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ABSTRACT: There is a large amount of functional genetic data available, which can be used to inform fine-mapping association
studies (in diseases with well-characterised disease pathways). Single nucleotide polymorphism (SNP) prioritization via Bayes
factors is attractive because prior information can inform the effect size or the prior probability of causal association. This
approach requires the specification of the effect size. If the information needed to estimate a priori the probability density
for the effect sizes for causal SNPs in a genomic region isn’t consistent or isn’t available, then specifying a prior variance for
the effect sizes is challenging. We propose both an empirical method to estimate this prior variance, and a coherent approach
to using SNP-level functional data, to inform the prior probability of causal association. Through simulation we show that
when ranking SNPs by our empirical Bayes factor in a fine-mapping study, the causal SNP rank is generally as high or higher
than the rank using Bayes factors with other plausible values of the prior variance. Importantly, we also show that assigning
SNP-specific prior probabilities of association based on expert prior functional knowledge of the disease mechanism can lead
to improved causal SNPs ranks compared to ranking with identical prior probabilities of association. We demonstrate the use
of our methods by applying the methods to the fine mapping of the CASP8 region of chromosome 2 using genotype data from
the Collaborative Oncological Gene-Environment Study (COGS) Consortium. The data we analysed included approximately
46,000 breast cancer case and 43,000 healthy control samples.
Genet Epidemiol 00:1–12, 2016. Published 2016 Wiley Periodicals, Inc.∗
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Introduction

Association between genetic variants and the occurrence of
a disease is typically analysed using P -values from purely
likelihood-based hypothesis tests such as Wald or Cochran-
Armitage tests. These can be used to rank variants in order
of association in both genome-wide association studies, and
fine-mapping studies focussing on a much smaller genetic
region, in which causal association with the disease has al-
ready been convincingly established. Fine-mapping studies
that fail to take into account known functional information
are arguably not making full use of all the available data.

Bayesian analysis provides a convenient framework for
combining prior information from multiple sources, and
Bayes factors (BFs) [Kass and Raftery, 1995] are now routinely
used to identify genetic variants in genetic association stud-
ies [Stephens and Balding, 2009; Maller et al., 2012; Spencer
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et al., 2015], but there are several practical difficulties. In
particular, the marginal likelihoods required to calculate the
BF often lead to intractable integrals, meaning that the BF
must be approximated. With large genetic studies, this is not
problematic because asymptotic approximations exist. Two
approximations, the Laplace approximation and the Wake-
field BF (WBF) approximation, are currently available. The
Laplace approximation is integrated in the software SNPTEST2
[Marchini et al., 2007], and the WBF approximation [Wake-
field, 2008, 2009] has a simple algebraic form. To calculate
the BF, the prior distribution of the log odds ratio (logOR)
for effect size must be specified, and the results can be highly
variable dependent on this prior. The prior is usually taken to
be Gaussian with a known variance. Specifying this variance
may be difficult for alleles involved in common diseases. One
way to deal with this uncertainty is to add further layers to the
prior hierarchy by letting the prior variance take a probabil-
ity distribution [Spencer et al., 2015]. Here, we demonstrate
an empirical Bayes method that can be used as an alterna-
tive if the prior variance is not well characterised, and which
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can produce higher causal single nucleotide polymorphism
(SNP) ranks than using many values of the prior variance
within a realistic range.

We consider the suitability of posterior probabilities of
association as a statistic for ranking genetic variants. To cal-
culate these posterior probabilities of association, prior odds
are updated through the BF. There is now a vast array of
functional information available on the genome, for exam-
ple, that from the ENCODE project [Encode Project Consor-
tium, 2011], which may be used to inform these probabilities.
How to translate such information into prior probabilities is
not clear. In this paper, we attempt to address the practical
issues of choosing both the variance of the prior distribution
of the logOR and the prior probabilities of association.

Materials and Methods

Following a fine-mapping association study, we wish to
rank variants in order of �i , the posterior probability that
variant i is causally associated with the disease. Bayes the-
orem allows us to express the posterior odds of association
as �i/(1 – �i) = δi/(1 – δi) × BF [Kass and Raftery, 1995],
where δi is the prior probability of causal association for vari-
ant i and the BF is the ratio of the marginal likelihoods under
two differing hypotheses:

BF =
f (data|H1)

f (data|H0)
. (1)

In univariate logistic regression models we assume that, for
variant i, the probability (yil) of subject l with xil copies of the
minor allele being a case is yil = eβ0i +β1i xil /(1 + eβ0i +β1i xil ). The
usual test is then H0 : β1i = 0 and H1 : β1i � = 0 [Stephens and
Balding, 2009], where β1i is the natural logarithm of the odds
ratio of the variant i. In order to calculate �i for variant i, a
prior distribution on the logOR, β1i , is needed, and a prior
probability of causal association δi has to be specified.

Constructing Empirical BF

We focus on using the WBF approximation, which assumes
a prior of the form β1 ∼ N(0, W). Note that for the sake of
brevity, we drop the i subscript on β1i , where the meaning is
clear. Asymptotically, the estimate of the logOR is distributed
β̂1 ∼ N(β1, V), and Wakefield showed that the BF can be
written as

WBF =

√
V

V + W
exp

(
β̂1

2
W

2V(V + W)

)
. (2)

To aid our calculations, this is the reciprocal of the approx-
imation given by Wakefield in his papers [Wakefield, 2008,
2009].

Although this approximation is convenient, it still requires
a value for W, the prior variance of the logOR, for each vari-
ant to be specified a priori, which may be difficult. Spencer
et al. [2015] showed the ranking of SNPs is potentially very
sensitive to the choice of W. This sensitivity is a potential
drawback in studies utilising BFs where there is functional

information to inform prior probabilities of association but
where there are few previous studies available to use to esti-
mate likely effect sizes a priori.

