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Analysis of Regularized LS Reconstruction and

Random Matrix Ensembles in Compressed Sensing
Mikko Vehkaperä Member, IEEE, Yoshiyuki Kabashima, and Saikat Chatterjee Member, IEEE

Abstract—Performance of regularized least-squares estimation
in noisy compressed sensing is analyzed in the limit when
the dimensions of the measurement matrix grow large. The
sensing matrix is considered to be from a class of random
ensembles that encloses as special cases standard Gaussian, row-
orthogonal, geometric and so-called T -orthogonal constructions.
Source vectors that have non-uniform sparsity are included in the
system model. Regularization based on ℓ1-norm and leading to
LASSO estimation, or basis pursuit denoising, is given the main
emphasis in the analysis. Extensions to ℓ2-norm and “zero-norm”
regularization are also briefly discussed. The analysis is carried
out using the replica method in conjunction with some novel
matrix integration results. Numerical experiments for LASSO
are provided to verify the accuracy of the analytical results.

The numerical experiments show that for noisy compressed
sensing, the standard Gaussian ensemble is a suboptimal choice
for the measurement matrix. Orthogonal constructions provide a
superior performance in all considered scenarios and are easier
to implement in practical applications. It is also discovered that
for non-uniform sparsity patterns the T -orthogonal matrices
can further improve the mean square error behavior of the
reconstruction when the noise level is not too high. However,
as the additive noise becomes more prominent in the system, the
simple row-orthogonal measurement matrix appears to be the
best choice out of the considered ensembles.

Index Terms—Compressed sensing, eigenvalues of random ma-
trices, compressed sensing matrices, noisy linear measurements,
ℓ1 minimization

I. INTRODUCTION

C
ONSIDER the standard compressed sensing (CS) [1]–

[3] setup where the sparse vector x0 ∈ R
N of interest is

observed via noisy linear measurements

y = Ax0 + σw, (1)
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where A ∈ R
M×N represents the compressive (M ≤ N)

sampling system. Measurement errors are captured by the

vector w ∈ R
M and parameter σ controls the magnitude of

the distortions. The task is then to infer x0 from y, given the

measurement matrix A. Depending on the chosen performance

metric, the level of knowledge about the statistics of the source

and error vectors, or computational complexity constraints,

multiple choices are available for achieving this task. One

possible solution that does not require detailed information

about σ or statistics of {x0,w} is regularized least-squares

(LS) based reconstruction

x̂ = arg min
x∈RN

{
1

2λ
‖y −Ax‖2 + c(x)

}

, (2)

where ‖ · ‖ is the standard Euclidean norm, λ a non-negative

design parameter and c : RN → R a fixed non-negative valued

(cost) function. If we interpret (2) as a maximum a posteriori

probability (MAP) estimator, the implicit assumption would

be that: 1) the additive noise can be modeled by a zero-mean

Gaussian random vector with covariance λIM , and 2) the

distribution of the source is proportional to e−c(x). Neither is

in general true for the model (1) and, therefore, reconstruction

based on (2) is clearly suboptimal.

In the sparse estimation framework, the purpose of the cost

function c is to penalize the trial x so that some desired

property of the source is carried over to the solution x̂. In

the special case when the measurements are noise-free, that is,

σ = 0, the choice λ → 0 reduces (2) to solving a constrained

optimization problem

min
x̂∈RN

c(x̂) s.t. y = Ax̂. (3)

It is well-known that in the noise-free case the ℓ1-cost c(x) =
‖x‖1 =

∑

j |xj | leads to sparse solutions that can be found

using linear programming. For the noisy case the resulting

scheme is called LASSO [4] or basis pursuit denoising [5]

x̂ℓ1 = arg min
x∈RN

{
1

2λ
‖y −Ax‖2 + ‖x‖1

}

. (4)

Just like its noise-free counterpart, it is of particular impor-

tance in CS since (4) can be solved by using standard convex

optimization tools such as cvx [6]. Due to the prevalence

of reconstruction methods based on ℓ1-norm regularization in

CS, we shall keep the special case of ℓ1-cost c(x) = ‖x‖1 as

the main example of the paper, although it is known to be a

suboptimal choice in general.

Copyright (c) 2014 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes
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A. Brief Literature Review

In the literature, compressed sensing has a strong connota-

tion of sparse representations. We shall next provide a brief

review of the CS literature while keeping this in mind. The the-

oretical works in CS can be roughly divided into two principle

directions: 1) worst case analysis, and 2) average / typical case

analysis. In the former approach, analytical tools that examine

the algebraic properties of the sensing matrix A, such as,

mutual coherence, spark or restricted isometry property (RIP)

are used. The goal is then to find sufficient conditions for the

chosen property of A that guarantee perfect reconstruction —

at least with high probability. The latter case usually strives for

sharp conditions when the reconstruction is possible when A is

sampled from some random distribution. Analytical tools vary

from combinatorial geometry to statistical physics methods.

Both, worst case and average case analysis have their merits

and flaws as we shall discuss below.

For mutual coherence, several works have considered the

case of noise-free observations (σ = 0) and ℓ1-norm mini-

mization based reconstruction. The main objective is usually

to find the conditions that need to be satisfied between the

allowed sparsity level of x and the mutual coherence property

of A so that exact reconstruction is possible. In particular, the

authors of [7] established such conditions for the special case

when A is constructed by concatenating a pair of orthonormal

bases. These conditions were further refined in [8] and the

extension to general matrices was reported in [9] using the

concept of spark.

Another direction in the worst case analysis was taken in

[10], where the basic setup (1) with sparse additive noise

was considered. The threshold for exact reconstruction under

these conditions was derived using RIP. By establishing a

connection between the Johnson-Lindenstrauss lemma and

RIP, the authors of [11] proved later that RIP holds with

high probability when M grows large for a certain class of

random matrices. Special cases of this ensemble are, for ex-

ample, matrices whose components are independent identically

distributed (IID) Gaussian or Bernoulli random variables. This

translates roughly to a statement that such matrices are “good”

for CS problems when ℓ1-norm based penalty is used if the

system size is sufficiently large.

In addition to the basic problem stated above, mutual

coherence and RIP based worst case analysis are prominent

also in the study of greedy CS algorithms and fusion strategies.

Some examples are analysis of orthogonal matching pursuit

[12]–[14], subspace pursuit [15], CoSaMP [16], group LASSO

[17] and Fusion strategy [18]. The general weakness of these

approaches is, however, that if one is interested in typical

or average case performance, the results provided by the

worst case analysis are often very pessimistic and loose. This

consideration is tackled by the second class of analytical

results we mentioned at the beginning of the review.

In a series of papers, the authors of [19]–[21] used tools

from combinatorial geometry to show that in the limit of

increasing system size, the ℓ1-reconstruction has a sharp

phase transition when the measurements are noise-free. A

completely different approach based on approximate message

passing (AMP) algorithm [22], [23] was introduced in [24] and

shown to match the combinatorial results perfectly. Both of

the above methods are mathematically rigorous and the AMP

approach has the additional benefit that it provides also a low-

complexity computational algorithm that matches the threshold

behavior. The downside is that extending these analysis for

more general ensembles, both for the measurement matrix and

the source vector, seems to be quite difficult. Alternative route

is to use statistical mechanics inspired tools like the replica

method [25]–[27].

By now the replica method has been accepted in the

information theory society as a mathematical tool that can

tackle problems that are very difficult, or impossible, to solve

using other (rigorous) approaches. Although the outcomes

of the replica analysis have received considerable success

(see, e.g., [28]–[34] for some results related to the present

paper), one should keep in mind that mathematical rigor is still

lacking in parts of the method [35]. However, recent results

in mathematical physics have provided at least circumstantial

evidence that the main problem of the replica method is

most likely in the assumed structure of the solution [35]–

[39] and not in the parts such as replica continuity that lack

mathematical proof. In particular, the mistake in the original

solution of the Sherrington-Kirkpatrick spin glass has now

been traced to the assumption of replica symmetric (RS) ansatz

in the saddle-point evaluation of the free energy. Indeed, the

end result of the Parisi’s full replica symmetry breaking (RSB)

solution (see, e.g., [25]) has been proved to be correct [38],

[39] in this case. Similar rigorous methods have also been

applied in wireless communications [40] and error correction

coding [41], [42], to name just a few examples1.

B. Related Prior Work

The authors of [28] analyzed the asymptotic performance

of LASSO and “zero-norm” regularized LS by extending the

minimum mean square error (MMSE) estimation problem in

code division multiple access (CDMA) to MAP detection in

linear vector models. More specifically, the MMSE formulas

obtained with the replica method [43], [44] were first assumed

to be valid and then transformed to the case of MAP decoding

through “hardening”. Unfortunately, this approach was limited

to the cases where the appropriate MMSE formulas already

existed and the end result of the analysis still required quite

a lot of numerical computations. The scope of the analysis

was extended to a more general class of random matrices by

employing the Harish-Chandra-Itzykson-Zuber (HCIZ) inte-

gral formula [45], [46] in [30]. Although the emphasis there

was in the support recovery, also the MSE could be inferred

from the given results. A slightly different scenario when the

additive noise is sparse was analyzed in [47], [48]. For such

a measurement model, if one replaces the squared ℓ2-norm

1To avoid the misconception that these methods have made non-rigorous
approaches obsolete, some comments are in place. Firstly, the scope of the
rigorous methods tend to be much more limited than that of the non-rigorous
ones. Secondly, the analysis typically give bounds for the quantities of interest
rather than sharp predictions. Thirdly, it is often helpful to know the end-
result obtained through some non-rigorous way, like the replica method, before
applying the mathematically exact tools on the problem.
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distance in (2) by ℓ1-norm and uses also ℓ1-regularization,

perfect reconstruction becomes sometimes feasible [47], [48].

It is also possible to characterize the MSE of reconstruction

outside of this region using the replica method [48].

The references above left the question open how the choice

of measurement matrix affects the fidelity of the reconstruction

in the noisy setup. In [49] a partial answer was obtained

through information theoretic analysis. The authors showed

that standard Gaussian sensing matrices incurred no loss

in the noise sensitivity threshold if optimal encoding and

decoding were used. Similar result was obtained earlier using

the replica method in [29], and extended to more general

matrix ensembles in the aforementioned paper [30]. On the

other hand, generalization of the Lindeberg principle was used

by the authors of [50] to show that the average cost in LASSO

was universal for a class of matrices of standard type.

Based on the above results and the knowledge that for the

noise-free case the perfect reconstruction threshold is quite

universal [20], [21], [34], one might be tempted to conclude

that using sensing matrices that are sampled from the standard

Gaussian ensemble is the optimal choice also in the noisy case

when practical algorithms such as LASSO are used. However,

there is also some counter-evidence in other settings, such as

the noise-free case with non-uniform sparsity [31], [32] and

spreading sequence design in CDMA [51], [52] that leave the

problem still interesting to investigate in more detail2.

Albeit from a slightly different motivational point-of-view,

similar endeavor was taken earlier in [60]–[63], where it was

discovered that measurement matrices with specific structure

are beneficial for message passing decoding in noise-free

settings. These spatially coupled, or seeded, measurement ma-

trices helped the iterative algorithm to get past local extrema

and hence improved the perfect reconstruction threshold of ℓ1-

recovery significantly. Such constructions, however, turned out

to be detrimental for convex relaxation based methods when

compared to the standard Gaussian ensemble.

Finally we remark that the uniform sparsity model studied

in [34] was extended to a non-uniform noise-free setting in

[33]. The goal there was to optimize the recovery performance

using weighted ℓ1-minimization when the sparsity pattern is

known. We deviate from those goals by considering a noisy

setup with a more general matrix ensemble for measurements.

On the other hand, we do not try to optimize the reconstruction

with block-wise adaptive weights and leave such extensions as

future research topics.

C. Contribution and Summary of Results

The main goal of the present paper is to extend the scope of

[28] and [30] to a wider range of matrix ensembles and to non-

uniform sparsities of the vector of interest. We deviate from the

approach of [28], [30] by evaluating the performance directly

using the replica method as in [31]–[34]. The derivations are

2After the initial submission of the present paper, parallel studies using
completely different mathematical methods and arguing for the superiority
of the orthogonal constructions have been presented in [53] and [54]. Since
then, an extension to the present paper has been proposed in [55] and iterative
algorithms approximating Bayesian optimal estimation for structured matrices
have been devised, see for example, [56]–[59].

also akin to some earlier works on linear models [64], [65].

After obtaining the results for ℓ1-regularization, we sketch how

they can be generalized to other cases like l2-norm and “zero-

norm” based regularization.

The analysis show that under the assumption of RS ansatz

(for details, see Section IV), the average MSE of reconstruc-

tion is obtained via a system of coupled fixed point equations

that can be solved numerically. For the T -orthogonal case, we

find that the solution depends on the sparsity pattern (how the

non-zero components are located block-wise in the vector) of

the source — even when such knowledge is not used in the

reconstruction. In the case of rotationally invariant ensemble,

the results are obtained as a function of the Stieltjes transform

of the eigenvalue spectrum that describes the measurement

matrix. For this case only the total sparsity of the source

vector has influence on the reconstruction performance. The

end results for the rotationally invariant case are also shown

to be equivalent to those in [30], bridging the gap between

two different approaches to replica analysis.

Finally, solving the MSE of the replica analysis for some

practical settings reveals that the standard Gaussian ensemble

is suboptimal as a sensing matrix when the system is corrupted

by additive noise. For example, a random row-orthogonal

measurement matrix provides uniformly better reconstructions

compared to the Gaussian one. This is in contrast to the noise-

free case where it is well known that the perfect reconstruction

threshold is the same for the whole rotationally invariant

ensemble (see, e.g., [34]). On the other hand, albeit T -

orthogonal measurement matrices are able to offer lower MSE

than any other ensemble we tested when the sparsity of the

source is not uniform, the effect diminishes as the noise level

in the system increases. This may be intuitively explained by

the fact that the additive noise in the system makes it more

difficult to differentiate between blocks of different sparsities

when we have no prior information about it.

D. Notation and Paper Outline

Boldface symbols denote (column) vectors and matrices.

Identity matrix of size M×M is written IM and the transpose

of matrix A as AT. Given a variable xk with a countable index

set K, we abbreviate {xk} = {xk : k ∈ K}. We write i =√
−1 and for some (complex) function f(z), denote f(z0) =

extrz f(z) where z0 is an extremum of the function f , that is,

satisfies df
dz

∣
∣
z0

= 0. Analogous definition holds for functions

of multiple variables. The indicator function satisfies 1(A) = 1
if A is true and is zero otherwise. Dirac’s delta function is

written δ(x) and the Kronecker symbol δij .

