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Abstract—Recently, quaternion-valued signal processing has
received more and more attention. In this paper, the quaternion-
valued sparse system identification problem is studied for the first
time and a zero-attracting quaternion-valued least mean square
(LMS) algorithm is derived by considering the l1 norm of the
quaternion-valued adaptive weight vector. By incorporating the
sparsity information of the system into the update process,a
faster convergence speed is achieved, as verified by simulation
results.

Keywords: quaternion; sparsity; system identification; adap-
tive filtering; LMS algorithm.

I. I NTRODUCTION

In adaptive filtering [1], there is a class of algorithms
specifically designed for sparse system identification, where
the unknown system only has a few large coefficients while the
remaining ones have a very small amplitude so that they can be
ignored without significant effect on the overall performance
of the system. A good example of them is the zero-attracting
least mean square (ZA-LMS) algorithm proposed in [2].
This algorithm can achieve a higher convergence speed, and
meanwhile, reduce the steady state excess mean square error
(MSE). Compared to the classic LMS algorithm [3], the ZA-
LMS algorithm introduces anl1 norm in its cost function,
which modifies the weight vector update equation with a zero
attractor term.

Recently, the hypercomplex concepts have been introduced
to solve problems related to three or four-dimensional sig-
nals [4], such as vector-sensor array signal processing [5], [6],
[7], color image processing [8] and wind profile prediction [9],
[10]. As quaternion-valued algorithms can be regarded as an
extension of the complex-valued ones, the adaptive filtering
algorithms in complex domain could be extended to the
quaternion domain as well, such as the quaternion-valued LMS
(QLMS) algorithm in [11].

This work is partially funded by National Grid, UK and will appear in
the Proc. of the 9th International Symposium on Communication Systems,
Networks and Digital Signal Processing (CSNDSP), Manchester, UK, July
2014 (submitted in March 2014 and accepted on 18 April 2014).

In this paper, we propose a novel quaternion-valued adaptive
algorithm with a sparsity constraint, which is called zero-
attracting QLMS (ZA-QLMS) algorithm. The additional con-
straint is formulated based on thel1 norm. Both the QLMS
and ZA-QLMS algorithms can identify an unknown sparse
system effectively. However, a better performance in termsof
convergence speed is achieved by the latter one.

This paper is organized as follows. A review of basic
operations in the quaternion domain is provided in Section II to
facilitate the following derivation of the ZA-QLMS algorithm.
The proposed ZA-QLMS algorithm is derived in Section III.
Simulation results are given in Section IV, and conclusions
are drawn in Section V.

II. QUATERNION-VALUED ADAPTIVE FILTERING

A. Basics of Quaternion

Quaternion is a non-commutative extension of the complex
number, and normally a quaternion consists of one real part
and three imaginary parts, denoted by subscriptsa, b, c and
d, respectively.

For a quaternion numberq, it can be described as

q = qa + (qbi+ qcj + qdk), (1)

where qa, qb, qc, and qd are real-valued [12], [13]. For a
quaternion, when its real part is zero, it becomes a pure
quaternion. In this paper, we consider the conjugate operator
of q asq∗ = qa − qbi− qcj − qdk. The three imaginary units
i, j, andk satisfy

ij = k, jk = i, ki = j,

ijk = i2 = j2 = k2 = −1. (2)

As a quaternion has the noncommutativity property, in
multiplication, the exchange of any two elements in their order
will give a different result. For example, we haveji = −ij

rather thanji = ij.

http://arxiv.org/abs/1406.5721v1


B. Differentiation with Respect to a Quaternion-valued Vector

To derive the quaternion-valued adaptive algorithm, the
starting point is the general operation of differentiationwith
respect to a quaternion-valued vector.