A standard Bayesian method would require the prior dis-
tribution (and therefore W) to be chosen before the data
are obtained. Empirical Bayes is an alternative approach that
involves estimating prior hyper-parameters (in this case W)
from the data. In the case where a suitable value for W is
difficult to choose, we propose choosing W to maximise the
marginal likelihood f (data|W). The drawback of using an
empirical Bayes approach is that the data are effectively used
twice: to inform the prior and also in the likelihood. We em-
phasize that where reliable information is available to inform
the prior effect size this should be used instead. In the Ap-
pendix we show that f (data|W) ∝ WBF when considered as
a function of W. In the Appendix we also show that WBF,
when considered as a function of W, is maximised when

WEB =

{
β̂1

2
– V if β̂1

2 ≥ V
0 otherwise.

(3)

We use the notation WEB for this empirical Bayes inspired

value of W and BFEB for the associated BF. If z2 = β̂1
2
/V, it

follows that

BFEB =

{
1
z exp

(
z2–1

2

)
if β̂1

2 ≥ V

1 otherwise.
(4)

This is not a standard empirical Bayes approach because

we are using β̂1
2

and V as surrogates for the data at each
SNP. These values vary by SNP and there are many ways of
selecting the values to use for all SNPs. An obvious approach
is to use the values for the causal SNP. To do this one would
need to calculate WEB using β̂1c and Vc , the β̂1 and V values
specific to the causal variant, which are of course unknown.
We suggest several empirical surrogates for these values, and
give the results of an investigation comparing them in the
Results section. For the estimate of Vc , we suggest using the
median V estimated for all variants in the dataset and denote
it as Vm.

To approximate β̂1c , we use the fact that the causal variant
is likely to be in higher linkage disequilibrium (LD) with vari-
ants that are highly associated with the phenotype of interest
than other variants in the region. We use the likelihoods of the
single-variant logistic regression models as a simple measure
of association. One option is to use β̂1 of the variant that pro-
duces the model with the largest likelihood (β̂1max). However,
we have previously shown that ranking genetic variants in a
fine-mapping scenario based on LD with this variant is not
efficacious [Spencer et al., 2014]. Therefore, we also consid-
ered estimating β̂1c by taking the top p% of variants ranked by
likelihood and using the median value of |β̂1| for this group,
denoted β̂1p . The choice of the median was due to the lower

bound of zero and the skewed distribution of β̂1p . In order
to compare the effectiveness of the different approximations
for β̂1c , we analysed simulated data using WBFs calculated
with WEB as the ranking statistic. The same simulated data
were analysed using the various suggested approximations,
including different values for p .
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Data Used in the Study

We simulated case-control genotypes, where the ‘true’
causal variant is known, using HAPGEN2 [Spencer et al.,
2009; Su et al., 2011] with reference haplotypes from the
1000 Genomes Study [Altshuler et al., 2010]. Specifically
we simulated 2,871 SNPs in a one mega-base region (from
201,566,128 to 202,566,128 bases in the Hg19 build) around
the CASP8 region on chromosome 2. We considered six mi-
nor allele frequency (MAF)/odds ratio (OR) combinations
for the causal SNP: an MAF of 0.08 and 0.18 and a per-allele
OR of 1.06, 1.1 and 1.14. For the MAF of 0.08 we simulated
10,000 cases and 10,000 controls. When the simulated causal
SNP had an MAF of 0.08 and an odds ratio of 1.10 the me-
dian value of V was 0.00208 and was very similar for the
other two odds ratio for this MAF. For the MAF of 0.18 we
simulated 5,000 cases and 5,000 controls. When the simu-
lated causal SNP had an MAF of 0.18 and an odds ratio of
1.10 the median value of V was 0.00143 and was very similar
for the other two odds ratio for this MAF. We assumed a
multiplicative genetic model throughout.

We define filtering to be the ranking of all genetic variants
by a statistic such as � and removal of all variants below
a threshold [Spencer et al., 2014]. To assess our methods,
we carried out variant filtering on the simulated datasets.
We plot true-positive rates (TPR) for each false-positive rate
(FPR) using receiver operating characteristic (ROC) curves
in 1,000 simulated fine-mapped datasets and compare this
to the ROC generated by using other methods to compare
ranking efficacy. We combine the data from each set of 1,000
simulated datasets into a single ROC curve using a method
called ‘threshold averaging’ [Fawcett, 2006]. We present the
mean TPR for each FPR considered.

In a recent study by the Collaborative Oncological Gene-
Environment Study (COGS) Consortium, several regions of
the genome were fine mapped using the iCOGS array (a spe-
cially developed Illumina array), and analysed for associa-
tion with breast cancer [Michailidou et al., 2013]. We utilised
the data from the CASP8 region and, after quality control
checks, we had genotyped information for 501 variants and
imputed genotype probabilities for a further 1,232 variants
between base positions 201,500,074 and 202,569,992 (im-
putation carried out using IMPUTE2 [Marchini and Howie,
2010]). The genotypes of these 1,733 variants were available
for a total sample size of 89,050 subjects (46,450 cases and
42,600 controls).

Functional Data Used to Inform Prior Odds of Association

Our aim is to rank variants by � values and in order to
calculate these we also need to assign a δ value to each variant.
If nothing was previously known about the genotyped vari-
ants they could all be assigned the same δ and the ranking by
� would be equivalent to ranking by BF (using association
information from the data alone). However, much investiga-
tion has been done into the functionality of genetic variants
and there is a large amount of information publicly available.
One of the richest sources of such information is the En-
cyclopaedia of DNA Elements (ENCODE) [Encode Project

Consortium, 2011], which is available to view using the UCSC
Genome Browser. It contains data for a huge number of vari-
ables recorded at the SNP level, some of which are likely to
be related to whether or not an SNP will have a deleterious
effect on a disease. There are many ways that δ values may
be generated from the data in ENCODE, but we outline one
general method here.

