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Abstract 

A novel dual-receiver with a surrounding solar field was proposed to improve the efficiency of 

solar power tower (SPT). The new design combined an external and a cavity receiver, 

corresponding to the boiling and superheating sections respectively, and provided a simple yet 

controllable heat flux distribution on both sections. A case study of a 11MW solar power plant was 

conducted. It was demonstrated that the present dual-receiver could produce superheat steam of 

515ºC and 10.7MPa at the solar heat absorbing efficiency of 86.55%. By considering various heat 

losses, the surface heat flux, the surface temperature, as well as the heat transfer fluid distributiuon 

were obtained for the dual-receiver. A comparison with two external cylindrical receivers showed 

that the present design could improve the global thermal efficiency by 3.2%. Off-design 

performance of the dual-receiver was obtained, which indicated that the plant performance was 

affected significantly by the incident solar fluxes at different time of a day. The influence of heat 

transfer tube size suggested that an optimized tube diameter for the superheating section of the 

present dual-receiver should be used. . 
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Nomenclature 

A                      area, m2 

a  void fraction in cross-section 

c                       specific heat capacity, J/(kg·oC) 

d  tube diameter, m 

G                     mass flow rate, kg/m2·s 

g                      Gravitational acceleration, m/s2 

H                     enthalpy of heat transfer fluid, J/kg  

h                       heat transfer coefficient, W/ m2 K   

l                       boiler receiver height, m 

m                     mass flow rate, kg/s 

Nu   Nusselt number  

Pr  Prandtl number 

P                      pressure, Pa 

q  incident solar energy flux, W/ m2 

Q   incident solar energy, W 

Re   Reynolds number 

T  temperature, K 

u                    fluid velocity, m/s 

x                      steam quality 

Greek symbols 

Į                     tube wall absorptivity 

ȕ                      volumetric thermal expansion coefficient 

İ  tube wall emissivity 

Ș  thermal efficiency, % 
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Ȝ                     thermal conductivity, W/m·K 

ȝ             dynamic viscosity, N·s/m2 

Ȟ                     kinematic viscosity, m2/s 

ȡ   density, kg/m3 

Subscripts 

B  boiling receiver 

Conv convective heat loss 

f  heat transfer fluid of one phase 

foc       forced convection of heat transfer fluid in the tube 

gr difference between saturated and superheating parameter 

i           inner tube 

in  incident 

j surface j 

k surface k 

lh  latent heat 

nc  natural convective heat loss 

rad radiative heat loss 

ref reflective heat loss 

s  superheating receiver 

sat saturated state 

sl saturated liquid parameters 

sub subcooling liquid 

sv saturated vapor parameters 

w tube wall
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1 Introduction 

Concentrated solar power (CSP) technologies offer promising options for high efficiency solar 

energy applications. Of all CSP technologies available, the solar power tower (SPT) can achieve 

higher temperatures up to 1000ºC and hence higher efficiency than that of parabolic trough and 

linear Fresnel systems [1]. SPT also has the greatest potential for cost reduction and efficiency 

improvement among all CSP technologies [1]. 

Most established solar tower power plants use water as heat transfer fluid (HTF), which is a 

mature and cost-effective configuration without extra energy storage [2]. For example, SUNSHING, 

Solar One, SPP-5, Beijing Badaling, PS10, PS20 and Sierra were direct steam generation solar 

thermal plants [1, 3-6], among which, SUNSHING, SPP-5, PS10 and PS20 were based on saturated 

steam, and others used superheated  steam [1, 7].  

No matter which condition applies, a single receiver on the top of the solar tower is always used 

either in the form of external cylinder or internal cavity, which includes both boiling and 

superheating sections. It was suggested that for plants capacity of exceeding 50MW with 6 hours of 

energy storage, external receiver in combination with a surrounding field should be used, rather 

than the cavity configuration with a fixed opening [8]. This was mainly based on the consideration 

of heliostat field efficiency, as the cavity configuration requires heliostats much far away from the 

tower and hence more atmospheric attenuation loss. A surrounding field is more suitable for large 

capacity plants. However, the single receiver design can bring many inherent constrains. For 

instance, as there is no saturated steam produced at the beginning of the start-up, it is easy to 

produce the overheating problem in the superheating section. This is why several solar tower power 

plants only used saturated steam as working fluid. In addition, the difference in the convective heat 

transfer coefficient of the two sections requires different allowable heat fluxes. It has been 

estimated that the maximum heat flux can be imposed on the boiling and superheating sections were 
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650kW/m2 and 300kW/m2, respectively [9]. Apparently it becomes difficult for the one-receiver 

configuration to control proper heat flux distribution on both sections. 

