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AbstractThe	findings	from	genome-wide	association	studies	hold	enormous	potential	for	novel	insight	into	disease	mechanisms.	Unfortunately,	progress	in	mapping	low-risk association	signals	to	the	underlying	functional	sequence	variants	(FSVs)	involved	in disease	has	been	challenging.	Simple	sequence	study	designs are	insufficient,	as	the vast	numbers	of	statistically	comparable	variants	and	a	limited	knowledge	of	non-coding	regulatory	elements	complicate prioritization.	Furthermore,	large	sample	sizes	are	typically	required	for	adequate	power	to	identify	the	initial	association	signals. One	important	question	is	whether	similar	sample	sizes	need	to	be	sequenced	to	identify	the	FSVs. Here,	we	present	a	proof	of	principle	example	of	an	extreme	discordant	design	to	map	FSVs	at	the	2q33	low-risk	breast	cancer	locus.	Our	approach	employed	DNA	sequencing	of	a	small	number	of	discordant	haplotypes	to	efficiently	identify	candidate-FSVs.	Our results	were	consistent	with	those	from	a	2000-fold	larger,	traditional	imputation-based	fine-mapping	study.	To	prioritize	further,	we	used	expression-quantitative	trait	locus	analysis	of RNA	sequencing	from	breast	tissues,	gene	regulation	annotations	from	the	ENCODE consortium,	and	functional	assays	for	differential	enhancer	activities.	Notably,	we	implicate	three	regulatory	variants	at	2q33	that	target	CASP8 (rs3769823,	rs3769821 in	CASP8,	and	rs10197246 in	
ALS2CR12)	as	functionally	relevant.	We	conclude that	nested	discordant	haplotype	sequencing	is	a	promising	approach	to	aid	mapping	of	low-risk	association	loci.	The	ability	to	include	more	sophisticated	and	efficient	sequencing	designs	into	mapping	efforts	presents	an	opportunity	for	the	field	to	capitalize	on	the	potential	of	association	loci	and	accelerate	translation	of	association	signals	to	their	underlying	FSVs.
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IntroductionThe	large	number	of	compelling	disease	loci	identified	from	disease-association	studies(e.g.1-4) provides	immense	potential	for	novel	insight	into	disease	mechanisms	and	new	opportunities	for	diagnosis,	prevention	and	treatment.	To	date,	2,511	genome-wide	association	studies	[GWAS] of	1,353	traits	have	generated	8,345	hits	at	p≤5×10-8(5).	However,	the	task	of	identifying	the underlying	FSVs	has	proven	extremely	challenging	and,	thus	far,	very	few	FSV	have	been	identified	for	these	types	of	low-risk	disease	loci(e.g.6-8).	A	number	of	factors	contribute	to	the	challenge,	including	cost	and	an	inadequate	functional	knowledgebase.	Performing	DNA sequencing	(DNAseq) of	the	disease	loci	would	capture	the	FSVs,	but	this	is	often	financially	impractical	for	large	case-control	designs	(GWAS	for	common	traits	can	include	100,000s	of	cases	and	controls).	Furthermore,	empirical	evidence	suggests	that	the	vast	majority	of	FSVs	for	these	loci	will	be	common,	non-coding	variants	influencing	gene	expression(9). Hence,	the	identification	of	the	FSV	via	simple	prioritization	of	the	sequence	data	may	be	difficult	because	many	variants	will be	statistically	comparable	and	our	understanding	of	non-coding	regulatory	elements is	incomplete.
Instead	of	complete	DNAseq	of	a	GWAS	region,	a standard	approach to	identify	cFSVs is	a	more	detailed	statistical	interrogation	of	the	region (“fine-mapping”).	Often	these	fine-mapping	studies	are	undertaken in	the	same large	sample sets as	the	initial	analyses,	theyexplore evidence	for	multiple	signals	and	use statistical	imputation	to	estimate	the	association	evidence	for	other common	and	rare	variants	in	the	region that	were	not	directly	genotyped(10). A	caveat	of	statistical	imputation is	that	it	relies on	external	imputation	panels	that	are	not	only	distinct	from	the	target	populations,	but	are	often	much	
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smaller and	sequenced	only	at	very	low	depth	(e.g.	4×), leading	to	potential	inaccuracies,	especially	for	rare	variants.	DNAseq	of	cases	and	controls	would	remove the	need	for	imputation,	but	remains	cost	prohibitive	for	large	case-control	studies.	Here,	we propose	a	cost-efficient	extreme	discordant	haplotype	DNAseq	design that is	financially	viable andcan	greatly	aid in the	identification	of	cFSVs.	
At	a	predefined	risk	locus,	we	statistically	phase the genotype	data	and perform	haplotype	mining	to	define	risk	haplotype/s	that	optimally	distinguish	cases	from	controls.	Phasing	does	not	require	external	data.	Under	the	hypothesis	that	FSV/s lie	on	a	risk	haplotype	backbone,	selecting	cases	homozygous	for	risk-haplotype	and controls	without risk-haplotypes	results	in an	extreme	discordant	design	with good	power	to	detect	underlying	FSVs	with	small	sample	sizes conducive	to	quick	and	affordable	high-throughput	sequencing	(HTS).	To	illustrate	the	gain	in	power of	the	discordant	design, consider	a	FSV	with population	risk	allele	frequency	RAF=0.32 and	an	allelic odds	ratio	OR=1.09 (i.e.RAF=0.34 in	cases).	Even	if	the associated	SNP	is	in	perfect	linkage	disequilibrium	(LD)	with	the	FSV	(r2=1.0),	greater	than 85,000	samples	are	required	to	identify	it with 80%	power	at	a	significance	of	α=5×10-8.	Now	consider	a haplotype	discordant	design: cases	homozygous	for	the	risk	haplotype	and	controls	with	zero	copies.	If	the	risk	haplotype	were	a	perfect	proxy,	the	FSV	RAF would	be	enriched	to	1.0	in	cases and	reduced to	0.0	in	controls.	While	enrichment will	not be	perfect,	it	will be greatly	enhanced;	thus if RAFsbecome 0.9 (cases)	and 0.1 (controls), a	sample	size	of	only	28 has 80%	power	at	α=5×10-8(see	Supplemental	Methods	for	more	details).
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As	proof-of-concept	we	present	a	discordant	haplotype	HTS	DNAseq study	in	38	individuals	for the 2q33	(CASP8/ALS2CR12) region, a breast	cancer	risk locus(11).	In	order	to	address	the	lack	of	knowledge	surrounding	gene	regulation and	better	prioritize	our	sequence	variants,	we	supplemented	publicly	available	annotations	with RNAseq	in	normal	and	tumor	breast	tissue, and identify	three	FSVs	affecting	enhancer	activity.
Methods

