
This is a repository copy of Dynamic data deduplication in cloud storage.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/94869/

Version: Accepted Version

Proceedings Paper:
Leesakul, W, Townend, P and Xu, J orcid.org/0000-0002-4598-167X (2014) Dynamic data 
deduplication in cloud storage. In: Proceedings - IEEE 8th International Symposium on 
Service Oriented System Engineering (SOSE 2014). IEEE 8th International Symposium on
Service Oriented System Engineering (SOSE 2014), 07-11 Apr 2014, Oxford, UK. IEEE , 
pp. 320-325. ISBN 9781479925049 

https://doi.org/10.1109/SOSE.2014.46

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Dynamic Data Deduplication in Cloud Storage

Waraporn Leesakul, Paul Townend, Jie Xu

School of Computing

University of Leeds, Leeds, LS2 9JT

United Kingdom

{scwl, p.m.townend, j.xu} @leeds.ac.uk

Abstract—Cloud computing plays a major role in the business

domain today as computing resources are delivered as a utility on

demand to customers over the Internet. Cloud storage is one of

the services provided in cloud computing which has been

increasing in popularity. The main advantage of using cloud

storage from the customers’ point of view is that customers can

reduce their expenditure in purchasing and maintaining storage

infrastructure while only paying for the amount of storage

requested, which can be scaled-up and down upon demand. With

the growing data size of cloud computing, a reduction in data

volumes could help providers reducing the costs of running large

storage system and saving energy consumption. So data

deduplication techniques have been brought to improve storage

efficiency in cloud storages. With the dynamic nature of data in

cloud storage, data usage in cloud changes overtime, some data

chunks may be read frequently in period of time, but may not be

used in another time period. Some datasets may be frequently

accessed or updated by multiple users at the same time, while

others may need the high level of redundancy for reliability

requirement. Therefore, it is crucial to support this dynamic

feature in cloud storage. However current approaches are mostly

focused on static scheme, which limits their full applicability in

dynamic characteristic of data in cloud storage. In this paper, we

propose a dynamic deduplication scheme for cloud storage,

which aiming to improve storage efficiency and maintaining

redundancy for fault tolerance.

Keywords— Cloud Computing; Cloud storage; Deduplication;

Dependability; Avaiability

I. INTRODUCTION

Cloud computing has recently emerged as a popular
business model for utility computing system. The concept of
cloud is to provide computing resources as a utility or a service
on demand to customers over the Internet. The concept of
cloud computing is quite similar to grid computing, which aims
to achieve resource virtualisation [1]. In grid computing, the
organisations sharing their computing resources, such as
processors, in order to achieve the maximum computing
capacity, whereas cloud computing aims to provide computing
resources as a utility on demand, which can scale up or down at
any time, to multiple customers. This makes cloud computing
play a major role in the business domain, whereas grid is
popular in academic, scientific and engineering research [2].

Many definitions of cloud computing have been defined,
depended on the individual point of view or technology used
for system development. In general, we can define cloud

computing as a business model that provide computing
resources as a service on demand to customers over the Internet
[3].

The essential characteristics of cloud computing have been
defined in [3]. Cloud providers pool computing resources
together to serve customers via a multi-tenant model.
Computing resources are delivered over the Internet where
customers can access them through various client platforms.
Customers can access the resources on-demand at any time
without human interaction with the cloud provider. From a
customers’ point of view, computing resources are infinite, and
customer demands can rapidly change to meet business
objectives. This is facilitated by the ability for cloud services to
scale resources up and down on demand leveraging the power
of virtualization. Moreover, cloud providers are able to monitor
and control the usage of resources for each customer for billing
purposes, optimization resources, capacity planning and other
tasks.

Cloud storage is one of the services in cloud computing
which provides virtualized storage on demand to customers.
Cloud storage can be used in many different ways [4]. For
example, customers can use cloud storage as a backup service,
as opposed to maintaining their own storage disks.
Organisations can move their archival storage to the cloud
which they can achieve more capacity at the low-cost, rather
than buying additional physical storage. Applications running
in the cloud also require temporary or permanent data storage
in order to support the applications.