Recently, some researchers have investigated the possibility of separating boiling and 

superheating sections. A patent was filed in 2011 that comprised two external cylinder receivers  in 

series, one for boiling section and the other for superheating section [10]. Most recently, a patent 

proposed two cavities instead of external cylinders for the two sections [11]. In another 

configuration, an integrated receiver was designed that had a boiling section in tandem with a 

superheating section [12]. The receiver had a north-faced opening sector of 72º with the outer 

surface acting as the boiling section and the inner surface as the superheater. Because both inner 

and outer surfaces were heated, there was no suitable place for the downcomer, which was essential 

to ensure no vapor produced and hence avoiding the reduction in the fluid circulation velocity. The 

inner surface was served as a cavity receiver. However, the opening angle of 72o was so small that 

there was almost no incident flux distribution on side wall panels [12]. On the other hand, the inner 

surface had no cavity aperture inclination, which was necessary to reduce convective loss.  

In order to avoid the problems presently existing, in this study a novel configuration of dual-

receiver for solar tower power plant is proposed by combining the advantages both of the external 

and cavity receiver. In the new designed dual-receiver, the top is an external receiver to serve as the 

boiling section, and the bottom is a cavity one as the superheating section. The surrounding 

heliostat field is correspondingly divided into two parts, focusing lights onto the boiling and 

superheating sections, respectively. As a demonstration, the feasibility study of a 11MW solar tower 

power plant is conducted in this work, of which the configuration can be extended to larger capacity 

plants. It is expected that such a new idea would improve the efficiencies of solar towers by getting 

away from the drawbacks of the single receiver and fully utilizing its merits. 

 

2 Physical model of the dual-receiver and its heliostat field 
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The configuration of the proposed dual-receiver with the schematic surrounding heliostat field is 

shown in Fig. 1. Taking water as heat transfer fluid, the top external receiver served as the boiling 

section for the solar power plant with a surrounding heliostat field, indicated as SF2 in Fig. 1. As 

the boiling temperature, ranged 300-400oC, is relatively low, small convection and radiation heat 

losses are expected. The bottom cavity receiver serves as the superheating section, heated by north 

heliostat field SF1, shown in Fig. 1. Considering the high superheat temperature typically 

encountered, i.e., surface temperature ranges from 300oC to 700oC, a cavity structure is beneficial to 

reduce the convection and radiation losses. A steam drum is arranged on top of the external receiver, 

which is located at the height of 100.5m from the ground, similar to the arrangement of the PS10 

power plant [13]. The cavity receiver center is located 13m blow the external receiver center. 

 

Fig. 1. Schematic diagram of the proposed dual-receiver with solar field. 

 

A case study is conducted to illustrate the feasibility of the present concept. The heliostat field is 

designed to meet the requirement of a 11MW solar thermal power plant. The main parameters used 

in the optimization analysis are listed in Table 1.  

 

Table 1. Main parameters used in the optical analysis. 
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Design parameters 

Latitude(o) 

Time 

 

DNI (W/m2) 

Design intercepted radiation (MW) 

Solar multiple 

Heliostats 

Count 

Width (m) 

Height (m) 

Reflectivity 

Optical error (mrad) 

Sun shape error (mrad) 

 

37.4 

Noon of the spring 

equinox day 

914 

50 

1.33 

 

624 

12.84 

9.45 

0.88 

2.9 

2.51 
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Fig. 2. Heliostat field layout of the proposed dual-receiver. 
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The heliostat field layout is optimized to obtain the maximum annual energy through the Campo 

code [14], which searches from the densest layout and then progresses towards expanded 

distributions. The resulted heliostat field layout divided into two sectors is shown in Fig. 2. The 

blue sector, which has a view angle of 90º and 182 heliostats, focuses the sunlight to the bottom 

superheater. The red sector has 442 heliostats and is dedicated to the top boiler section. The total 

efficiency of heliostat field obtained is 72.17%. 

 

3 Thermal analysis of the dual-receiver 

3.1 Dual-receiver geometry  

To compare with a typical SPT system, the inlet feed water temperature is set to be 205ºC and the 

outlet parameters of the superheat steam are 10.7MPa and 515ºC, respectively. 

The top external receiver has a cylindrical shape with height of 10m and diameter of 7m. The 

receiver comprises 16 parallel rising panels. The outer diameter of each tube is 26.7mm and wall 

thickness is 4mm. All tubes are made of SA-192 carbon steel with a yield strength of 180MPa and 

an allowable temperature of 510ºC [12]. The boiler is of a drum type with forced circulation and the 

outlet steam quality is 0.1. 

Ceiling-passive

Floor-passive

Entrance-passive

Wall 1-active

Wall 2-active

Wall 3-active

Wall 4-active

0
.5

 m
7

 m

10 m

0
.5

 m

Top lip-passive

Bottom lip-passive

 

(a) The cavity receiver geometry. 
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Wall 1
(loop 1)

Wall 2
(loop 2)

Wall 3
(loop 2)

Wall 4
(loop 1)

Outlet
Inlet Inlet

 

(b) Fluid flow layout of the active heated walls. 