Throughout the paper we assume for simplicity that given

any continuous (discrete) random variable, the respective

probability density (probability mass) function exists. Same

notation is used for both cases, and given a general continuous

/ discrete random variable (RV), we often refer to probability

density function (PDF) for brevity. The true and postulated

PDF of a random variable is denoted p and q, respectively. If

x is a real-valued Gaussian RV with mean µ and covariance

Σ, we write the density of x as p(x) = gx(µ; Σ).
The rest of the paper is organized as follows. The problem

formulation and brief introduction to the replica trick is given
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in Section II. Section III provides the end-results of replica

analysis for LASSO estimation. This case is also used in the

detailed replica analysis provided in Appendices A and B.

Sketch of the main steps involved in the replica analysis

and comparison to existing results are given in Section IV

for the rotationally invariant setup. Conclusions are provided

in Section V and two matrix integral results used as a part

of the replica analysis are proved in Appendix C. Finally,

Appendix D provides the details of the geometric ensemble.

II. PROBLEM FORMULATION AND METHODS

Consider the CS setup (1) and assume that the elements of

w are IID standard Gaussian random variables, so that

p(y | A,x0) = gy(Ax0; σ2IM ) (5)

is the conditional PDF of the observations. Recall that the

notation x0 means here that the observation (1) was generated

as y = Ax0 + σw, that is, x0 is the true vector generated

by the source. Note that in this setting the additive noise

is dense and, therefore, perfect reconstruction is in general

not possible [47], [48]. Let the sparse vector of interest

x0 be partitioned into T equal length parts {x0
t}Tt=1 that

are statistically independent. The components in each of the

blocks t = 1, . . . , T are drawn IID according to the mixture

distribution

pt(x) = (1− ρt)δ(x) + ρtπ(x), t = 1, . . . , T, (6)

where ρt ∈ [0, 1] is the expected fraction of non-zero elements

in x0
t that are drawn independently according to π(x). The

expected density, or sparsity, of the whole signal is thus

ρ = T−1
∑

t ρt. We denote the true prior according to which

the data is generated by p(x0; {ρt}) and call {ρt} the sparsity

pattern of the source. For future reference, we define the

following nomenclature.

Definition 1. When the system size grows without bound,

namely, M,N → ∞ with fixed and finite compression rate

α = M/N and sparsity levels {ρt}, we say the CS setup

approaches the large system limit (LSL).

Definition 2. Let A ∈ R
M×N be a sensing matrix with

compression rate α = M/N ≤ 1. We say that the recovery

problem (2) is:

1) T -orthogonal setup, if N = TM and the sensing matrix

is constructed as

A =
[
O1 · · · OT

]
, (7)

where {Ot} are independent and distributed uniformly

on the group of orthogonal M ×M matrices according

to the Haar measure3;

2) Standard Gaussian setup, if the elements of A are IID

drawn according to ga(0; 1/M);
3) Row-orthogonal setup, if O is an N × N Haar matrix

and the sensing matrix is constructed as A = α−1/2PO,

where P = [IM 0M×(N−M)] picks the first M rows of

O. Clearly AAT = α−1IM and A has orthogonal rows.

3In the following, a matrix O that has this distribution is said to be simply
a Haar matrix.

4) Geometric setup, if A = UΣV T where U ,V are in-

dependent Haar matrices and Σ ∈ R
M×N is a diagonal

matrix whose (m,m)th entry is given by σm ∝ τm−1

for m = 1, . . . ,M . The parameter τ ∈ (0, 1] is chosen

so that given value of peak-to-average eigenvalue ratio

κ =
σ2
1

1
M

∑M
m=1 σ

2
m

(8)

is met and the singular values are scaled to satisfy the

power constraint N−1
∑M

m=1 σ
2
m = 1. For details, see

Appendix D.

5) General rotationally invariant setup, if the decomposi-

tion R = ATA = OTDO exists, so that O is an N×N
Haar matrix and D is a diagonal matrix containing the

eigenvalues of R. We also assume that the empirical

distribution of the eigenvalues

FM
R (x) =

1

M

M∑

i=1

1(λi(R) ≤ x), (9)

where 1(·) is the indicator function and λi(R) de-

notes the ith eigenvalue of R, converges to some non-

random limit in the LSL and satisfies E tr(AAT)/N =
E tr(D)/N = 1. The setups 2) – 4) are all special cases

of this ensemble.

To make comparison fair between different setups, all cases

above are defined so that E tr(AAT)/N = 1. In addition, both

of the orthogonal setups satisfy the condition αAAT = IM .

Remark 1. The T -orthogonal sensing matrix was considered

in [31], [32] under the assumption of noise-free measurements.

There it was shown to improve the perfect recovery threshold

when the source had non-uniform sparsity. On the other hand,

the row-orthogonal setup is the same matrix ensemble that

was studied in the context of CDMA in [51], [52]. There it

was called Welch bound equality (WBE) spreading sequence

ensemble and shown to provide maximum spectral efficiency

both for Gaussian [51] and non-Gaussian [52] inputs given

optimal MMSE decoding. The geometric setup is inspired by

[66], where similar sensing matrix was used to examine the

robustness of AMP algorithm and its variants via Monte Carlo

simulations. It reduces to the row-orthogonal ensemble when

κ → 1.

A. Bayesian Framework

To enable the use of statistical mechanics tools, we refor-

mulate the original optimization problem (2) in a probabilistic

framework. For simplicity4, we also make the additional

restriction that the cost function separates as

c(x) =

N∑

j=1

c(xj), (10)

where c is a function whose actual form depends on the type

of the argument (scalar or vector). Then, the postulated model

4This assumption is in fact not necessary for the replica analysis. However,
if the source vector has independent elements and the regularization function
decouples element-wise, the numerical evaluation of the saddle-point equa-
tions is a particularly simple task.
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prior (recall our notational convention from Section I-D) of

the source is defined as

qβ(x) =
1

zβ
e−βc(x), (11)

where zβ =
∫
e−βc(x)dx < ∞ is a normalization constant.

Hence, c(x) needs to be such that the above integral is

convergent for given finite M,N and β > 0. The purpose

of the non-negative parameter β (inverse temperature) is to

enable MAP detection as will become clear later. Note that

(11) encodes no information about the sparsity pattern of the

source and is mismatched from the true prior p(x0; {ρt}).
From an algorithmic point-of-view, this means that the system

operator has no specific knowledge about the underlying

sparsity structure or does not want to utilize it due to increased

computational complexity. We also define a postulated PDF for

the measurement process

qβ(y | A,x) = gy

(

Ax;
λ

β
IM

)

, (12)

so that unless λ/β = σ2, the observations are generated

according to a different model than what the reconstruction

algorithm assumes. Note that λ is the same parameter as in

the original problem (2).

Due to Bayes’ theorem, the (mismatched) posterior density

of x based on the postulated distributions reads

qβ(x | y,A)

=
1

Zβ(y,A)
exp

[

− β

(
1

2λ
‖y −Ax‖2 + c(x)

)]

, (13)

where Zβ(y,A) is the normalization factor or partition func-

tion of the above PDF. We could now estimate x based on (13),

for example by computing the posterior mean 〈x〉β , where we

used the notation

〈h(x)〉β =

∫

h(x)qβ(x | y,A)dx (14)

for some given β > 0 and trial function h of x. The specific

case that maximizes the a posteriori probability for given

λ (and σ2) is the zero-temperature configuration, obtained

by letting β → ∞. In this limit (13) reduces to a uniform

distribution over x that provides the global minimum of

‖y−Ax‖2/(2λ)+c(x). If the problem has a unique solution,

we have 〈x〉β→∞ = x̂, where x̂ is the solution of (2). Thus,

the behavior of regularized LS reconstruction can be obtained

by studying the density (13). This is a standard problem in

statistical mechanics if we interpret qβ(x | y,A) as the

Boltzmann distribution of a spin glass, as described next.

B. Free Energy, The Replica Trick and Mean Square Error

The key for finding the statistical properties of the recon-

struction (2) is the normalization factor or partition function

Zβ(y,A). Based on the statistical mechanics approach, our

goal is to assess the (normalized) free energy

fβ(y,A) = − 1

βN
lnZβ(y,A) (15)

in the LSL where M,N → ∞ with α = M/N fixed, and

obtain the desired statistical properties from it. However, the

formulation above is problematic since fβ depends on the

observations y and the measurement process A. One way to

circumvent this difficulty is to notice that the law of large

numbers guarantees that for ∀ǫ > 0, the probability that

|fβ(y,A) − E{fβ(y,A)}| > ǫ tends to vanish in the LSL

for any finite and positive λ, σ2. This leads to computation

of the average free energy fβ = E{fβ(y,A)} instead of (15)

and is called self-averaging in statistical mechanics.

Concentrating on the average free energy fβ avoids the

explicit dependence on {y,A}. Unfortunately, assessing the

necessary expectations is still difficult and we need some

further manipulations to turn the problem into a tractable one.

The first step is to rewrite the average free energy in the zero-

temperature limit as

f = − lim
β,N→∞

1

βN
lim

n→0+

∂

∂n
lnE{[Zβ(y,A)]n}. (16)

So-far the development has been rigorous if n ∈ R and

the limits are unique and exist5. The next step is to employ

the replica trick to overcome the apparent road block of

evaluating the necessary expectations as a function of real-

valued parameter n.

Replica Trick. Consider the free energy in (16) and let y =
Ax0+w be a fixed observation vector. Assume that the limits

commute, which in conjunction with the expression

[Zβ(y,A;λ)]n

=

∫

exp

(

− β

2λ

n∑

a=1

‖y −Axa‖2 − βc(xa)

) n∏

a=1

dxa (17)

for n = 1, 2, . . . allows the evaluation of the expectation

in (16) as a function of n ∈ R. The obtained functional

expression is then utilized in taking the limit of n → 0+.

It is important to note that as written above, the validity

of the analytical continuation remains an open question and

the replica trick is for this part still lacking mathematical

validation. However, as remarked in Introduction, the most

serious problem in practice seems to arise from the simplifying

assumptions one makes about how the correlations between

the variables {xa} behave in the LSL. The simplest case

is the RS ansatz, that is described by the overlap matrix

Q ∈ R
(n+1)×(n+1) of the form

Q = [Q[a,b]]na,b=0 =








r m · · · m
m Q q
... q

. . .

m Q








(18)

with slightly non-standard indexing that is common in litera-

ture related to replica analysis. The elements of Q are defined

as overlaps, or empirical correlations, Q[a,b] = N−1xa · xb.

The implication of RS ansatz is that the replica indexes

a = 1, 2, . . . , n can be arbitrarily permuted without chang-

ing the end result when M = αN → ∞. This seems a

5In principle, the existence of a unique thermodynamic limit can be checked
using the techniques introduced in [37]. However, since the replica method
itself is already non-rigorous we have opted to verify the results in the end
using numerical simulations.
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priori reasonable since the replicas introduced in (17) were

identical and in no specific order. But as also mentioned

in Introduction, the RS assumption is not always correct.

Sometimes the discrepancy is easy to fix, for example as in

the case of random energy model [67], while much more

intricate methods like Parisi’s full RSB solution are needed

for other cases [25]. For the purposes of the present paper,

we restrict ourselves to the RS case and check accuracy of

the end result w.r.t. simulations. Although this might seem

mathematically somewhat unsatisfying approach, we believe

that the RS results are useful for practical purposes due to their

simple form and can server as a stepping stone for possible

extensions to the RSB cases.

Finally, let us consider the problem of finding the MSE of

reconstruction (2). Using the notation introduced earlier, we

may write

mse = N−1
E
{〈

‖x0 − x‖2
〉

β→∞
}

= ρ− 2E
{
N−1〈x〉Tβ→∞x0

}
+ E

{
N−1

〈
‖x‖2

〉

β→∞
}

= ρ− 2m+Q, (19)

where 〈 · · · 〉β was defined in (14) and E{ · · · } denotes the

expectation w.r.t. variables in (1). Thus, if we can compute m
and Q using the replica method, the MSE of reconstruction

follows immediately from (19). As shown above, this amounts

to computing the overlap matrix (18).

III. RESULTS FOR LASSO RECONSTRUCTION

In this section we provide the results of the replica analysis

for LASSO reconstruction (4) for the ensembles introduced

in Definition 2. For simplicity, we let the non-zero elements

of the source be standard Gaussian, that is, π(x) = gx(0; 1)
in (6). Recall also that LASSO is the special case of regu-

larization c(x) = ‖x‖1 in the general problem (2). Replica

symmetric ansatz is assumed in the derivations given in

Appendices A and B. Casual reader finds a sketch of replica

analysis along with some generalizations for different choices

of the cost function c(x) in Section IV. Further interpretation

of the result and connections to the earlier work in [28] are

also discussed there. After the analytical results, we provide

some numerical examples in the following subsection.

A. Analytical Results

The first result shows that when the measurement matrix

is of the T -orthogonal form, the MSE over the whole vector

may depend, not just on the average sparsity ρ but also on the

block-wise sparsities {ρt}.

Proposition 1. Consider the T -orthogonal setup described

in Definition 2 and let mset denote the MSE of the LASSO

reconstruction in block t = 1, . . . , T . The average MSE over

the entire vector of interest reads

mse =
1

T

T∑

t=1

mset =
1

T

T∑

t=1

(ρt − 2mt +Qt). (20)

Then, under RS ansatz,

mt = 2ρtQ
(

1
√

χ̂t + m̂2
t

)

, (21)

Qt = −2(1− ρt)

m̂2
t

r(χ̂t)−
2ρt
m̂2

t

r(χ̂t + m̂2
t ), (22)

where Q(x) =
∫∞
x

dze−z2/2/
√
2π is the standard Q-function

and we denoted

r(h) ,

√

h

2π
e−

1
2h − (1 + h)Q

(
1√
h

)

, (23)

m̂t ,
1

λ+
∑

k 6=t Λ
−1
k

, (24)

for notational convenience. The parameters {Λt} and {χ̂t}
are the solutions to the set of coupled equations

Λt =

(
1

Rt
− 1

)

m̂t (25)

χ̂t =
(ρt − 2mt +Qt)Λ

2
t

(1−Rt)2

+

T∑

s=1

∆s,t(ρs − 2ms +Qs − σ2R2
s), (26)

where we also used the auxiliary variables Rt = χtm̂t with

χt ,
2(1− ρt)

m̂t
Q
(

1√
χ̂t

)

+
2ρt
m̂t

Q
(

1
√

χ̂t + m̂2
t

)

, (27)

∆s,t ,
RsRtΛsΛt

(1− 2Rs)(1− 2Rt)

(

1 +
T∑

k=1

R2
k

1− 2Rk

)−1

− Λ2
t

1− 2Rt
δst, (28)

and Kronecker delta symbol δij to simplify the notation.

Proof: See Appendix A.

