

This is a repository copy of Assessing uncertainty and complexity in regional-scale crop model simulations.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/94894/

Version: Accepted Version

Article:

Ramirez-Villegas, J, Koehler, AK orcid.org/0000-0002-1059-8056 and Challinor, AJ orcid.org/0000-0002-8551-6617 (2017) Assessing uncertainty and complexity in regional-scale crop model simulations. European Journal of Agronomy, 88. pp. 84-95. ISSN 1161-0301

https://doi.org/10.1016/j.eja.2015.11.021

© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supplementary Information

Assessing uncertainty and complexity in regional-scale crop model simulations

Julian Ramirez-Villegas^{1, 2, 3, *}; Ann-Kristin Koehler¹; Andrew J. Challinor^{1, 3}

¹Institute for Climate and Atmospheric Science (ICAS), School of Earth and Environment, University of Leeds, Leeds, UK ²International Center for Tropical Agriculture (CIAT), Cali, Colombia ³CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS)

Contents

- Table S1: GLAM parameters and values adopted for the present study
- Table S2: Description of symbols in GLAM parameter table
- Table S3: Differences in skill between two input weather datasets.
- Figure S1: Simulated mean regional yield for each of the five groundnut growing regions for the parameter ensembles of GLAM-RUE and WTH-B.
- Figure S2: Simulated mean regional yield for each of the five groundnut growing regions, each input weather type and GLAM version (TE, RUE).
- Figure S3: Fractional uncertainty in regional total crop biomass during the period 1966-1990, decomposed by source.
- Figure S4: Fractional uncertainty in regional harvest index during the period 1966-1990, decomposed by source.
- Figure S5: Fractional uncertainty in regional mean LAI during the period 1966-1990, decomposed by source.
- Figure S6: Absolute parametric uncertainty (standard deviation, kg ha-1) in regional mean yield.

Parameter ¹	Symbol ²	Suggested range	Value adopted ³	Units		
Growth and deve	lopment ⁴					
FSWSOW	C_{sow}	0.1 – 0.9	0.5			
DLDTMX	$\left(\frac{\partial L}{\partial t}\right)_{max}$	0.01 - 0.1	OP	day ⁻¹		
SWF THRESH	S_{cr}	0.5 - 1.0	OP			
DLDLAI	$\partial l_{y}(z=0)/\partial L$	0.5 - 5.0	OP	km·cm ⁻¹ ·m ⁻²		
EFV	V _{FF}	1 – 2	OP	cm·dav ⁻¹		
RLVEF	$l_{y}(z=z_{af})$	0.18 - 0.42	OP	km/cm·m ²		
TE	E_T	1.3 - 4.5	OP	Ра		
TEN MAX	E_{TNmax}	1.5 – 5	OP	g·kg ⁻¹		
RSPARE3	RUF	0.5 - 2.5		8 8		
DHDT	$\partial H_{L} / \partial t$	0.0042 - 0.0098	OP	dav ⁻¹		
IEMDAY	t	3-13	8	dav		
TB	T _k	$\frac{5}{8} - 12$	8	°C		
TO		$\frac{3}{28} - \frac{37}{28}$	28	°C		
TM		40 - 50	20 40	°C		
GCPLFL	t _m	350 - 400	OP	°C day		
GCFLPE	t _{TTU}	310 - 400	OP	°C day		
GCPELM	tmm2	200 - 300	OP	°C day		
GCLMHA	t ₁₁₂	500 - 750	OP	°C day		
$\frac{1}{1} \frac{1}{1} \frac{1}$						
	I	0.6 - 1.2	OP			
P TRANS MAX	L_{cr} TT	0.0 - 1.2 0.15 - 0.40	OP	cm.dav ⁻¹		
PT_CONST	11_{max}	0.15 - 0.40 NA	1.26	eni day		
VPD RFF	V c	0.6 - 1.4	OP	kPa		
ALBEDO	r rej A	0.12 - 0.28	OP	KI u		
SHE CTE	л Сс	0.12 - 0.51	OP			
EXTC	k	0.22 - 0.8	OP			
R THRESH	Par	0-1	0.1	cm		
UPDIFC	k _{DIF}	0.19 - 0.30	OP	$cm^2 \cdot dav^{-1}$		
UPCTE	C_{θ}	0.3 - 0.7	0.5			
Soil sub-model an	d miscellaneous					
ZSMAX	Z_{max}	NA	210	cm		
NSL	N_{SL}	NA	25			
D1	C_{dl}	NA	2.96	day ⁻¹		
D2	C_{d2}	NA	-2.62	day ⁻¹		
D3	C_{d3}	0.75 - 0.95	0.85	day ⁻¹		
RKCTE	K_{ks}	19 – 74	37	cm·day ⁻¹		
ASWS	θs	0 - 1	$ heta_{ll}$			
E DEPTH	Z_{ed}	8.4 - 84	16.8	cm		
VPD_CTE	C_V	0.42 - 0.98	OP	kPa		
YGP	C_{YG}	0.01 - 1.00	OP			
RLL	$ heta_{ll}$	0 - 1	Soil data			
DLL	$ heta_{dul}$	0 - 1	Soil data			
SAT	θ_{sat}	0 - 1	Soil data			