As the amount of data in the cloud is rapidly increasing,
customers expect to reach the on-demand cloud services at any
time, while providers are required to maintain system
availability and process a large amount of data. Providers need
a way to dramatically reduce data volumes, so they can reduce
costs while saving energy consumption for running large
storage systems. Similar to other storages, storage in cloud
environments can also use data deduplication technique.

Data deduplication is a technique whose objective is to
improve storage efficiency. With the aim to reduce storage
space, in traditional deduplication systems, duplicated data
chunks identify and store only one replica of the data in
storage. Logical pointers are created for other copies instead of
storing redundant data. Deduplication can reduce both storage
space and network bandwidth [7]. However such techniques
can result with a negative impact on system fault tolerance.
Because there are many files that refer to the same data chunk,



if it becomes unavailable due to failure can result in reduced
reliability. Due to this problem, many approaches and
techniques have been proposed that not only provide solutions
to achieve storage efficiency, but also to improve its fault
tolerance. These techniques provide redundancy of data chunks
after performing deduplication.

However, current data deduplication mechanisms in cloud
storage are static schemes applied agnostically to all data
scenarios. This is a problem as data scenarios exhibit different
data characteristics that require different levels of fault-
tolerance requirements. For example, data usage in cloud
changes overtime; some data chunks may be read frequently in
a period of time, but may not be used in another period. Due to
the drawback of static schemes, which cannot cope with
changing user behavior, deduplication in cloud storages
requires a dynamic scheme which has the ability to adapt to
various access patterns and changing user behavior in cloud
storages.

The contribution of this paper is a dynamic data
deduplication scheme for cloud storage, in order to fulfil a
balance between storage efficiency and fault tolerance
requirements, and also to improve performance in cloud
storage systems that experience changes in data scenarios and
user patterns. The rest of this paper is organized as follows:
section II presents background concepts and related work.
Section III demonstrates a proposed system model. Section IV
illustrates the simulation of the proposed system model.
Section V describes the experimental result. Section VI
discusses the future work. Finally section VII concludes this
paper.

II. BACKGROUND AND RELATEDWORK

A. Deduplication in Cloud Storages

Data deduplication is a technique to reduce storage space.
By identifying redundant data using hash values to compare
data chunks, storing only one copy, and creating logical
pointers to other copies instead of storing other actual copies of
the redundant data [5], [6]. Deduplication reduces data volume
so disk space and network bandwidth can be reduced which
reduce costs and energy consumption for running storage
systems [7].

Data deduplication can be applied at nearly every point
which data is stored or transmitted in cloud storage [7]. Many
cloud providers offer disaster recovery [8] and deduplication
can be used to make disaster recovery more effective by
replicating data after deduplication for speeding up replication
time and bandwidth cost savings. Backup and archival storage
in clouds can also apply data deduplication in order to reduce
physical capacity and network traffic [9], [10]. Moreover, in
live migration process, we need to transfer a large volume of
duplicated memory image data [11]. There are three major
performance metrics of migration to consider: total data
transferred, total migration time and service downtime. Longer
migration time and downtime would be lead to service failure.
Thus, deduplication can assist in migration [12]. Deduplication
can be used to reduce storage of active data such as virtual
machine images. Factors to consider when using deduplication

in primary storage is how to balance the trade-offs between
storage space saving and performance impact [13].
Additionally, Mandagere, et al., [13] state that deduplication
algorithms reflect the performance of deduplicated storage in
terms of fold factor, reconstruction bandwidth, metadata
overhead, and resource usage.

B. Dependability Issues

When performing deduplication, a portion of data chunks
are much more important than others (For example, data
chunks that are referenced by many files). Traditional
deduplication approaches do not implement redundancy of data
chunks. Thus, deduplication may reduce the reliability of the
storage system due to the loss of a few important chunks that
can lead to the loss of many files. As a result, the critical
chunks should be replicated more than the less important data
chunks in order to improve reliability of the system. The
authors in [14], consider the effects of deduplication on the
reliability of the archival system. They proposed an approach
to improve reliability by developing a method to weigh and
measure the importance of each chunk by examining the
number of data files that share the chunk, and use this weight to
identify the level of redundancy required for the chunk to
guarantee QoS.

