disease population to avoid resis-
tance from developing. Further, the drugs used to prime the disease population for treatment
by an effective antibiotic do not themselves need to be the most effective drugs available. This
means that there could be a large pool of potential steering drugs in the form of antibiotics
which have gone unused for many years due to their inefficacy as a single agent. However, in
the same way that the drug ordering can be used to steer away from resistance we have shown
it can also be used to make resistance more likely. Our results show that we may be inadver-
tently selecting for highly resistant disease populations through arbitrary drug ordering in the
same way that highly resistant disease can emerge through irresponsible drug dosing. The most
striking example is that of Piperacillin with Tazobactam, a drug often prescribed in a hospital
setting after others fail, which has an increased likelihood of resistance when prescribed after a
pair or triple of others drugs in over 90% of cases. If we are to avoid resistance to our most
effective drugs we must carefully consider how they are used together with other drugs, both in
combination and in sequence, and take appropriate steps to reduce the risk.

A major difficulty in using sequential drug treatments to steer disease populations is that in
order to predict the outcomes we must know the fitness landscapes of the drugs involved. De

Table 3. Analysis of all possible steering sequences of length one, two and three.

Final drug # of single steering
drugs better (*/15)

# of single steering
drugs worse (*/15)

# of steering
pairs better

(*/225)

# of steering
pairs worse

(*/225)

# of steering
triples better

(*/3375)

# of steering
triples worse

(*/3375)

Ampicillin (AMP) 7 (46.7%) 7 (46.7%) 97 (43.1%) 126 (56.0%) 1373 (40.7%) 1998 (59.2%)

Amoxicillin (AMX) 5 (33.3%) 9 (60.0%) 60 (26.7%) 164 (72.9%) 787 (23.3%) 2578 (76.4%)

Cefaclor (CEC) 9 (60.0%) 5 (33.3%) 132 (58.7%) 88 (39.1%) 2087 (61.8%) 1264 (37.5%)

Cefotaxime (CTX) 4 (26.7%) 10 (66.7%) 67 (29.8%) 155 (68.9%) 989 (29.3%) 2335 (69.2%)

Ceftizoxime (ZOX) 2 (13.3%) 12 (80.0%) 31 (13.8%) 193 (85.8%) 444 (13.2%) 2930 (86.8%)

Cefuroxime (CXM) 5 (33.3%) 9 (60.0%) 95 (42.2%) 128 (56.9%) 1486 (43.5%) 1885 (55.9%)

Ceftriaxone (CRO) 5 (33.3%) 9 (60.0%) 61 (27.1%) 163 (72.4%) 810 (24.0%) 2564 (76.0%)

Amoxicillin +Clav
(AMC)

7 (46.7%) 7 (46.7%) 99 (44.0%) 124 (55.1%) 1428 (42.3%) 1943 (57.6%)

Ceftazidime (CAZ) 4 (26.7%) 10 (66.7%) 76 (33.8%) 147 (65.3%) 1218 (36.1%) 2153 (63.8%)

Cefotetan (CTT) 4 (26.7%) 10 (66.7%) 58 (25.8%) 166 (73.8%) 843 (25.0%) 2531 (75.0%)

Ampicillin
+Sulbactam (SAM)

0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Cefprozil (CPR) 7 (46.7%) 7 (46.7%) 113 (50.2%) 110 (48.9%) 1703 (50.5%) 1668 (49.4%)

Cefpodoxime (CPD) 3 (20.0%) 11 (73.3%) 26 (11.6%) 195 (86.7%) 282 (8.4%) 3077(91.2%)

Piperacillin
+Tazobactam (TZP)

2 (13.3%) 12 (80.0%) 11 (5.9%) 213 (94.7%) 81 (2.4%) 3293 (97.6%)

Cefepime (FEP) 3 (20.0%) 11 (73.3%) 34 (15.1%) 190 (84.4%) 402 (11.9%) 2972 (88.1%)

Overall 67 (29.8%) 129 (57.3%) 960 (28.4%) 2162 (64.1%) 13933 (27.5%) 33200 (65.6%)

Overall (Without
steering for SAM)

67 (31.9%) 129 (61.4%) 960 (30.5%) 2162 (68.6%) 13933 (29.5%) 33200 (70.3%)

For each of the 15 antibiotics we calculated the probability evolution to the most resistant genotype to that drug when that drug is applied to a population

first primed by a single, ordered pair or ordered triple of drugs. This table shows the number of priming singles, pairs and triples which improve or worsen

the likelihood of evolution to that most highly resistant genotype. We allowed steering drugs to appear multiple times in the combination and also allowed

the final drug to appear as a steering drug. In each case the initial population was given by μ = [1/2N,. . .,1/2N] and r = 0. As the SAM landscape is single-

peaked no combination of steering drugs will improve or worsen the outcome. As such, we have computed the overall numbers both with and without the

contribution of the SAM row.