Fig. 3. The bottom cavity receiver. 

 

The bottom cavity receiver has a half octagon shape with height of 8m and radius of 5m, as 

shown in Fig. 3(a). The receiver inclination is 25º and has a 7×10m rectangular aperture. Each 

active heated wall has 4 panels, of which the fluid flow layout is shown in Fig. 3(b). The outer 

diameter of tube is also 26.7mm with a wall thickness of 4mm. The tube material is stainless steel 

SA-213TP304H, which has a yield strength of 206MPa and allowable temperature of 760oC [12]. 

All tubes are coated by Pyromark with an emissivity of 0.95. The cavity ceiling, floor and lip 

passive insulation walls are made of ceramic fibers, whose emissivity is 0.2. 

 

3.2 Surface heat flux distribution 

The surface heat flux distribution of the present dual-receiver was obtained by the Monte-Carlo 

method. A multiple aim points strategy, proposed by [12], was applied under the condition of the 

maximum heat fluxes on the boiling and superheating sections below 650kW/m2 and 300kW/m2, 

respectively. Fig. 4 shows the simulated heat flux distribution of the dual-receiver. It can be 

obtained that the external receiver collected about 35.48MW solar heat. The active walls in the 
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bottom cavity receiver collected 14.19MW solar heat, while the ceiling-passive wall and floor-

passive wall obtained incident solar heat of 0.25MW and 0.04MW, respectively. 

Perimeter (degrees)

H
ei

gh
t (

m
)

 

 

0 50 100 150 200 250 300 350
-6

-4

-2

0

2

4

6

0

100

200

300

400

500

600

Flux, KW/m2

 

(a) Boiling receiver (Perimeter of 180 º is the north direction). 
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(b) Superheating receiver. 

Fig. 4. Surface heat flux distribution for the dual-receiver at the noon of the spring equinox day. 

 

3.3 Heat transfer analysis of the dual-receiver 

3.3.1 Pressure drop  

Considering the arrangement of the case study, the friction and gravity pressure drop dominates 

and the acceleration pressure drop can be neglected. The pressure drops of one-phase and two-phase 

flow were  respectively calculated by [15], 

2

2
f

f
i

udp
g f

dz d


   

                                                       
(1) 
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2 2
2 (1 )

( (1 ) )
2

sl
sv sl sl

i

u xdp
a a g f

dz d


 


     

                                  
(2) 

where f  is the friction factor, determined by the Moody’s correlation [12], 2 21 20 / 1/tt ttX X    , 

and Xtt  is the Martinelli parameter.  

3.3.2 Heat transfer coefficient 

For single phase water only or vapor only flowing in the tube, the heat transfer coefficient can be 

obtained by the Dittus-Boelter’s equation [16],  

0.8 0.40.023 Re Pr /f f f f ih d
                                                (3) 

Totally three subcooled boiling regimes can be distinguished in the heated panels of the top 

cylinder receiver, namely partial flow boiling, fully developed boiling and significant void flow. 

The onset point of the subcooled boiling was determined by the Bergles’s equation [16], 

5 0.02340.463(10 )
5 1.156

0.556( )
1082(10 )

P
w sat

q
T T

P
 

                    
(4) 

and the corresponding heat transfer coefficient of partial flow boiling was obtained by Moles and 

Shaw’s formula [17], 

0.50.67 * 0.03 0.4578.5 ( / ) Prfoc f sv sl fh h Bo Ja  
 

                            (5) 

where Bo is boiling number, 
lh

q
Bo

GH
 , and Ja* is the Jakob number, * ( )sat f

lh

c T T
Ja

H


 . 

Shah [17] obtained the onset superheat of the fully developed boiling as, 

2sat f

w sat

T T

T T




                                                                 
(6) 

and the heat transfer coefficient for fully developed boiling and significant void flow, hfoc, can be 

calculated as [15], 

app:ds:boiling
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* 1(1/ ( ) / )foc fh h f Bo x x  
                                               (7) 

where 

0.5 5

0.5 5

230 , 3 10
( )

1 46 , 3 10

Bo Bo
f Bo

Bo Bo





   
  

, /sub f lhx T c H   and 
* / ( )f f lhx qc h H  . 

For the saturated boiling regime, Chen’s formula [16] including the contributions from both 

macroscopic and microcosmic convection heat transfer was used ,   

, ,foc foc mac foc mich h h 
                                                   (8) 

0.8 0.4
, 0.023 Re Pr /foc mac sl sl sl ih K d

                                          (9) 

0.79 0.45 0.49
0.24 0.75

, 0.5 0.29 0.24 0.24
0.00122( )sl sl sl

foc mic gr gr
sl lh sv

c
h T P S

H

 
  

  
                        

(10) 

where K and S are empirical values, and ı is the surface tension. 