The δ values we use are expert-specific subjective proba-
bilities. An expert here meaning a geneticist with expertise
in the particular disease area. Our method employs elicita-
tion, which involves working with the expert to formulate
a numeric representation of their beliefs, in this case about
δ values for all the genetic variants. Alternatively, multiple
experts may be used, but this adds to the complexity by ne-
cessitating the combination of multiple opinions into a single
prior. This also slightly changes the problem, as a combina-
tion prior is not a subjective prior in the same way that a single
expert’s opinion is, and therefore the resulting value or dis-
tribution does not have an intuitive meaning. This problem
is discussed in a thorough review on the topic of elicitation
by Garthwaite et al. [2005].

Using Functional Information to Inform Prior Odds

Elicitation can be used to specify a fixed value or a prob-
ability distribution. It is unrealistic to elicit δ values for in-
dividual SNPs so we propose grouping SNPs into groups of
similar broad functionality. Therefore we need to elicit only
a few δ values, one for each SNP group. We do this using the
following procedure:

Step 1: The expert should choose a subset of the ENCODE
variables relevant to the disease of interest.

Step 2: If appropriate, group the ENCODE variables into
summary variables indicating broader functionality and for-
mulate binary decision rules based on the values of the sum-
mary variables to partition SNPs into those ‘more likely’ and
‘less likely’ to be causal.

Step 3: Construct a tree with the summary variables (in
an appropriate order) as the nodes and the binary decision
rules as the branches. Use the tree to partition the SNPs into a
small number (J ) of prior probability groups, ordered from
‘very unlikely’ to ‘very likely’ to be causal. See Figure 2 for an
example of one we constructed for the SNPs in the CASP8
region. Let δ[j ] be the prior probability of a group j SNP
being causal.

Step 4: Elicit from the expert the prior probability (p 0) that
none of the variants analysed is causal.

Define N to be the total number of SNPs to partition into
the J groups and nj to be the number of SNPs in group j .
We assume that the event that SNP i is causal, is independent
of the event that SNP k is causal (i � = k). If we further assume
that δ[1], . . . , δ[J ] are small then we have

p 0 =

n1∏
i=1

(1 – δ[1])
n2∏
i=1

(1 – δ[2]) . . .

nJ∏
i=1

(1 – δ[J ])

=

J∏
j =1

(1 – δ[j ])
nj ≈ 1 –

J∑
j =1

nj δ[j ] + O(δ2).
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To calculate the values of δ[1], . . . , δ[J ] we have to solve
1 – p 0 =

∑J
j =1 nj δ[j ]. If we make the further assumption that

δ[j +1] = Rδ[j ] for j = 1, . . . , J – 1 then we can get

δ[1] =
1 – p 0

nJ RJ –1 + nJ –1RJ –2 + · · · + n2R + n1
(5)

and the remaining δ[j ] values are then calculated using δ[j +1] =

Rδ[j ]. The accuracy of Equation (5) depends on the relative
sizes of nj and δ[j ]. In the binomial expansion (1 – δ[j ])nj the
ratio of the (u + 1)th to the uth term is δ[j ](nj – u)/(u + 1) so
the smaller the δ[j ]nj = Rj –1δ[1]nj is, the better Equation (5)
is as an approximation. The value of j for which Rj –1/nj is
largest also provides an indication of where extra terms may
be needed in the binomial expansions. The resulting val-
ues derived from Equation (5) should be checked to ensure
that p 0 ≈ ∏J

j =1(1 – δ[j ])nj . If the approximation appears to be
poor, then quadratic terms can be considered in the binomial
expansion yielding a quadratic equation aδ2

[1]
+ bδ[1] + c =

0, where a =
∑J

j =1

(nj

2

)
R2j –2 +

∑J –1
j =1

∑J
j ∗>j nj nj ∗ Rj +j ∗–2, b =

–
∑J

j =1 Rj –1nj and c = 1 – p 0. A poor second-order approx-
imation could yield a quadratic without real roots. In this
case a numerical method such as the uniroot function
in R should be used to solve p 0 =

∏J
j =1(1 – δ[j ])nj , where

δ[j +1] = Rδ[j ].
Assuming that the events that SNP i is causal and SNP k is

causal are independent takes no account of the likely number
of causal SNPs in the region. If it is desirable to incorporate
prior knowledge about the number of causal SNPs, then this
can be achieved with some modification to Equation (5). We
present a method in which up to two causal SNPs are present
in the genomic region. Let p m represent the prior probability
that there are m causal SNPs in the region. Then it follows
that

1 = p 0 + p 1

⎛⎝ J∑
j =1

nj δ[j ]

⎞⎠
+p 2

⎛⎝ J∑
j =1

(
nj

2

)
δ2

[j ] +

J –1∑
j =1

J∑
k=j +1

nj nkδj δk

⎞⎠ . (6)

We can also relax the somewhat rigid assumption that
δ[j +1] = Rδ[j ] and instead allow group-specific multiplicative
increases by letting δ[j +1] = Rj δ[j ]. It then follows that

1 = p 0 + p 1

⎛⎝n1 +

J∑
j =2

{
nj

j –1∏
k=1

Rk

}⎞⎠ δ[1]

+p 2

⎛⎝(
n1

2

)
+

J∑
j =2

{(
nj

2

) j –1∏
k=1

R2
k

}
+

J∑
k=2

⎧⎨⎩n1nk

k–1∏
j ∗=1

Rj ∗

⎫⎬⎭
+

J –1∑
j =2

J∑
k=j +1

⎧⎨⎩nj nk

j –1∏
j ∗=1

R2
j ∗

k∏
j ∗=j

R j ∗

⎫⎬⎭
⎞⎠ δ2

[1]. (7)

This yields a quadratic in δ2
[1]. We used Equation (5) with

our expert geneticist to assign probabilities to the CASP8

region variants because we didn’t have reliable information
about the number of causal SNPs in the region. In addition
the expert had no reason to believe that the multiplicative
increase in prior probabilities was unrealistic.