C. Related Work

Looking at system architectures of existing works of
deduplication for cloud backup services such as SAM [10],
AA-Dedupe [15], CABdedupe [16], and SHHC [17].

SAM [10] system architecture is composed of three
subsystems: File Agent, Master Server and Storage Server.
Clients subscribe to backup services, then File Agents are
distribute and installed on their machines, while service
provider provides Master Server and Storage Server in
datacentre to serve the backup requests from clients.

Most of existing solutions that use deduplication
technology primarily focus on the reduction of backup time
while ignoring the restoration time. The authors proposed
CABdedupe [16], a performance booster for both cloud backup
and cloud restore operations, which is a middleware that is
orthogonal and can be integrated into any existing backup
system. CABdedupe consists of CAB-Client and CAB-Server,
which is placed on the original client and server modules in
existing backup systems.

The main aim of these related works are the following:
SAM aims to achieve an optimal trade-off between
deduplication efficiency and deduplication overhead,
CABdedupe reduces both backup time and restoration time.
AA-Dedupe [15] aims to reduce the computational overhead,
increase throughput and transfer efficiency, while SHHC [17]
tries to improve fingerprint storage and lookup mechanism,
however has a concern of scalability. SHHC is a novel Scalable
Hybrid Hash Cluster designed for improving response times to
fingerprint lookup process. Because of a large number of
simultaneous requests are expected in cloud backup services.
In order to solve this problem, the hash cluster is designed for
high load-balancing, scalability and minimizing the cost for
each fingerprint lookup query. The hash cluster is designed as



middleware between the clients and the cloud storage. It
provides the fingerprint storage and lookup service.

There are other works on deduplication storages which their
architectures are designed for scalability issue, for example;
Extreme Binning [18], and Droplet [19].

Extreme Binning is used to build a distributed file backup
system. The architecture of such system is composed of several
backup nodes. Each backup node consists of a compute core
and RAM along with a dedicated attached disk. The first task
when a file arrives to the system for backup is, it must be
chunked. The system can delegate this task to any one of the
backup nodes by choosing one according to the system load at
that time. After chunking, stateless routing algorithm is used to
route the chunked file by using its chunk ID. The chunked file
will be routed to a backup node where it will be deduplicated
and stored.

Droplet, a distributed deduplication storage system
designed for high throughput and scalability. It consists of
three components: a single meta server that monitors the entire
system status, multiple fingerprinting servers that run
deduplication on input data stream, and multiple storage nodes
that store fingerprint index and deduplicated data blocks.

Meta server maintains information of fingerprinting and
storage servers in the system. When new nodes are added into
the system, they need to be registered on the meta server first.
The meta server provides a routing service with this
information. The client first connects to the meta server and
queries for list of fingerprinting servers, and then connects to
one of them. After this, a raw data stream containing backup
content will be sent to this fingerprinting server, which
calculates data block fingerprints and replies results to the
client. Fingerprint servers check duplicated fingerprint by
querying storage servers.

The nature of data in cloud storage dynamic [20], [21]. For
example, data usage in cloud changes overtime, some data
chunks may be read frequently in period of time, but may not
be used in another time period. Some datasets may be
frequently accessed or updated by multiple users at the same
time, while others may need the high level of redundancy for
reliability requirement. Therefore, it is crucial to support this
dynamic feature in cloud storage. However, current approaches
are mostly focused on static scheme, which limits their full
applicability in dynamic characteristic of data in cloud storage.

III. PROPOSED SYSTEMMODEL

A. Overall Architecture

Our system is currently based on client-side deduplication
using whole file hashing. Hashing process is performed at the
client, and connects to any one of Deduplicators according to
their loads at that time. The deduplicator then identifies the
duplication by comparing with the existing hash values in
Metadata Server. In traditional deduplication systems, if it is a
new hash value, it will be recorded in metadata server, and the
file will be uploaded to File Servers, its logical path will also
recorded in metadata server. If it does exist, the number of
references for the file will be increased.