 

3.3.3 Heat loss 

The heat loss of the dual-receiver includes three parts, including that of reflective loss, radiative 

loss and convective loss. The conductive loss is very small and can be neglected in the analysis.  

The heat loss for the top cylinder receiver for boiling can be obtained by the known tube wall 

temperature as follows [18], 

, ,(1 )B ref B B inQ A q   
                                                   (11) 

4 4
, ,( )B rad B B wQ A T T                                                       (12) 

, , ,( )B conv B B nc B wQ A h T T                                                   (13) 

in which, hB,nc can be acquired from ,
,

B nc
B nc

h l
Nu


 ˈ 

app:ds:microcosmic
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,1/3 0.14
, ( )0.098 ( )

2
B w

B nc

T
Nu Gr

T

 



                                          (14)  

in which, ı is the Boltzmann constant and 
3

,

2

( )B wg T T l
Gr





  is the Grashof number.  

Regarding the bottom receiver for superheating, eight sub-surfaces are considered including the 

aperture. The radiative heat loss is obtained by [19], 

8
4

, , , , , , ,
1

(1 )S rad k k S w k k k j S rad j
j

J T F J  


      ( 1, 2, 8)k            (15) 

7

, , , , ,8
1

S rad S k S rad k k
k

Q A J F


  
                                   

(16) 

where JS,rad,k is the effective radiation leaving a surface including reflected fraction of the irradiation 

and direct emission. Fk,j is the view factor between any two surfaces and evaluated by Nicolas 

Lauzier [20]. 

The reflective heat loss can be calculated similar to the radiative heat loss, 

8

, , , , , , ,
1

(1 ) (1 )S ref k k S in k k k j S ref j
j

J q F J 


      ( 1, 2, 8)k                         (17)
 

7

, , , , ,8
1

S ref S k S ref k k
k

Q A J F


  
                                                 

(18) 

where JS,ref,k is the effective reflection leaving a surface including re-reflected fraction and direct 

reflection for the incident solar energy.  

The natural convective loss was based on the Siebers and Kraabel equation [18], 

, , , , , ,( )S conv k S k S nc S w kQ A h T T    ( 1,2, 7)k 
               (19) 
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0.426 0.6331
, , ,

2 1

0.81( ) ( )( )S nc S w average

AA
h T T

A A 
                                 

(20) 

where TS,w,average is the average temperature of the active and passive heated surfaces, A1 is the total 

interior cavity surface area, A2 is interior cavity surface area below the horizontal plane, which cuts 

through the cavity at the top lip of the aperture, and A3 is the difference between A1 and the area of 

the bottom lip. 

 

4 Results and discussions 

4.1 Performance of the dual-receiver at the design conditions 

The performance of the proposed dual-receiver was examined at the noon of the spring equinox 

day. For the top boiling receiver, the mass flow rate in each parallel rising panel was varied to 

ensure that the pressure drop through all panels was equal. Heat flux distribution was east-west 

symmetric, as shown in Fig. 4. For the east half of the boiling panels, from south to north, the 

average heat flux was 73.8kW/m2, 108.4kW/m2, 165.4kW/m2, 234.1kW/m2, 279.3kW/m2, 

247.4kW/m2, 119.6kW/m2 and 62.7kW/m2, respectively. The corresponding mass flow rates to 

achieve the same pressure drop through all panels were acquired as 8.7kg/s, 11.1kg/s, 12.3kg/s, 

11.9kg/s, 11.4kg/s, 11.8kg/s, 11.5kg/s and 7.6kg/s by Eq. (1)–(2). And the inlet˄boiler˅ flow 

velocity of the panels varied from 0.8m/s to 3.6m/s  

The surface temperature of the panel can be obtained by iteration. Firstly, the solar heat 

absorbing efficiency was assumed an initial value. The surface temperature of the panel was then 

obtained by considering the forced convection of the inner tube and the heat conductivity of the 

tube wall. Accordingly, new efficiency of each panel could be reached by calculating heat loss with 

the surface temperature distribution obtained. The iteration was terminated till a preset convergence 

criterion was reached, under which, the surface temperature distribution of the panel was acquired. 

Fig. 5 shows the resulted temperature distribution of the panel surface of the top boiling receiver. 
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The highest surface temperature was 398ºC, which was lower than the allowable temperature of 

510ºC for SA-192 carbon steel. In the present design, the reflective, radiative and convective heat 

losses were calculated as 1774.1kW, 1554.1kW and 872.8kW, respectively, achieving a thermal 

efficiency of 88.16% for the top boiling receiver. 
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m
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Fig. 5. Panel surface temperature distribution of the top boiling receiver (Perimeter of 0m is the 

north direction). 