After carrying out the elicitation and assigning the SNPs
to J = 4 groups, we selected one SNP from each group with
similar MAF (between 0.037 and 0.049). The selected SNPs
from each of the four groups were chosen to be in very high
LD with each other. All pairwise D ′ values for these four causal
SNPs were 1 except for one pair with D ′ = 0.916 (r2 = 0.839).
We simulated sets of 1,000 datasets with the selected SNP
in each group as the causal SNP with a per-allele OR of 1.1
and then analysed the data using WBF, with a prior on the

logOR of N(0, WEB = β̂1
2
p =30 – Vm). After calculating � values

for all SNPs, we ranked and filtered them using these values.
By choosing SNPs in very high LD, we limit the effect of the
underlying LD structure when using different causal variants
so that the differences seen are the result of the different δ

values assigned. This was also checked by carrying out BF
filtering on the four sets of simulations.

Results

SNP Filtering in the Simulated Data Using Empirical BFs

Figure 1 shows the results of filtering for the six simulated
scenarios (MAF=0.08, 0.18 and OR=1.06, 1.10, 1.14) using
the WBF where the prior variance of the logOR (W) is equal
for all SNPs in a dataset. The solid grey ROC curves show the
results for W = 0.01, 0.02 and 0.04. The dashed line shows
the results of using WEB = β̂1

2
c – Vc , where β̂1c and Vc relates

to the unknown values for the causal SNP. The solid black
line shows the results of using WEB = β̂1

2
p – Vm, where Vm is

the median of V across all SNPs and β̂1p is the median of the

|β̂1| values of the top p % of SNPs ranked by likelihood (here

we use p = 30). WEB = β̂1
2
c – Vc represents the theoretical up-

per bound corresponding to the case where β̂1c and Vc are
known. In Figure 1 we focus on FPR ≤ 0.2 as this represents
the most interesting parts of the ROC space in fine mapping.
The results do not qualitatively change at higher FPRs. Table 1
shows the distribution of the WEB values across the 1,000
simulated datasets for each of the six MAF/OR scenarios.
The minimum value of WEB is zero in each of the six
scenarios.

Using WEB = β̂1
2
30 – Vm generally performs well when the

causal variant has an MAF of 0.08 (right-hand column of
Fig. 1) compared to other values of W considered. When
the simulated causal SNP MAF is 0.18 (left-hand column),
the performance was competitive in two scenarios (lower
effect sizes) but poor when the causal SNP OR was 1.14. The
reasons for the relatively poor performance in this one case
are not clear. We investigated different values of the percentile
p in WEB and found values around p = 30 generally gave the
best performance in all six scenarios considered (results not
shown).

A potential criticism of our empirical Bayes approaches is
that the same data get used twice, once to inform the prior
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Figure 1. Receiver operating characteristic (ROC) curves of BF filtering results, each using the Wakefield approximation and N (0, W) prior for
the log odds ratio with a different value of W , some based on empirical information (WEB). Those that use empirical Bayes methods have subscripts
denoting whether they are based on the causal SNP (c) or the median across all SNPs (m) or the median across the top p% of SNPs (p), where
in this case p = 30. The filtering was carried out on 1,000 datasets simulated using the LD structure of the CASP8 region for six scenarios. In the
left (right) column the total sample size was 10,000 (20,000) and the causal SNP had an MAF of 0.18 (0.08). In the top, middle and bottom rows, the
causal SNP had a per-allele OR of 1.14, 1.10 and 1.06, respectively.

Table 1. Percentiles of the distribution, across simulated
datasets, of WEB for each of the six different odds ratio, MAF and
sample size scenarios considered

Simulated odds ratio
Sample size (SS)
and MAF

Percentile
of WEB 1.06 1.10 1.14

SS = 20,000 25 0.0021 0.0025 0.0035
MAF = 0.08 50 0.0036 0.0043 0.0056

75 0.0057 0.0061 0.0079
100 0.0210 0.0172 0.0243

SS = 10,000 25 0.0026 0.0023 0.0023
MAF = 0.18 50 0.0062 0.0050 0.0050

75 0.0111 0.0085 0.0084
100 0.0355 0.0453 0.0270

via calculation of WEB and then again in the calculation of
the BF. This has the potential to lead to overfitting. To assess
whether our use of empirical Bayes leads to overfitting we
estimated WEB on a training dataset and then used this value

Table 2. Four summary variables to describe the SNPs in the
1 Mb region surrounding CASP8

Values of ENCODE
Summary Values of ENCODE variables for variables for which SNPs
variable which SNPs are likely to be causal are unlikely to be causal

Regional
location

Gene given as CASP8 or ALS2CR12 Elsewhere

Histone
modification

H1: layeredGm12878H3k4me1StdSig ≥ 5
or H2: layeredHmecH3k4me3StdSig
≥ e1.5 or H3:
layeredHmecH3k27acStdSig ≥ e1.75

Otherwise

Availability A1: TranscriptionGm12878 ≥ e1.5 or A2:
TxnFactorChip ≥ 100 or any indicator
for A3: OpenChromSynthGm12878Pk

Otherwise

Conservation Conservation value > 0 Otherwise

These are determined based on the following variables downloaded from the
ENCODE database: gene, layeredGm12878H3k4me1StdSig,
layeredHmecH3k4me3StdSig, layeredHmecH3k27acStdSig, TranscriptionGm12878,
TxnFactorChip, OpenChromSynthGm12878Pk and Conservation. Values given in the
table were used to determine how likely SNPs with that description/value are to be
causal, compared with other SNPs in the region.
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Figure 2. Receiver operating characteristic (ROC) curves of BF filtering results, each using the Wakefield approximation and N (0, W) prior for
the log odds ratio with W based on empirical information (WEB). The subscripts denote whether they are based on the causal SNP (c) or the
median across all SNPs (m) or the median across the top p% of SNPs (p), where in this case p = 30. The filtering was carried out on 1,000 datasets
simulated using the LD structure of the CASP8 region for six scenarios. Twenty different partitions of the 1,000 datasets into 500 paired datasets
were constructed. In each of these 20 partitions WEB was calculated from one dataset of each pair and applied to the other dataset in the pair.
The ROC curves for these 20 train-test partitions are given by WEB = β̂1

2
30 − Vm (test train). In the left (right) column the total sample size was 10,000