An	overview	of	study	design	detailing	the	sample	sets	used	for	the	DNAseq	and	RNAseq	analyses	can	be	found	in	the	Supplemental	Figure.	
DNA	sequencing	and	variant	prioritizationHaplotype	mining	was	performed	previously	using	hapConstructor(12) based	on	45	tagging-SNPs	across 220	kb	spanning	CFLAR,	CASP10,	CASP8 and	ALS2CR12 in	3,888	individuals	from	the	Utah	and	Sheffield	Breast	Cancer	Studies	(1,882	breast	cancer	cases	and	1,896	controls).	A	six-SNP	risk	haplotype	was	defined	(p<5×10-6) that	optimally	extracted	the	association	evidence	across	the	region(13).	Specifically,	the	alleles	on	the	haplotype	were	ins-A-G-G-T-del	across	SNPs	rs3834129-rs6723097-rs3817578-rs7571586-rs36043647-rs35010052.	These	6	SNPs	spanned	CASP8 and	the	inter-genic	region	between	CASP8 and	ALS2CR12.	HapMC(14), was	used	to	impute	missing	genotypes	and	infer	phase	on	all	3,888	individuals.	Female	breast	cancer	cases	were	selected	who	were	homozygous	for	the risk	haplotype,	and	female	cancer-free	controls	who	had	zero	copies	(with	probability	>0.95).	For these	individuals,	germ-line	DNA	(200	ng)	from	peripheral	blood	leukocytes	was	selected	for	the	sequencing	panel	based	on	DNA	quantity	
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and	quality	requirements	(3-5	µg	of	high	quality,	high	molecular	weight	genomic	DNA,	free	of	RNA	contamination,	and	at	a minimum	concentration	of	100	ng/µl	with	A260/A280 and	A260/A230 ratios	≥1.8	and	≥1.9,	respectively;	confirmed	by	Bioanalyzer).	The	final	panel	comprised	38	individuals	(21	cases	and	17	controls).	
In	order to	capture	any	underlying	FSVs	tagged	through long-range	LD	with the	risk	haplotype,	we	sequenced	across	a	broader	region.	We	thus	defined	the	chromosome	2q33.1	low-risk	breast	cancer	locus	to be	from	201,566,128	to	202,566,128	bp	(hg19);	theminimal	region	required	to	contain	all	variants	in	the	HapMap	or	1000G	projects	with	a	r2≥0.1	with	the	previously	reported	variants	associated	with	breast	cancer	(rs1045485	and	rs10931936)(15,16).	The	region	is	gene-rich	with	18	genes:	AOX2P,	LOC100507140,	BZW1,	

CLK1,	PPIL3,	NIF3L1,	ORC2,	FAM126B,	NDUFB3,	CFLAR,	CASP10,	CASP8,	ALS2CR12,	TRAK2,	

STRADB,	ALS2CR11,	TMEM237, andMPP4 (Figure	1).
The	SureSelect	Target	Enrichment	system	was	used	to	generate	libraries	for	next	generation	sequencing	based	on	all	non-repetitive	genic	and	intergenic	sequence	in	the	1	Mb	region.	Capture	bait	design	was	carried	out	using	Agilent	E-array	and	Windowsmasker	(NCBI	C++	Toolkit),	resulting	in	8,227	baits	that	mapped	to	567,411	bp.	Samples	were	multiplexed	12	per	lane	for	ABI	SOLiD	sequencing	to	generate	50	bp	single-end	reads.	Raw	sequence	reads	were	aligned	using	NovoalignCS	(http://www.novocraft.com), developed	specifically	for	color	space	SOLiD	technology	data.	On	average,	69.2%	of	reads	accurately	mapped	to	the	1	Mb	region,	and	609,165	bases	had	≥10×	coverage	(mean	76×).	Alignment	was followed	by	duplicate	marking	using	Picard	(http://broadinstittute.github.io/picard)	and	GATK(17) best	practice	V2	for	variant	calling	including	local	realignment,	