Table S1 GLAM parameters and values adopted for the simulations of the present study

Parameter ¹	Symbol	Suggested range	Value adopted ³	Units		
High temperature stress						
TCSLOPE	S_c	0.0 - 0.7	OP	°C·day ⁻¹		
TLSLOPE	S_l	1.0 - 2.5	OP	°C·day ⁻¹		
TCRITMIN	T_{cr}^{\min}	36 - 42	OP	°C		
TLINT	T_{ia}	50 - 60	OP	°C		
PPCRIT	P _{cr}	0.0 - 1.0	OP			
FDOFFSET	OFFSET	-0.2 - 0.5	OP			
FDWIDTH	WIDTH	3.0 - 10.0	OP			
IDURMAX		NA	6	day		
IBAMAX		NA	6	day		
IAAMAX		NA	12	day		
Other stresses						
RSPARE2	F_{SW}	0 – 1	OP			
RSPARE1	H_{I}^{\min}	0.0 - 0.1	OP			
TETR1	T_{ETRI}	NA	35	°C		
TETR2	T_{ETR2}	NA	47	°C		
SWFF_THR	S_{cr}	0.2 - 0.4	0.2			
CO ₂ response and specific leaf area (SLA) control						
TENFAC	TENFAC	0 - 1	NA			
B_TEN_MAX	$E_{TNc,\max}$	1.5 - 5.0	NA	g⋅kg ⁻¹		
B_TE	E_{Tc}	1.3 – 4.5	NA	Ра		
NDSLA	N_D	1 - 10	5	day		
SLA_INI	SLA_{max}	250 - 300	300	g·cm ⁻²		

Table S1 (Continued)

¹Name given in GLAM parameter file ²See Table S2 for parameter descriptions. ³Where "NA" appears as the adopted value means that the process was switched off or the parameter was irrelevant for this study. Where "OP" appears means that the parameters were optimised within the suggested ranges.

⁴Grey shading indicates parameters that were optimised. C_{YG} appears indicated in orange.

Parameter	Symbol	Description		
FSWSOW	C_{sow}	Fractional soil moisture at sowing		
DLDTMX	$\left(\frac{\partial L}{\partial t}\right)_{max}$	Maximum rate of change in the leaf area		
SWF THRESH	S_{cr}	Threshold of soil water factor for reduced LAI growth		
DLDLAI	$\partial l_{v}(z=0)/\partial L$	Rate of root length density increase at surface per unit LAI		
EFV	V_{EF}	Extraction front velocity		
RLVEF	$l_{v}(z=z_{ef})$	Root length density at the extraction front		
TE	E_T	Normalised transpiration efficiency		
TEN_MAX	$E_{TN,max}$	Maximum transpiration efficiency		
RSPARE3	R_{UE}	Radiation use efficiency at optimum light conditions		
DHDT	$\partial H_I / \partial t$	Rate of change in the harvest index		
IEMDAY	t _{em}	Day of emergence		
ТВ	T_b	Base temperature for development		
ТО	T_o	Optimum temperature for development		
ТМ	T_m	Maximum temperature for development		
GCPLFL	t_{TT0}	Thermal time requirement from planting to flowering		
GCFLPF	t_{TTI}	Thermal time requirement from flowering to start of pod-filling		
GCPFLM	t_{TT2}	Thermal time requirement from start of pod-filling to maximum LAI		
GCLMHA	t_{TT3}	Thermal time requirement from maximum LAI to harvest		
CRIT_LAI_T	L_{cr}	Critical LAI value for reduced transpiration		
P_TRANS_MAX	TT_{max}	Maximum value of physiologically limited transpiration		
PT_CONST	α_0	Priestley-Taylor constant		
VPD_REF	V _{ref}	Priestley-Taylor equation parameter		
ALBEDO	A	Surface albedo		
SHF_CTE	C_G	Constant for calculation of soil heat flux		
EXTC	k	Light extinction coefficient		
R_THRESH	P_{cr}	Threshold for rain registration		
UPDIFC	k_{DIF}	Uptake diffusion coefficient		
UPCTE	$C_{ heta}$	Constant for calculation of water uptake		
ZSMAX	Z_{max}	Maximum soil depth		
NSL	N_{SL}	Number of soil layers		
DI D2	C_{dl}	Constant for calculation of soil drainage		
D2	C_{d2}	Constant for calculation of soil drainage		
	C_{d3}	Constant to calculate saturated hydroulic conductivity		
ASWS	Λ_{ks}	Initial available soil water		
АЗWЗ Е ДЕРТН	7.	Depth of soil over which evaporation occurs		
VPD CTE	$\frac{2}{C}$	Constant used to compute VPD		
VID_CIL VGP	C_V	Vield gan narameter		
RLL	θ_{II}	Volumetric lower soil moisture limit (permanent wilting point)		
DLL	θ ₁ ,	Volumetric upper soil moisture limit (permanent whiling perm)		
SAT	θ_{sat}	Volumetric soil moisture at saturation		
TCSLOPE	S _c	For calculating heat stress around flowering		
TLSLOPE	S ₁	For calculating heat stress around flowering		
TCRITMIN	T_{cr}^{\min}	Critical temperature at which heat has an impact on flowering		
TLINT	T _{ia}	For calculating heat stress around flowering		

