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Abstract—Blind source separation (BSS) is one of the most noise in the mixtures, then we can remove the effect of
important and established research topics in signal proc&ing noise from the mixtures before applying the noise-free BSS
and many algorithms have been proposed based on different algorithms [13], [14]. However, the variance of noise in the

statistical properties of the source signals. For secondrder it . t al ilabl din thi the alorit
statistics (SOS) based methods, canonical correlation alyais mixtures is not always available and in this case the alkgori

(CCA) has been proved to be an effective solution to the probm. Proposed in [[14] will not work.
In this work, the CCA approach is generalized to accommodate | this paper, we will generalise the traditional CCA to
the case with added white noise and it is then applied to the include the case with noise and then apply it to the separatio

BSS problem for noisy mixtures. In this approach, the noise . . : .
component is assumed to be spatially and temporally white, ui problem of noisy mixtures [15]( [16]. A key advantage of this

the variance information of noise is not required. An adaptive approach is that successful separation of source signalbeca
blind source extraction algorithm is derived based on this dea achieved without estimation of the white noise paramefens.

and a further extension is proposed by employing a dual-linar  online adaptive algorithm is derived accordingly as itspaive
predictor structure for blind source extraction (BSE). realisation

Index Terms—Blind source separation, canonical correlation Moreover, similar to the CCA casgl[8], we have also related
analy5|§, generalfsed canonical correlation analysis, fay mix- the GCCA approach to a dual-linear predictor based blind
tures, linear predictor. ; ] .

source extraction (BSE) structure, and an adaptive alyuarit
based on such a structure is also derived with rigorous proof
I. INTRODUCTION . ] . . ¢ P
for its effectiveness in this context.

The problem of blind source separation (BSS) has beenT . . .
h d as follows. In Sectidn I, th -
studied extensively in the past and a plethora of algorithms 's paper is organised as follows. In Sectign © gen

: . eralised CCA approach will be provided with a detailed proof
have been proposed in the past based on statistical proper- . . . S .
. , and analysis about its condition on which it can be applied
ties of the source signal$|[1],1[2]. For those based on the . . .
- . to the BSS problem. The class of adaptive BSE algorithms is
second-order statistics (SOS), one particular class ainthe, . . . . .
_ ] _ ) derived in Sedll. Simulation results are shown in Sedfidh
is those based on the canonical correlation analysis (CCAE . . .
o , and conclusions drawn in Sectibn V.
approachl([B], 4], [[5], 6], [[7], [[8], 9], [10], [11], wherehe
demixing matrix is found by maximizing the autocorrelatafn
each of the recovered signals. This approach rests on the ide
that the sum of any uncorrelated signals has an autocdorelat || GENERALISED CCA AND ITS APPLICATION TOBSS
whose value is less or equal to the maximum value of
individual signals. As shown ir_[8], the maximization of theA. Overview of the CCA Approach to BSS
autocorrelation value is equivalent to finding the gensedi _ N _ _
eigenvectors within the matrix pencil approachl[12]. The instantaneous mixing problem in BSS withmixtures,

As shown in [[8], the CCA approach will work for thel sources and a mixing matriA can be expressed as
noise-free situations. For noisy mixtures, its perforneawill
no doubt degrade. If we can estimate the variance of white x[n] = A -s[n], 1)
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with To apply CCA to the BSS problerni[8], we choose the vector
x[n] asz; in CCA andx[n — A,] asz.. Then the eigenvalue

sin] = [soln] s1[n] -+ spafn]] problem in [T) becomes
x[n] = [wo[n] z1[n] -+ waa[n]] . )
(Al ami,m=0,...,M—1,1=0,...,L —1(2) Roa[AnfRua (0] Rl Anjes = AR (Ol . (8)

In the context of BSSq; and3, are the same and we use

For BSS employing second-order statistics (SOS), we assuppey, represent it[{8) can be simplified as

the sources are spatially uncorrelated and have diffeegnt t

poral structures: R, [0] "Rz [An]w; = Aw; 9)
R0 = (sl ln) = g0} 0., MUSPYINGbOhsides it 1], e arive at e g
R.,[An] = E{s[n]s"[n — An]} = diag{po[An], pi[An], .. pro1 AKD)

with p;[n] being the autocorrelation function of tligh source

signal andp;[An] # 0 for some nonzero delayAn. Moreover, the correlation maximization problem [d (5) be-
The BSS problem can be solved in one single step by tR8MES

CCA approach. In CCA[17], two sets of zero-mean variables, . Jo(wo) = wi Reo[Anjwy — wi AR [An]AT wy

z1[n] (with ¢; components) andy[n] (with ¢, components) ~ Wo Wi R [0lwo — wi AR [0]ATw,