At first, we need to give the definition of differentiation
with respect to a quaternionq and its conjugateq∗. Assume
that f(q) is a function of the quaternion variableq, which is
expressed as

f(q) = fa + fbi+ fcj + fdk (3)

wheref(q) is in general quaternion-valued. The definition of
df(q)

dq
can be expressed as [14], [11]

df(q)

dq
=

1

4
(
∂f(q)

∂qa
−

∂f(q)

∂qb
i−

∂f(q)

∂qc
j −

∂f(q)

∂qd
k) . (4)

The derivative off(q) with respect toq∗ can be defined in
a similar way

df(q)

dq∗
=

1

4
(
∂f(q)

∂qa
+

∂f(q)

∂qb
i+

∂f(q)

∂qc
j +

∂f(q)

∂qd
k) . (5)

With this definition, we can easily obtain

∂q

∂q
= 1,

∂q

∂q∗
= −

1

2
. (6)

Some product rules can be obtained from above formula-
tions, such as the differentiation of quaternion-valued functions
to real variables.

Supposef(q) andg(q) are two quaternion-valued functions
of the quaternion variableq, andqa is the real variable. Then
we can have the following result

∂f(q)g(q)

∂qa
=

∂

∂qa
(fa + ifb + jfc + kfd)g

=
∂fag

∂qa
+ i

∂fbg

∂qa
+ j

∂fcg

∂qa
+ k

∂fdg

∂qa

= (fa
∂g

∂qa
+

∂fa
∂qa

g) + i(fb
∂g

∂qa
+

∂fb
∂qa

g)

+j(fc
∂g

∂qa
+

∂fc
∂qa

g) + k(fd
∂g

∂qa
+

∂fd
∂qa

g)

= (fa + ifb + jfc + kfd)
∂g

∂qa

+(
∂fa
∂qa

+ i
∂fb
∂qa

+ j
∂fc
∂qa

+ k
∂fd
∂qa

)g

= f(q)
∂g(q)

∂qa
+

∂f(q)

∂qa
g(q) (7)

When the quaternion variableq is replaced by a quaternion-
valued vectorw, given by

w = [w1 w2 · · · wM ]T (8)

wherewm = am + bmi + cmj + dmk, m = 1, ...,M , the
differentiation of the functionf(w) with respect to the vector

w can be derived using a combination of (4) straightforwardly
in the following

∂f

∂w
=

1

4





















∂f

∂a0
−

∂f

∂b0
i−

∂f

∂c0
j −

∂f

∂d0
k

∂f

∂a1
− i

∂f

∂b1
i−

∂f

∂c1
j −

∂f

∂d1
k

...
∂f

∂aM−1

−
∂f

∂bM−1

i−
∂f

∂cM−1

j −
∂f

∂dM−1

k





















(9)

Similarly, we define
∂f

∂w∗
as

∂f

∂w∗
=

1

4





















∂f

∂a0
+

∂f

∂b0
i+

∂f

∂c0
j +

∂f

∂d0
k

∂f

∂a1
+

∂f

∂b1
i+

∂f

∂c1
j +

∂f

∂d1
k

...
∂f

∂aM−1

+
∂f

∂bM−1

i+
∂f

∂cM−1

j +
∂f

∂dM−1

k





















(10)

Obviously, whenM = 1, (9) and (10) are reduced to (4) and
(5), respectively.

III. T HE ZERO-ATTRACTING QLMS (ZA-QLMS)
ALGORITHM

To improve the performance of the LMS algorithm for
sparse system identification, the ZA-QLMS algorithm is de-
rived in this section. To achieve this, similar to [2], in thecost
function, we add anl1 norm penalty term for the quaternion-
valued weight vectorw[n].

For a standard adaptive filter, the outputy[n] and errore[n]
can be expressed as

y[n] = wT [n]x[n] (11)

e[n] = d[n]− wT [n]x[n], (12)

wherew[n] is the adaptive weight vector with a length ofL,
d[n] is the reference signal,x[n] = [x[n− 1], · · · , x[n−L]]T

is the input sample vector, and{·}T denotes the transpose
operation. Moreover, the conjugate forme∗[n] of the error
signale[n] is given by

e∗[n] = d∗[n]− xH [n]w∗[n], (13)

Our proposed cost function with a zero attractor term is
given by

J0[n] = e[n]e∗[n] + γ‖w[n]‖
1
, (14)

whereγ is a small constant.
The gradient of the above cost function with respect to

w∗[n] andw[n] can be respectively expressed as

∇w∗J0[n] =
∂J0[n]

∂w∗
(15)

and

∇wJ0[n] =
∂J0[n]

∂w
(16)



From [14], [15], we know that the conjugate gradient gives
the maximum steepness direction for the optimization surface.
Therefore, the conjugate gradient∇w∗J0[n] will be used to
derive the update of the coefficient weight vector.