Some systems may keep a number of copies of each file
with a static number. However, the files with a large number of
references may require more replicas in order to improve
availability. To solve this issue, some existing works
introduced level of redundancy into deduplication systems.
However, identifying level of redundancy by number of
references is a poor measurement because files with fewer
references may be critical files.

In order to improve availability while maintaining storage
efficiency, we propose a deduplication system which considers
both the dynamicity and taking Quality of Service (QoS) of the
Cloud environment into consideration. In our system model,
after identifying the duplication, the Redundancy Manager then
calculates an optimal number of copies for the file based on
number of references and level of QoS necessary. The numbers
of copies are dynamically changed based on the changing
number of references, level of QoS and demand for the files.
The changes are monitored, for example, when a file is deleted
by a user, or the level of QoS of the file has been updated, this
will trigger the redundancy manager to re-calculate an optimal
number of copies.

Our proposed system model is shown in figure 1. The
system is composed of the following components:

 Load Balancer: after hashing process with SHA-1,
clients send a fingerprint (hash value) to a deduplicator
via the load balancer. The load balancer responds to
requests from clients sending to any one of
deduplicators according to their loads at that time.

 Deduplicators: a component designed for identifying
the duplication by comparing with the existing hash
values stored in metadata server.

 Cloud Storage: a Metadata Server to store metadata,

Figure 1: Proposed System Model



and a number of File Servers to store actual files and
their copies.

 Redundancy Manager: a component to identify the
initial number of copies, and monitor the changing level
of QoS.

IV. SIMULATION ENVIRONMENT

CloudSim [22] and HDFS Simulator [23] are both Java-
based toolkits that have the difference purposes for simulation.
CloudSim is used for modelling and simulating of cloud
computing environments and infrastructure which is intended
to be used for experimenting with various scheduling and
allocation algorithms, while HDFS Simulator is a simulation of
replication mechanism in Hadoop Distributed File System.

Although CloudSim provides some storage related classes
which can be extended, the existing architecture is not yet
mature, and requires an additional module which supports
simulation of cloud storage in order to evaluate new replication
management strategies. HDFS Simulator is more applicable to
our work, as HDFS Simulator already provides replication
mechanisms, even if the replication degree is a predefined and
static value. However, it is possible to modify the source code
in order to introduce replication dynamicity. Moreover, we can
perform experiments by simulating events like the changing
level of QoS.

The mechanism of this work is evaluated through the use of
simulation, as it enables researchers an opportunity to simulate
large-scale cloud environments, specifically failure events in
the cloud as well as assist in evaluation QoS metrics such as
availability and performance.

The concepts of HDFS Simulation have been adapted to
simulate our proposed system model. We create one Namenode
as Metadata server, and five Datanodes as File servers.
Metadata in XML format is kept in metadata server. File
servers store the copies of files.

There are three events which we simulated: upload, update,
and delete. The upload event is when the file is first uploaded
to the system. If files already exist in the system, and have been
uploaded again, the number of copies of the files will be
recalculated according to the highest level of QoS, this is for an
update event. For a delete file event, users can delete their files,
but the files will not permanently deleted from the system if
there are any other users refer to the same files.

A. Upload

Deduplicator calls a hash value of the uploaded file from
client, and then checks for any duplicates with the same
existing hash value in metadata server. If it is a new file, the
new metadata of the file will be added to the system and the
file will be uploaded to file server. The replicas of the file will
be created according to the level of QoS of the upload file.

B. Update

In the case of existing file, the metadata of the file will be
updated and the system may need to create or delete the
replicas of the file according to the maximum value of QoS of
the file.

C. Delete

The deduplicator checks the number of files which refer to
the same hash value user wants to delete. If there is only one
reference to the hash, all replicas of the file will be deleted. On
the other hand if there are any other files that refer to the hash,
only the metadata will be updated, and the number of replicas
of the file may need to decrease according to the maximum
value of QoS.

V. EXPERIMENTALRESULTS

We perform experiments on the simulation of our proposed
model. The experiments are performed for one, five, and ten
deduplicators.