doi:10.1371/journal.pcbi.1004493.t003
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Visser and Krug [26] state that there exist fewer than 20 systematic studies of fitness landscapes
and that these studies consider between 3 and 9 possible mutations. For steering to be fully
effective we must account for all likely fitness conferring mutations and their effects on fitness
under many drugs. Thus, many of the studies reviewed by de Visser and Krug are insufficient
for determining clinically actionable steering strategies for certain diseases. Fortunately, for a
number of highly resistant infectious diseases [48, 49] and cancers [50, 51], only a small num-
ber of mutations appear to contribute to resistance. Further, recent work by Hinkley et al [47]
in HIV has introduced a method to approximate large fitness landscapes from relatively fewer
data points using a regression method. It follows that determining the landscapes is not an
entirely intractable problem. A further complication in determining steering strategies is that
fitness landscapes can be dependent on the disease microenvironment and have the potential
to change from patient to patient or throughout the course of treatment. The consequences of
such effects on fitness landscapes have not yet been experimentally determined.

Two major assumptions within our modeling are that drugs are administered for suffi-
ciently long that evolution can converge to a local fitness optimum and that this convergence is
guaranteed to occur. This assumption poses two potential problems in converting our model
predictions to predictions of real–world bacterial evolution. The first is that if selection is
strong and mutations are rare then there is a possibility of the population being driven to
extinction before an adaptive mutation occurs. We have chosen to ignore this possibility within
our modeling as in the context of treating bacterial infections this would constitute a success.
The second is that the time to convergence could be prohibitively long for steering to constitute
a realistic treatment strategy. We believe that the assumption of reasonable convergence times
could be valid as adaptive walks in rugged landscapes are often short [52]. However, it has been
shown that for certain landscapes there can exist adaptive walks of length exponential in the
number of loci [53], but as we get to choose those drugs with which to steer we can avoid land-
scapes for which the convergence time is prohibitively long. Further, our model is not necessar-
ily restricted to the dynamics within a single patient. Goulart et al [21] used fitness landscapes
to explore whole hospital scale antibiotic treatment strategies and our model, as an encoding of
evolution on fitness landscapes, is capable of making predictions at this scale as well. As such,
even if evolutionary convergence is experimentally determined to be prohibitively slow for
steering to be effective as a treatment for bacterial infection within a single patient, our results
will still hold in scenarios which admit longer timescales. Specifically, evolutionary steering
could provide an effective means to avoid the emergence of drug resistance at the hospital scale
or in long–term diseases such as HIV or Tuberculosis.

The Strong Selection Weak Mutation model we have used here is a highly simplified, yet
well studied model of evolution. The model ignores much of the complexity of the evolutionary
process, specifically simplifying the genotype–phenotype map, ignoring the disease microenvi-
ronment and making the assumption of a monomorphic disease population in which deleteri-
ous and neutral mutations cannot fix. Under certain regimes of population size and mutation
rates these simplifying assumptions break down [54]. For example, if the population is suffi-
ciently large then stochastic tunneling [55]—where double mutations can occur allowing the
crossing of fitness valleys—can arise causing a breakdown of the Strong Selection assumption.
Similarly, if the mutation rate is sufficiently high then the population ceases to be monomor-
phic and forms a quasispecies [56, 57]. Conversely, if the population is sufficiently small then it
becomes possible for deleterious mutations to fix [58–60]. Finally, we have ignored the possi-
bility of neutral spaces in the fitness landscape which have been shown to have significant
impact on whether non-optimal genotypes can fix in the population as well as the time taken
for evolution to find a locally optimal genotype [61, 62]. The only neutral mutation present in
the empirical landscapes we use in this work is in the single–peaked landscape for Ampicillin
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+Sulbactam (Fig 1). As the landscape is single peaked, omitting this mutation does not prevent
any evolutionary trajectories. Thus, the results of our exhaustive search of sequential treat-
ments are unaffected by the assumption that neutral mutations cannot fix. We believe that
each of the possible breakdowns of the SSWMmodel will have important consequences for the
possibility and efficacy of steering, especially as larger landscapes are considered. However, a
proper treatment of their implications is beyond the scope of this paper. In our future work we
aim to undertake a comprehensive study of the implications of population size, mutation rate,
neutral drift and evolutionary convergence times on our steering hypothesis.