Expanding the cost function, we obtain

J0[n] = e[n]e∗[n] + γ‖w[n]‖
1

= d[n]d∗[n]− d[n]xH [n]w∗[n]− wT [n]x[n]d∗[n]

+wT [n]x[n]xH [n]w∗[n] + γ‖w[n]‖
1
. (17)

Furthermore,

∂J0[n]

∂w∗
=

∂(e[n]e∗[n] + γ‖w[n]‖
1
)

∂w∗

=
∂

∂w∗
(d[n]d∗[n]− d[n]xH [n]w∗[n]

−wT [n]x[n]d∗[n] + wT [n]x[n]xH [n]w∗[n])

+
∂(γ‖w[n]‖

1
)

∂w∗
. (18)

Details of the derivation process for the gradient are shown
in the following

∂(d[n]d∗[n])

∂w∗[n]
= 0 (19)

∂(d[n]xH [n]w∗[n])

∂w∗[n]
= d[n]x∗[n] (20)

∂(wT [n]x[n]d∗[n])
∂w∗[n]

= −
1

2
d[n]x∗[n] (21)

∂(wT [n]x[n]xH [n]w∗[n])

∂w∗[n]
=

1

2
wT [n]x[n]x∗[n]. (22)

Moreover, the last part of the gradient of cost function is given
by

∂(γ‖w[n]‖
1
)

∂w∗
=

1

4
γ · sgn(w[n]) , (23)

where the symbolsgn is a component-wise sign function that
is defined as [2]

sgn(x) =

{

x/|x| x 6= 0

0 x = 0

Combining the above results, the final gradient can be
obtained as follows

∇w∗J0[n] = −
1

2
e[n]x∗[n] +

1

4
γ · sgn(w[n]) . (24)

With the general update equation for the weight vector

w[n+ 1] = w[n]− µ∇w∗J0[n], (25)

whereµ is the step size, we arrive at the following update
equation for the proposed ZA-QLMS algorithm

w[n+ 1] = w[n] + µ(e[n]x∗[n])− ρ · sgn(w[n]) , (26)

where ρ = µγ. The last term represents the zero attractor,
which enforces the near-zero coefficients to zero and therefore

accelerates the convergence process when majority of the
system coefficients are nearly zero in a sparse system.

Note that equation (26) will be reduced to the normal QLMS
algorithm without the zero attractor term, given by [11]

w[n+ 1] = w[n] + µ(e[n]x∗[n]) . (27)

IV. SIMULATION RESULTS

In this part, simulations are performed for sparse system
identification using the proposed algorithm in comparison
with the QLMS algorithm. Two different sparse systems are
considered corresponding to Scenario One and Scenario Two
in the following. The input signal to the adaptive filter is
colored and generated by passing a quaternion-valued white
gaussian signal through a randomly generated filter. The noise
part is quaternion-valued white Gaussian and added to the
output of the unknown sparse system, with a 30dB signal to
noise ratio (SNR) for both scenarios.

A. Scenario One

For the first scenario, the parameters are: the step sizeµ is
3× 10−7; the unknown sparse FIR filter lengthL is 32, with
4 non-zero coefficients at the 2nd, 8th, 16th and 31st taps, and
its magnitude of the impulse response is shown in Fig. 1; the
coefficient of the zero attractorρ is 5 × 10−7. The learning
curve obtained by averaging100 runs of the corresponding
algorithm is given in Fig. 2, where we can see that the ZA-
QLMS algorithm has achieved a faster convergence speed than
the QLMS algorithm when they both reach a similar steady
state.
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Fig. 1. Magnitude of the impulse response of the sparse system.

B. Scenario Two

For this case, length of the unknown FIR filter is reduced
to 16, still with 4 active taps. The parameters are: step sizeµ
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Fig. 2. Learning curves for the first scenario.

is 2 × 10−7 and the value ofρ is 2 × 10−7. The results are
shown in Fig. 3. Again we see that the ZA-QLMS algorithm
has a faster convergence speed and has even converged to a
lower steady state error in this specific scenario.
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Fig. 3. Learning Curves for the second scenario.