The connection of the MSE provided in Proposition 1

and the formulation given in (19) is as follows. Here m =
T−1

∑

t mt and Q = T−1
∑

t Qt due to the assumption of

block-wise sparsity, as described in Section II. The parameters

{Λt, χ̂t} have to be solved for all t = 1, . . . , T , i.e., we

have a set of 2T non-linear equations of 2T variables. Note

that for the purpose of solving these equations, the param-

eters {m̂, Rt,∆s,t,mt, Qt} are just notation and do not act

as additional variables in the problem. Except for mt and

Qt, the rest of the variables can in fact be considered to

be “auxiliary”. They arise in the replica analysis when we

assess the expectations w.r.t. randomness of the measurement

process, additive noise and vector of interest. Hence, one may

think that the replica trick transformed the task of computing

difficult expectations to a problem of finding solutions to a set

of coupled fixed point equations defined by some auxiliary

variables. In terms of computational complexity, this is a very

fair trade indeed.

The implication of Proposition 1 is that the performance

of the T -orthogonal ensemble is in general dependent on the

details of the sparsity pattern {ρt} — in a rather complicated

way. Similar result was reported for the noise-free case in [32],
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where the T -orthogonal ensemble was shown to provide supe-

rior reconstruction threshold compared to rotationally invariant

cases when the source vector had non-uniform sparsity.

For future convenience, we next present the special case of

uniform sparsity as an example. Since now ρ = ρt for all

t = 1, . . . , T , we have only two coupled fixed point equations

to solve. The auxiliary parameters also simplify significantly

and we have the following result.

Example 1. Consider the T -orthogonal setup and assume

uniform sparsity ρt = ρ for all t = 1, . . . , T . The per-

component MSE of reconstruction can be obtained by solving

the set of equations

Λ =
1

λ

[

2(1− ρ)Q
(

1√
χ̂

)

+ 2ρQ
(

1

χ̂+ m̂2

)]−1

− T

λ
, (29)

χ̂ = Λ2

(
ρ− 2m+Q

(1−R)2
− ρ− 2m+Q− σ2R2

1− 2R+ TR2

)

, (30)

where we introduced the definitions

R ,
1

T + λΛ
, (31)

m̂ ,
Λ

T + λΛ− 1
, (32)

for notational simplicity.

For completeness, we provide next a result similar to

Proposition 1 for the rotationally invariant case. It shows that

the performance of this matrix ensemble does not depend on

the specific values of {ρt} but only on the expected sparsity

level ρ = T−1
∑

t ρt of the vector of interest. The MSE is

given as a function of the Stieltjes transform and its first order

derivative of the asymptotic eigenvalue distribution FAAT of

the measurement matrix. As shown in Section IV-B, the end

result is essentially the same as the HCIZ integral formula

based approach in [30], but the derivation and form of the

proposition are chosen here to match the previous analysis.

It should be remarked, however, that Proposition 1 cannot be

obtained from [30] and the T -orthogonal ensemble requires a

special treatment.

Proposition 2. Recall the rotationally invariant setup given in

Definition 2. The average MSE of reconstruction for LASSO in

this case is given by mse = ρ−2m+Q, where the parameters

m and Q are as in (21) and (22) with the block index t omitted.

To obtain the MSE, the following set of equations

χ =
2(1− ρ)

m̂
Q
(

1√
χ̂

)

+
2ρ

m̂
Q
(

1
√

χ̂+ m̂2

)

, (33)

χ̂ = (ρ− 2m+Q)

(
1

χ2
+ Λ′

)

−ασ2
[
GAAT(−λΛ)− (λΛ) ·G′

AAT(−λΛ)
]
Λ′, (34)

Λ =
1

χ

(

1− α
[
1− (λΛ) ·GAAT(−Λλ)

]
)

, (35)

need to be solved given the definitions

Λ′ ,
∂Λ

∂χ
= −

[
1− α

Λ2
+ αλ2G′

AAT(−Λλ)

]−1

, (36)

m̂ ,
1

χ
− Λ =

α

χ

[
1− (λΛ) ·GAAT(−Λλ)

]
. (37)

The function GAAT(s) is the Stieltjes transform of the asymp-

totic distribution FAAT(x) and G′
AAT(s) is the derivative of

GAAT(s) w.r.t. the argument.

Proof: See Appendix B.

Remark 2. Due to (27) and (33), the rotationally invariant and

T -orthogonal setups have exactly the same form for variables

{m,Q, χ}. Hence, the choice of random matrix ensemble does

not affect these variables, except for adding the indexes t =
1, . . . , T to them in the case of T -orthogonal setup.

Notice that in contrast to Definition 2, the above proposition

uses the eigenvalue distribution of AAT instead of ATA. This

is more convenient in the present setup since M ≤ N , so we

do not have to deal with the zero eigenvalues. Compared to the

T -orthogonal case, here we have a fixed set of three equations

and unknowns to solve, regardless of {ρt} and the partition of

the source vector. Thus, if one knows the Stieltjes transform

GAAT(s) and it is (once) differentiable with respect to the

argument, the required parameters can be solved numerically

from the coupled equations given in Proposition 2. For some

GAAT(s), however, the equations can be reduced analytically

to simpler forms that allow for efficient numerical evaluation

of the MSE, as seen in the following two examples.

Example 2. Recall the row-orthogonal setup. For this case

D = α−1IM and, thus, the Stieltjes transform of FAAT reads

GAAT(s) =
1

α−1 − s
, (38)

so that G′
AAT(s) = (α−1 − s)−2. Plugging the above in

Proposition 2 provides

Λ =
λ− α−1χ+

√

−4λχ+ (λ+ α−1χ)2

2λχ
, (39)

m̂ =
λ+ α−1χ−

√

−4λχ+ (λ+ α−1χ)2

2λχ
, (40)

Λ′ = −
[
1− α

Λ2
+

αλ2

(α−1 + λΛ)2

]−1

, (41)

χ̂ = (ρ− 2m+Q)

(
1

χ2
+ Λ′

)

− σ2

(α−1 + λΛ)2
Λ′, (42)

so that the MSE can be obtained by solving the set {χ, χ̂}
of equations given by (33) and (34). As expected, for the

special case of uniform sparsity ρt = ρ and α = 1/T , the

row-orthogonal and T -orthogonal setups give always the same

MSE (see Remark 5 in Appendix B).

In the above example, we first used (38) in (35) and (37)

to solve Λ and m̂ as functions of χ. Plugging then G′ into

(36) provides immediately Λ′, and χ̂ follows similarly from

(34). However, if the form of G is more cumbersome, it may

be more convenient to compute the parameters in slightly

different order as demonstrated in the next example that

considers a generalized version of the standard Gaussian CS

setup.

Example 3. Consider the rotationally invariant setup where

the elements of A are zero-mean IID with variance 1/M . The
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eigenvalue spectrum of AAT is then given by the Marčenko-

Pastur law

GAAT(s) =
−1 + α−1 − s−

√

−4s+ (−1 + α−1 − s)2

2s
,

(43)

that provides together with Proposition 2

Λ =
1

χ
− 1

λ+ α−1χ
, (44)

m̂ =
1

λ+ α−1χ
, (45)

Λ′ = − 1

χ2
+

α−1

(λ+ α−1χ)2
, (46)

G′
AAT(−λΛ) = − 1

αλ2

(
1− α

Λ2
+

1

Λ′

)

. (47)

Plugging the above to Proposition 2 and solving {χ, χ̂} yields

the MSE of reconstruction.

In this case, G′
AAT(s) is of more complex form than in

Example 2, and the approach used there does not provide

as simple solution as before. However, since now Λ has

a particularly convenient form, we may use the definition

Λ′ = ∂Λ
∂χ to write Λ′ as a function of χ. This can be then

used in (36) to obtain G′ indirectly.

Remark 3. As shown in Section IV-B, Examples 2 and 3

provide the same average reconstruction error as reported in

[30], which also implies that the IID case matches [28]. The

benefit of Example 3 compared to [28] is that there are no

integrals or expectations left to solve. Example 2, on the other

hand, proved directly that for the special case of uniform

sparsity ρt = ρ and α = 1/T , the row-orthogonal and T -

orthogonal setups give always the same MSE.

The final example demonstrates the capabilities of the

analytical framework for a “non-standard” ensemble that has

singular values defined by geometric progression.

Example 4. Recall the geometric setup where the singular

values σm ∝ τm−1,m = 1, . . . ,M satisfy peak-to-average

condition (8). Equivalent limiting eigenvalue spectrum of

AAT in the large system limit is described by the Stieltjes

transform

GAAT (s) =
1

sγ
ln

(
A− s

Ae−γ − s

)

− 1

s
, (48)

G′
AAT (s) = −1

s
GAAT (s)− 1

s

A(e−γ − 1)

γ(Ae−γ − s)(A− s)
, (49)

where A = κ/α and γ satisfies

κ =
γ

1− eγ
, (50)

for some given κ. For details on how to generate the geometric

ensemble for simulations and how the Stieltjes transform arises

for this setup, see Appendix D.

B. Numerical Examples

Having obtained the theoretical performance of various

matrix ensembles, we now examine the behavior of the MSE

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−11.5

−11

−10.5

−10

λ

m
se

  
 [

d
B

]

 

 
T−orthogonal setup

Rangan etal. result

row−orthogonal

standard Gaussian

Fig. 1. Average MSE in decibels mse → 10 log10(mse) dB as a function of
the tuning parameter λ. Solid lines given by Examples 2 and 3. Markers for the
standard Gaussian setup are obtained from the analytical results provided in
[28, Section V] and by Example 1 for the T -orthogonal case. All results should
thus be considered to be in the LSL. As predicted by the analysis, the lines and
markers match perfectly. Parameter values: α = 1/3, ρ = 0.15, σ2 = 0.1.

in some chosen setups numerically. First we consider the

case of uniform density and the MSE of reconstruction as

a function of the tuning parameter λ, as shown in Fig. 1.

The solid lines depict the performances of row-orthogonal and

standard Gaussian setups, as given by Examples 2 and 3. The

markers, on the other hand, correspond to the result obtained

by Rangan et al. [28, Section V-B] and Example 1 given in this

paper. As expected, the solid lines and markers match perfectly

although the analytical results are represented in a completely

different form. It is important to notice, however, that we plot

here the MSE (in decibels) while normalized mean square

error (in decibels) mse/ρ is used in [28]. Also, the definition

of signal-to-noise ratio SNR0 there would correspond to value

ρ/σ2 in this paper. Comparing the two curves in Fig. 1 makes

it clear that the orthogonal constructions provide superior MSE

performance compared to the standard Gaussian setup. It is

also worth pointing out that the optimal value of λ depends

on the choice of the matrix ensemble.

In the next experiment we consider the case of “localized

sparsity” where all non-zero elements are concentrated in one

subvector xt, namely, ρt = ρT for some t ∈ {1, . . . , T} and

ρs = 0 ∀s 6= t. For simplicity, we take the simplest case of

T = 2 and choose the overall sparsity to be ρ = 0.2. The

average mean square error vs. inverse noise variance 1/σ2 of

this case is depicted in Fig. 2. For clarity of presentation, the

variables related to both axes are given in a decibel form,

that is, x → 10 log10(x) dB, where x ∈ {mse, σ−2}. The

tuning parameter λ is chosen for each point so that the lowest

possible MSE is obtained for all considered methods. Due

to the simple form of the analytical results, this is easy to

do numerically. Examining Fig. 2 reveals a surprising phe-

nomenon, namely, for small noise variance the T -orthogonal

setup gives the lowest average MSE while for more noisy

setups it is the row-orthogonal ensemble that achieves the best

reconstruction performance. The universality of this behavior
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Fig. 2. Average MSE vs. inverse noise variance 1/σ2, where both quantities are presented in decibels, that is, x → 10 log10(x) dB. For each point, the value
of λ that minimizes the MSE is chosen numerically. The parameter values are α = 1/2, ρ = 0.2 and localized sparsity is considered, that is, either ρ1 = 0.4
and ρ2 = 0 or vice versa. The dashed line at σ−2 = 12 dB represents the point where the MSE performance of T -orthogonal and row-orthogonal ensembles
approximately cross each other. Markers at σ−2 = 5, 12, 19 dB are obtained by using cvx for reconstruction and averaging over 100 000 realizations of the
problem.
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-2

 - 14.30*N
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-2

 - 0.7099N
-1
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Fig. 3. Experimental assessment of the MSE for the point σ−2 = 12 dB
in Fig. 2. Markers correspond to simulated values using SpaSM with path-
following optimization over λ. Problem sizes N = 80, 160, . . . , 400, each
averaged over 106 realizations. The experimental data were fitted with a
quadratic function of 1/N and plotted with solid lines. Extrapolation for
M = αN → ∞ provides the estimates for the asymptotic MSE that agrees
well with the replica prediction for the RS ansatz mse = −12.685 dB.

for other parameter values is left as an open question for

future research. The point where these two ensembles give

approximately the same MSE for the given setup is located

at σ−2 = −12 dB. Hence, for optimal performance, if one

is given the choice of these three matrix ensembles, the row-

orthogonal setup should be chosen when on the left hand side

of the dashed line and T -orthogonal setup otherwise. At any

point in the figure, however, the standard Gaussian setup gives

the worst reconstruction in the MSE sense and should never

been chosen if such freedom is presented.

To illustrate how the experimental points in Fig. 2 were

obtained, we have plotted in Fig. 3 the average MSE of the

point σ−2 = 12 dB, for which the asymptotic prediction

given by the replica method is mse = −12.685 dB. To

obtain more accurate results, the experimental data is aver-

aged now over 106 realizations and estimates are obtained

by using SpaSM [68] that provides an efficient MATLAB

implementation of the least angle regression (LARS) algorithm

[69]. The simulated data is fitted with a quadratic function

of N−1 and the estimates for the asymptotic MSEs are

obtained by extrapolating M = αN → ∞. The end result for

for both the row-orthogonal and T -orthogonal ensembles is

mse = −12.68 dB, showing that the replica analysis provides

a good approximation of the MSE for large systems. One

can also observe that the simulations approach the asymptotic

result relatively fast and for realistic system sizes the match is

already very good. Albeit the convergence behavior depends

somewhat on the noise variance σ2, the present figure is a

typical example of what was observed in our simulations.

Finally, we use the geometric setup to examine the robust-

ness of LASSO against varying peak-to-average ratio κ intro-

duced in (8). Substituting the formulas given in Example 4 to

Proposition 2 provides the MSE of reconstruction for LASSO

as given in Fig. 4. The system parameters are α = 1/2, ρ = 0.2
and σ2 is chosen to match the markers in Fig. 2. As mentioned

earlier, the geometric setup reduces to the row-orthogonal one

when κ → 1, which can verified by comparing the κ = 1
values to the markers of the row-orthogonal curve in Fig. 2.