To further develop the theory of evolutionary steering as a clinically viable strategy for pre-
venting or treating highly resistant disease we must begin to collect data regarding empirical
landscapes. The data cannot be collected at a large scale by the existing method of engineering
all genotypes of interest and testing their fitness. Such experiments are intractable for all but
the smallest landscapes. Instead we must begin to measure and collect the genotypes and fitness
of pathogens that appear in the clinic. Hinkley et al [47] attempted to reconstitute the empirical
landscapes for HIV-1 under different drugs which were later analyzed by Kouyos et al [63].
This analysis was only possible due to the availability of a data set of over 70,000 clinical sam-
ples of HIV-1 with recorded values of fitness under a number of antiretroviral drugs. Such data
sets for bacterial pathogens are not yet available but should become easier to obtain as the cost
of genome sequencing continues to fall. Once the data are available we will be able test the
validity of many of the assumptions of our model. Such a data set will also have many uses
beyond the work presented here, for example in tracking the spread and evolutionary history
of highly resistant disease through phylodynamics [64].

The model presented here is a simplification of the evolutionary process; however, given
that non-commutativity is present in this highly simplified model, it is unlikely that commuta-
tivity will emerge as more complexity is introduced. It follows that the cautionary message
regarding sequential drug application which results from our simplified model merits serious
consideration. Whether or not measuring fitness landscapes provides sufficient information to
correctly identify, or to serve as a heuristic in identifying, optimal drug orderings in vivo is a
question that cannot be answered through mathematical modeling alone. It is only by verifying
the predictions of steering strategies given by our model through biological experiment that we
can determine whether they are viable. Supposing our model predictions are indeed viable,
then knowledge of some approximation to the fitness landscapes of the presently most used
antibiotics could, in combination with our model, provide at least a good heuristic for how to
proceed with multi-drug treatments, future antibiotic stewardship programs and clinical trial
design.

Materials and Methods

Evolution on Fitness Landscapes
We begin with the concept of a fitness landscape introduced by Wright [59] and used by Wein-
reich et al [27] and Tan et al [29] to study evolutionary trajectories in asexually reproducing
populations. We represent the genotype of an organism by a bit string of length N and model
mutation as the process of flipping a single bit within this string. This model of mutation only
accounts for point mutations and ignores the possibility of other biologically relevant muta-
tions such as gene insertions, gene deletions and large structural changes to the genotype. This
gives a set of 2N possible genotypes in which individuals of a given genotype, say g, can give
rise to mutated offspring which take genotypes given by one of the Nmutational neighbors of
g—precisely those genotypes g0 for which the Hamming distance [65], Ham(g, g0), from g is 1.
As such, our genotype space can be represented by an undirected N-dimensional (hyper–)cube
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graph with vertices in {0,1}N representing genotypes and edges connecting mutational neigh-
bors (Fig 3a).

We define a selective pressure on our graph that drives evolution, for example through an
environmental change or drug application, as a fitness function

f : f0; 1gN ! R
�0: ð2Þ

This fitness function represents a genotype-phenotype map in the simplest sense—assigning to
each genotype a single real-valued fitness. Gillespie [34, 35] showed that if the mutation rate u
and population sizeM of a population satisfyMu logM≪ 1, and if we assume that each muta-
tion is either beneficial or deleterious, then each beneficial mutation in the population will
either reach fixation or become extinct before a new mutation occurs. Further, selection will be
sufficiently strong that any deleterious mutation will become extinct with high probability and
hence we may assume that this always occurs. In the case thatMu2 � 1 stochastic tunneling
[55, 66, 67] through double mutations can occur and we cannot ignore deleterious mutations.
AssumingMu logM≪ 1, then after each mutation the population will stabilize to consist
entirely of individuals with the same genotype and this genotype will be eventually replaced by
a fitter neighboring genotype whenever one exists. This observation gives rise to the Strong
Selection Weak Mutation (SSWM) model, which models a population as isogenic and occupy-
ing a single vertex on a directed graph on the set of 2N possible genotypes, {0,1}N, in which
there exists an edge from vertex a to a neighboring vertex b if, and only if, f(b)> f(a) (see Fig
3b and 3c). This population undergoes a stochastic walk on the graph in which the population
genotype is replaced by a fitter adjacent genotype with some probability. In fact, this model still
holds in the case thatMu≫ 1≫Mu2 [26]. Several ‘move rules’ have been proposed which can
be used to select an adjacent fitter neighbor during this stochastic walk [52] and which of these
move rules is most accurate depends on the population size [26]. Common move rules include
selecting the fittest neighbor [36, 68], selecting amongst fitter neighbors at random [69–71] or
selecting fitter neighbors with probability proportional to the fitness increase conferred [34, 35,
72]. We encapsulate each of these variants of the SSWMmodel within our model.