All the files used in the experiments have been created with
stochastic contents and properties. There are various sizes of
files used in this experiment: 100 KB, 150 KB, 200 KB, 250
KB, 300 KB, 500 KB, 800, 1 MB, 2 MB. We test upload,
update, and delete events on ten files, a hundred files, a
thousand files, and ten thousand files. For testing the changing
level of QoS, each file has been randomly assigned its level of
QoS (1-5). A single QoS value of 1-5 indicates the level of
redundancy of each file. Files with higher level of QoS will be
replicated more than the lower ones.

When a single deduplicator is used, the system faced
scalability problems taking a longer time when the number of
files increased as shown in Figure 2. This is because under the
heavy load with more requests and more users, a single
deduplicator cannot maintain the performance of the system.
When the number of deduplicators is increased to five and ten,
the results show that it helps to reduce the processing time.

For uploads, when all the files have been uploaded to the
system for the first time, comparing the time taken by one
deduplicator to five and ten deduplicators. Adding more
deduplicators when the number of upload files increase, could
help to reduce the processing time. The results show in Table I.
When the numbers of upload files are ten and a hundred files,
using five deduplicators can reduce 85.75% and 94.20% of the
processing time taken by one deduplicator, while ten
deduplicators can save more time at 90.85% and 97.55%.
When the number of upload files has been increased to a
thousand files, five and ten deduplicators can still help to
reduce the processing time but they are decreased to 91.40%
and 95.58% respectively. However, time saving significantly
decrease when the number of upload files are increased to ten
thousands as five and ten deduplicators can reduce 60.10% and
79.71% of processing time.



When files have already have been uploaded to the system,
we perform experiments for the case when there is a changing
level of QoS, which means the number of copies of files in the
system could be changed according to the maximum value of
QoS. The results of update files show that when the number of
files increase, adding more deduplicators can help to reduce the
processing time. When the numbers of files are ten, a hundred
files, one thousand and ten thousands files, using five
deduplicators can reduce 41.78% and 61.79%, 63.78% and
75.25% of the processing time taken by one deduplicator,
while ten deduplicators can save more time at 75.02%, 75.34%,
82.09% and 96.17%. We found that, when the numbers of files
are ten, one hundred and one thousand, time saving by adding
more deduplicators are less than time saving for the upload
cases. However, when the numbers of files are increased to one

thousand and ten thousands files, the time saving by five and
ten deduplicators still increase, in contrast to the upload cases.

We perform experiments to delete files. Adding more
deduplicators can also to reduce the processing time, but the
results of delete files are slightly different from the upload and
update cases. The results show that when the numbers of files
are ten, a hundred files, one thousand and ten thousands files,
using five deduplicators can reduce 93.42% and 69.31%,
40.74% and 90.28% of the processing time taken by one
deduplicator, while ten deduplicators can save more time at
98.68%, 90.59%, 85.87% and 90.03%. We can see that, for the
delete case, time saving by adding more deduplicators are
decreased when the numbers of files are increased from ten to
one hundred and one thousand files. However, when the
numbers of files are increased to ten thousands, more
deduplicators help to increase time saving.

TABLE I. PERCENTAGE OF TIME SAVING USING FIVE AND TEN

DEDUPLICATORS

Number
of files

Upload Update Delete

Five Ten Five Ten Five Ten

10 85.75 90.85 41.78 75.02 93.42 98.68

100 94.20 97.55 61.79 75.34 69.31 90.59

1000 91.40 95.58 63.78 82.09 40.74 85.87

10000 60.10 79.71 75.25 96.17 90.28 90.03

The experimental results are not necessarily surprising.
Adding more deduplicators can help to reduce the processing
time. However, we still need to find out what is the optimal
number of deduplicators to be added into the system according
to the events and the number of files at that time. Moreover, the
results need to be evaluated against static scheme.

VI. FUTUREWORK

A. Multiple Metadata Servers

Currently within the mechanism there is a single metadata
server; this could cause scalability problems and also result in a
single point of failure. As mentioned in [24], in typical
workloads, over 60 percent of the operations performed are
metadata operations. As a result, metadata can be replicated in
order to improve performance and availability of the overall
system. If we change from single to multiple metadata servers,
distributed metadata management has to deal with
inconsistency among different metadata servers.