We have also included additional simulation points at κ = 5,

obtained by using SpaSM as in Fig. 3. One can observe

that the performance degradation with increasing κ for the

LASSO problem is relatively graceful compared to the abrupt

transition of GAMP observed in [66]. Hence, the algorithmic

considerations are indeed very important, as studied therein.
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Fig. 4. Average MSE vs. the peak-to-average ratio κ for the geometric
setup. Markers are obtained by extrapolating simulated values as in Fig. 3 and
optimal λ is used for each point. Parameter values are α = 1/2, ρ = 0.2,
and the points at κ = 1 match the markers of the row-orthogonal setup in
Fig. 2.

We also observe that as expected, the MSE is a monotonic

increasing function of κ for all σ2, highlighting the fact that

sensing matrices with “flat” eigenvalue distributions are in

general good for reconstruction of noisy sparse signals.

IV. EXTENSIONS AND A SKETCH OF A DERIVATION WITH

THE REPLICA METHOD

Although the LASSO reconstruction examined in the pre-

vious section is one of the most important special cases

of regularized LS problem (2), one might be interested in

expanding the scope of analysis to some other cases. In fact,

up to a certain point, the evaluation of free energy (16) is

independent of the choice of regularization c(x) as well as

the marginal distribution of the non-zero components of the

source vector. For this end, let us assume in the following that

the source vector has elements drawn independently according

to (6) where π(x) is a suitable PDF with zero-mean, unit

variance and finite moments. Note, however, that in order to

obtain the final saddle-point conditions, one needs to make a

choice about both c and π in the end.

A. Sketch of a Replica Analysis

To provide a brief sketch how the results in previous section

were obtained and elucidate where the choice of regularization

(10) affects the analysis, let us consider for simplicity the

rotationally invariant ensemble with source vector that has

uniform sparsity, i.e., we set T = 1 and ρ = ρ1. By

Appendices A and B we know that (16) can be written under

RS ansatz as

f = − lim
n→0+

∂

∂n
lim

β,N→∞

1

βN
ln Ξβ,N (n), (51)

where n is the number of replicas in the system. To charac-

terize Ξβ,N (n), we consider the simplest case of RS overlap

matrix (18) and remind the reader that albeit this choice may

seem intuitively reasonable, it is known to be incorrect in some

cases (see Introduction for further discussion).

For given replica symmetric Q, we may compute its prob-

ability weight6

pβ,N (Q; n) ∝
∫

[Vβ(Q̂; n)]NeNβn(Q̂Q−χ̂χ−2m̂m)/2dQ̂,

(52)

where χ = β(Q− q). With some abuse of notation, we used

above Q as a shorthand for the set {χ,Q,m} and similarly

Q̂ for the auxiliary parameters {χ̂, Q̂, m̂}. Given that the

prior of x0 factorizes and the regularization that separates

as (10) the auxiliary term Vβ(Q̂; n) is given in (53) at the

top of the next page where Dz = dz ez
2/2/

√
2π and p(x0)

is assumed to be of the form (6) with ρ = ρ1 and T = 1.

It is important to realize that the replica analysis could, in

principle, be done with general forms of c(x) and p(x) but

then (53) would have vectors in place of scalars. This creates

computational problems as explained in short. Note also that

we have taken here a slightly different route (on purpose)

compared to the analysis carried out in the Appendices. The

approach there is more straightforward mathematically but the

methods presented here give some additional insight to the

solution and provide connection to the results given in [28]

and [30].

Next, define a function

Hβ,λ(σ
2, ν) = −1 + ln(βν)− α lnλ

2

+
1

2
extr
Λ

{Λ(βν)− (1− α) lnΛ− αE ln(Λβσ2 + Λλ+ x)},
(54)

where α = M/N , ν > 0 and the expectation of the ln-term is

w.r.t. the asymptotic eigenvalue distribution FAAT(x). Then

Ξβ,N (n) =

∫

dQ pβ,N (Q; n)

×eNHβ,λ(nσ
2,n(r−2m+q)+Q−q)+N(n−1)Hβ,λ(0,Q−q), (55)

where the exponential term involving function H arises from

the expectation of (17) w.r.t. noise w and sensing matrix A

given {xa} and Q. The relevant matrix integral is proved in

Appendix C-B and more details can be found in the derivations

following Lemma 1 in Appendix A. In the limit of vanishing

temperature and increasing system size β,N → ∞, saddle

point method7 may be employed to assess the integrals over

Q and Q̂. Taking also the partial derivative w.r.t. n and then

letting n → 0 provides

f = extr
χ,Q,m,χ̂,Q̂,m̂

{

m̂m− Q̂Q

2
+

χ̂χ

2

+

∫∫

p(x0)φ
(
z
√

χ̂+ m̂x0; Q̂
)
dx0Dz (56)

− lim
β→∞

1

β
lim
n→0

∂

∂n
Hβ,λ(nσ

2, n(ρ− 2m+ q) +Q− q)

}

,

6We have omitted a term vanishing multiplicative terms and −n2βχ̂q/2 in
the exponent since it does not affect the free energy, see (134) in Appendix A.

7For more information, see for example [70, Ch. 6] and [71, Ch. 12.7], or
for a gentle introduction [72]. Note that in our case when β,N → ∞, the
correction terms in front of the exponentials after saddle point approximation
vanish due to the logarithm and division by βN in (51). With some abuse
of notation, we have simply omitted them in the paper to avoid unnecessary
distractions.
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Vβ(Q̂; n) =

∫

p(x0)

( n∏

a=0

dxa

)

exp

(

− β

n∑

a=1

c(xa)

)

exp

[

− βQ̂

2

n∑

a=1

(xa)2 + βm̂x0
n∑

a=1

xa +
1

2

(

β
√

χ̂
n∑

a=1

xa

)2]

=

∫∫

p(x0)

{
∫

exp

(

β

[

− Q̂

2
x2 +

(
z
√

χ̂+ m̂x0
)
x− c(x)

])

dx

}n

dx0Dz, (53)

where we defined a scalar function

φ(y; Q̂) = min
x

{
Q̂

2
x2 − yx+ c(x)

}

. (57)

Note that due to the limit n → 0 in (56), the function H
has the arguments σ2 = 0 and ν = Q − q when it comes

to solving the extremization over Λ in (54). The value of

Λ which provides a solution for this is denoted Λ∗ in the

following. We also remark that (57) is the only part of free

energy that directly depends on the choice of cost function c.
If we would have chosen p(x) that is not a product distribution

and c that did not separate as in (10), we would need to

consider here a multivariate optimization over x. In fact, the

dimensions should grow without bound by the assumptions of

the analysis and, hence, the problem would be infeasible in

general. In practice one could consider some large but finite

setting and use it to approximate the infinite dimensional limit,

or concentrate on forms of c(x) and p(x) that have only a few

local dependencies. For simplicity we have chosen to restrict

ourselves to the case where the problem fully decouples into

a single dimensional one.

We can get an interpretation of the remaining parameters as

follows. First, let

〈h(x); y〉β =
1

Zβ(y)

∫

h(x)e−β[Q̂x2/2−yx+c(x)]dx (58)

be a posterior mean of some function h(x). Note that the

structure of this scalar estimator is essentially the same as the

vector valued counterpart given in (13) and (14). If we denote

the x that minimizes (57) by x̂(y; Q̂) then clearly

〈h(x); y〉β→∞ = h
(
x̂(y; Q̂)

)
, (59)

and also

x̂(y; Q̂) = − ∂

∂y
φ(y; Q̂). (60)

We thus obtain from (53) with a little bit calculus that as

N, β → ∞ and n → 0, the terms that yield the mean square

error mse = ρ− 2m+Q are given by

m =

∫∫

x0x̂
(
z
√

χ̂+ m̂x0; Q̂
)
p(x0)dx0Dz, (61)

Q =

∫∫
[
x̂
(
z
√

χ̂+ m̂x0; Q̂
)]2

p(x0)dx0Dz, (62)

where we now have y = z
√
χ̂+m̂x0 and z is a standard Gaus-

sian RV. Similarly, the extremum condition for the variable χ
reads

χ =
1√
χ̂

∫

z

∫

x̂
(
z
√

χ̂+ m̂x0; Q̂
)
p(x0)dx0Dz

=

∫∫
∂

∂(z
√
χ̂)

x̂
(
z
√

χ̂+ m̂x0; Q̂
)
p(x0)dx0Dz, (63)

where the latter equality is obtained using integration by

parts formula. For many cases of interest, these equations

can be evaluated analytically, or at least numerically, and

they provide the single body representation of the variables

in (19). If one substitutes (6) with π(x) = gx(0; 1) in the

above formulas along with c(x) = |x|, some (tedious) calculus

shows that the results of the previous section are recovered.

An alternative way of obtaining the parameters is provided in

Appendices A and B.

Given {m̂, Q̂, χ̂}, one may now obtain the MSE of the

original reconstruction described in Section II by considering

an equivalent scalar problem, namely,

mse = ρ− 2m+Q

=

∫∫
∣
∣x0 − x̂

(
z
√

χ̂+ m̂x0; Q̂
)∣
∣
2
p(x0)dx0Dz. (64)

We may thus conclude that the minimizing x in (57) is the x̂
above, which can be interpreted as the output of a regularized

LS estimator that postulates y = Q̂x+ Q̂1/2z, or equivalently,

y = x+ Q̂−1/2z, (65)

while the true model is y = m̂x0 + z
√
χ̂, or equivalently,

y = x0 + z

√
χ̂

m̂
. (66)

In the notation of [30] (resp. [28]), we thus have the relations

ξ ↔ Q̂ (↔ λp) and η ↔ m̂2/χ̂ (↔ µ−1) between the

parameters. The above also implies m̂ = Q̂ as is indeed

verified later in (70). We shall expand on the connection

between this paper and [28], [30] in Section IV-B.

Let us denote Λ∗ for the solution of extremization in (54)

under condition σ2 = 0, namely,

Λ∗ − 1

χ
= −α

χ

[
1− (λΛ∗) ·GAAT(−λΛ∗)

]
, (67)

which is the same condition as (35) in Proposition 2. Then we

can plug in (56) the identity

lim
β→∞

1

β
lim
n→0

∂

∂n
Hβ,λ(nσ

2, ν(n))

= −ασ2Λ∗

2
GAAT(−λΛ∗) +

ρ− 2m+Q

2

(

Λ∗ − 1

χ

)

, (68)

where we used the fact that in the LSL, r → ρ in (18) by the

weak law of large numbers. The RS free energy thus becomes

f = extr
χ,Q,m,χ̂,Q̂,m̂

{

m̂m− Q̂Q

2
+

χ̂χ

2

+

∫∫

p(x0)φ
(
z
√

χ̂+ m̂x0; Q̂
)
dx0Dz (69)

+
ασ2Λ∗

2
GAAT(−λΛ∗)− ρ− 2m+Q

2

(

Λ∗ − 1

χ

)}

,
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where the parameters {m,Q, χ} satisfy (61)–(63) Note that

so-far we have not made any assumptions about the details

of the function c(x), which means that (69) is valid for any

type of regularization that separates as given in (10). In fact,

we can go even further and solve the partial derivatives w.r.t.

variables m and Q, which reveals that

Q̂ = m̂ =
1

χ
− Λ∗. (70)

With some additional effort, one also finds that

χ̂ = (ρ− 2m+Q)

(
1

χ2
+

∂Λ∗

∂χ

)

−ασ2
[
GAAT(−λΛ∗)− (λΛ∗) ·G′

AAT(−λΛ∗)
]∂Λ∗

∂χ
(71)

holds for the RS free energy with

∂Λ∗

∂χ
= −

[
1− α

(Λ∗)2
+ (αλ2) ·G′

AAT(−λΛ∗)

]−1

. (72)

It is now easy to see that for the rotationally invariant setup,

our initial assumption of uniform sparsity, i.e., T = 1 and ρ =
ρ1 is not necessary and the same set of equations is obtained

for arbitrary sparsity pattern {ρt} that satisfies ρ = T−1
∑

t ρt.
Similarly, we may obtain the equivalent representation for the

T -orthogonal setup considered in Proposition 1.

Remark 4. Comparing (67) together with (70)–(72) to the

saddle-point conditions (34)–(37) given in Proposition 2 shows

that the choice of c or the marginal PDF of the non-zero

elements in the source vector in (6) has no direct impact on the

expressions that provide the variables {m̂, Q̂, χ̂}. Hence, the

form of these conditions is the same for all setups where the

sensing matrix is from the same ensemble. The parameters

{m,Q, χ} on the other hand are affected by the choice of

regularization and source distribution. As stated in Remark 2,

the effect of sensing matrix ensemble is the reverse, namely,

for fixed c and p(x0), the form of {m,Q, χ} is always the

same while {m̂, Q̂, χ̂} can have different form depending on

the choice of the measurement matrix.

B. Alternative Representation of Rotationally Invariant Case

and Comparison to Existing Results

The saddle-point condition for the rotationally invariant case

is described in Proposition 2 in terms of the Stieltjes transform

of FAAT . In [30] the HCIZ-formula is used, which makes

it natural to express the results in terms of the R-transform

of FATA. Furthermore, different sets of auxiliary variables

are used in these two papers. In this section we sketch an

alternative representation of Proposition 2 that is equivalent

to [30] up to some minor scaling factors. This also implies

that apart from minor differences in scalings, our results for

the IID case are also equivalent to [28] as explained in [30,

Sec. IV-C] and shown in Fig. 1.

Let us first consider the conditions enforced by the matrix

integration formula (54) through Λ. By the remark following

(57), we know that the relevant terms can also be obtained

from (195) by setting σ2 = 0 and χ = β(Q− q), namely

Hβ,λ(σ
2 = 0, ν = Q− q)

≃ 1

2
extr
Λ

{

Λχ−
∫

ln(x+ λΛ)dFATA(x)

}

, (73)

where we have omitted the terms that do not depend on Λ.

The solution to the extremization then provides the condition

(we write Λ = Λ∗ here for simplicity)

χ = λ

∫
1

x+ λΛ
dFATA(x) = λGATA(−λΛ) (74)

⇐⇒ Λ = − 1

λ
G−1

ATA

(
χ

λ

)

, (75)

where G−1
ATA

(
GATA(s)

)
= s is the functional inverse of the

Stieltjes transform. Note that this also implies

GATA(−λΛ) = GATA

(

G−1
ATA

(
χ

λ

))

=
χ

λ
. (76)

Using the definition RX(z) = G−1
X (−z) − z−1 of the R-

transform in (75) yields

1

λ
RATA

(

− χ

λ

)

=
1

χ
− Λ. (77)

On the other hand, we know from (70) that a solution to (69)

satisfies Q̂ = m̂ = χ−1 − Λ, so that

Q̂ = m̂ =
1

λ
RATA

(

− χ

λ

)

(78)

is the saddle-point condition for Q̂ and m̂ in terms of the R-

transform. Note that compared to the Stieltjes-transform that is

related to AAT at the saddle-point solution, the R-transform

describes the eigenvalue spectrum of ATA. The condition (78)

matches [30, (131)] apart from a slightly different placements

of regularization parameters so that m̂ ↔ ξ as already

remarked earlier. The above also suggests that apart from

scalings by the regularization parameter χ ↔ E[σ2(Y ; ξ)],
which can also be inferred from [28, Lemma 9].