Table S2 Description of GLAM parameters and associated symbols

Parameter	Symbol	Description			
PPCRIT	P _{cr}	Critical value of pod-set below which harvest index is reduced			
FDOFFSET	OFFSET	Offset parameter for the flowering distribution (normal dist.)			
FDWIDTH	WIDTH	Width parameter for the flowering distribution (normal dist.)			
IDURMAX		Duration of heat event for impact on flowering			
IBAMAX		Time before anthesis that heat has an impact			
IAAMAX		Time after anthesis that heat has an impact			
RSPARE2	F_{SW}	Soil moisture threshold for terminal drought stress			
RSPARE1	H_{I}^{\min}	Minimum harvest index for terminal drought stress			
TETR1	T_{ETRI}	Temperature at which high temperature reduces transpiration efficiency			
TETR2	T_{ETR2}	Temperature at which transpiration efficiency is zero			
SWFF_THR	S _{cr}	Soil moisture content below which drought has an impact on flowering			
TENFAC	TENFAC	Factor to control assimilation in high CO_2 and high moisture (low <i>VPD</i>) conditions			
B_TEN_MAX	$E_{TNc,\max}$	Non-CO ₂ stimulated (i.e. baseline) value of maximum transpiration efficiency			
B_TE	E_{Tc}	Non-CO ₂ stimulated (i.e. baseline) value of transpiration efficiency			
NDSLA	N_D	Number of days during which SLA control acts on biomass			
SLA INI	SLA_{max}	Maximum value of SLA for use of SLA-control			

Table S2 (Continued)

Zone	Zone	Madal	RMSE			Normalised RMSE		
ID	name	Widdei	WTH-A	WTH-B	Diff. (%)	WTH-A	WTH-B	Diff. (%)
1	North	GLAM-TE	168.3	156.9	6.8	37.0	34.7	6.2
2	West		314.1	318.9	1.5	49.7	51.0	2.6
3	Centre		182.0	182.7	0.4	32.9	33.0	0.3
4	East		394.5	250.1	36.6	49.2	30.1	38.8
5	South		175.0	163.6	6.5	24.5	22.4	8.6
1	North		178.8	156.1	12.7	39.1	34.6	11.4
2	West	GLAM-RUE	312.5	322.0	3.0	49.5	51.4	3.7
3	Centre		179.8	187.9	4.5	32.5	34.0	4.5
4	East		397.7	240.0	39.7	49.6	28.8	41.9
5	South		175.0	167.6	4.2	24.6	23.0	6.5

Table S3 Differences in skill as measured by mean *RMSE* (in kg ha⁻¹) and *RMSE* normalised by mean observed yield (in %) between simulated yield with two input weather datasets, for each model version and groundnut growing zone.

Figure S1 Simulated mean regional yield (black line) for each of the five groundnut growing regions for the parameter ensembles of GLAM-RUE and WTH-B (grey lines). Simulations of GLAM-TE for both weather datasets, and of GLAM-RUE for WTH-A show similar behaviour. The red line is the mean regional observed yield.

Figure S2 Simulated mean regional yield for each of the five groundnut growing regions, each input weather type and GLAM version (TE, RUE). Note the differences in *y*-axis scale, deliberately chosen to highlight differences between simulations within a zone. Note that no time de-trending has been done on these simulations, and hence observed temporal trends are likely a result of changes in climate.

Figure S3 Fractional uncertainty in regional total crop biomass during the period 1966-1990, decomposed by source. Shown is the contribution of four different sources to total biomass variance, namely, weather inputs (blue), GLAM structure (dark green), parameter sets (light green), and natural variability (orange).

Figure S4 Fractional uncertainty in regional mean harvest index (H_I) during the period 1966-1990, decomposed by source. Shown is the contribution of four different sources to total H_I variance, namely, weather inputs (blue), GLAM structure (dark green), parameter sets (light green), and natural variability (orange).

Figure S5 Fractional uncertainty in regional mean leaf area index (LAI) during the period 1966-1990, decomposed by source. Shown is the contribution of four different sources to total LAI variance, namely, weather inputs (blue), GLAM structure (dark green), parameter sets (light green), and natural variability (orange).

Figure S6 Absolute parametric uncertainty (standard deviation, kg ha⁻¹) in regional mean yield during the period 1966-1990.