 

For the bottom superheating receiver, both east half and west half panels were split into two 

serial loops, as shown in Fig. 3. The mass flow rate of steam from the drum was 17.3kg/s, and was 

uniformly distributed at the inlets of the first loop. The outlets were mixed and fed into the second 

loop. The streamline velocity of superheat steam varied from 3.7 to 7m/s due to the change of steam 

density.  

Similar iteration was executed to obtain the panel surface temperature distribution of the bottom 

cavity receiver, as shown in Fig. 6. The highest temperature was 733ºC, which also below the 

allowable temperature of 760ºC for SA-123TP203H. The total heat loss included reflective loss of 

434.5kW, radiative loss of 1378.8kW and natural convective loss of 701kW, achieving a thermal 

efficiency of 82.64% for the superheating receiver. 
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Fig. 6. Panels surface temperature distribution of the bottom superheating receiver. 

 

4.2 Comparison of the present dual-receiver with a two-cylinder design under design conditions  

To illustrate the advantages of the present new concept, a comparative study was conducted with 

a two-external cylindrical setup [10], as shown in Fig. 7. Both setups were based on a surrounding 

field and had two receivers, aiming for the separation of the boiling and superheating sections. Both 

setups were compared under the same conditions in terms as follows. 

  design latitude and time; 

  heliostat parameter, count and location; 

  active heated surface area; 

  receiver center height; 

  inlet and outlet water/steam parameters. 

The heliostat field layout of the two-external cylindrical setup is shown in Fig.8. The blue sector 

had 196 heliostats, which all focused sunlight onto the superheater, while the red sector for the 

boiler having 428 heliostats. The boiling receiver had a cylindrical shape with the height of 10m 

and the diameter of 7m. The superheating receiver was also cylindrical whose height and diameter 

were 8m and 4.87m, respectively. 
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Fig. 7. Schematic diagram of the two-cylinder setup with surrounding heliostat field. 
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Fig. 8. Heliostat field layout of the two-cylinder setup. 

 

For comparison, table 2 summarizes the geometry and thermodynamic parameters both of the 

present proposed dual-receiver and the two-cylinder setup. 

 

Table 2. Geometry designs and thermodynamic parameters of the present dual-receiver and the 

two-cylinder setup. 
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 Geometry designs 
Thermodynamic 

parameters of both 
designs   

Present 
dual-

receiver 

Two- 
cylinder 

setup 

Boiling 
section 

Center height (m) 100.5 100.5 
Feed water 
temperature  

(oC) 
205 Height (m) 10 10 

Diameter (m) 7 7 

Active heated 
surface area (m2) 

220 220 

Boiler outlet 
steam quality 

(%) 
10 

Tube outer 
diameter (mm) 

26.7 26.7 

Tube thickness 
(mm) 

4 4 

Number of  panels 
(-) 

16 16 

Superheating 
section 

Center height (m) 87.5 87.5 

Outlet 
superheating 

steam 
temperature 

(oC) 

515 

Height (m) 8 8 

Diameter (m) 10 4.87 

Aperture height 
(m) 

7 - 

Aperture width 
(m) 

10 - 

Active heated 
surface area (m2) 

122 122 

Outlet 
superheating 

steam 
pressure 
(MPa) 

10.7 

Passive heated 
surface area (m2) 

95 - 

Tube outer 
diameter (mm) 

26.7 26.7 

Tube thickness 
(mm) 

4 4 

Number of panels 
(-) 

16 16 

 

Table 3 gives solar field efficiency and thermal efficiency at the design conditions for the present 

proposed dual-receiver and the two-cylinder setup. To conduct a realistic comparisons, the inlet and 

outlet water/steam parameters of both receivers were set as the same as the Solar One plant with a 

known Rankine cycle efficiency of 35% [21]. As the same solar field and boiling receiver were 
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applied, the solar field efficiencies and the boiling receiver thermal efficiencies of both receivers 

were approximately similar.  

However, the thermal efficiency of the bottom superheating receiver increased by 9.37% when 

using the cavity receiver instead of the external receiver, due to the reduction of heat loss. For the 

cavity receiver, both radiative and reflective heat loss occurred inside the receiver aperture, which 

was much smaller than that of the cylindrical design. The convective loss occurred at the inner 

surfaces including both the active and passive parts, which had an approximately 44% heat transfer 

area larger than the cylindrical design. However, air temperature inside the cavity was much higher 

than the outside temperature, which could effectively reduce the convective heat loss. Based on the 

temperature difference between the wall and external air, the equivalent convective heat transfer 

coefficient of the cavity inner surface can be acquired from Eq. (14) and Eq. (20), which was about 

8W/m2·K for the cavity receiver and 14W/m2·K for the external receiver. The difference can reduce 

the convective loss of the cavity receiver in further compared to that of cylindrical case. As shown 

in table 3, it can be found that much smaller heat loss was achieved for the present new design. The 

calculated global receiver thermal efficiency of the present proposed dual-receiver was 3.2% higher 

than that of the original two-cylinder setup. 