http://broadinstittute.github.io/picard
http://www.novocraft.com/
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recalibration,	joint	calling	with	UnifiedGenotyper	and	variant	filtration.	A	total	of	1,197	positions were	heterozygous	in	at	least	one	individual	in	the	sequencing	panel,	and	passed	quality	control	variant	filtration	with	good	variant	quality	score	(Q>30),	63	sequence	variants	(SVs) were	not	acknowledged	by	the	1000G	project	and	were	removed	from	consideration,	resulting	in	1,134	SVs	for	comparisons	between	cases	and	controls.	
In	the	homozygous	discordant	risk	haplotype	design,	the	FSV should	reside	on	all	case	chromosomes	and	no	control	chromosomes.	To	prioritize	variants	based	on	this	expectation,	the	allele	frequency	(AF)	was	calculated	for	both	REF	and	ALT	alleles	at	each	of	the	1,134	SVs	in	both	cases	and	controls.		A	SV	was	considered	a	cFSV if	an	allele	had	AF≥0.9	in	cases	and	AF≤0.1	in	controls.	If	so,	that	allele	was	considered	the	risk	allele.	955	SVs	had	an	allele	with	AF≥0.9	in	cases,	but	only	18	of	these	also	had	AF≤0.1	in	controls.	For	these	18,	the	RAF	varied	from	0.905—1.0	in	cases,	and	from	0.0—0.094	in	controls.	One	variant	aligned	perfectly	with	expectations	(rs3769821,	RAFs	of	1.0 and	0.0 in	cases	and	controls,	respectively).	Chi-squared	tests	of	allele	counts	by	case/control	group	were	calculated	to	help	interpret	these	observed	discrepant	RAF	frequencies.	All	were	highly	significant	(6.9×10-13≤p≤2.8×10-18,	Table	1).	Background	frequencies	for	the	risk	alleles	for	the	CEU/GBR	1000G	samples	are	shown	in	Table	1.	
RNA	sequencing	and	differential	expressionA	panel	of	fresh	frozen	breast	tissue	samples	was	assembled	from	88	women	who	had	surgery	at	the	Huntsman	Cancer	Hospital	from	2009-2012.	This	included	paired	tumor	and	normal	(adjacent	grossly-uninvolved)	tissues	for	69	breast	cancer	patients	and	normal	tissues	from	an	additional	19	women	undergoing	breast	reduction	surgery.	RNA	was	
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extracted	from	all	tissue	samples.	For	germ-line	genotypes,	DNA	extracted	from	peripheral	blood	(N=15),	or	from	the	normal	tissue	(N=73)	was	used.	For	genotyping,	we	required	10	µl	of	DNA	at	a	concentration	of	50	ng/µl	measured	by	PicoGreen.	An	Illumina	BeadExpress	assay	was	designed	for	the	18	cFSVs.	One	variant	failed	design	(rs10635401)	and	another	failed	genotyping	QC	(rs3769820),	leaving	16	cFSVs	with	good	quality	genotype	data	for	differential	expression	analyses (carriage	of	risk	allele	vs.	no	copies).	For	RNAseq,	we	required	50	μl	of	RNA	at	a	concentration	of	25	ng/μl	and	RIN≥6.0.	Bioanalyzer	results	indicated	that	quality	was	generally	high	(average	RIN=7.9),	although	one	tumor	sample	yielded	poor	quality	RNA	(RIN=2.5)	and	was	removed	from	consideration,	resulting	in	apanel	of	156	breast	samples	(88	normal,	68	tumor).	RNAseq	was	carried	out	using	Illumina	TruSeq	Stranded	mRNA	sample	preparation	with	oligo	dT	selection,	and	samples	were	multiplexed	8	per	lane	on	the	Illumina	HiSeq2000	to	generate	50	bp	single-end	reads. Raw	sequence	reads	were	aligned	using	Novoalign	(V2.08.01)	against	the	reference	genome	plus	extended	splice	junctions	(hg19	annotations	for	gene	model).	We	used	USeq,	an	extensive	package	of	open-source	RNAseq	workflow	written	and	benchmarked	by	the	University	of	Utah	Bioinformatics	Shared	Resource(18),	to	quality	control,	wrap	programs,	manage	and	prepare	files.		Two	samples	failed	RNAseq	QC	and	were	removed	(degraded	signatures	by	Picard)	leaving	154	samples	(86	normal,	68	tumor),	with	an	average	of	19.1	M	reads	per	sample	for	analysis.		We	performed	differential	expression	analyses	based	on	carriage	of	risk	alleles	at	cFSVs	using	DESeq2(19),	which	employs	a	negative	binomial	distribution	to	test	for	differences.	The	RNAseq	panel	provided	80%	power	to	find	ratios	≥1.19	or	≤0.84	(equivalent	to	fold	differences	in	expression	of	~20%),	at	a	nominal	significance	level	(α=0.05)(20).	
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We	selected CFLAR,	CASP10,	CASP8,	ALS2CR12,which	span	the	central ~0.25	Mb	of	the	1	Mb	region, as	potential	target	genes for	our	cFSVs.	The	transcriptome-normalized	counts,	averaged	across	all	samples,	were	79.9,	27.1,	38.4,	and	<1.0	per	million	mapped	reads	respectively.	This	indicated	that CFLAR,	CASP10 and	CASP8	were	expressed	sufficiently	well	in	the	breast	to	pursue	eQTL	analyses,	but	that ALS2CR12 was	not	well	expressed	and	was	not	considered	further.	Consistent	with	our	data,	ENCODE	RNAseq	data	also	indicated	that	
CFLAR,	CASP10,	and	CASP8	were	expressed	in	breast	tissues.	All	were	expressed	in	the	human	mammary	epithelial	(HMEC)	normal	breast	cell	line,	although	the	level	of	CASP10expression	was	lower	than	the	other	genes;	CASP8 and	CFLARwere	also	expressed	in	the	breast	cancer	cell	line	MCF-7.	These	three	genes	are	also	good	functional	candidates:	CASP8and	CASP10 are	pro-apoptotic,	while	CFLAR (caspase-8	and	FADD	like	apoptosis	regulator)	is	anti-apototic,	structurally	similar	to	caspase-8	but	lacking	the	pro-apoptotic	caspase	death	domains. Because	it	has	been	suggested	that	more	than	40%	of	enhancers	do	not	target the	nearest	gene	we	tested	for	association	between	each	cFSV	and	the	all	three	genes(21).	
The	Cancer	Genome	Atlas	(TCGA)	RNAseq	data	for	replication	Genome-wide	germ-line	SNP	genotyping	and whole	transcriptome	RNAseq data	for	97	normal	(adjacent	grossly	uninvolved)	tissues	and	753	tumor	breast	tissue	samples	are	available	as	part	of	the	TCGA	Research	Network	(http://cancergenome.nih.gov/),Genotypes	were	available	for	only	3	SNPs	from	our	list	of	18	cFSVs.	Transcriptome	normalized	counts	(with	correction	for	differences	in	transcriptome	length	and	specific	gene	annotations	from	hg18	to	hg19)	indicated	expression	levels	of	149.1,	16.0	and	89.9	per	million	mapped	reads	for	CFLAR,	CASP10,	CASP8,	respectively,	and	differential	analyses	