: o . . 11
with a joint distribution are considered. For convenienge, . ( )
and we can prove that by CCA the source signals will be

assumeg; < ¢o. The linear combination of the variables in . .
o = @ . . ) recovered completelyl [8]. However, with added noise, the
each of the vectors is respectively given by . . . . .
proof given in the noise-free case will not be valid any more
aln] = alzn] since the denominator ifl](6) will have a noise component. As
boln] = ﬁOTzz[n] ’ 4) @ result, the performance of the CCA approach will degrade

with increasing noise level.
whereayy and3,, are vectors containing the combination coef-

ficients and they are determined by maximizing the corifati B, Generalised CCA (GCCA)
betweenay and by

For noisy mixturesx[n| is given by

g;?')i Jo (a01 ﬂo) (5) x[n] = As[n] + V[TL], (12)

with wherev(n] is the additive noise vector, which is spatially and
E{ag[n]bg[n]} temporally white and uncorrelated with the source sigriéds.
Jo(ewo, Bo) - = VE{@2[n]} E{b3[n]} correlation matrix is given by
al's
- 0 Z12P > L (®) Ry[A,] = B{vinlv"[n— A} = { o ]‘:Or i“ 0

\/(aoTEll[O]ao)(/@o 322[0]8,) Tyt 10T Bn = 0(13)
where 1,[0] = E{zi[n]z] [n]}, Z12 = E{z[n]z3 [n]}, wherel is the identity matrix ana? is the variance of noise.
Y9y = E{zn]z3 [n]} and E{-} denotes the statistical ex- Similarly, we can form a modified CCA problem for two
pectation operator. set of variables with added white noise. Now consider the two

After finding the first pair of optimal vectorey, and 3,, sets of zero-mean variables
we can proceed to find the second paif and 3; which
maximizes the correlation and at the same time ensures that
the new pair of combination§a,[n|, bi[n]} is uncorrelated z3[n] = 2a[n] + va[n] (14)
with the first set{ao[n], bo[n]}. This process is repeated untilang their corresponding linear combinations:
we find all themin(gy, ¢2) = ¢1 pairs of optimal vectorsy; . -
andg,,i=0,...,q — 1. aoln] = o 2[n]

It has been shown that; can be obtained by solving the bo[n] = Byzz2[n], (15)
following generalized eigenvalue problem [8]

z21[n] = zn]+ vi[n]

wherev; and v, are the added white noise vectors and not
218 Sha; = A28 ay @) correlated with each other. Now the two vecters and 3,

are not given by[{5) any more, but by
B, can be found in the same way by changing the subscripts

of the matrices in[{7) accordingly. max Jo(exo, B) (16)

0,8



with In the next, we give a brief proof that maximization of

JofenBe) = E{ao[n]bo[n]} Jo(wo) with respect tow, will lead to a successful extraction
o\&o0,Po) = E{ao[n)ao[n — Ao]}E{bo[n]bo[n — Ao} of one of the source signals in the presence of noise.
aonhz,@o Let gy = ATw, denote the first global mixing vector. Then

= - — , (A7) Jy(wo) in @2) changes into
V(@ S lAdao) (B S22(8018,) R A

. R jO(WO) — g() RSS[ 1]g0 )
Whel’e;lg = E{il[n]ig[n]}, Ell[AO] = E{il[n]iﬂn — ggRSS[Ao]go
Aol}, Xo2[Ao] = E{22[n]23 [n — Ao} and A is a non-zero gjnce all of the diagonal elements of the diagonal matrix
integer. In this new function, the correlation between the t R.;[Ao] are positive, we shall assuni,,[Ao] = I, as the
variablesao|[n] andbo|n] is not normalised by their variancesgjfferences in the diagonal elements BE,[Ao] can always
but by their own correlation for a common time lag &%.  pe absorbed into the mixing matrix. This way, the diagonal
a; andf;, i = 0,1,...,q1 — 1, are all obtained in a similar elements oR.,[A;] become the “normalised” autocorrelation

way with the same normalisation. Since the noise componeQiyes of each source signal and they are assumed to be
are not correlated with each other and not correlated wiith gitferent from each other. Note the “normalisation” heradt

(23)

andz, either, we haveX;, = 3, and for nonzera\,, the by E{s2[n]}, but by E{s;[n]si[n — Ag]}, 1 =0,1,...,L— 1.
denominator in[(17) does not include any noise informatiofow we have