 

Table 3. The solar field and thermal efficiency under the design conditions for the present dual-

receiver and the two-cylinder setup. 

 

  
Present dual- 

receiver 
Two-cylinder 

setup 

Solar field 
efficiency (%) 

Boiler 72.37 72.27 

Superheater 71.74 72.51 

Global 72.17 72.33 
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Receiver efficiency 
(%) 

Boiler 88.16 87.98 

Superheater 82.64 73.27 

Global 86.55 83.35 

Superheater heat 
loss efficiency (%) 

Convective loss 4.84 5.4 

Radiative loss 9.52 16.32 

Reflective loss 3 5 

 

Table 4 compares the overall performance of the two dual-receiver designs. Assuming the same 

generator efficiency, the total solar plant efficiency was improved by 0.76% for the present 

proposed dual-receiver, correspondingly producing extra 0.3MW electrical power. 

 

Table 4. Overall performance at design conditions for the present dual-receiver and the two-

cylinder setup. 

 Present dual-receiver Two-cylinder setup 

Solar field performance 69.2MWĺ50MW 69.2MWĺ50.1MW 

Receiver performance 50MWĺ43.2MW 50.1MWĺ41.7MW 

Thermal power to storage 10.8MW 10.4MW 

Thermal power to turbine 32.4MW 31.3MW 

Net Rankine cycle efficiency 
and electric power 

35% 11.3MW 35%  11MW 

Overall performance at 
design conditions 

21.86% 21.1% 

 

4.3 Off -design performance of the proposed dual-receiver 
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To examine the performance of the new design under off-design conditions, different solar time 

of the spring equinox day was considered, which changed the solar flux map on the receiver and 

correspondently the inlet mass flow rate of HTF. 

Comparing Fig. 9 and Fig. 10, which show respectively the incident surface flux distribution for 

the present dual-receiver at 8:00am and 10:00am of the spring equinox day, it can be found that the 

solar flux peaks of both boiling and superheating receivers moved from east to west when time 

changes from 8:00am to 12:00am, due to the solar azimuth moves. Different to the symmetrical 

case as in the noon as shown in Fig. 4, there was an unbalalnced distribution of heat fluxes at the 

off-design times shown in Fig. 9 and 10. For instance, the maximum heat flux of left side receiver 

was about two times as that of rght side, as shown in Fig. 9(a). Hence, to accommodate the 

requirement of the same exit quality from the boiler, the mass flow rate should be reduced 

corresponding to the reduction in the incident surface heat flux, so did the exit steam temperature 

from the superheater.  
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(a) Boiling receiver (Perimeter at 180o is north direction). 
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 (b) Superheating receiver. 

Fig. 9. Surface heat flux distribution for the dual-receiver at 8:00am of the spring equinox day. 
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(a) Boiling receiver (Perimeter at 180o is north direction). 
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(b) Superheating receiver. 

Fig. 10. Surface heat flux distribution for the dual-receiver at 10:00am of the spring equinox day. 

 

Table 5 lists the heat losses and the performance of each parts of the present dual-receiver at 

8:00am, 10:00am and 12:00am of the spring equinox day. Due to the decrease in the surface 

temperature in the morning, both radiation and convective heat losses were reduced. However, the 

percentages of these heat losses were increased for both boiling and superheating sections, due to 

the reduction in the total heat input, which was decided by the DNI and solar field efficiency.  

Comparing to the boiling section, the radiative heat loss became dominant in the superheating 

section, which varied from 9.5% to 13.2% at different times, due to its strong dependence on the 

wall temperature, as indicated by Eq. (12). For the boiling section, the wall temperature was mainly 
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decided by the saturation temperature of the fluid, which only varied slightly at different off-design 

points. As a contrast, the increase of the wall temperature in the superheating section can be 200-

300K higher than that of the boiling section, which is therefore responsible for the increased heat 

loss from the radiation. 

Similar cases were found at other comparative time points, i.e. 12:00am of the summer solstice 

day and 9:00am of the winter solstice day, which were chosen to illustrate the thermal efficiency 

performances of the present new design. It was obtained that the thermal efficiency varied from 

80% to 87%. It should be noted that when 9:00am of the winter solstice day, outlet steam 

temperature was 496oC, which was 19oC lower than the design value of the outlet steam 

temperature. Such a lower outlet steam temperature would lead to lower Rankine cycle efficiency 

and higher humidity on the last stages of the steam turbine. As typical allowable outlet steam 

temperature deviation is from -10 to 5oC [22], the inlet mass flow rate or the number of heliostats 

corresponding to boiling and superheating receiver shall be adjusted to obtain appropriate outlet 

steam temperature under such conditions .  

 
Table 5. The present dual-receiver performances at different time points. 