(20,000) and the causal SNP had an MAF of 0.18 (0.08). In the top, middle and bottom rows, the causal SNP had a per-allele OR of 1.14, 1.10 and 1.06,
respectively.

of WEB in a test dataset of the same size. We randomly selected
500 pairs of training and test data from the 1,000 simulated
datasets (for each MAF). Within each pair we estimated WEB

in the training data and used this value in the test dataset.
We repeated this random sampling of 500 pairs 20 times
and show the ROC curves for these 20 random samples in
Figure 2. We consider the same six MAF/odds ratio scenarios

presented in Figure 1. WEB = β̂1
2
p – Vm represents the case

where WEB is calculated and implemented on the same data

and is reproduced from Figure 1 and WEB = β̂1
2
p – Vm (test

train) represents our test-train approach.
If our empirical Bayes approach leads to overfitting, we

would observe a meaningful reduction in performance. There
is no evidence of overfitting in the plots on the right of Figure
2, whilst there is some evidence of overfitting in the plots
on the left of Figure 2, particularly when the odds ratio is

1.06. Our results suggest that the empirical Bayes approach
can lead to overfitting when the causal SNP odds ratio is very
small and the sample size is modest but should otherwise not
suffer adversely from overfitting. It should be emphasised
that we are not advocating this train-test approach because
it would require double the sample size compared to our
standard empirical Bayes approach. We include it simply to
determine the existence and extent of overfitting.

SNP Filtering in the Simulated Data Using Posterior
Probabilities

Using the steps outlined in the Methods section, we were
able to assign prior probabilities of causal association to sim-
ulated SNPs in the CASP8 region in the 1,000 genomes data.
The ENCODE variables that were chosen for step 1 and the
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Table 3. Percentage missing data by ENCODE variable and sum-
mary variable used to partition the SNPs into groups

Summary Regional Histone Conser-
variable location modification Availability vation

ENCODE variable CASP8 ALS2- H1 H2 H3 A1 A2 A3 Conser-
CR12 vation

Percentage missing by
variable

0 0 33.5 31.6 38.4 71.6 88.7 97.2 94.7

Percentage missing by
summary variable

0 6.0 65.2 94.7

The ENCODE variables corresponding to H1–H3 and A1–A3 are specified in Table 2.

summary variables assigned in step 2 are given in Table 2.
There is a lot of missing data in the ENCODE variables, with
‘gene’ being the only one we used that didn’t have any values
missing. The percentages missing for each variable are shown
in Table 3. We dealt with missing values by replacing them
with zeros (because all measurements were positive) under
the assumption that they are missing because they didn’t
exceed the measurement threshold.

We grouped our ENCODE variables into J = 4 groups (step
3), depending on the SNP-specific outcomes and the expert’s
decision rules relating to what thresholds to apply to each
ENCODE variable within the summary variable (see Fig. 3).
Of the N = 2, 871 SNPs, this resulted in n1 = 1, 698 SNPs
being assigned to the ‘very unlikely to be causal’ group 1,

Figure 3. Flow diagram showing how SNPs in the CASP8 region were divided into four groups, depending on four summary variables: Regional
location, Histone modification, Availability and Conservation. The groups represent the subjective belief of a breast cancer geneticist about how
likely SNPs are to be causal. The number of SNPs assigned to each group is given for both the simulated data based on the 1,000 genomes data,
and for the iCOGS study in the last two lines.
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Figure 4. Effectiveness of posterior probability of causal association (�) as a fine-mapping filter according to the prior probability of causal
association (δ) of the causal SNP. One thousand datasets were simulated for each of four scenarios using causal SNPs with per-allele OR of
1.1, MAFs close to 0.04 and a total sample size of 20,000 using the LD structure of the CASP8 region. All SNPs were assigned to one of four prior
probability groups and for each scenario a different causal SNP was selected so that it came from each of these four groups. A prior on the logOR
of N (0, WEB) and the Wakefield approximation were used with WEB = β̂1

2
p=30 − Vm . (a) ROC curves for each of the four prior probability scenarios

when the values of δ assigned to the SNPs in the four groups were 0.000032, 0.00016, 0.0008 and 0.004 (R = 5). An ROC curve of the results for
filtering using BF alone is given for comparison. (b) ROC curves for each of the four prior probability scenarios when the values of δ assigned to
the SNPs in the four groups were 0.00012, 0.00024, 0.00048 and 0.00096 (R = 2). A ROC curve of the results for filtering using BF alone is given for
comparison.

n2 = 780 to group 2, n3 = 362 to group 3 and n4 = 31 to the
‘very likely to be causal’ group 4.

Our expert specified the probability that there was no causal
SNP in the region as approximately p 0 = 0.4 and specified the
multiplicative increase in the prior probability of being causal
in group j + 1 compared to group j as R = 5. Substituting
these values into Equation (5) gives δ[1] = 3.2 × 10–5, from
which we can infer using δ[j +1] = Rδ[j ] that δ[2] = 1.6 × 10–4,
δ[3] = 8 × 10–4 and δ[4] = 4 × 10–3.

Using these prior probabilities, we calculated the pos-
terior probabilities (�) by updating with the BF using

WEB = β̂1
2
p =30 – Vm. Figure 4 a shows the results of filtering for

the simulated data using �s when the causal SNP is placed
in each of the four SNP groups with different prior proba-
bilities. The results of filtering using BF alone for one of the
four scenarios has also been included for comparison. The
BF results were very similar for all four scenarios with area
under the curves (AUCs) of approximately 84%. As expected,
when the causal SNP was in group 1 with a low δ value, it
was a lot less likely to be retained than when it was assigned
any of the other possible δ values. The AUC of the ROC curve
for this scenario is 56%. Causal SNPs with the other three δ

values all resulted in higher TPRs than BF filtering at FPRs
greater than 0.18 and the AUCs for these scenarios are 86%,
97% and greater than 99% for groups 2, 3 and 4, respectively.