Finally, we know from the above developments and [30,

Appendix B] that χ̂ ↔ f⋆ should hold if the results are equal.

To this end, let us examine the last line of (69), namely,

ασ2Λ

2
GAAT(−λΛ)− ρ− 2m+Q

2

(

Λ− 1

χ

)

, (79)

and substitute (75)–(77) there. Considering the end result as a

function of χ, we obtain

ϕ(χ) =
ασ2

2

[
1

χ
− 1

λ
RATA

(

− χ

λ

)]
χ

λ

+
ρ− 2m+Q

2λ
RATA

(

− χ

λ

)

(80)

≃ 1

2

(
ρ− 2m+Q

λ
− ασ2χ

λ2

)

RATA

(

− χ

λ

)

, (81)

where (81) is obtained by omitting the terms that do not

depend on χ. We are interested in the point where the partial
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derivative in (69) w.r.t. χ vanishes, that is,

χ̂ = −2
∂

∂χ
ϕ(χ)

=

(
ρ− 2m+Q

λ2

)

R
′
ATA

(

− χ

λ

)

+

(
ασ2

λ2

)
∂

∂χ

[

χRATA

(

− χ

λ

)]

=

(
ασ2

λ2

)

RATA

(

− χ

λ

)

+
1

λ2
R
′
ATA

(

− χ

λ

)(

ρ− 2m+Q− χασ2

λ

)

. (82)

Thus we have a formula for χ̂ as a function of χ and mse,

expressed in terms of the R-transform (and its derivative R′).
Comparing to [30, (195)] we see that the expressions are

the same apart from minor scalings. The differences can be

explained by noticing that in [30]: 1) the noise variance is

σ2 = 1, 2) λ = γ−1 by definition, and 3) the matrices

are square so that α = 1. Thus, we conclude that χ̂ ↔ f⋆

and Proposition 2 is indeed identical to [30], just expressed

differently.

C. Regularization with ℓ2-norm and “zero-norm”

As a first example of regularization other than ℓ1-norm,

consider the case when

c(x) =
1

2
‖x‖2 =

N∑

j=1

x2
j

2
. (83)

This regularization implies that in the MAP-framework, the

desired signal is postulated to have a standard Gaussian

distribution. It is thus not surprising that such an assumption

reduces the estimate (14) to the standard linear form

x̂ = AT(AAT + λIM )−1y, (84)

which is independent of the parameter β. For the replica

analysis one obtains from (65) and (66)

x̂(y; Q̂) =
Q̂

1 + Q̂
y

Q̂=m̂
=

m̂x0 + z
√
χ̂

1 + m̂
, (85)

which can be interpreted as mismatched linear MMSE estima-

tion of x0 from observation (66). From (61)–(63) we obtain

the following simple result.

Example 5. Let the distribution of the non-zero elements

π(x) have zero-mean, unit variance and finite moments. For

rotationally invariant setup and general problem (2) with the

ℓ2-regularization we have

mse =
ρ+ χ̂

(1 + m̂)2
, (86)

χ =
1

1 + m̂
. (87)

Comparing to [30, (135)–(138)], we see that the results indeed

match as discussed in Section IV-B. The value of the parameter

λ that minimizes the MSE is λ∗ = σ2/ρ. The marginal density

π(x) of the non-zero elements (6) has no impact on the MSE.

The choice of the sensing matrix, on the other hand, does

affect the MSE. In this special case though it is the same for

the T -orthogonal and row-orthogonal setups — also for non-

uniform sparsities.

The benefit of ℓ1 and ℓ2-norm regularizations is that both

are of polynomial complexity. Implementation of (84) is trivial

and for solving (4) one may use standard convex optimization

tools like cvx [6]. However, one may wonder if there are

better choices for regularization when the goal is to reconstruct

a sparse vector. If we take the noise-free case as the guide,

instead of say ℓ1-norm, we should have a direct penalty on the

number of non-zero elements in the source vector. We may

achieve this by so-called “zero-norm” based regularization.

One way to write the corresponding cost function is8

c(x) =
N∑

j=1

1
(
xj ∈ R \ {0}

)
(88)

= number of non-zero elements in x. (89)

If the postulated and true scalar outputs are given by

(65) and (66), respectively, we obtain

x̂(y; Q̂) = y · 1
(
|y| >

√

2Q̂
)
, (90)

which is just hard thresholding estimator of scalar input (66),

given mismatched model (65). To proceed further, we need to

fix the marginal distribution π(x) of the non-zero components

in (6). For the special case of Gaussian distribution, some

algebra provides the following result.

Example 6. Let π(x) = gx(0; 1), that is, consider the case

of Gaussian marginals (6) with the rotationally invariant setup

and general problem (2) with the “zero-norm” regularization

given by (88). Define a function

r0(h) = e−h

√

h

π
+Q(

√
2h). (91)

Then, the average MSE for the rotationally invariant setup

mse = ρ− 2m+Q is obtained from

m = 2ρr0

(
m̂

m̂2 + χ̂

)

, (92)

Q = 2(1− ρ)

(
χ̂

m̂2

)

r0

(
m̂

χ̂

)

+2ρ

(
m̂2 + χ̂

m̂2

)

r0

(
m̂

m̂2 + χ̂

)

, (93)

using the condition

χ =
2(1− ρ)

m̂
r0

(
m̂

χ̂

)

+
2ρ

m̂
r0

(
m̂

m̂2 + χ̂

)

(94)

and equations (34)–(37) in Proposition 2. Furthermore, by

Remark 4, the T -orthogonal case can also be obtained easily

8As remarked also in [28, Section V-C], “zero-norm” regularization does
not satisfy the requirement that the normalization constant in (11) is well-
defined for any finite M,N and β > 0. Hence, appropriate limits should
be considered for mathematically rigorous treatment. However, using similar
analysis as given in [32, Section 3.5], it is possible to show that the RS
solution for the “zero-norm” regularization is in fact always unstable due to
the discontinuous nature of (90). For this reason, we skip the formalities of
taking appropriate limits and report the results as they arise by directly using
the form given in (88).
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Fig. 5. Normalized mean square error mse/ρ in decibels vs. inverse
compression rate 1/α as given by Examples 5 and 6. Rotationally invariant
ensemble with arbitrary sparsity pattern and T -orthogonal case with localized
sparsity, namely, ρt = ρT for some t ∈ {1, . . . , T} and ρs = 0 ∀s 6= t.
Thin red lines for IID sensing matrix, thick blue lines for row-orthogonal case.
Noise variance σ2 = 0.01 and the parameter λ is chosen so that the MSE is
minimized. The red lines match the corresponding curves in [28, Fig. 3].

by first adding the block index t to all variables and then

replacing (21) and (22) by the formulas given here. The last

modification is to write (27) simply as Rt = χtm̂t with the

χt given in (94).

To illustrate the above analytical results, we have plotted

the normalized mean square error 10 log10(mse/ρ) dB as

a function of inverse compression rate 1/α in Fig. 5. The

axes are chosen so that the curves can be directly compared

to [28, Fig. 3]. Note, however, that we plot only the region

1/3 ≤ α ≤ 1 (in contrast to 1/3 ≤ α ≤ 2 there) since this

corresponds to the assumption of CS setup and one cannot

construct a row-orthogonal matrix for α > 1. It is clear

that for all estimators, using row-orthogonal ensemble for

measurements is beneficial compared to the standard Gaussian

setup in this region. Furthermore, if the source has non-

uniform sparsity and ℓ0 or ℓ1 regularization is used, the T -

orthogonal setup (the black markers in the figure) provides

an additional gain in average MSE for the compression ratios

α = 1/2 and α = 1/3.

V. CONCLUSIONS

The main emphasis of the present paper was in the analy-

sis of ℓ1-regularized least-squares estimation, also known as

LASSO or basis pursuit denoising, in the noisy compressed

sensing setting. Extensions to ℓ2-norm and “zero-norm” reg-

ularization were briefly discussed. Using the replica method

from statistical physics, the mean square error behavior of

reconstruction was derived in the limit when the system size

grows very large. By introducing some novel results for taking

an expectation of a matrix in an exponential form, the previous

results concerning standard Gaussian measurement matrix was

extended to more general ensembles. As specific examples,

row-orthogonal, geometric and T -orthogonal random matrices

were considered in addition to the Gaussian one. The assump-

tion about uniform sparsity of the source was also relaxed and

blockwise sparsity levels were allowed.

The analytical results show that while the MSE of recon-

struction depends only on the average sparsity level of the

source for rotationally invariant cases, the performance of T -

orthogonal setup depends on the individual sparsities of the

sub-blocks. In case of uniform sparsity, row-orthogonal and

T -orthogonal setups have provably the same performance. It

was also found that while the row-orthogonal, geometric and

Gaussian setups each fall under the category of rotationally

invariant ensemble, that is known to have a unique perfect re-

covery threshold in a noise-free setting, with additive noise the

MSE performance of these ensembles can be very different.

The numerical experiments revealed the fact that under

all considered settings, the standard Gaussian ensemble per-

formed always worse than the orthogonal constructions. The

MSE for the geometric ensemble was found to be an increasing

function of the peak-to-average ratio of the eigenvalues of the

sensing matrix, suggesting that spectrally uniform sensing ma-

trices are beneficial for recovery. When the sparsity was non-

uniform, the ranking of the orthogonal constructions depended

on the noise level. For highly noisy measurements, the row-

orthogonal measurement matrix was found to provide the best

overall MSE, while relatively clean measurements benefited

from the T -orthogonal sensing matrices. These findings show

that the choice of random measurement matrix does have an

impact in the MSE of the reconstruction when noise is present.

Furthermore, if the source does not have a uniform sparsity,

the effect becomes even more varied and complex.

A natural extension of the current work is to consider

Bayesian optimal recovery and its message passing approx-

imation for the matrix ensembles that differ from the standard

ones. Indeed, since the initial submission of the present paper,

such algorithms have been developed and shown to benefit of

matrices with structure, see for example, [56]–[59].

APPENDIX A

REPLICA ANALYSIS OF T -ORTHOGONAL SETUP

A. Free Energy

Recall the T -orthogonal setup from Definition 2 and let the

partition of A be one that matches that of x, i.e.,

Ax =

T∑

t=1

Otxt. (95)

We then recall (16), invoke the replica trick introduced in Sec-

tion II-B, and assume that the limits commute. The normalized

free energy of the system reads thus

f = − 1

T
lim

n→0+

∂

∂n
lim

β,M→∞

1

βM
ln Ξβ,M (n), (96)
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where we denoted

Ξβ,M (n) = Ew,{Ot}

∫

p(x0; {ρt}) exp
(

− β

n∑

a=1

c(xa)

)

× exp

(

− β

2λ

n∑

a=1

∥
∥
∥
∥
σw −

T∑

t=1

Ot∆xa
t

∥
∥
∥
∥

2) n∏

a=0

dxa (97)

for notational convenience. The form of (97) implies that

{xa} are independently drawn according to (11), x0
t has the

same distribution as xt, i.e., elements drawn according to

(6) for each block t = 1, . . . , T , and ∆xa
t = x0

t − xa
t for

a = 1, . . . , n. The outer expectation is w.r.t. the additive noise

and measurement matrices.

For each set of random vectors {∆xa
t }na=1, let us now

construct a matrix St ∈ R
n×n for all t = 1, . . . , T whose

(a, b)th element represents the empirical covariance

S
[a,b]
t =

1

M
∆xa

t ·∆xb
t

=
‖x0

t‖2
M

− x0
t · xb

t

M
− xa

t · x0
t

M
+

xa
t · xb

t

M
(98)

= Q
[0,0]
t −Q

[0,b]
t −Q

[a,0]
t +Q

[a,b]
t . (99)

We also construct a similar set of matrices {Qt}Tt=1 whose

elements {Q[a,b]
t } have the obvious definitions. The rotational

symmetry of distributions wt and {Qt} indicates that

Ew,{Ot} exp

(

− β

2λ

n∑

a=1

∥
∥
∥
∥
σw −

T∑

t=1

Ot∆xa
t

∥
∥
∥
∥

2)

(100)

becomes a function of {Q[a,b]
t } for any fixed set of {∆xa

t }na=1.

In addition, inserting a set of trivial identities

1 = Mn(n+1)/2

∫
∏

0≤a≤b≤n

δ(MQ
[a,b]
t − xa

t · xb
t)dQ

[a,b]
t

(101)

for t = 1, 2, . . . , T into (97) and performing the integration

over {xa} yields an expression that allows for saddle point

evaluation of Ξβ,M (n) with respect to {Q[a,b]
t }.