 

Time 
spring 

equinox 
12:00am 

spring 
equinox 
10:00am 

spring 
equinox  
8:00am 

summer 
solstice 

12:00 am 

winter 
solstice  
9:00am  

DNI (W/m2) 914 869 685 937 573 

Solar field efficiency (%) 72.17 69.69 60.85 71.65 58.39 

Evaporator specific mass 
flow rate (kg/m2·s)  

540-880 449-807 242-625 566-887 164-538 

Superheater outlet 
flow rate (kg/s) 

17.3 15.7 10.4 17.6 8.1 

Superheater outlet  
steam temperature (oC) 

515 515 510 515 496 

Boiling receiver 
thermal efficiency (%) 

88.16 87.61 84.58 88.26 82.29 
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Convective loss (%) 2.46 2.67 3.8 2.42 4.67 

Radiative loss (%) 4.38 4.72 6.62 4.31 8.05 

Reflective loss (%) 5 5 5 5 5 

Superheater receiver 
thermal efficiency (%) 

82.64 81.78 77.04 82.82 73.28 

Convective loss (%) 4.84 5.12 6.79 4.78 8.33 

Radiative loss (%) 9.52 10.1 13.17  9.4 15.39 

Reflective loss (%) 3 3 3 3 3 

Total Receiver thermal 
efficiency(%) 

86.55 85.89 82.34 86.66% 79.78 

 

4.4 Influence of tube diameter 

For a consistent comparison, the influence of tube diameter on the system performance was 

investigated under the same solar flux map, geometry of receiver, inlet water/steam parameters, 

inlet total mass flow rate and tube thickness as in section 3. 

For the boiling receiver, the mass flow rate in each parallel rising panel was different to ensure 

that the pressure drop through all panels was equal. When the tube outer diameter was reduced, the 

mass flow rate was found to increase for the panels with relatively lower surface heat fluxes, but 

decreased for panels with higher surface heat fluxes. This can be attributed to the different pressure 

drop components. For low heat flux panels, the gravitational pressure drop was dominant, whereas 

for higher heat flux panels, the frictional component was the major contribution. Consequently, the 

higher heat flux panels were prone to the overheating problem due to the reduction in the mass flow 

rate, which should be considered in practice. One potential solution would be the proper use of 

throttle orifices, which should be located at the panel entrance with adjustable orifice diameters 

suitable for different heat fluxes. For the east half of boiling panels, the local resistance coefficients 
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were set as 115, 94, 60, 25, 0, 17, 86 and 123, respectively from south to north, and  the local 

resistance coefficients remained the same for different tube diameters. 

Table 6 shows the influence of tube outer diameter on the boiling receiver. When the tube outer 

diameter was reduced from 26mm to 16mm, the flow velocity was increased under the same mass 

flow rate, resulting in the increase of the heat transfer coefficient. The thermal efficiency of the 

boiling receiver, excluding the parasitic loss, was increased by only ~0.05%. This was, however, 

compromised by a sharp increase in the pressure drop, i.e., from 85kPa to 772kPa. The overall 

receiver thermal efficiency was reduced from 87.86% to 85.53% when the increased pumping 

power was considered. Clearly it is not always beneficial to decrease the tube size, which shall be 

considered collectively for the boiler section.  

 

Table 6. Influence of tube outer diameter for boiling receiver. 

 

Tube 
outer 

diameter 
(mm) 

Boiling receiver 
thermal efficiency 
excluding parasitic 

loss (%) 

Flow 
velocity 
(m/s) 

Heat transfer 
coefficient 
(kW/m2·k) 

Pressure 
drop (kPa) 

Boiling receiver 
thermal efficiency 

including 
parasitic loss(%) 

26 88.16 0.8-4.3 7.3-46.7 85 87.86 

24 88.16 0.9-4.8 8.9-48.8 102 87.81 

22 88.16 1.2-5.7 11.4-53.7 136 87.7 

20 88.16 1.7-7 14.9-54.8 201 87.49 

18 88.17 2.3-9 17.9-59.9 342 87.02 

16 88.21 3.5-13 25.3-70.9 772 85.53 

 

For the superheating receiver, the influence of tube outer diameter is shown in Table 7. When the 

tube outer diameter was reduced from 26mm to 14mm, the receiver thermal efficiency was 

improved by ~3%, much higher than the boiler section. This is related to the relative importance of 

different heat resistance.  For the boiling section, the main resistance to heat loss was from the wall 
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and further improve the flow boiling heat transfer coefficient would not change the heat loss.  

However for the superheating section, the major heat resistance came from the internal convection. 

A size reduction would reduce the heat loss saliently due to the increased in heat transfer coefficient 

inside the pipe. However as previously, the pressure drop was also raised significantly from 8kPa to 

585kPa. A parametric study of the size effect suggested that the thermal efficiency of the 

superheating receiver, including parasitic loss, reached its maximum performance at an outer 

diameter of 18mm.  