V. CONCLUSION

In this paper, a quaternion-valued adaptive algorithm has
been proposed for more efficient identification of unknown
sparse systems. It is derived by introducing anl1 penalty term
in the original cost function and the resultant zero-attracting
quaternion-valued LMS algorithm can achieve a faster con-
vergence rate by incorporating the sparsity information ofthe
system into the update process. Simulation results have been
provided to show the effectiveness of the new algorithm.

REFERENCES

[1] S. Haykin, Adaptive Filter Theory, Prentice Hall, Englewood Cliffs,
New York, 3rd edition, 1996.

[2] Yilun Chen, Yuantao Gu, and Alfred O Hero, “Sparse LMS for
system identification,” inAcoustics, Speech and Signal Processing,
2009. ICASSP 2009. IEEE International Conference on. IEEE, 2009,
pp. 3125–3128.

[3] B. Widrow, J. McCool, and M. Ball, “The Complex LMS Algorithm,”
Proceedings of the IEEE, vol. 63, pp. 719–720, August 1975.

[4] N. Le Bihan and J. Mars, “Singular value decomposition ofquaternion
matrices: a new tool for vector-sensor signal processing,”Signal
Processing, vol. 84, no. 7, pp. 1177–1199, 2004.

[5] X.R. Zhang, W. Liu, Y.G. Xu, and Z.W. Liu, “Quaternion-based worst
case constrained beamformer based on electromagnetic vectoe-sensor
arrays,” inProc. IEEE International Conference on Acoustics, Speech,
and Signal Processing, Vancouver, Canada, May 2013, pp. 4149–6153.

[6] X. R. Zhang, W. Liu, Y. G. Xu, and Z. W. Liu, “Quaternion-valued
robust adaptive beamformer for electromagnetic vector-sensor arrays
with worst-case constraint,”Signal Processing, vol. 104, pp. 274–283,
November 2014.

[7] M. B. Hawes and W. Liu, “A quaternion-valued reweighted minimisation
approach to sparse vector sensor array design,” inProc. of the
International Conference on Digital Signal Processing, Hong Kong,
August 2014.

[8] S.C. Pe and C.M. Cheng, “Color image processing by using binary
quaternion-moment-preserving thresholding technique,”Image Process-
ing, IEEE Transactions on, vol. 8, no. 5, pp. 614–628, 1999.

[9] Clive Cheong Took and Danilo P Mandic, “The quaternion LMS
algorithm for adaptive filtering of hypercomplex processes,” IEEE
Transactions on Signal Processing, vol. 57, no. 4, pp. 1316–1327, 2009.

[10] M. D. Jiang, W. Liu, Y. Li, and X. R. Zhang, “Frequency-domain
quaternion-valued adaptive filtering and its application to wind profile
prediction,” in Proc. of the IEEE TENCON Conference, Xi’an, China,
October 2013.

[11] M. D. Jiang, W. Liu, and Y. Li, “A general quaternion-valued gradient
operator and its applications to computational fluid dynamics and
adaptive beamforming,” inProc. of the International Conference on
Digital Signal Processing, Hong Kong, August 2014.

[12] William Rowan Hamilton,Elements of quaternions, Longmans, Green,
& co., 1866.

[13] I. Kantor, A.S. Solodovnikov, and Abe Shenitzer,Hypercomplex
numbers: an elementary introduction to algebras, Springer Verlag, New
York, 1989.

[14] Danilo P Mandic, Cyrus Jahanchahi, and Clive Cheong Took, “A quater-
nion gradient operator and its applications,”IEEE Signal Processing
Letters, vol. 18, no. 1, pp. 47–50, 2011.

[15] DH Brandwood, “A complex gradient operator and its application in
adaptive array theory,” inIEE Proceedings H (Microwaves, Optics and
Antennas). IET, 1983, vol. 130, pp. 11–16.


	I Introduction
	II Quaternion-valued Adaptive Filtering
	II-A Basics of Quaternion
	II-B Differentiation with Respect to a Quaternion-valued Vector

	III The Zero-attracting QLMS (ZA-QLMS) Algorithm
	IV Simulation Results
	IV-A Scenario One
	IV-B Scenario Two

	V Conclusion
	References