To proceed with the analysis, we make the RS assumption

which states that at the dominant saddle point, the overlap

matrices {Qt} are invariant under the rotation of the replica

indexes a = 1, 2, . . . , n (see also (18))

Q
[0,0]
t = rt, (102)

Q
[0,b]
t = Q

[a,0]
t = mt ∀a, b ≥ 1, (103)

Q
[a,a]
t = Qt ∀a ≥ 1, (104)

Q
[a,b]
t = qt ∀a 6= b ≥ 1. (105)

Under the RS assumption, the matrices St introduced above

have also a simple form

St = S
[1,2]
t 1n1

T

n + (S
[1,1]
t − S

[1,2]
t )In, (106)

where 1n = [1 · · · 1]T ∈ R
n is an all-ones vector and

S
[1,1]
t = rt − 2mt +Qt (107)

S
[1,2]
t = rt − 2mt + qt. (108)

When Ot are independent Haar matrices, the vectors

Ot∆xa
t are distributed on the M -dimensional hyper spheres

of radius ||Ot∆xa
t || = ||∆xa

t || =
√
MQt that are centered at

the origin (see Appendix C). As Ot are sampled independently

among t = 1, 2, . . . , T , the cross-correlations for all t1 6= t2
reduce to

E{Ot}
{
(Ot1∆xa

t1)
T(Ot2∆xb

t2)
}

= (∆xa
t1)

T
E{Ot}{OT

t1Ot2}∆xb
t2

= (∆xa
t1)

T
0M∆xb

t2 = 0, (109)

where 0M is the M×M zero matrix. On the other hand, given

t1 = t2 = t we obtain

M−1
E{Ot}

{
(Ot∆xa

t )
T(Ot∆xb

t)
}

= M−1(∆xa
t )

T
E{Ot}{OT

t Ot}∆xb
t

= M−1(∆xa
t )

TIM∆xb
t = S

[a,b]
t . (110)

Since S
[a,b]
t are in general non-zero for any pairs of replica

indexes a, b = 1, 2, . . . , n, the expectation in (97) is nontrivial

to compute. However, these correlations can be decoupled by

linearly transforming the variables using a matrix

E =
[
e1 e2 · · · en

]
∈ R

n×n, (111)

that satisfies ETE = EET = In, and e1 = 1n/
√
n by

definition. More precisely, if we let
[
∆x̃1

t · · · ∆x̃n
t

]
=

[
∆x1

t · · · ∆xn
t

]
E be the transformed vectors,

1

M
E{Ot}

{( [
Ot∆x̃1

t · · · Ot∆x̃n
t

] )T

×
[
Ot∆x̃1

t · · · Ot∆x̃n
t

] }

=
1

M
E{Ot}

{(
Ot

[
∆x1

t · · · ∆xn
t

]
E
)T

×
(
Ot

[
∆x1

t · · · ∆xn
t

]
E
)}

=
1

M

( [
∆x1

t · · · ∆xn
t

]
E
)T

×E{Ot}
{
OT

t Ot

} [
∆x1

t · · · ∆xn
t

]
E

=
1

M

( [
∆x1

t · · · ∆xn
t

]
E
)T [

∆x1
t · · · ∆xn

t

]
E

, S̃t. (112)

But S̃t ∈ R
n×n is just

S̃t = ETStE

= diag(nS
[1,2]
t + S

[1,1]
t − S

[1,2]
t ,

S
[1,1]
t − S

[1,2]
t , . . . , S

[1,1]
t − S

[1,2]
t

︸ ︷︷ ︸

n−1 times

), (113)

since eTa1n = eTae1 = 0 for all a = 2, . . . , n and, thus,

1

M
E{Ot}

{
(Ot∆x̃a

t )
T(Ot∆x̃b

t)
}

=







0 if a 6= b,

n(rt − 2mt + qt) +Qt − qt if a = b = 1,

Qt − qt if a = b = 2, . . . , n,

(114)

holds. The above shows that for given {∆xa
t }na=1, the set

of vectors {Ot∆x̃a
t } are independent among t = 1, . . . , T

and also uncorrelated in the space of replicas, as indicated
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by (114). This is in contrast to the original set {Ot∆xa
t }

whose replica space correlation structure (110) is much more

cumbersome to deal with.

To proceed with the analysis, we first notice that since

EET = In, the quadratic term in (97) can be expressed as

n∑

a=1

∥
∥
∥
∥

T∑

t=1

Ot∆xa
t

∥
∥
∥
∥

2

=
n∑

a=1

∥
∥
∥
∥

T∑

t=1

Ot∆x̃a
t

∥
∥
∥
∥

2

(115)

using the uncorrelated random vectors {Ot∆x̃a
t }. For nota-

tional convenience, we define next an auxiliary matrix E′ =
[
e′1 · · · e′n

]
= ET so that

∆xa
t =

[
∆x̃1

t · · · ∆x̃n
t

]
e′a, a = 1, . . . , n, (116)

where {e′a} again forms an orthonormal set that is independent

of t. Then, after the transformation (116), the linear term in

(97) becomes

T∑

t=1

n∑

a=1

wTOt∆xa
t =

T∑

t=1

n∑

a=1

wTOt

[
∆x̃1

t · · · ∆x̃n
t

]
e′a

=
√
nwT

T∑

t=1

Ot∆x̃1
t , (117)

where the we used the fact that

n∑

a=1

e′a = ET
1n =

[√
n 0 · · · 0

]T
. (118)

Combining the above findings and re-arranging implies that

(97) can be equivalently expressed as

Ξβ,M (n)

= Ew,{Ot}

∫

exp

(

− β

2λ

∥
∥
∥
∥

√
nσ2w −

T∑

t=1

Ot∆x̃1
t

∥
∥
∥
∥

2)

× exp

(

− β

2λ

n∑

a=2

∥
∥
∥
∥

T∑

t=1

Ot∆x̃a
t

∥
∥
∥
∥

2)

×p(x0; {ρt}) exp
(

− β

n∑

a=1

c(xa)

) n∏

a=0

dxa. (119)

Next, recall the definition of the matrix Qt whose elements

are as given in (99). From the identity of (101) we obtain the

probability weight for Qt, t = 1, . . . , T as

pβ,M (Qt; n) =
1

znβ,M

∫

p(x0
t )dx

0
t

n∏

a=1

(

e−βc(xa
t )dxa

t

)

×
∏

0≤a≤b≤n

δ(xa
t · xb

t −MQ
[a,b]
t ), (120)

where c(xa
t ) is interpreted as in (10) to be a sum of scalar

regularization functions and the normalization constant is

given by zβ,M = zβM
−(n+1)/2, where zβ is as in (11).

Then we proceed as follows:

1) Fix the matrices {Qt}Tt=1 so that the lengths S̃
[a,a]
t , a =

1, . . . , n in (114) are constant and, thus, {∆x̃a
t } have

fixed (squared) lengths. Then, assuming M grows with-

out bound, average over the joint distribution of w, {Ot}
and {∆x̃a

t }, given {Qt}Tt=1.

2) Average the obtained result w.r.t. pβ,M (Qt; n) as given

in (120) when β → ∞.

The first step may be achieved by separately averaging over

the replicas a = 1, . . . , n using the following result. Note this

is always possible since we consider the setting of large M
and hence n ≪ M .

Lemma 1. Let {ut}Tt=1 be a set of length-M vectors that

satisfy ‖ut‖2 = Mνt for some given non-negative reals {νt}.

Let {Ot} a set of independent Haar matrices and define

eMGβ,λ(σ
2,{νt}) = Ew,{Ot}e

− β

2λ
‖σw−

∑T
t=1

Otut‖2

, (121)

where w is a standard Gaussian random vector. Then, for

large M

Gβ,λ(σ
2, {νt}) = −1

2

(

T − lnλ+

T∑

t=1

ln(βνt)

)

+
1

2
extr
{Λt}

{ T∑

t=1

[
Λt(βνt)− ln Λt

]
−ln

(

λ+ βσ2+

T∑

t=1

1

Λt

)}

,

(122)

where we have omitted terms of the order O(1/M).

Proof: Proof is given in Appendix C-A.

Since {Ot∆x̃a
t }na=1 are uncorrelated, we can apply the

above result to (119) separately for all replica indexes a =
1, . . . , n in order to evaluate the expectations w.r.t. w and

{Ot}. Thus, for n ≪ M , we get (123) at the top of the next

page, where n is now just a parameter in Gβ,λ and is not

enforced to be an integer by the function itself. The next step

is to compute the integral over {Qt}. With some abuse of

notation, we start by using the Dirac’s delta identity (181) to

write

pβ,M (Qt; n) =
1

znβ,M

∫ (
∏

0≤a≤b≤n

dQ̃
[a,b]
t

2πi

)

× exp

(

M
∑

0≤a≤b≤n

Q̃
[a,b]
t Q

[a,b]
t

)

Vβ,M (Q̃t; n), (124)

where {Q̃t}Tt=1 is a set of transform domain matrices whose

elements are {Q̃[a,b]
t } and

Vβ,M (Q̃t; n) =

∫

p(x0
t )dx

0
t

n∏

a=1

(

e−βc(xa
t )dxa

t

)

× exp

(

−
∑

0≤a≤b≤n

Q̃
[a,b]
t xa

t · xb
t

)

. (125)

Note that n has to be an integer in (125) and the goal is

thus to write it in a form where n can be regarded as a real

valued non-negative variable. One can then verify that since

Q̃
[0,0]
t is connected only to the zeroth replica, Q̃

[0,0]
t → 0

when n → 0. Therefore, it plays no role in the evaluation of

the asymptotic free energy and consequently, the MSE. This

is indeed a common feature of replica symmetric solution and

similar conclusion can be found, e.g., in [30], [43] and [44].

To simplify notation, we therefore omit Q̃
[0,0]
t from further

consideration.
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1

M
ln Ξβ,M (n)

=
1

M
ln

∫ T∏

t=1

[
pβ,M (Qt; n)dQt

]
Ew,{Ot}

{

e−
β

2λ
‖
√
nσ2w−∑T

t=1
Ot∆x̃1

t‖2
}[

Ew,{Ot}
{

e−
β

2λ
‖∑T

t=1
Ot∆x̃2

t‖2
}]n−1

=
1

M
ln

∫ T∏

t=1

[
pβ,M (Qt; n)dQt

]
eMGβ,λ(nσ

2,{n(rt−2mt+qt)+Qt−qt})eM(n−1)Gβ,λ(0,{Qt−qt}) (123)

With some foresight we now impose the RS assumption on

{Q̃t} via auxiliary parameters {Q̂t, m̂t, χ̂t} as

Q̃
[a,0]
t = Q̃

[0,b]
t = −βm̂t, ∀a, b ≥ 1, (126)

Q̃
[a,a]
t =

βQ̂t − β2χ̂t

2
, ∀a ≥ 1, (127)

Q̃
[a,b]
t = −β2χ̂t, ∀a 6= b ≥ 1. (128)

Recalling that the elements of x0
t are IID according to (6) with

π(x) = gx(0; 1) simplifies the function Vβ,M under the RS

assumption to Vβ,M (Q̃t; n) = [Vβ(Q̂t; n)]
M where

Vβ(Q̂t; n) =

∫ ( n∏

a=1

dxa
t

)

exp

(

− β

n∑

a=1

c(xa
t )

)

×
{

(1− ρt) exp

[

− βQ̂t

2

n∑

a=1

(xa
t )

2 +
1

2

(

β
√

χ̂t

n∑

a=1

xa
t

)2]

+ρt exp

[

− βQ̂t

2

n∑

a=1

(xa
t )

2 +
1

2

(

β
√

χ̂t + m̂2
t

n∑

a=1

xa
t

)2]
}

,

(129)

and Q̂t should be read as a shorthand for the set {χ̂t, Q̂t, m̂t}.

To assess the integrals in (129) w.r.t. the replicated variables

we first decouple the quadratic terms that have summations

inside by using (182). By the fact that all integrals for a =
1, 2, . . . , n are identical we obtain

Vβ(Q̂t; n)

= (1− ρt)

∫ {∫

e−β[Q̂tx
2
t/2−zt

√
χ̂txt+c(xt)]dxt

}n

Dzt

+ρt

∫ {∫

e−β[Q̂tx
2
t/2−zt

√
χ̂t+m̂2

txt+c(xt)]dxt

}n

Dzt,

(130)

where Dzt = dzte
−z2

t /2/
√
2π is the standard Gaussian

measure. For large β we may then employ the saddle-point

integration w.r.t. xt. If we now specialize to LASSO recon-

struction (4) so that the per-element regularization function is

c(x) = |x|, we may define

φ(y; Q̂) = min
x∈R

{
Q̂

2
x2 − yx+ |x|

}

=







− (|y| − 1)2

2Q̂
, |y| > 1,

0 otherwise,

(131)

where the second equality follows by the fact that the x that

minimizes the cost in (131) is given by9

x̂(y; Q̂) =







y − 1

Q̂
, if y > 1;

0, if |y| ≤ 1;
y + 1

Q̂
, if y < −1.

(132)

The saddle-point method then provides the following expres-

sion

Vβ(Q̂t; n) = (1− ρt)

∫

exp
[

− βnφ
(
zt
√

χ̂t; Q̂t

)]

Dzt

+ρt

∫

exp
[

− βnφ
(
zt

√

χ̂t + m̂2
t ; Q̂t

)]

Dzt.

(133)

Note that the structure of the equations does not force n
to be an integer anymore, so we assume that analytical

continuation can be used to take the limit n → 0. This provides

Vβ(Q̂t; n) → 1 for the data dependent part of the probability

weight (124), which is consistent with (125).

Returning to (124) and denoting χt = β(Qt − qt), we have

under RS ansatz

pβ,M (Qt; n)

=
1

znβ,M

∫

exp

[

βM

(

n
Q̂tQt − χ̂tχt

2
− nm̂tmt − n2β

χ̂tqt
2

+
1

β
logVβ(Q̂t; n)

)]

dQ̂t, (134)

where dQ̂ is a short-hand for dχ̂tdQ̂tdm̂t. It is important to

recognize that we have now managed to write the components

of the free energy in a functional form of n where the limit

n → 0 can be taken, at least in principle. Applying the saddle-

point method to integrate w.r.t. Q̂ and Q as β,M → ∞ and

changing the order of extremization and partial derivation, we

get (135) at the top of the next page. Here we used the fact

that β−1Gβ,λ(0, {Qt− qt}) → 0 as β → ∞ for χ,Λ ∈ R and

− 1

β
lim
n→0

∂

∂n
logVβ(Q̂t; n)

= (1− ρt)

∫

Dztφ
(
zt
√

χ̂t; Q̂t

)

+ρt

∫

Dztφ
(
zt

√

χ̂t + m̂2
t ; Q̂t

)
. (136)

9 Note that x̂(y; Q̂) can be interpreted as soft thresholding of observation
y. Compare the above also to (60). For further discussion on the relevance
and interpretation of this function, see Section IV.
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f =
1

T
extr
Q,Q̂

{ T∑

t=1

(

m̂tmt −
Q̂tQt

2
+

χ̂tχt

2
+ (1− ρt)

∫

Dztφ
(
zt
√

χ̂t; Q̂t

)
+ ρt

∫

Dztφ
(
zt

√

χ̂t + m̂2
t ; Q̂t

)
)

− lim
β→∞

lim
n→0

∂

∂n

1

β
Gβ,λ(nσ

2, {n(ρt − 2mt + qt) +Qt − qt})
}

(135)

We also used above the fact that rt → ρt for large M and that

the term 1
zn
β,M

in (120) is irrelevant for the analysis because

1

M
lim
n→0

∂

∂n
ln znβ,M

M→∞−−−−→ 0. (137)

By the chain rule

1

β
lim
n→0

∂

∂n
Gβ,λ(nσ

2, {νt(n)}Tt=1)

=
σ2

β
lim
n→0

∂Gβ,λ(nσ
2, {νt(n)}Tt=1)

∂(nσ2)

+
1

β
lim
n→0

T∑

t=1

(
∂νt(n)

∂n

)
∂Gβ,λ(nσ

2, {νt(n)}Tt=1)

∂νt(n)
, (138)

so that by plugging νt(n) = n(ρt − 2mt + qt) + Qt − qt to

(138) we have

1

β
lim
n→0

∂

∂n
Gβ,λ(nσ

2, {νt(n)}Tt=1)

= −σ2

2

(

λ+

T∑

t=1

1

Λ∗
t

)−1

+

T∑

t=1

ρt − 2mt + qt
2

(

Λ∗
t −

1

χt

)

,

(139)

where {Λ∗
t } denotes the solution to the extremization problem

in (122), given σ2 = 0.