 

Table 7. Influence of tube outer diameter for superheating receiver. 

 

Tube outer 
diameter 

(mm) 

Superheating 
receiver thermal 

efficiency 
excluding parasitic 

(%) 

Flow 
velocity 
(m/s) 

Heat transfer 
coefficient 
(kW/m2·k) 

Pressure 
drop 
(kPa) 

Superheating 
receiver thermal 

efficiency 
including 

parasitic loss (%) 

26 82.83 3.9-7.4 1-2.4 8 82.68 

24 83.36 4.6-8.6 1.5-2.8 13 83.14 

22 83.85 5.4-10.2 1.8-3.3 21 83.51 

20 84.39 6.7-12.8 2.2-4 39 83.82 

18 84.85 8.6-16.5 2.8-5.1 76 83.83 

16 85.36 12-23.4 3.8-7 186 83.05 

14 85.83 18.6-37.4 5.7-10.4 585 78.17 

 

5 Conclusions 

A novel dual-receiver with a surrounding solar field was proposed to improve the efficiency of 

solar power tower (SPT). The new concept comprised an external receiver and a cavity receiver, 

respectively designated for the boiling section and superheating section, providing a convenient yet 

simple approach to control the heat flux distribution on both sections. 
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(1) The new design of 11MW solar power plant achieved an overall thermal efficiency of 86.55% 

under design conditions, generating 17.3kg/s superheated steam at 515oC and 10.7MPa. 

(2) A comparative study of 11MW solar power plant was conducted based on the new design and 

a two-external cylindrical setup. The present design improved the thermal efficiency of the 

superheating section by about 9.37%, and the global thermal efficiency of the SPT  by 3.2%. 

(3) The plant performance was affected significantly by the incident solar fluxes at different time 

of a day, and even exceeded the range of allowable outlet steam temperature, which required a 

proper control of the inlet mass flow rate or the heliostats focus. 

(4) It is not always beneficial to decrease the tube size for the benefit of heat transfer 

enhancement and an optimized tube diameter of ~18 mm for the superheating receiver was 

proposed based on the collective consideration of the heat transfer effect and pumping power 

requirement.  

 

Appendix. Model validation  

Monte-Carlo method is validated in this section. By using original heliostat field layout of PS10 

power plant and receiver data, net power and flux peak of PS10 receiver at the noon of the spring 

equinox day were obtained by Monte-Carlo method. Table A1 gives the comparison of PS10 data 

[13] and our Monte-Carlo method simulated results. It can be seen that Monte-Carlo method is very 

close to literature data, and the method was then used in this study to configruate the heliostat fields.  

 

Table A1. Comparison of net power and flux peak between data of PS10 and the present Monte-

Carlo results at noon of the spring equinox day. 

 PS10  literature data Monte-Carlo 

Net power (MW) 51.9 51.5 

Flux peak (kW/m2) 644 650 
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Table captions 

Table 1. Main parameters used in the optical analysis. 

Table 2. Geometry designs and thermodynamic parameters of the present dual-receiver and the 

two-cylinder setup. 

Table 3. The solar field and thermal efficiency under the design conditions for the present dual-

receiver and the two-cylinder setup. 

Table 4. Overall performance at design conditions for the present dual-receiver and the two-

cylinder setup. 

Table 5. The present dual-receiver performances at different time points. 

Table 6. Influence of tube outer diameter for boiling receiver. 

Table 7. Influence of tube outer diameter for superheating receiver. 

Table A1. Comparison of net power and flux peak between data of PS10 and the present Monte-

Carlo results at noon of the spring equinox day. 

 

Figure captions 

Fig. 1. Schematic diagram of the proposed dual-receiver with solar field. 

Fig. 2. Heliostat field layout of the proposed dual-receiver. 

Fig. 3. The bottom cavity receiver. (a) The cavity receiver geometry. (b) Fluid flow layout of the 

active heated walls. 

Fig. 4. Surface heat flux distribution for the dual-receiver at the noon of the spring equinox day. (a) 

Boiling receiver (Perimeter of180º is north direction). (b) Superheating receiver. 

Fig. 5. Panel surface temperature distribution of the top boiling receiver (Perimeter of 0m is the 

north direction). 

Fig. 6. Panels surface temperature distribution of the bottom superheating receiver. 

Fig. 7. Schematic diagram of the two-cylinder setup with surrounding heliostat field. 

Fig. 8. Heliostat field layout of the two-cylinder setup. 
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Fig. 9. Surface heat flux distribution for the dual-receiver at 8:00am of the spring equinox day. (a) 

Boiling receiver (Perimeter at 180o is north direction). (b) Superheating receiver. 

Fig. 10. Surface heat flux distribution for the dual-receiver at 10:00am of the spring equinox day. (a) 

Boiling receiver (Perimeter at 180o is north direction). (b) Superheating receiver. 