So although there is noise component existing in the origina

variables, the vectora; and 3, obtained in this way will not Jo(wo) = & Rus[A1]&0 , (24)

depend on the noise component at all. So the effect of no{ﬁﬁerego = —82_ which has a propertg?'g, = 1.

i i ing i i g 8o
has been removed without estimating its variances. This is an eiogenvalue problem and starting from here, we

can use the results given in [8] to complete the proof and draw

C. Applying GCCA to the BSS Problem the conclusion that when we maximizk(w,) with respect
Applying this generalised CCA to the BSS problem, weo wy, this will result in a successful extraction of the source

can replace [n] by x[n] in (12) andz,[n] by x[n — A;] with  signal with the maximum “normalised” autocorrelation \alu
Ay # Ap. The two vectorsxy and 3, will be the same as  After extracting the first source signal, we may use a
the extraction vectow [8]. The extracted signal will be deflation approach to remove it from the mixtures and then
subsequently perform the next extraction [2]. This procedu
is repeated until the last source signal is recovered.

yoln] = ng[n] ) (18)

Then the maximization problem i (lL6) becomes

max jo(Wo) ’ (19) IIl. ADAPTIVE REALISATION
WwWo

A. A direction approach

with
As in the noise-free casél[8], from the proof we can see
5 E —A IR,.[A . o
Jo(wo) = E}yomyo{z Alﬁ = WOTR {Aliwo , (20) that both the correlation matrix in both the numerator and
- W, T W . . .2
Yolriyo 0 :? 0Jo _ the denominator in the cost functiafy can be replaced by
where f_{m[Az‘] = E{x[n]x[n — Aj] } i = 0,1, is the 4 jinear combination of the correlation matrices at diffgre
correlation matrix of the observed mixtures. Froml(12), Wgme lags to improve its robustness, as long as the one at the
have denominator is positive definite. More specifically, instesi
R..[A;] = AE{s[n]s’[n— AJIAT maximizing the COI’I’e|E-1ti0n betweep [n] andyo[n_— Aq], we
BV [ — AL} maximize the correlation betweep[n| and a weighted sum
r of yo[n —pl, p = 2,3,..., P+ 1 [16]. Now the new cost
= ARu[AJAT, (21)  function is given by
sinceR,,[A;] =0 for A; # 0. 7 _ E{yo[n]eo[n]} o5
So the cost functioyy can be further simplified to (wo) = E{yo[n]yo[n — 1]} ° (25)
R wi AR [A1]ATwg where
J =2 : 22
V0) = WTARLIB0ATwg 22) coln] = b7 oln) (26)

We assume that all of the diagonal elementRaf[A,] are with
positive, which means each of the source signals themselves
should have a positive correlation value with its delayed b = [bib - bp
version byAy. yolnl = [yoln — 2] yoln — 3]+ yoln— P—1]]" (27)

]T
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Fig. 1. A linear predictor based BSE structure. 71

Fig. 2. The proposed dual-linear predictor structure foEBS

As shown in [[2b), we have choséxy = 1 because in reality
more likely the signal is positively correlated with its deéd

version by one sample. 1) The Sructure: For noise-free mixtures, a linear predictor
Applying the standard gradient descent method tan be employed to extract one of the sources, as shown in
Jo(wo, b), we have Figure[d, where the extracted signdh| and the instantaneous
1 output errore[n] of the linear predictor with a lengt® are
Ve, = Flyolluoin 112 (E{yo[n]x[n]+ given by
x[n]eo[n]}E{yo[n]yo[n — 1]} —
E{yo[nleoln]} E{yolnlx[n — 1] + x[nlyo[n — 1]}) yln] = w'x[n]
(28) eln] = y[n]—b"yln], (33)
where Pl wherew is the demixing vector and
x[n] = Z bpyx[n —p) . (29)
p=2 b = [byby - bp]T
't:he correlatiorE{yo[n|yo[n—1]} can be estimated recursively yin] = [yn—=1]yn—-2] - yln—P)|" . (34)
y
oyln] = Boyln—11+ 1 = B)yon|ye[n — 1], (30) The cost function is given by
wheres is the corresponding forgetting factor with< g < 1. E{e?[n]}
; ; . Jo(w) = ey (35)
Following some standard stochastic approximation tech- o\wW E{y2[n]}

niques [18], we obtain the following online update equation

As proved in [[21], by minimising/y(w) with respect tow,

woln +1] = wo[n] +
M (o lI%[] + x[nleo[]) (ool — 1) the sources can be extracted successfully.
— n|\xmn X|njep|n n n — —
o2 vo ototmgo However, in the presence of noise, there will be a noise