B. Consistency

Other works not mentioned concerns consistency, which
may not be discussed due to the reliance of consistency from
their cloud storage provider. As our solution also considers the
level of redundancy, so consistency problem could be occurred.

As state in CAP theorem [25], in distributed system “No
data store can simultaneously respect the properties of
Consistency, Availability, and Partition Tolerance”. We may
consider BASE properties in order to achieve eventually
consistency and availability.

Figure 2: Experimental results



C. Monitoring Access pattern

We also consider the changing of users’ demand of files. A
component in redundancy manager will monitor file access
activities. If users’ demand for a particular file is suddenly
high, additional copies will be created, and they will be
removed when the access rate is back to normal.

D. Evaluation

We are planning to evaluate availability and performance of
the proposed system. For availability evaluation, using the
simulation of failure events with components to monitor and
detect the failures. Then we can measure the values of Mean
Time to Failure (MTTF) and Mean Time to Repair (MTTR),
and use these values to calculate availability.

VII. CONCLUSION

Cloud storage services provided in cloud computing has
been increasing in popularity. It offers on demand virtualized
storage resources and customers only pay for the space they
actually consumed. As the increasing demand and data store in
the cloud, data deduplication is one of the techniques used to
improve storage efficiency. However, current data
deduplication mechanisms in cloud storage are static scheme,
which limits their full applicability in dynamic characteristic of
data in cloud storage.

In this paper, we propose a dynamic data deduplication
scheme for cloud storage, in order to fulfill a balance between
changing storage efficiency and fault tolerance requirements,
and also to improve performance in cloud storage systems. We
dynamically change the number of copies of files according to
the changing level of QoS. The experimental results show that,
our proposed system is performing well and can handle with
scalability problem. We also plan to monitor the changing of
users’ demand of files. Furthermore, we plan to evaluate
availability and performance of the system.

REFERENCES

[1] I. Foster, Z. Yong, I. Raicu, and S. Lu, "Cloud Computing and Grid
Computing 360-Degree Compared," in Grid Computing Environments
Workshop, 2008. GCE '08, 2008, pp. 1-10.

[2] T. Dillon, W. Chen, and E. Chang, "Cloud Computing: Issues and
Challenges," in Advanced Information Networking and Applications
(AINA), 2010 24th IEEE International Conference on, 2010, pp. 27-33.

[3] T. G. Peter Mell, "The NIST Definition of Cloud Computing," National
Institute of Standards and Technology NIST Special Publication 800-
145, September 2011.

[4] SNIA Cloud Storage Initiative, "Implementing, Serving, and Using
Cloud Storage," Whitepaper 2010.

[5] D. Harnik, B. Pinkas, and A. Shulman-Peleg, "Side Channels in Cloud
Services: Deduplication in Cloud Storage," Security & Privacy, IEEE,
vol. 8, pp. 40-47, 2010.

[6] S. Guo-Zi, D. Yu, C. Dan-Wei, and W. Jie, "Data Backup and Recovery
Based on Data De-Duplication," in Artificial Intelligence and
Computational Intelligence (AICI), 2010 International Conference on,
2010, pp. 379-382.

[7] SNIA, "Advanced Deduplication Concepts," 2011.

[8] V. Javaraiah, "Backup for cloud and disaster recovery for consumers and
SMBs," in Advanced Networks and Telecommunication Systems
(ANTS), 2011 IEEE 5th International Conference on, 2011, pp. 1-3.

[9] L. L. You, K. T. Pollack, and D. D. E. Long, "Deep Store: An Archival
Storage System Architecture," presented at the Proceedings of the 21st
International Conference on Data Engineering, 2005.

[10] T. Yujuan, J. Hong, F. Dan, T. Lei, Y. Zhichao, and Z. Guohui, "SAM:
A Semantic-Aware Multi-tiered Source De-duplication Framework for
Cloud Backup," in Parallel Processing (ICPP), 2010 39th International
Conference on, 2010, pp. 614-623.