http://cancergenome.nih.gov/
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were performed	all	3	genes	in	both	normal	and	tumor	tissues.	We	note	that	the	average	standardized	counts	for	CASP10 fell	below	20	counts	per	million	mapped	reads,	and	more	caution	should	be	exercised	in	interpreting	findings	for	that	gene	in	these	data.
Comparison	to	traditional	fine-mapping:	Meta	association	evidence	from	BCAC	and	GWASThe	R	package	metaphor (http://cran.r-project.org/web/packages/metafor)	was	used	to	carry	out	a	meta-analysis	for	the	cFSVs,	based	on	the	odds	ratios	and	95%	confidence	intervals	provided	for	46,450	cases,	42,600	controls	(BCAC)	and	22,627	cases	and	10,052	controls	(9	GWAS)	in	Lin	et	al(11).
Potential	functional	relevance:	Luciferase	assays	for	enhancer	activityVariants rs3769823,	rs3769821	and	rs10197246	were	chosen	to	investigate	for	ability	to	affect	enhancer	activity.		To	create	the	enhancer	constructs,	we	performed	PCR	using	genomic	DNA	from	T-47D,	which	is	homozygous	for	risk	alleles	at	all	three	SNPs,	and	MCF10A,	which	is	homozygous	for	neutral	alleles,	using	the	following	primer	pairs:rs3769821/rs3769823	forward	(1531	bp	product),	TACCTGAGCTCGCTAGCCGGATCAATGCTACAAAGACACG	rs3769821/rs3769823	reverse,	GGCCAGATCTTGATATCCCAGTCACCTCTGGAGGCATTrs10197246	forward	(758	bp),	TACCTGAGCTCGCTAGCCGCTGTTTAATTTCCATGCGTTTrs10197246	reverse,	GGCCAGATCTTGATATCCTCTTTAGCAGTAGCACAACACAAAPhusion	HF	master	mix	(NEB)	and10	ng	genomic	DNA	was used	for	PCR	and	PCR	products	were	purified	with	AMPure	XP	beads	(Beckman	Coulter).		We	then	digested	pGL4.23	(Promega)	with	XhoI	(NEB)	and	combined	the	digest	with	the	purified	PCR	products	to	perform	Gibson	Assembly	(NEB)	according	to	the	manufacturer’s instructions.		Clones	were	

http://cran.r-project.org/web/packages/metafor
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verified	by	Sanger	sequencing	and	no	differences	between	the	haplotypes,	except	for	the	expected	alleles,	were	identified.
T-47D	(ATCC	HTB-133)	and	MCF10A	(ATCC	CRL-10317)	were	obtained	from	ATCC,	where	STR	profiling	analysis	was	used	to	authenticate	the	cell	lines,	and	were	grown	within	six	months	of	resuscitation.		Each	line	was	cultured	according	to	ATCC	recommendations	with	the	following	modification:	no	insulin	was	added	to	the	media	for	T-47D.		Cells	were	plated	at	a	density	of	10,000	cells/well	in	96-well	plates	and	after	24	hours	Lipofectamine	3000	(Life	Technologies)	was	used	to	transfect	the	enhancer	constructs	as	well	as	pGL4.23	as	a	negative	control.		48	hours	post-transfection,	each	well	was	assayed	for	luminescence	using	Steady-Glo	Luciferase	Assay	System	(Promega)	and	read	on	a	GloMax	luminometer	(Promega).		Luminescence	was	background	subtracted	using	non-transfected	wells	and	normalized	by	pGL4.23	levels.		T-tests	were	used	to	determine	significance	of	expression	differences	between	alleles.		
Ethics	ApprovalsThe	women	whose	samples	were	involved	in	the	DNAseq	and	RNAseq	experiments	described	here	were	enrolled	in	studies	approved	by	the	University	of	Utah	Institutional	Review	Board	or	South	Yorkshire	Research	Ethics	Committee.	Informed	consent	was	obtained	from	all	research	participants.
ResultsUsing	HTS technology,	we	performed targeted	DNAseq	of	all	non-repetitive	sequence	across 1	Mb	at	2q33.1	(201.57- 202.57	Mb,	hg19) in	38	women	selected	for	extreme	