(yo[n]eo[n])(yo[n]x[n — 1] + x[n]yo[n — 1]))  term in both the numerator and the denominatorof (35) and
(31) the proof in [21] is not valid any more. To remove the effect
of noise, as in GCCA, we propose to exploit the white nature
wherey is the updating step size. of the noise components and employ a dual-linear predictor
To avoid the critical case where the normvef[n| becomes structure as shown in Figl 2, where a second linear predictor
too small, after each update, we normalize it to unit lengtiith coefficients vectod of length P, is employed and the

which yields error signalf[n] is given by

woln 1 = woln + 1y + Lwafn-+1]. @) i = yln] = dTyaln) (36)

== 1 - d ’
B. Adaptive Realisation Based on the Ddusthear Predictor where
Structure
For noise-free mixtures, a linear predictor can be employed d = [biby - bp]"
to extract one of the sources [19], [20], [21], [22], and it is ¢ T
yaln] = lyln—1]yln—2] - yln—F]" . (37)

closely related to the CCA approach, as shown_in [8]. Simi-
larly, for the GCCA approach, we can develop a corresponding
dual-linear predictor structure for its implementatiof[1 For the first linear predictor, the mean square prediction



error (MSPE)E{e?[n]} is given by

E{*ln]} = E{y’[n]} - 2E{y[n]b"y[n]} +
E{b"y[n]y"[n]b}

P
= Y BE{y’n—pl} -
p=0
p
Z Spqbpbe E{y[n — ply[n — ql}
P,q=0;p#q

= ¢B{y’[n]} -
P

>

p,q=0;p#q

= qBE{y’In} -

wl( Z

p,q=0;p#q

qubpbquRm [q¢ — plw

Squpbquw[q - p])W ’ (38)

whereg, = Zf::o b2 with by = 1, ands,, is 1 whenp = 0

with a. = Zfio df, with dy = 1 andR.,; is a diagonal matrix
given by
Py
> spadpdgRaslg —pl
P,q=0;p#£q
with its [ — th diagonal element; given by
Py
=y
P,q=0;p#q
2) The Proposed Cost FunctioNote in the second term
of both [40) and[{43), there is not any noise component. Then
we can construct a new cost function as follows
J(W) _ ch{yg[n]} - E{GQ[H]} _ gT]i{ssg .
acE{y*[n]} — E{f?[n]}  gTR..g
Now we impose another condition on the second linear predic-
tor: suppose the coefficients are chosen in such a way that
all of the diagonal elements & .. are of positive value. This

R, = (44)

Spqdpdepilq —p) . (45)

(46)

or ¢ = 0, and—1 otherwise. From{12)[{13) anfl(3), we haves a difficult condition due to the blind nature of the problem

AE{s[n)s"[n - (p - ¢)]}A"
+E{v[nv' [n— (p— )]}
= AR.[p-qAT,

(39)
for p # ¢. Then we have
E{e’n]} = qE{y’[]} -
P

whA( Z Squpbqus[q—pDATW
P,q=0;p#q

= qB{y’In} -

g ( Z SpabpbeRissla — pl)g
P,q=0;p#q

= ch{y2 [TL]} - gTRssg )

with g = ATw denoting the global demixing vector aiil,,
is a diagonal matrix given by
P
Z Squpbqus[q - p] )
P,q=0;p#q
with its [ — th diagonal element; given by
P
=y
P,q=0;p#q
Similarly, for the second linear predictor, we have

E{f*In]} = E{y’[n]} - 2E{y[n]d"yaln]} +
E{d"yaln]yg [n)d}

= a.E{y’[n]} -
Py
g ( Z SpqdpdqRss(q — pl)g
P,qg=0;p#q
= acE{y2[n]} - gTRssg )

(40)

Rss = (41)

Spgbpbgpila — ) - (42)

(43)

However, for a special case with; = 1 andd; = 1, i.e. a
one step ahead predictor, we have

Rss = 2R,5[1], (47)

which is the correlation matrix of the source signals with a
time lag of 1. Then the condition means each of the source
signals should have a positive correlation with a delayed
version of itself by lagl. As mentioned in Sed_1Il-A, in
reality, there are many signals having this correlatiorpprty

and therefore can meet this requirement. Now we can see
the cost function has the same form ag_im 23. Therefore, we
can consider this dual-linear predictor structure as aireot
implementation of the GCCA approach for solving the BSS
problem.

Since all of the diagonal elements B, are positive, we
shall assumd,, =1, i.e.7,=1,1=0,1,...,L — 1, as the
differences in the diagonal elements can always be absorbed
into the mixing matrixA. This way, the diagonal elements
7,1 =0,1,...,L — 1, of Ry, in the numerator become the
“normalised” autocorrelation values of each source sigmal
they are assumed to be different from each other. For the case
with P; = 1 andd; = 1, the “normalisation” here is not by
E{s?[n]}, but by 7, = 2E{s;[n]s;[n — 1]}.