[11] S. Kumar Bose, S. Brock, R. Skeoch, N. Shaikh, and S. Rao,
"Optimizing live migration of virtual machines across wide area
networks using integrated replication and scheduling," in Systems
Conference (SysCon), 2011 IEEE International, 2011, pp. 97-102.

[12] S. K. Bose, S. Brock, R. Skeoch, and S. Rao, "CloudSpider: Combining
Replication with Scheduling for Optimizing Live Migration of Virtual
Machines across Wide Area Networks," in Cluster, Cloud and Grid
Computing (CCGrid), 2011 11th IEEE/ACM International Symposium
on, 2011, pp. 13-22.

[13] N. Mandagere, P. Zhou, M. A. Smith, and S. Uttamchandani,
"Demystifying data deduplication," presented at the Proceedings of the
ACM/IFIP/USENIX Middleware '08 Conference Companion, Leuven,
Belgium, 2008.

[14] D. Bhagwat, K. Pollack, D. D. E. Long, T. Schwarz, E. L. Miller, and J.
F. Paris, "Providing High Reliability in a Minimum Redundancy
Archival Storage System," in Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, 2006. MASCOTS 2006.
14th IEEE International Symposium on, 2006, pp. 413-421.

[15] F. Yinjin, J. Hong, X. Nong, T. Lei, and L. Fang, "AA-Dedupe: An
Application-Aware Source Deduplication Approach for Cloud Backup
Services in the Personal Computing Environment," in Cluster
Computing (CLUSTER), 2011 IEEE International Conference on, 2011,
pp. 112-120.

[16] T. Yujuan, J. Hong, F. Dan, T. Lei, and Y. Zhichao, "CABdedupe: A
Causality-Based Deduplication Performance Booster for Cloud Backup
Services," in Parallel & Distributed Processing Symposium (IPDPS),
2011 IEEE International, 2011, pp. 1266-1277.

[17] X. Lei, H. Jian, S. Mkandawire, and J. Hong, "SHHC: A Scalable
Hybrid Hash Cluster for Cloud Backup Services in Data Centers," in
Distributed Computing Systems Workshops (ICDCSW), 2011 31st
International Conference on, 2011, pp. 61-65.

[18] D. Bhagwat, K. Eshghi, D. D. E. Long, and M. Lillibridge, "Extreme
Binning: Scalable, parallel deduplication for chunk-based file backup,"
in Modeling, Analysis & Simulation of Computer and
Telecommunication Systems, 2009. MASCOTS '09. IEEE International
Symposium on, 2009, pp. 1-9.

[19] Z. Yang, W. Yongwei, and Y. Guangwen, "Droplet: A Distributed
Solution of Data Deduplication," in Grid Computing (GRID), 2012
ACM/IEEE 13th International Conference on, 2012, pp. 114-121.

[20] W. Cong, W. Qian, R. Kui, C. Ning, and L. Wenjing, "Toward Secure
and Dependable Storage Services in Cloud Computing," Services
Computing, IEEE Transactions on, vol. 5, pp. 220-232, 2012.

[21] K. Yang and X. Jia, "An Efficient and Secure Dynamic Auditing
Protocol for Data Storage in Cloud Computing," Parallel and Distributed
Systems, IEEE Transactions on, vol. PP, pp. 1-1, 2012.

[22] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R.
Buyya, "CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning
algorithms," Software: Practice and Experience, vol. 41, pp. 23-50,
2011.

[23] C. Debains, P. A.-T. Togores, and F. Karakusoglu, "Reliability of Data-
Intensive Distributed File System: A Simulation Approach," 2010.

[24] X. Jin, H. Yiming, L. Guojie, T. Rongfeng, and F. Zhihua, "Metadata
Distribution and Consistency Techniques for Large-Scale Cluster File
Systems," Parallel and Distributed Systems, IEEE Transactions on, vol.
22, pp. 803-816, 2011.

[25] O. Parisot, A. Schlechter, P. Bauler, and F. Feltz, "Flexible Integration of
Eventually Consistent Distributed Storage with Strongly Consistent
Databases," in Network Cloud Computing and Applications (NCCA),
2012 Second Symposium on, 2012, pp. 65-7