13

discordance	of	a	previously	defined	risk-haploype(13) (21	breast	cancer	cases	homozygous	for	the	risk	haplotype	and	17	female,	cancer-free	controls	with	zero	copies).	We	identified1,134	high	quality	SVs that	were	also	confirmed	as	SVs	in	the	1000	Genomes	(1000G,	http://www.1000genomes.org/)	project	data (Figure	1).
In	the	optimal	situation,	the	FSV	would	reside on	all	42	case	chromosomes	and	no control	chromosomes.	In	selecting	cFSVs,	we	allowed	10%	discrepancy, such	that a SV	was	considered a	candidate	if	RAF≥0.9	in	cases	and	RAF≤0.1	in	controls.	This	resulted	in	18cFSVs (15 in	CASP8 and	3 in	the	adjacent	gene	ALS2CR12): one was	exonic (CASP8),	16intronic,	and	one in	the	3’ UTR of	ALS2CR12 (Table	1).	As	expected,	allele	frequency	differences	between	the	cases	and	controls	were	all	highly	significant	due	to	the	discordant	design	(all	p<10-12).	Risk alleles	were	all	very	common	in	the	general	population	(1000G	RAFs=0.27-0.40).	
To	assess	the	cFSV	for	potential	functional	consequences,	we	performed eQTL	analysisusing high	quality	RNAseq data	for	CASP8,	CASP10,	and	CFLAR in	86	normal tissue	and 68	tumor samples,	examining	expression	differences	based	on	germ-line DNA	genotype	data	for	16/18 cFSVs (Table	1). The expression	of	CASP8was	significantly	decreased	for	carriers	of	12/16 cFSVs within	normal	breast	tissue	(Table	2); most	significant	for	a	group	of	five	cFSVs at	the	3’	ends of CASP8 and	ALS2CR12,	between	positions	202,143,928-202,153,920bp (expression	ratio=0.86,	p=3.6×10-4,	Figures	2	and 3). Reduction in	expression	with	carriage	of	these	cFSVs was	consistent	in	the	subsets	of	adjacent	grossly-uninvolved	and	breast	reductions	(data	not	shown). No	significant	differences	based	on	carriage	of	risk	alleles	were	found	for	CASP8 in	tumor	(although	ratios	were	in	the	same	direction	as	for	

http://www.1000genomes.org/


14

the	normal	tissue,	but	less	extreme).	No differential	expression	was	apparent	based	on	cFSVs	in	CASP10 or	CFLAR in	normal	or	tumor	tissues.	We	replicated eQTL	results	using	data	from	TCGA	Research	Network	(http://cancergenome.nih.gov/)	project,	where RNAseqdata	was	available	for	97	normal breast	and	753	tumor tissue	samples,	and germ-line	genotypes	for	3/18 cFSVs.	Similarly,	decreased CASP8 expression	was	found	for	risk	alleles	at	three	cFSVs	in	normal	tissue,	with	the	most	significant	association	for	rs6743068	(ratio=0.86,	p=2.6×10-4),	which	resides in	the	cluster	of	five most	significant	cFSVs.	As	before,	there was	no	evidence	for	CASP8	expression	differences	based	on	cFSVs	in	tumor	tissues,	or	for CFLAR or	CASP10 expressions in	either	tissue	type.	
This small, but highly	focused	haplotype	discordant	study,	demonstrates that	cFSVs	can	be	identified	that	are	associated	with	gene	expression.	However,	equally important	is	how	this	information	aligns	and	adds	value	to	results from	a	traditional	“fine-mapping”	study.	To	achieve	this,	we	aligned our cFSVs	with those	suggested	by	the	fine-mapping	study by	the	Breast	Cancer	Association	Consortium	(BCAC)	that	used	89,050	samples and 1,733imputation	fine-mapping	SNPs	across	the	same	1	Mb	region(11).	The	BCAC	study	identified	one	region	that	achieved	genome-wide	significance	(referred	to as	iCHAV1,	p=1.1×10-
9)(11). The	BCAC	iCHAV1	SNP	set	corresponds	closely	with	the	set	of	cFSVs	identified	here.	Nine	SVs	were	present	in	both	sets,	seven present only	in	the	BCAC set, and	nine present	only	in	the	discordant	haplotype	set (Table	3).	The seven SVs	present only in the	BCACresults were	in genomic	regions 1000G	has	designated as	inaccessible	to	HTS	technologies	and	were	not	captured	by	our	sequencing	baits.	This	highlights	a	limitation of	HTS	technology,	but	also	suggests	caution	with	imputation	in	this	region,	which	is	based	on	low	coverage	sequence	data	(6	of	the	7 missed	SNPs	were	imputed).	We	genotyped	the	