Now we have

J(W) = gTRssg ) (48)

whereg = ﬁ, which has a propertg”g = 1. Clearly,
according to the proof provided earlier, we can draw the
conclusion that when we minimizé(w) with respect tow,
this will result in successful extraction of the source sign
with the minimum “normalised” autocorrelation value. Note

here the extracted signal is not the one with the maximum
“normalised” autocorrelation value.



3) Adaptive Algorithm: Applying the standard gradient

descent method td(w), we have z 1
2 f
Vol = GBIy - BEme B e
E{e[n)x[n]})(acE{y*[n]} — E{f*[n]}) — s
(g E{y*[n]} — E{e’[n]})(acE{y[n]x[n]} — g
E{f[n]x[n]})) , 49) ‘
Wh e re _40 5(‘)0 10‘00 15‘00 20‘00 25‘00 30‘00 35‘00 40‘00 4500
P 4
X[n] = ] — Z bpyx[n —p 2 i
p=1 ol ‘W
P -2
fc[n] = X[?’L] — Z dpx[n — p] . (50) 740 seo 10‘00 15‘00 20;?rge indeisl‘:)o 30‘00 35‘00 40‘00 4500

E{€2 [n]}, E{y2 [n]} and E{fQ[n]} can be estimated respecFig. 3. The three source signals used in the simulations.
tively by

_ _ _ 2

oeln] Beoeln — 1]+ (1 = Be)e”[n], The normalised correlation valug for each source signal
oyln] Byoyln — 1]+ (1 = By)y*[n] with this dual-linear predictor configuration #s0395, 0.2174
ofln] = Brosn—1]+ (1 - B.)f*n], (51) and0.7949, respectively. As already proved, since the first

source signal has the smallest correlation valu®.0895, it
will be extracted by minimizing the cost function.
The 3 x 3 mixing matrix A is randomly generated and given

whereg., 8, and 8y are the corresponding forgetting factors
with 0 < B, By, B¢ < 1.

Following standard stochastic approximation
]t:r:hnlques [18], we obtain the following online update 0.9207 0.0299  0.3891
win] , A= 05165 03676 07733 | .  (54)
win+1 = wn]— ——+—— ((qy[n)x[n]— 0.7822 —0.2735 —0.5598
(acoy —op)?

e[n)&[n])(acoy — 0f) — (qeoy — 0¢) - Its row vector is normalised to unity to make sure it is

(acy[n]x[n] — Fl)x[n)) (52) comparable to the noise variance, whichots = 0.09. The
forgetting factors is3. = 8, = 5y = 0.975 and the stepsize

where . is the learning rate. For the case wilfy = 1 and ;= 0.0015. A learning curve for this case is shown in Fig. 4,

dy = 1, we havea, = 2 in (52), which will be used in our with the performance index defined &s [2]

simulations. 1

1 > 9t
IV. SIMULATIONS L—1 "~ max{g§,....97 1} )
55

Here we onl rovide some preliminary simulation re
y P P Y with g = [go g1 - gr—1]-

sults based on the dual-linear predictor structlre [15}e&h
To show its performance in a more general context, we

source signals are used which are generated by passing three
change the initial value of the demixing vectar randomly
randomly generated white Gaussian signals through three
ach time to run the algorithm and the average learning

different filters. The power of the sources is normalisedrte. o
curve over1000 runs is given in Fig[d5. Both curves show
The correlation value of each of the source signals is cliecke
a} successful extraction of the source signal.
to make sure it is positive and not close to zero for one sample
shift. Fig.[3 shows the three source signals, denotegyby;
and so, respectively.

The coefficients of the first linear predictor coefficiemts  The traditional canonical correlation analysis has been ge
were randomly generated with a length Bf= 5, and given eralised to include noisy signals where the effect of noise
by can be eliminated effectively by the proposed approach. It
was then applied to the blind source separation problem
and adaptive implementations were derived. In particldar,
For the second linear predictdf; = 1, d; = 1, anda. = 2. dual-linear predictor structure was proposed to blindlyaot

V. CONCLUSIONS

b = [-0.4548 — 1.0053 1.1957 — 0.5590 — 0.3617] . (53)
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the source signals from their noisy mixtures, and it can the?]
considered as an indirect implementation of GCCA. Some

preliminary simulation results have been provided to shosv t

effectiveness of the proposed approach.
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