If the causal SNP is in group 3 or 4, the TPR is greater
than 0.95 at FPRs as small as 0.11. When the values of δ[j ]

are assigned using this method, the δ[j ] values depend upon
the relative numbers of SNPs in each group as can be seen in
Equation (5).

An R value of 5 is high, reflecting the expert’s understand-
ing of the disease mechanism. If less is known about the
disease, investigators may specify lower values. To assess the
effect of a lower value of R we did the same analysis with
R = 2. The results are presented in Figure 4 b. The ROC
curves for filtering using � are all closer to the BF ROC
curve, particularly for groups 1 and 2. When the causal SNP
is in group 2, 3 or 4, the ROC curves in Figure 4 b have
larger AUCs (89%, 96% and 99%) than the ROC curve for
filtering using BF alone (AUC = 84%). However, the AUC
is quite a lot smaller when the causal SNP is in group 1
(67%).

We also compared the results of posterior probability fil-
tering with R = 5 to those using R = 2 and BF filtering by ex-
amining the numbers of SNPs (both causal and non-causal)
retained when the TPR is fixed at 90% when the causal SNP is
each of the four groups. These results are given in Table 4. The
results show that it is possible to reduce the set of candidate
causal SNPs to 28 of 2,871 with posterior probability filter-
ing at a TPR of 90% using available functional information.
These results also indicate that if SNPs cannot be confidently
assigned to prior groups based on functional information,
then BF should be used for filtering (equivalent to assigning
all SNPs the same value of δ).
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Table 4. The numbers of SNPs retained out of the total 2,871 in
the region, such that the true-positive rate (TPR) is 0.9

R = 5 R = 2
Causal
SNP group

BF
filtering: � filtering: Inter � filtering Inter

(prior mean (SD) mean (SD) section: mean (SD) section:
probability) BF threshold � threshold mean (SD) � threshold mean (SD)

Group 1 1,514 (351) 2,059 (211) 1,514 (351) 1,926 (284) 1,514 (351)
(δ[1]) 0.84 2.7 × 10–5 1.0 × 10–4

Group 2 1,515 (433) 814 (124) 638 (182) 823 (156) 692 (184)
(δ[2]) 0.88 1.4 × 10–4 2.1 × 10–4

Group 3 1,701 (457) 264 (61) 255 (65) 315 (76) 309 (78)
(δ[3]) 0.83 6.6 × 10–4 4.0 × 10–4

Group 4 1,678 (441) 28 (12) 28 (12) 62 (42) 62 (42)
(δ[4]) 0.83 3.3 × 10–3 8.0 × 10–3

For four scenarios with similar causal SNPs (each in a different prior probability (δ[j ])
group), Bayes factor (BF) filtering was carried out and the results are given in the
second column. Posterior probability (�) filtering was carried out with group-specific
δ[j ] values assigned in two different ways, as indicated in the top row. Results are given
as the mean and standard deviation (SD) of the numbers of SNPs retained and the BF
or � threshold required to achieve this TPR. We also provide the mean and SD results
for the intersection of SNPs retained using BF and � filtering. For each scenario, 1,000
datasets, with a causal SNP with a per-allele OR of 1.1, an MAF in the range (0.037,
0.049) and a sample size of 20,000 was simulated using the LD structure of the CASP8
region. To calculate the BFs, a prior on the logOR of N(0, WEB) and the Wakefield

approximation were used with WEB = β̂1
2
p =30 – Vm .

Table 5. SNP group prior probabilities used in the iCOGS analysis
for R = 5 and R = 2

Prior probabilities of association

Value of R δ[1] δ[2] δ[3] δ[4]

R = 5 5.44 × 10–5 2.72 × 10–4 1.36 × 10–3 6.8 × 10–3

R = 2 2 × 10–4 4 × 10–4 8 × 10–4 1.6 × 10–3

SNP Filtering in the iCOGS Data Using Posterior
Probabilities

We fitted univariate logistic regression models to the
iCOGS CASP8 data from which we were able to calculate
WEB = β̂1

2
p =30 – Vm ≈ 0.0018. We used this value of W to cal-

culate an approximate BF for each SNP. Due to the set of
CASP8 SNPs in the study being different to those in the 1,000
genomes data used for simulations, the number of SNPs as-
signed to each prior probability group was different. The
numbers are provided at the bottom of Figure 3. Using Equa-
tion (5) with p 0 = 0.4 and both R = 5 and R = 2 gave the
prior probabilities of association in Table 5.

In Table 6, we present the top 20 SNPs in the iCOGS CASP8
data ranked by posterior probability of causal association (�)
using R = 5. For notational purposes we use �[R] to indicate
the value of R used to calculate �. Table 6 also contains the
rankings using �[2], BFs and the more standard P -values for
comparison. These sets of results demonstrate the difference
that including prior information can make. Although BF
ranking is based purely on the data from the study and sets
equal prior probabilities of causal association for each SNP,
using �[5] specifies the priors to be markedly different across
the SNP prior groups. When using �[2], there is less prior
difference across the SNP groups, thus each SNP is ranked

somewhere between the rank using �[5] and the rank using
the BF. Because of the large sample size, the likelihood is
highly informative even when using �[5]. This is evidenced
by the fact that the top 16 SNPs ranked by BF alone are all still
in top 20 ranked by �[5], so that the prior probability does
not dominate the likelihood. However, we also see that in the
top 20 ranked by �[5], there are no group 1 SNPs (which are
assigned the smallest prior probability). In fact the highest
ranked group 1 SNP is ranked 87th using �[5], but has a BF
of 101 that is higher than some of the group 3 and four SNPs
in the table (it is ranked 28th by BF and 39th by �[2]). A
previous study [Spencer et al., 2015] quantified the variation
in ranks using BFs as a function of sample size and hence
implicitly the relative influence of the priors.