http://cancergenome.nih.gov/
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remaining	SV,	rs10197246, which	indicated	it	would	have	passed our	cFSV	criteria (Table	3).	Of	the	nine cFSVs	present	only	in	our discordant	haplotype	study,	several only	narrowly	missed BCAC	inclusion. For	example,	our	set	included	both	rs6735656	and	rs10635401,	but	only	the	latter was captured	in the	BCAC	set due	to	slight	superiority	in	significance in	that	data.	Interestingly,	in	a combined	BCAC+9	GWASmeta-analysis, the	order	of	significance	is	reversed	for	these	two	SNPs	(Table	3).	Hence,	the	discordant	haplotype	DNAseq	study	not	only	aligned	with,	but	also added	value	to	the	very	large	BCAC	fine-mapping	study.	
Based	on the	combined	25 cFSVs,	we	used	publicly	available	annotations	and	RNAseq	eQTL	results	to	prioritize	for	functional	follow-up	(Table	3).		The	three	most	compelling	cFSVs	are	rs3769823,	rs3769821,	and	rs10197246.	 All	three	yield	highly	significant	results	in	both	the	discordant	haplotype	and	traditional	fine-mapping	approaches	and	are	associated	with	CASP8 expression	differences	in	normal	breast	tissue.		The	first	two	reside	435	bp	apart	in	a	promoter	proximal	region that	exhibits	DNAse	I	hypersensitivity	in	mammary	epithelial	and	breast	cancer	cell	lines,	and	binds	multiple	transcription	factors	(STAT3,	MYC,	Pol2	and	CTCF) based	on	ENCODE	data(22). Also	notable are	results	from	an	eQTL	study	in	blood(23),	indicating	highly	significant	decreased	CASP8 expression	associated	with	these	cFSVs	(Z=-5.44,	p=5.3×10-8),	and	suggesting	the	expression	signature	is	also	readily	observed	in	blood	(Table	3).	The	latter	cFSV,	rs10197246,	resides	in	a	potential	distal	regulatory	element,	80	kb	from	a	CASP8 promoter,	that	is	bound	by	MYC in	the	breast	cancer	cell	line	MCF-7.	Hence,	MYC-triggered	apoptosis	may	be	one	possible	mechanism	for	the	association, worthy	of	investigation.		
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We tested for	functional	differences	between	allelic	variants of rs3769823,	rs3769821 and	rs10197246,	by	performing	enhancer assays based	on	a	luciferase	reporter	gene	in	celllines	derived	from	MCF10A	(normal	breast	tissue) and	T-47D	(breast	tumor).	 Figure	4	shows	the	enhancer	activity	of	the	risk	and	neutral	alleles	in	each	cell	line.	 We	found	that	the	region	containing	the	risk	alleles	of	rs3769821	and	rs3769823	drove	significantly	lower	gene	expression	in	both	the	normal and	tumor	cell	lines compared	to the	same	region	harboring	the	neutral	alleles.		The	region	surrounding	the	risk	allele	of	rs10197246	produced	~3-fold lower	expression	compared	to	the	neutral	allele in	the	normal	breast	cell	line,	but	there	was	no	difference between	alleles	in tumor cells. Overall, the functional	results	are	consistent	with our	eQTL	study, and	suggest	that	these	cFSV	cause	reproducible	reduction	of CASP8 expression	in	normal	breast	tissue.
DiscussionIn	our	proof	of	principle	analysis	of	the	2q33	locus	for	breast	cancer,	we	considered our	focused	extreme	discordant	haplotype study together	with the	much	larger	BCAC	traditional	fine-mapping	study, in	addition	to tissue-specific	RNAseq	and	public	annotations, to select	rs3769823,	rs3769821,	and	rs10197246 as	the	three	most	compelling	cFSVs for	breast	cancer	risk.	The	first	two	SVs	are	435	bp	apart	in	CASP8,	while	rs10197246	resides	81kb	telomeric	within	the	adjacent	ALS2CR12 gene.	Despite	the	81	kb	physical	separation,	all	three	cFSVs	target	CASP8, based	on	the	eQTL	data.	While	all	3	lie	on	the	risk	haplotype,	LD	between	rs3769823/rs3769821	and	rs10197246	is	not	particularly	strong (r2=0.66) suggesting	that	there	may	be	two	functional	hits	on	the	haplotype.	This	hypothesis	is	consistent	with	the	luciferase	enhancer	activity results	that illustrates thatrisk	alleles	at	both	rs3769823/rs3769821	and	rs10197246	independently	and	significantly	
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decreased enhancer	activity. Of particular	interest	was	that	CASP8 expression	differences	were	consistently	stronger	in	normal	breast	tissue compared	to	breast	tumor	material,	both	in	the	frozen	tissue	samples	(RNAseq	data)	and	the	representative	cell	lines	(enhancer	assays).	These	observations	support	the	hypothesis	that	these	three	variants	are	functionally	relevant	breast	cancer	risk	variants	that create	an	environment	more	conducive	to	tumorigenesis by	reducing	CASP8 gene	expression	(and	hence	levels	of	apoptosis) in	the	normal	breast. Moving	forward,	MYC-triggered	apoptosis	may	be	one	possible	mechanism	worthy	of	investigation, given	rs3769823	and	rs10197246	appear	good	functional	candidates	and	both	reside	in	regions bound	by	MYC	in	the	breast	cancer	cell	line	MCF-7.	The	importance	of	CASP8 in	breast	cancer	tumorigenesis	was	also	recently	underscored	by	its	identification	as	one	of	32	genes	significantly	somatically mutated	in	breast	cancer	tumors(24),	and	one	of	only	22	genes	identified	as	significantly	mutated	in	at	least	3	different	common	tumor	types(25),	suggesting	that	other	common	cancers	may	follow	the	pattern	for	susceptibility	that	we	see	here.
Our	interrogation	of	the	2q33	breast	cancer	risk	locus	implicates extremely	common	FSVs(RAF~0.28)	with	small	effect	sizes (~17%	decreased	gene	expression), consistent	with the	common	disease	common	variant	model.	The	largely	non-coding	candidates	identified	and	the	consistent	stronger	significance	in	normal	tissues	suggest that greater	availability	of	resources for	gene-expression	and	other	epigenetic	data	in	normal	tissues	may	prove	critical	in	the prioritization	and	identification	of	common,	low-risk	variants. Initiatives	such	as	the	Roadmap	Epigenomics	Project and	ENCODE will	certainly	help	in	this	regard as	they	come	to	fruition(26).	Here,	we were	successful	in	illustrating	differences	in	88	local	
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samples	that	could	be	replicated	based	on 97 samples from	TCGA.	However, in	general,	much	larger	sample	sizes	may be	needed	to	generate	robust	findings.
Our	small,	focused,	discordant	haplotype	DNAseq	study	identified	18	cFSVs	for	the
CASP8/ALS2CR12 region.	These	results	aligned	with	and	extended	the	16	cFSV	suggested	from	a	traditional	fine-mapping	association	study	almost	four	orders	of	magnitude	larger,leading	to	a	combined	set	of	25	cFSVs,	and	resulting	in	three	variants	(rs3769823,	rs3769821,	and	rs10197246)	implicated	as	functionally	relevant	breast	cancer	risk	allelesinfluencing	CASP8 expression.	The	discordant	haplotype	sequencing	and	traditional	fine-mapping	approaches	have	distinctly	different	strengths	and	weaknesses:	statistically,	technologically,	and	economically.	Large	population-based	association	studies	attain	good	power	to	identify	common,	low-risk	loci	with	accurate	risk	estimates,	but	fine-mapping	efforts	remain	largely	constrained	to	imputation	because	sequencing	costs	are	prohibitive.	The	discordant	haplotype	design	attains	excellent	power	specifically	for	the	locus	for	which	they	are	optimized, and	is	therefore	cost	effective	for	DNAseq,	but	needs	to	be	carried	out	separately	for	each	association	signal	if	there	is more	than	one	in	a	region.	A	noteworthy	limitation	of both	approaches	is the	challenge posed	by	repetitive	DNA	sequences,	witharound	50%	of	the	human	genome	consisting of	repetitive	elements(27).	For	targeted	capture it	is	not	possible	to	design	uniquely-mapping	capture	baits	for	these	regions,	and	for	any	HTS	technology,	alignment	is	difficult across	repetitive	elements.	In	our	discordant	haplotype	study,	for example,	we	were	able	to	capture	only	61%	of	the	region	at	a	read	depth	of ≥10× (average	76× depth	across	the	full	capture). In	particular,	we	did	not	identify	7	SV	that	were available	in	the	BCAC	imputation	study.	Highly	repetitive	sequence	impacts	imputation	studies	differently.	Repetitive regions	are likely	to	harbor	increased	rates	of
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misalignment,	leading	to	non-random	genotype	errors in	the	reference	panel from	which	imputations	are	made.	Quality	scores	may	not	easily	identify	such	errors.	An	example	of	this	in the	exome	design	is	the	appearance	of	highly	variable	‘promiscuous’	genes	within	gene	families	with	a	high	degree	of	identity	at	the	nucleotide	level.	Additionally, the	1000Gphase	3	data, frequently	used	as	a	whole	genome imputation	reference	panel,	have	only	a	~4-6× average	read	depth	across	the	majority	of	the	non-coding	regions	of	the	genomeleading	to	low	quality	genotypes	and	an	over-abundance	of	homozygotes.	To	investigatethis	phenomenon,	we	downloaded	all	Caucasian 1000G	whole	genome	.bam	files	that	were	indicated to	have	passed	quality	control.	We	performed	a	best	practice	haplotypeCaller	GATK	variant	calling	pipeline on	these 191 genomes,	and	inspected the data	for the	7	SVs	imputed	in	the	BCAC	study	but	not	captured	by	baits in	the	current	DNAseq	study.	As	expected,	the	1000G	sequencing	coverage	for	these	7	SVs	was	low	(median	DP	=	5—7×).	Call	rates	ranged	from	83-99%.	Of	those	called,	individual-level	genotype	qualities were	relatively	poor (median GQ=15—24;	GQ<20	often	considered	unreliable,	GQ≥30	often	used	as	a	quality	filter).	Hence	both	designs	are	affected	by	repetitive	genome	sequences,	albeit	in	slightly	different	ways, adding further value	to	a joint-interpretation approach.	We	conclude	that	these	two	approaches	are	extremely	complementary	and	suggest	that	DNAseq	in	a	nested	discordant	haplotype	design	within	larger	case-control	studies	could	play	an	important	role	in	identifying	comprehensive	short-lists	for	functional	studies.	
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Tables