AMarkov Model of Evolution
The SSWMmodel of evolution reduces the evolutionary process to a random walk on a
directed graph and hence can be modeled by a Markov chain [73]. For a fitness function
f : {0,1}N ! R

� 0 we can define a transition matrix P = [P(i! j)]i,j 2 {0,1}N for a time–homoge-
neous absorbing Markov Chain by setting, for i 6¼ j,

Pði ! jÞ ¼

f ðjÞ � f ðiÞð ÞrX
g2f0;1gN ; Hamði;gÞ¼1

f ðgÞ�f ðiÞ>0

ðf ðgÞ � f ðiÞÞr if f ðjÞ > f ðiÞ andHamði; jÞ ¼ 1

0 otherwise

ð3Þ

8>>>>>><
>>>>>>:

and

Pði ! iÞ ¼ 1 if i has no fitter one� step mutational neighbors

0 otherwise
ð4Þ

(

for each i (see Fig 3d). Here the parameter r� 0 determines the extent to which the fitness
increase of a mutation affects its likelihood of determining the next population genotype. In
the case r = 0, we have the random move SSWMmodel (as in [69, 69, 71]), in the limit r!1
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we have the steepest gradient ascent SSWMmodel (as in [36, 68]), and for r = 1 we have proba-
bility proportional to fitness increase (as in [34–36]). In the case f(i) = f(j) the mutation is
neutral and, under the assumptions of SSWM, cannot fix. Thus, this model differs from the
Markov model used by [74] to study the neutral theory of evolution as we do not allow neutral
or deleterious mutations to fix in the population.

Using this Markov chain we can explore the possible evolutionary trajectories of a popula-
tion on a given fitness landscape f. We next define a collection of population row vectors μ(t) for
each t 2 N, where μ(t) has length 2N and kth component which gives the probability that the pop-
ulation has the kth genotype at time t (where the genotypes are ordered numerically according
to their binary value). These time steps t are an abstraction which discretely measure events of
beneficial mutations occurring and fixing in the population. As such, the actual time between
steps t and t+1 is not constant but may be considered drawn from a distribution parameterized
by the mutation rate, reproductive rate and the number of beneficial mutations that can occur.
This distribution could, for example, be determined by a Moran [58] or Wright–Fisher [59, 60]
process depending on how we choose to interpret the fitness values given by f. If the population
has a genotype corresponding to a local optimum of the fitness landscape at time t then there
are no beneficial mutations that can occur and this definition of a time step is not well defined.
In this case there can be no more changes to the population under the SSWM assumptions and
for mathematical convenience we define the probability of a local optimum population genotype

Fig 3. Constructing the Markov chain from a fitness landscape. (a) The space of genotypes comprising
bit strings of length N = 3. The vertices represent genotypes, and edges connect those genotypes that are
mutational neighbors. (b) An example fitness landscape. (c) The directed evolutionary graph according to the
landscape in (b) where the vertices represent genotypes and are labeled by the associated fitness. The
directed graph edges are determined by the fitness function and represent those mutations which can fix in a
population (those which confer a fitness increase). (d) The Markov chain constructed for the same landscape
according to Eqs (2) and (3) with r = 0.

doi:10.1371/journal.pcbi.1004493.g003
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remaining unchanged as 1 in Eq 3 to ensure our model is a Markov Chain. In this case the step t
to t+1 can be chosen to take some fixed arbitrary time.

The distribution of a population at time t is related to its initial distribution, μ(0), by

mðtÞ ¼ mð0ÞPt: ð5Þ
Since the Markov chain is absorbing we know that there exists some k such that Pk P = Pk [73].
Consequently, we know that the matrix

P� ¼ lim
t!1

Pt ð6Þ

exists and in fact this limit is reached after only finitely many matrix multiplications. To intui-
tively see that this limit is reached in finitely many steps note that all paths through the Markov
chain are strictly increasing in fitness and there are only finitely many states (corresponding to
the genotypes). Thus a given initial population distribution μ(0) will converge to a stationary
distribution μ� after a finite number of steps in our model. Furthermore, if P� is known then
we compute the stationary distribution μ� as

m� ¼ mð0ÞP�: ð7Þ
In particular, provided a drug is applied for sufficiently long to ensure that the disease popula-
tion reaches evolutionary equilibrium, we can explore the effects of applying multiple drugs
sequentially by considering the matrices P� for the associated fitness landscapes. By encoding
the evolutionary dynamics in a Markov chain we can investigate the evolutionary process from
an algebraic perspective. In particular, as the transition matrix P encodes all of the evolutionary
dynamics of the associated fitness landscape f, we can explore global properties of f by consid-
ering the algebraic properties of P.
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