Including prior information can help to pinpoint the causal
signal in blocks of high LD that ranking by BF, or any statistic
calculated from the genotype data alone, cannot. Many of
the SNPs in Table 6 are in very high LD with each other. For
example, 12 of the SNPs in the top 13 ranked by BF all have an
estimated OR in the range (1.042, 1.048) and a sample MAF
in the range (0.285, 0.299). Ranking by �[5] not only changes
the ranks for these 12 SNPs within the LD block, increasing
the weight given to those SNPs with higher prior probabilities
(e.g., SNP number 837), but also includes in the higher ranks
SNPs from outside the LD block. For example, SNP number
893 (with an estimated OR of 1.080 (95% CI=(1.032, 1.131))
and MAF of 0.047) is ranked 45th by BF but is ranked seventh
when ranked by �[5].

The 173 top ranking SNPs (top 10%) using �[5] contain
only 93 in the top 10% ranked by BF. Of these 173 SNPs,
15 were assigned the highest prior probability, 92 the next
highest and 62 and 4 the two lowest probabilities, respectively.
These are equivalent to 100%, 41%, 12% and 0.4% of the
total SNPs assigned to groups 4, 3, 2 and 1, respectively. The
SNP in the top 10% based on �[5] that is ranked lowest by
BF is SNP number 889, which only has the 1,731st highest
BF value (out of 1,733), but due to having been assigned
the highest prior probability, it is ranked 169th by posterior
probability.

Discussion

BFs provide a coherent framework for combining infor-
mation from a genetic association analysis with information
from other sources. We have developed an empirical Bayesian
prior distribution for the logOR (β1) to use with the Wakefield
BF approximation and also propose a general framework for
assigning prior probabilities of association (δ) to genetic vari-
ants, combining functional SNP data with expert elicitation.
Through simulation, we showed that when using the WBF
approximation with a prior of the form β1 ∼ N(0, W) to fil-

ter SNPs in the CASP8 region, using W = WEB = β̂1
2
p =30 – Vm

generally gave higher TPRs for a given FPR across a range
of values of W likely to be used in fine-mapping studies
looking for variants with modest effect sizes. We found
that using the median of the absolute value of the effect
size estimates in the top 30% (p = 30) ranked by likelihood
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Table 6. Top ranked SNPs in CASP8 region based on posterior probability (�) filtering using R = 5 in the iCOGs study (89,050 subjects
and 1,733 SNPs)

� filtering

BF filtering R = 2 R = 5

SNP number OR (95% CI) MAF P -value filtering rank BF Rank � Rank � Rank G roup

838 1.041 (1.020, 1.062) 0.338 5 330 5 0.346 3 0.693 1 4
837 1.042 (1.021, 1.064) 0.299 6 306 10 0.329 4 0.677 2 4
1,027 1.046 (1.024, 1.068) 0.285 2 955 2 0.433 2 0.565 3 3
980 b 1.048 (1.027, 1.071) 0.294 1 1,932 1 0.436 1 0.345 4 2
896 1.042 (1.020, 1.064) 0.287 13 254 =12 0.169 5 0.257 5 3
885 1.041 (1.019, 1.063) 0.287 19 184 16 0.129 7 0.201 6 3
893 a,b 1.080 (1.032, 1.131) 0.047 42 30 45 0.046 25 0.170 7 4
839 b 1.035 (1.013, 1.057) 0.270 54 26 =50 0.040 29 0.151 8 4
992 b 1.045 (1.022, 1.067) 0.287 3 488 3 0.163 6 0.117 9 2
909 1.043 (1.021, 1.065) 0.287 9 352 4 0.124 8 0.087 10 2
950 b 1.043 (1.021, 1.065) 0.286 10 326 6 0.115 9 0.081 11 2
960 b 1.043 (1.021, 1.065) 0.285 7 320 =7 0.114 =10 0.080 =12 2
961 b 1.043 (1.021, 1.065) 0.285 8 320 =7 0.114 =10 0.080 =12 2
985 b 1.043 (1.021, 1.066) 0.286 4 310 9 0.111 12 0.078 14 2
907 1.042 (1.020, 1.064) 0.287 6 255 11 0.093 13 0.065 15 2
912 1.042 (1.020, 1.064) 0.287 15 254 =12 0.092 14 0.065 16 2
890 1.028 (1.008, 1.048) 0.386 141 9 149 0.014 45 0.057 17 4
956 a,b 1.052 (1.025, 1.080) 0.167 16 210 14 0.078 15 0.054 18 2
1,272 a 1.075 (1.036, 1.116) 0.071 14 190 15 0.071 16 0.049 19 2
971 a,b 1.083 (1.034, 1.135) 0.049 31 40 34 0.028 30 0.048 20 3

aFor these SNPs, the major allele is associated with a higher disease risk.
bThese SNPs were not genotyped but imputed.
Also included for comparison are the ranks of these 20 SNPs when using posterior probabilities with R = 2 and Bayes factors (BF) calculated using the Wakefield approximation

with WEB = β̂1
2
p =30 – Vm = 0.0018, as well as P -values. The estimated OR (with 95% confidence interval) and MAF for each SNP are also included.

performed well in our simulated data but our investigations
were limited to the CASP8 region and a different value may
be needed in a different region with substantially different LD
structure.

The method will be most effective in fine mapping a single
causal variant. Multiple causal variants with different MAFs
could possibly lead to different effect size estimates (under
the assumption that rarer variants have larger effect sizes).
Indeed even two causal SNPs with similar effect sizes could
also have disparate effect size estimates in small sample sizes.
In regions harbouring a single causal variant this is obviously
not an issue. So the effectiveness does not necessarily depend
on variant MAF, but on the presence of a single causal SNP.
The method may work well in regions with multiple causal
SNPs, if the causal SNPs have similar effect sizes and the
sample size is large, because then the estimates are likely to
be similar for SNPs in high LD with either causal SNP. Care
should be taken in smaller fine-mapping studies because rare
variants may have relatively high effect estimates. Inclusion
of these rarer variants in the top p% of variants may lead
to unreliable estimates of the effect size of the causal SNP
although taking the median over these effect sizes should
mitigate this somewhat.