To solve the last integrals in (135), let us denote

r(h) =

√

h

2π
e−

1
2h − (1 + h)Q

(
1√
h

)

. (140)

With some calculus one may verify that for h > 0
∫

φ
(
zt
√
h; Q̂t

)
Dzt =

r(h)

Q̂t

, (141)

which implies that combining all of the above, the free energy

has the form (142) given at the top of the next page. To obtain

this result, we used the fact that denoting

Rt(λ, {Λt}) =
1

Λt

(

λ+

T∑

s=1

1

Λs

)−1

, (143)

the extremization in (122) implies the condition

Λ∗
t −

1

χt
= −Rt(λ, {Λ∗

t })
χt

, (144)

between the variables χt and {Λt}. Furthermore, in order to

have a meaningful solution to (142) and (144) for σ > 0, we

also need to have χt = β(Qt − qt) positive and finite10 for

10The case of χt → 0 is in fact relevant for the noise-free scenario σ = 0
and corresponds to the perfect recovery condition ρt = mt = Qt =⇒
mset = ρt − 2mt +Qt = 0, which automatically satisfies Qt = qt as well.

Furthermore, for this scenario Q̂ = m̂ → ∞ as β → ∞, while in the noisy
case they are always positive and finite parameters.

all values of β > 0, which means χ−1
t (ρt − 2mt + qt) →

χ−1
t (ρt − 2mt +Qt) as β → ∞.

B. Saddle-Point Conditions

Using the short-hand notation

Rt = Rt(λ, {Λ∗
t }), (145)

the partial derivatives w.r.t. {mt, Qt} in (142) provide the

saddle-point conditions

Q̂t = m̂t =
Rt

χt
=

1

χt
− Λ∗

t . (146)

By the fact that

∂

∂x
r(h) = −

(
∂h

∂x

)

Q
(

1√
h

)

, (147)

we may assess the partial derivatives w.r.t. the variables

{Q̂t, m̂t, χ̂t} as well to obtain

mt = 2ρtQ
(

1
√

χ̂t + m̂2
t

)

, (148)

Qt = −2(1− ρt)

m̂2
t

r(χ̂t)−
2ρt
m̂2

t

r(χ̂t + m̂2
t ), (149)

χt =
2(1− ρt)

m̂t
Q
(

1√
χ̂t

)

+
2ρt
m̂t

Q
(

1
√

χ̂t + m̂2
t

)

, (150)

where we used the identity Q̂t = m̂t to simplify the results.

The MSE of the reconstruction for xt thus becomes

mset = ρt − 2mt +Qt

= ρt − 4ρtQ
(

1
√

χ̂t + m̂2
t

)

− 2(1− ρt)

m̂2
t

r(χ̂t)−
2ρt
m̂2

t

r(χ̂t + m̂2
t ). (151)

Finally, recalling that Λ∗
t is a function of {χt}, we obtain from

the partial derivative of χt

χ̂t =
mset

χ2
t

+

T∑

s=1

(mses − σ2R2
s)∆s,t, (152)

where we denoted ∆s,t =
∂Λs

∂χt
for the partial derivative of Λs

w.r.t. χt.

To solve the equation for χ̂t, we need an expression for

∆s,t. We do this via the inverse function theorem that relates

the Jacobian matrices as

∆ =
∂(Λ1, . . . ,ΛT )

∂(χ1, . . . , χT )
=

[
∂(χ1, . . . , χT )

∂(Λ1, . . . ,ΛT )

]−1

. (153)
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f =
1

T
extr

{mt,Qt,χt,m̂t,Q̂t,χ̂t}

{ T∑

t=1

[

m̂tmt −
Q̂tQt

2
+

χ̂tχt

2
+

1− ρt

Q̂t

r(χ̂t) +
ρt

Q̂t

r(χ̂t + m̂2
t )

]

+
σ2

2

(

λ+

T∑

t=1

1

Λ∗
t

)−1

+
T∑

t=1

ρt − 2mt +Qt

2

(
1

χt
− Λ∗

t

)}

(142)

Here the (i, j)th element of the Jacobian
∂(χ1,...,χT )
∂(Λ1,...,ΛT ) is given

by

∂χi

∂Λj
=

∂

∂Λj

(1−Ri)

Λi

= − (1−Ri)

Λ2
i

δij −
1

Λi

∂Ri

∂Λj

= − (1− 2Ri)

Λ2
i

δij −
RiRj

ΛiΛj
. (154)

In other words, denoting b = [R1/Λ1 · · · RT /ΛT ]
T and

defining C to be diagonal matrix whose (t, t)th entry is given

by (1−2Rt)Λ
−2
t , we obtain by (153) and the matrix inversion

lemma the desired Jacobian as

∆ = −(C + bbT)−1 = −C−1 +
(C−1b)(C−1b)T

1 + bTC−1b
, (155)

which means that

∆s,t =
RsRtΛsΛt

(1− 2Rs)(1− 2Rt)

(

1 +
T∑

k=1

R2
k

1− 2Rk

)−1

− Λ2
t

1− 2Rt
δst. (156)

Combining all the results completes the derivation.

APPENDIX B

REPLICA ANALYSIS OF ROTATIONALLY INVARIANT SETUP

The derivation in this Appendix provides an end result that

is essentially the same as the HCIZ-formula based [45], [46]

approach used in Section IV and Appendix B in [30]. In our

case the difference is that the source does not need to have

IID elements, but can have a block structure. Furthermore,

our analytical approach is slightly different to the one in [30]

since we do not seek to find first a decoupling result for finite

β and then use hardening arguments as in [28] to obtain the

final result when β → ∞. Both end results are equivalent as

shown in Section IV-B.

Recall the rotationally invariant setup as given in Defini-

tion 2. Let p(x0; {ρt}) be the distribution of the source vector

x0 ∈ R
N and assume that each of the sub-vectors x0

t has M̂
elements drawn independently according to (6). Clearly we

have to have N = M̂T but it is not necessary to have M = M̂
as in the case of T -orthogonal setup. Define

Ξβ,N (n) = Ew,A

∫

p(x0; {ρt}) exp
(

− β

n∑

a=1

c(xa)

)

× exp

(

− β

2λ

n∑

a=1

‖σw −A∆xa‖2
) n∏

a=0

dxa, (157)

where ∆xa = x0 − xa ∈ R
N for a = 1, . . . , n, so that the

counterpart of (96) reads

f = − lim
n→0+

∂

∂n
lim

β,N→∞

1

βN
ln Ξβ,N (n). (158)

The goal is then to assess the normalized free energy (158)

by following the same steps as given in Appendix A.

Let us construct matrices St ∈ R
n×n and Qt for all

t = 1, . . . , T with elements as given in (98) and (99).

Also define the “empirical mean” matrices S = T−1
∑

t St,
Q = T−1

∑

t Qt, that have the respective elements S[a,b]

and Q[a,b] and invoke the RS assumption (102)–(105). We

then make the transformation {∆xa
t } → {∆x̃a

t } as with

the T -orthogonal setup so that the empirical correlations of

{∆x̃a
t } satisfy (114). Note that this means that given {Qt},

the transformed vectors ∆x̃a =
[
(∆x̃a

1)
T · · · (∆x̃a

T )
T
]T

satisfy

‖∆x̃a‖2 = M̂

T∑

t=1

S̃
[a,b]
t = NS̃[a,b], (159)

where S̃[a,b] = T−1
∑

t S̃
[a,b]
t . Combining the above provides

the counterpart of (119) as

Ξβ,N (n)

= Ew,{Ot}

∫ ( n∏

a=0

dxa

)

p(x0; {ρt}) exp
(

− β

n∑

a=1

c(xa)

)

× exp

(

− β

2λ
‖
√
nσ2w −A∆x̃1‖2 − β

2λ

n∑

a=2

‖A∆x̃a‖2
)

.

(160)

We then need the following small result to proceed.

Lemma 2. Consider the case where A ∈ R
M×N is sampled

from the rotationally invariant setup given in Definition 2. Let

{ut}Tt=1 be a fixed set of length-M̂ vectors satisfying ‖ut‖2 =
M̂νt for some given non-negative values {νt} and N = TM̂ .

Denote u ∈ R
N for the vector obtained by stacking {ut} and

define

eNHβ,λ(σ
2,{νt}) = Ew,Ae−

β

2λ
‖σw−Au‖2

, (161)

where w is a standard Gaussian random vector. Then, for

large N

Hβ,λ(σ
2, ν) = Hβ,λ(σ

2, {νt})

=
1

2
extr
Λ

{

Λ(βν)− (1− α) lnΛ

−α

∫

ln(Λβσ2 + Λλ+ x)dFAAT(x)

}

−1 + ln(βν)− α lnλ

2
, (162)
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where ν = T−1
∑T

t=1 νt and we omitted terms of the order

O(1/N).

Proof: Proof is given in Appendix C-B.

Notice that the H-function in (162) depends on the pa-

rameters {νt} only through the “empirical mean” ν =
T−1

∑T
t=1 νt. This will translate later to the fact that the

performance of rotationally invariant setup depends on the

sparsities {ρt} only through ρ = T−1
∑

t ρt. With the above in

mind, we may obtain the probability weight pβ,N (Q; n) of Q

by using (101) with suitable variable substitutions. Applying

then Lemma 2 to (160) provides

1

N
ln Ξβ,N (n)

=
1

N
ln

∫

pβ,N (Q; n)eNHβ,λ(nσ
2,n(r−2m+q)+Q−q)

×eN(n−1)Hβ,λ(0,Q−q)dQ, (163)

where r = T−1
∑

t rt,m = T−1
∑

t mt, Q = T−1
∑

t Qt,
and q = T−1

∑

t qt are the “averaged” versions of the RS

variables {rt,mt, Qt, qt}. The probability weight of Q reads

pβ,N (Q; n) = Nn(n+1)/2

∫ (
∏

0≤a≤b≤n

dQ̃[a,b]

2πi

)

× exp

(

N
∑

0≤a≤b≤n

Q̃[a,b]Q[a,b]

)

Vβ,N (Q̃; n), (164)

where Q̃ is a (n+1)×(n+1) transform domain matrix whose

elements are {Q̃[a,b]} and

Vβ,N (Q̃; n) =

∫

p(x0)dx0
n∏

a=1

(

e−β‖xa‖1dxa
)

× exp

(

−
∑

0≤a≤b≤n

Q̃[a,b]xa · xb

)

. (165)

We then get directly using the arguments from Appendix A

that (165) becomes in the limit N → ∞

Vβ(Q̂; n) = (1− ρ)

∫

exp
[

− βnφ
(
z
√

χ̂; Q̂
)]

Dz

+ρ

∫

exp
[

− βnφ
(
z
√

χ̂+ m̂2; Q̂
)]

Dz, (166)

where ρ = T−1
∑

t ρt is the expected sparsity of the entire

source vector x. Therefore, the details of how the non-

zero elements are distributed on different sub-blocks {xt} is

irrelevant for the rotationally invariant case.

Combining everything above and denoting

χ = T−1
∑

t β(Qt − qt) implies that the free energy

for the rotationally invariant case reads

f = extr
{m,Q,χ,m̂,Q̂,χ̂}

{

m̂m− Q̂Q

2
+

χ̂χ

2

+
1

Q̂

[
(1− ρ)r(χ̂)− ρr(χ̂+ m̂2)

]

+
ασ2Λ∗

2
GAAT(−λΛ∗) +

ρ− 2m+Q

2

(
1

χ
− Λ∗

)}

,

(167)

where we used the Stieltjes transform of FAAT(x),

GAAT(s) =

∫
1

x− s
dFAAT(x), (168)

along with the chain rule

lim
β→∞

1

β
lim
n→0

∂

∂n
Hβ,λ(nσ

2, ν(n))

= lim
β→∞

σ2

β
lim
n→0

∂Hβ,λ(nσ
2, ν(n))

∂(nσ2)

+ lim
β→∞

1

β
lim
n→0

(
∂ν(n)

∂n

)
∂Hβ,λ(nσ

2, ν(n))

∂ν(n)

= −ασ2

2

∫
Λ∗

λΛ∗ + x
dFAAT(x) +

ρ− 2m+Q

2

(

Λ∗ − 1

χ

)

= −ασ2Λ∗

2
GAAT(−λΛ∗) +

ρ− 2m+Q

2

(

Λ∗ − 1

χ

)

,

(169)

where ν(n) = n(r−2m+ q)+Q− q. Here Λ∗ is the solution

to the extremization in (162), given σ2 = 0, and satisfies the

condition

Λ∗− 1

χ
= −α

χ

[
1−(λΛ∗)·GAAT(−λΛ∗)

]
= − R̂(Λ∗)

χ
, (170)

where

R̂(Λ∗) = α
[
1− (λΛ∗) ·GAAT(−λΛ∗)

]
. (171)

Finally, we need to resolve the saddle point conditions in

(167). The partial derivatives w.r.t. {m,Q} provide

Q̂ = m̂ =
1

χ
− Λ∗ =

R̂(Λ∗)

χ
, (172)

while the partial derivatives w.r.t. {Q̂, m̂, χ̂} are of the same

format as in (148)–(150) but without indexes t. Finally,

recalling that Λ∗ depends on χ

∂

∂χ
GAAT(−λΛ∗) = −λ

(
∂Λ

∂χ

)

G′
AAT(−λΛ∗), (173)

where G′
AAT denotes the derivative of GAAT w.r.t. the argu-

ment, gives

χ̂ = mse

(
1

χ2
+

∂Λ∗

∂χ

)

−ασ2
[
GAAT(−λΛ∗)− (λΛ∗) ·G′

AAT(−λΛ∗)
]∂Λ∗

∂χ
, (174)

in which

∂Λ∗

∂χ
= −

[
1− α

(Λ∗)2
+ (αλ2) ·G′

AAT(−λΛ∗)

]−1

. (175)

To obtain the last formula we used the fact that

∂χ

∂Λ∗ = − 1

(Λ∗)2
(1− R̂)− 1

Λ∗
∂R̂

∂Λ∗

= −
[
1− α

(Λ∗)2
+ (αλ2) ·G′

AAT(−λΛ∗)

]

. (176)

Remark 5. Consider the row-orthogonal setup where

GAAT(s) =
1

α−1 − s
. (177)
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For this case, the extremization in (162) can also be written

in the form

Λ− 1

βν
= − 1

βν

(
1

α−1 + Λ(λ+ βσ2)

)

σ=0−−−→ − 1

βν

(
1

α−1 + Λλ

)

. (178)

We may then plug (177) and (178) to (167) and compare

the end result with (142)–(144). It is clear that the two free

energies are exactly the same if we set α = 1/T and ρ = ρt so

that ν = νt and Λ = Λt for all t = 1, . . . , T . Therefore, also

the saddle point solutions of row-orthogonal and T -orthogonal

setups match for this special case and the MSE is the same.

APPENDIX C

USEFUL MATRIX INTEGRALS

A. T -Orthogonal Setup

Let {Ot}Tt=1 be a set of independent M×M Haar matrices

and {∆xt}Tt=1 a set of (fixed) length-M vectors that satisfy

‖∆xt‖2 = Mνt for some given non-negative values {νt}.