Table	1:	Candidate	Functional	Sequence	Variants	from	DNA	sequencingRAF	risk	allele	frequency;	*	Allele-based chi-squared	test	for	independence
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Table	2:	Expression-QTL	results	for	CFLAR,	CASP10 and	CASP8Grey	font	indicates	that	the	cFSV	failed	to	genotype	on	the	Illumina	BeadExpress	platform;	‘ns’	indicates	a	p-value>0.2;	bold indicates	a	nominal	significant	expression	ratio	(p≤0.05);	*Normal	includes	both	adjacent	grossly	uninvolved	tissue	from	cancer	patients	and	breast	reduction	tissue	from	cancer-free	patients.
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Table	3:	Summary	of	association	and	eQTL	findings	and	breast-specific	regulatory	annotations	for	25	cFSVs‘nd’	indicates	no	data	(experiment	not	performed);	‘na’	indicates	not	applicable	(the	base	positions	were	not	contained	in	the	DNAseq	bait	set	due	to	sequence	inaccessible,	hence	there	was	no	coverage	for	these	variants);	**	indicates	association	results	are	gained	from	genotyping	data;	BCAC	indicates	results	from	the	recent	Breast	Cancer	Association	Consortium	fine-mapping	paper(11).	HMEC=	human	mammary	epithelial	cells	("normal"	breast	cell line);	MCF-7=	mammary	gland,	adenocarcinoma(28)(estrogen	positive	breast	tumor	cell	line);	MCF-10A-Er-Src	=	MCF-10A	parent	cells	(mammary	gland,	non-tumorigenic	epithelial,	inducible	cell	line),	but	containing	ER-SRC,	a	derivative	of	the	SRC	kinase	oncoprotein	(v-SRC)	that	is	fused	to	the	ligand-binding	domain	of	the	estrogen	receptor	(estrogen	positive	breast	tumor-like	cell	line);	T-47D=	human	ductal	breast	epithelial	tumor	(triple	negative	breast	tumor	cell	line);	*	indicates	a	statistically	significant	regulatory	finding	(as	per	ENCODE	‘peak’	tracks). Important	note:	not	all	experiments	in	ENCODE	have	been	performed	on	all	cell	lines.	A	blank	indicates	no	data.
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Figure	legends