Given {∆xt} and {νt}, the vector ut = Ot∆xt is uniformly

distributed on a surface of a sphere that has a fixed radius√
Mνt for each t = 1, . . . , T . Thus, the joint PDF of {ut}

reads

p(M)({ut}; {νt})

=
1

Z({νt})

T∏

t=1

δ(‖ut‖2 −Mνt) (179)

=
(4πi)−T

Z({νt})

∫ T∏

t=1

(

e−
Λt
2
(‖ut‖2−Mνt)dΛt

)

, (180)

where Z({νt}) is the normalization factor, {Λt} is a set of

complex numbers and we used the identity

δ(t− a) =
1

4πi

∫ c+i∞

c−i∞
e−

Λ
2
(t−a)dΛ, (181)

where a, c, t ∈ R,Λ ∈ C. Using the Gaussian integration

formula

1

(2π)N/2

∫

e−
1
2
zTMz+bTzdz =

1
√

det(M)
e

1
2
bTM−1b,

(182)

where b, z ∈ R
N and M is symmetric positive definite, the

normalization factor becomes

Z({νt}) =
1

(4πi)T

∫ T∏

t=1

(

e
Λt
2
Mνte−

1
2
Λt‖ut‖2

dutdΛt

)

=

(
(2π)M/2

4πi

)T ∫ T∏

t=1

(

e
M
2
(Λtνt−ln Λt)dΛt

)

. (183)

Since the argument of the exponent in (183) is a complex

analytic function of {Λt} and we are interested in the large-

M asymptotic, the saddle-point method further simplifies the

normalization factor to the form

1

M
lnZ({νt}) =

1

2

T∑

t=1

extr
Λt

{
Λtνt − ln Λt

}
+O(M−1)

=

T∑

t=1

1 + ln νt
2

+O(M−1), (184)

where the second equality is obtained by solving the extrem-

ization problem. Substituting (184) back to (180) provides an

expression for p(M)({ut}; {νt}).
Recall the T -orthogonal setup given in Definition 2. Fix the

parameters M,β, λ and define

G
(M)
β,λ (σ2, {νt})

=
1

M
lnEw,{Ot}e

− β

2λ
‖σw−

∑T
t=1

Ot∆xt‖2

=
1

M
lnEw

∫

p(M)({ut}; {νt})

×e−
1
2λ

‖
√

βσ2w−
√
β
∑T

t=1
ut‖2

T∏

t=1

dut, (185)

where {Ot}, {∆xt}, {ut} and {νt} are as before. Applying

the Gaussian integration formula (182) from right-to-left along

with the expressions (180) and (184) provides

G
(M)
β,λ (σ2, {νt})

=
1

M
lnEw

∫ T∏

t=1

(

dΛte
M
2
Λtνt

)∫

dkea(k,w)

×
∫ T∏

t=1

(

e−
1
2
Λt‖ut‖2−i

√
βkTutdut

)

+
1

2
ln

λ

2π
− 1

M
lnZ({νt}), (186)

where k ∈ R
M , the normalization factor is given in (184) and

we denoted

a(k,w) = −λ

2
‖k‖2 + i

√

βσ2kTw. (187)

Using next Gaussian integration repeatedly to assess the expec-

tations w.r.t. {ut}, k and w yields (188) at the top of the next

page. We then change the integration variables as Λt → βΛt,

take the limit M → ∞ and employ saddle-point integration.

Omitting all terms that vanish in the large-M limit provides

the final expression

Gβ,λ(σ
2, {νt}) = −1

2

(

T − lnλ+
T∑

t=1

ln(βνt)

)

+
1

2
extr
{Λt}

{ T∑

t=1

[
Λt(βνt)−ln Λt

]
−ln

(

λ+ βσ2 +

T∑

t=1

1

Λt

)}

.

(189)

Finally, we remark that the extremization in Gβ,λ(σ
2, {νt})

as given above enforces the condition

βνt(σ
2, β, λ) =

1

Λt

(

1− Λ−1
t

λ+ βσ2 +
∑T

t=1 Λ
−1
t

)

, (190)

implying Λt ∈ R \ {0} for all {β, λ, σ2} and t = 1, . . . , T .

Thus, the expression (189) together with the condition (190)

provides the solution to the integration problem defined in

(185). Furthermore, for the special case of σ = 0 we have

βνt(σ
2 = 0, β, λ) =

1

Λt

(

1− Λ−1
t

λ+
∑T

k=1 Λ
−1
k

)

, (191)
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G
(M)
β,λ (σ2, {νt}) =

1

M
lnEw

∫ T∏

t=1

(

dΛte
M
2
Λtνt−M

2
ln Λt

)∫

exp

[

− 1

2

(

λ+

T∑

t=1

β

Λt

)

‖k‖2 + i
√

βσ2wTk

]

dk

+
1

2
ln

λ

2π
− 1

M
lnZ({νt})

=
1

M
ln

∫ ( T∏

t=1

dΛt

)

exp

{
M

2

[ T∑

t=1

Λtνt −
T∑

t=1

ln Λt − ln

(

λ+

T∑

t=1

β

Λt

)]}

× 1

(2π)M/2

∫

exp

{

− 1

2

[

1 + βσ2

(

λ+

T∑

t=1

β

Λt

)−1]

‖w‖2
}

dw +
1

2
lnλ− 1

M
lnZ({νt})

=
1

M
ln

∫

exp

{
M

2

[ T∑

t=1

Λtνt −
T∑

t=1

ln Λt − ln

(

λ+ βσ2 +

T∑

t=1

β

Λt

)]} T∏

t=1

dΛt

+
1

2
lnλ− 1

M
lnZ({νt}) (188)

so that νt(σ
2 = 0, β → ∞, λ) → 0 and β−1Gβ,λ(σ

2 =

0, {νt})
β→∞−−−−→ 0. This is fully compatible with the earlier

result obtained in [32], as expected.

B. Rotationally Invariant Setup

Let us consider the case where A ∈ R
M×N is sam-

pled from an ensemble that allows the decomposition R =
ATA = OTDO where O is an N × N Haar matrix and

D = diag(d1, . . . , dN ) contains the eigenvalues of R. This is

the case of rotationally invariant setup given in Definition 2.

Furthermore, let {∆xt}Tt=1 be a set of (fixed) length-M̂ vec-

tors satisfying ‖∆xt‖2 = M̂νt for some given non-negative

values {νt} and N = TM̂ . For notational convenience, we

write ∆x ∈ R
N for the vector obtained by stacking {∆xt}.

The counterpart of (185) reads then

H
(N)
β,λ (σ2, {νt})

=
1

N
lnEw,Ae−

β

2λ
‖σw−A∆x‖2

,

= −α

2
ln

(

1 +
βσ2

λ

)

+
1

N
lnER exp

[

− 1

2

(
β

λ+ βσ2

)

∆xTR∆x

]

, (192)

where the second equality follows by using Gaussian integra-

tion formula (182) to average over the additive noise term w.

Recall next the fact that R = OTDO and denote u = O∆x.

Since O are Haar matrices and

‖O∆x‖2 = TM̂

T∑

t=1

νt
T

= Nν, (193)

where ν is the “empirical average” over {νt}, we get by

the same arguments as in Appendix C-A an expression for

H
(N)
β,λ (σ2, ν) as given in (194) at the top of the next page.

Considering next the limit of large M and N , we replace

the summation in (194) by an integral over the empirical

distribution of the eigenvalues (9), so that the outer expectation

w.r.t. D becomes an expectation over all empirical eigenvalue

distributions of R. But when M,N → ∞ with a finite and

fixed ratio α = M/N , this expectation is by assumption w.r.t.

a probability measure that has a single non-zero point corre-

sponding to the limiting deterministic eigenvalue distribution

FATA. Finally, using saddle point method to integrate over Λ,

we obtain

Hβ,λ(σ
2, ν)

=
1

2
extr
Λ

{

Λ(βν)−
∫

ln

(

Λ +
1

λ+ βσ2
x

)

dFATA(x)

}

−α

2
ln

(

1 +
βσ2

λ

)

− 1 + ln(βν)

2
(195)

=
1

2
extr
Λ

{

Λ(βν)− (1− α) lnΛ

−α

∫

ln(Λβσ2 + Λλ+ x)dFAAT(x)

}

−1 + ln(βν)− α lnλ

2
, (196)

where the second equality is obtained by changing the integral

measure and simplifying. For the case σ2 = 0, the extremiza-

tion then provides the condition

Λ− 1

βν
= − α

βν

(

1−
∫

Λβσ2 + Λλ

Λβσ2 + Λλ+ x
dFAAT(x)

)

σ2=0−−−→ Λ− 1

βν
= − α

βν

[
1− (Λλ)GAAT(−Λλ)

]
, (197)

where we used again the Stieltjes transformation (168) of

FAAT(x).

APPENDIX D

GEOMETRIC ENSEMBLE

Recall that the geometric singular value ensemble is gen-

erated as A = UΣV T where U and V are independent

Haar matrices. The diagonal elements of Σ are the singu-

lar values σm =
√

a(κ)τm−1,m = 1, . . . ,M of A with

τ ∈ (0, 1] and a(κ) > 0 such that N−1
∑M

m=1 λm = 1
where λm = σ2

m are the eigenvalues of AAT. Alternatively,

we may write λi+1 = a(κ)e−γM (i/M), i = 0, 1, . . . ,M − 1
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H
(N)
β,λ (σ2, ν) =

1

N
lnED

∫

dΛe
Λ
2
Nν

∫

exp

[

− 1

2
uT

(

ΛIN +
β

λ+ βσ2
D

)

u

]

du

−α

2
ln

(

1 +
βσ2

λ

)

− 1 + ln ν

2
+O(N−1)

=
1

N
lnED

∫

exp

{
N

2

[

Λ(βν)− 1

N

N∑

n=1

ln

(

Λ +
1

λ+ βσ2
dn

)]}

dΛ

−α

2
ln

(

1 +
βσ2

λ

)

− 1 + ln(βν)

2
+O(N−1) (194)

where γM = −2M ln τ ≥ 0. Letting M → ∞ provides the

continuous limit function for the eigenvalues

λ(t) = A(κ)e−γt, t ∈ [0, 1), (198)

where γ > 0 satisfies

κ =
λ(0)

∫ 1

0
λ(t)dt

=
γ

1− e−γ
, (199)

for the given peak-to-average ratio κ. The normalization

condition N−1
∑M

m=1 λm = 1 becomes now

α

∫ 1

0

A(κ)e−γtdt = 1 ⇐⇒ A(κ) =
κ

α
, (200)

which means that λ(t) ∈ [ καe
−γ , κ

α ].

The function (198) describes the eigenvalues of AAT in

the large system limit. Since the order of the eigenvalues and

associated eigenvectors does not affect the performance of the

reconstruction, we may also consider sampling randomly and

uniformly t ∈ [0, 1) and assigning the corresponding eigenval-

ues according to (198). Then, by construction the limit of (9)

for this ensemble is given by FAAT (Ae−γt) = 1−t, t ∈ [0, 1)
or more conveniently

FAAT (x) =

{

1 + γ−1 lnx− γ−1 lnA, if x ∈ (Ae−γ , A],
0, otherwise,

(201)

where we wrote for simplicity A = A(κ). This is also called

the reciprocal distribution whose density reads

fAAT (x) =

{
1
γx , if x ∈ (Ae−γ , A],

0, otherwise.
(202)

For the analysis, one can obtain the Stieltjes transform of (202)

directly from the definition (168), as given in Example 4.

The sensing matrices for the geometric setup in finite size

simulations, on the other hand, can be constructed as follows:

1) Generate M × N matrix X with IID standard normal

elements and calculate the singular value decomposition

X = USV T. For the Gaussian ensemble, U and V

are independent Haar matrices.

2) Find numerically the value of τ that meets the peak-to-

average constraint (8) and set

a(κ) =
1

N−1
∑M

m=1 τ
2(m−1)

, (203)

so that the average power constraint is satisfied.

3) Replace S by Σ to create a sensing matrix X =
UΣV T. Note that permutations of the diagonal ele-

ments in Σ has no impact on the reconstruction per-

formance.
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[32] Y. Kabashima, M. Vehkaperä, and S. Chatterjee, “Typical l1-recovery
limit of sparse vectors represented by concatenations of random orthog-
onal matrices,” J. Stat. Mech., vol. 2012, no. 12, p. P12003, 2012.

[33] T. Tanaka and J. Raymond, “Optimal incorporation of sparsity infor-
mation by weighted l1-optimization,” in Proc. IEEE Int. Symp. Inform.

Theory, Jun. 2010, pp. 1598–1602.
[34] Y. Kabashima, T. Wadayama, and T. Tanaka, “A typical reconstruction

limit for compressed sensing based on lp-norm minimization,” J. Stat.

Mech., vol. 2009, no. 9, p. L09003, 2009.
[35] M. Talagrand, Spin Glasses: A Challenge for Mathematicians, Cavity

and Mean Field Models. Berlin Heidelberg: Springer-Verlag, 2003.
[36] F. Guerra and F. L. Toninelli, “Quadratic replica coupling in the

Sherrington-Kirkpatrick mean field spin glass model,” J. Math. Phys.,
vol. 43, no. 7, pp. 3704–3716, 2002.

[37] ——, “The thermodynamic limit in mean field spin glass models,”
Commun. Math. Phys., vol. 230, no. 1, pp. 71–79, 2002.

[38] F. Guerra, “Broken replica symmetry bounds in the mean field spin glass
model,” Commun. Math. Phys., vol. 233, no. 1, pp. 1–12, 2003.

[39] M. Talagrand, “The Parisi formula,” Annals of Math, vol. 163, no. 1,
pp. 221–263, 2006.

[40] S. B. Korada and N. Macris, “Tight bounds on the capacity of binary
input random CDMA systems,” IEEE Trans. Inf. Theory, vol. 56, no. 11,
pp. 5590–5613, Nov. 2010.

[41] A. Montanari, “Tight bounds for LDPC and LDGM codes under MAP
decoding,” IEEE Trans. Inf. Theory, vol. 51, no. 9, pp. 3221–3246, Sep.
2005.

[42] S. Kudekar and N. Macris, “Sharp bounds for optimal decoding of low-
density parity-check codes,” IEEE Trans. Inf. Theory, vol. 55, no. 10,
pp. 4635–4650, Oct. 2009.

[43] T. Tanaka, “A statistical-mechanics approach to large-system analysis
of CDMA multiuser detectors,” IEEE Trans. Inform. Theory, vol. 48,
no. 11, pp. 2888–2910, Nov. 2002.
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[67] M. Mézard and A. Montanari, Information, Physics, and Computation.
New York: Oxford University Press, 2009.
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