Figure	1:	DNA	sequencing	coverage	and	variants	in	the	1	Mb	regionEighteen	genes	reside	in	the	region	defined	by	chromosome	2	201,566,128	to	202,566,128	bp	(hg19).	Upper	Panel:	A	graph	of	the	number	of	variant	positions	identified	in	the	DNA	sequencing	across	the	region.	Lower	Panel:	A	graph	of	the	average	depth	of sequencing	coverage	in	the	38	sequenced	individuals.
Figure	2:	Association	and	eQTL	evidence	and	regulatory	annotations	for	17	

candidate	functional	sequence	variantsSeventeen	cFSVs	are	illustrated	(16	selected	from	DNA	sequencing,	plus	rs10197246).	These	reside	within	100	kb	region	at	chromosome	2	202,110,000	– 202,210,000	bp	(hg19).	Two	genes,	CASP8 and	ALS2CR12,	reside	in	this	genomic	region.	Upper	Panel:	A	graph	showing	the	association	evidence	(-log10p)	for	each	of	the	17	cFSVs	in	the	discordant	haplotype	design.	Middle	Panel:	A	graph	showing	eQTL	evidence	(-log10p)	based	on	RNA	sequencing	data	in	the	local	tissue	panel	for	expression	of	three	genes:	CASP8	(red),	CASP10	(blue)	and	CFLAR	(green)	in	normal	(circle	symbol)	and	tumor	(triangle	symbol)	breast	tissues.	Lower	Panel:	Five	regulatory	annotation	tracks	from	UCSC	Genome	Browser	using	ENCODE	data(22,29).	In	order,	from	top	to	bottom:	(1)	DNAseIHS,	DNAse	I	hypersensitivity	clusters	in	125	cell	types;	(2)	Tfbs,	Transcription		Factor	ChIP-seq	(161	factors);	(3)	H3K4Me1,	Layered	H3K4Me1	histone	modification	marks	(often	found	near	Regulatory	Elements)	on	7	cell	lines;	(4)	H3K4Me3,	Layered	H3K4Me3	histone	modification	marks	(often	found	near	Promoters)	on	7	cell	lines;	(5)	H3K27Ac,	Layered	H3K27Ac	histone	modification	marks	(often	found	near	active	regulatory	elements)	on	7	cell	lines.
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Figure	3:	Expression	levels	of	CASP8 in	normal	breast	tissue	The	three	categories	on	the	x-axis	indicate	genotype	at	rs10931936,	rs3769818,	rs700635,	rs6714430,	or	rs6743068	(all	5	of	these	cFSV	are	identical	for	genotype	in	our	RNAseq	panel	of	women).	These	cFSVs	exhibited	the	most	significant	evidence	for	association	with	
CASP8 expression	in	normal	breast	tissue	(ratio=0.85,	p=5×10-4)	Genotype=1	includes	women	homozygous	for	the	common	allele;	Genotype=2	includes	heterozygous	women;	and	Genotype=3	includes	women	homozygous	for	the	risk	allele.
Figure	4:	Allele	specific	enhancer	activity	for	rs3769821/rs3769823	and	

rs10197246The	bar	graph	shows	the	log2 of	the	relative	expression	of	the	risk	allele	to	the	neutral	allele,	within	a	cell	type,	as	measured	by	luciferase	output	in	an	enhancer	assay.		Expression	of	the	neutral	allele	was	used	to	normalize	each	pair	of	experiments.		Expression	measured	in	MCF10A	is	shown	in	blue	and	expression	measured	in	T-47D	is	shown	in	red.		Significance	level	is	indicated	above	each	pair.	‘ns’	indicates	not	significant.	Neutral/risk	alleles	as	follows:	rs3769821,	A/G;	rs3769823,	C/T;	and	rs10197246,	C/T
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