This work was motivated by the large quantities of SNP-
level functional data now freely available online. Incor-
porating external data such as these could be a way of
disentangling the signals coming from high LD regions
harbouring a causal SNP, a problem invariably encoun-
tered in fine-mapping studies. A common methodology to

differentiate between the large number of SNPs in a region is
to use the results of genome-wide association study (GWAS)
and then systematically examine functionality databases to
justify the top hits. We have formalised the incorporation
of functional information by using it to inform the prior
probability of causal association.

Incomplete Functional Data

The functional ENCODE SNP-level data that we used to
assign specific prior probabilities for each SNP group cur-
rently have the disadvantage of not being complete for all
the SNPs across the genome and in fact is quite sparse for
some functional indicators. This means that in addition to
potential uncertainty around the prior probabilities, there is
likely to also be uncertainty about how to handle SNPs for
which there is some functional information missing. We dealt
with missing values in the ENCODE data by replacing them
with zeros under the assumption that they are missing be-
cause they didn’t exceed some measurement threshold, but
it is unclear how appropriate this is. It may be more robust
to impute these missing values, using the recorded values
for other SNPs showing reasonable correlation in some set
of ENCODE variables. This approach would be particularly
challenging because the functional effect of an SNP depends
on the sequence around it and so this would have to be taken
into account in the imputation in some way. Understanding
the reasons for the data being missing provides the key to
knowing how best to handle them.
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Alternative Methods of Including Functional Data

Although data external to the association study are not of-
ten used in the initial analysis, there are several structured
methods other than through BFs in which it can be in in-
corporated. These include P -value weighting [Saccone et al.,
2008] a Bayesian latent variable model [Fridley et al., 2011]
and stratified false discovery rates [Schork et al., 2013; Sun
et al., 2006].

There are also different methods by which δ values could
be assigned to variants in a study. An alternative method
of grouping is to obtain SNP scores from the RegulomeDB
database [Boyle et al., 2012]. These categorical scores are as-
signed based on the regulatory potential of variants and draw
information from multiple sources including ENCODE [En-
code Project Consortium, 2011]. In this case, the score is
between 1 (for most likely to be causal) and 7 (for least
likely). Rather than grouping, a different strategy is to use
some sort of continuous score for SNPs. Several such scoring
methods have been published recently, based on an SNP’s
individual probability of affecting disease susceptibility, for
example, the functional significance (FS) score published by
Lee and Shatkay [2009], which has been used effectively to
enhance expression quantitative trait loci (eQTL) fine map-
ping [Boggis et al., 2015]. The FS score has the advantage that
it integrates a large amount of data from multiple publicly
available data sources. It formally combines scores from a
number of bioinformatics tools using weighting based on the
reliability of these tools to give a score between 0 and 1.

An alternative way to integrate functional information into
this kind of analysis is to use it to form a BF rather than a prior
probability [Knight et al., 2011]. This method is effective be-
cause ‘prior knowledge’ can be updated any number of times
using BFs. Once a posterior odds of association has been cal-
culated, this can be used as a prior odds and multiplied by
another BF to get a new posterior odds. Therefore, beginning
initially with all SNPs having equal prior probabilities of as-
sociation, two separate BFs can be used, one containing the
association information from the genotyping, as detailed in
this study, and the other containing the functional informa-
tion. Knight et al. [2011] give some specific values that may
be used for these functional BFs.

Pickrell [2014] jointly analyses functional genomic data
and GWAS data. The approach taken is an objective, rather
than a subjective one. In a block of SNPs assumed to harbour
a single causal variant, the prior probability that an SNP is
causal depends on annotation parameters that are jointly es-
timated along with all other parameters. This is an interesting
approach but because our interest was in breast cancer, a dis-
ease with a relatively well understood aetiology, we felt that
it was appropriate to use the accumulated subjective knowl-
edge of a breast cancer expert. This may not be the case in
less well-understood diseases.

Functionally informative data are expected to become more
complete in the near future and large databases such as EN-
CODE are regularly updated. We anticipate that methods
such as those described here will become increasing impor-
tant as these data become more complete.
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Appendix

Justification for Maximising WBF with Respect to W in the
Empirical Bayes Approach

Here we justify our assertion that f (data|W) ∝ WBF
when considered as a function of W. The WBF is given by
f (data|H1)/f (data|H0) and because f (data|H0) imposes the
constraint that β = 0 it does not involve W. It follows that
WBF ∝ f (data|H1) when considered as a function of W.
Under H1 the support for β is β ∈ (–∞, 0) ∪ (0,∞), whilst
the support for β in the prior used in the marginal likeli-
hood f (data|W) is β ∈ R. However the Lebesgue measure
ensures that P (β = 0) = 0 and so f (data|H1) = f (data|W)
even though the first involves integration over β ∈ (–∞, 0) ∪
(0,∞) whilst the latter involves integration over β ∈ R. It
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follows therefore that f (data|W) ∝ WBF when considered
as a function of W.

Conditions, Derivation and Classification of Stationary
Point

Let K =
√

Vexp(β̂1
2
/2V), which is not a function of W.

Because W represents the variance of a (possibly degenerate)
random variable, it follows that W ≥ 0. Let f (W) represent
the WBF in Equation (2) as a function of W then

f (W) =

√
V

V + W
exp

(
β̂1

2
W

2V(V + W)

)

=

√
V

V + W
exp

(
β̂1

2

2V

(
1 –

V

V + W

))

= K (V + W)–1/2exp

(
–

β̂1
2

2(V + W)

)
.

After a little algebra it follows that

f ′(W) =
K (V + W)–3/2

2

[
β̂1

2
– (V + W)

V + W

]
exp

(
–

β̂1
2

2(V + W)

)
.

So f ′(W) = 0 when W = β̂1
2

– V. If W = β̂1
2

– V ≥ 0 then

W = β̂1
2

– V is a stationary point. If β̂1
2

– V < 0, then β̂1
2

–

(V + W) < 0, the derivative is strictly decreasing and W = 0 is
a (non-stationary) maximum. A little more algebra gives

f ′′(W) =
K

4
(V + W)–5/2

[
3 –

6β̂1
2

V + W
+

β̂1
4

(V + W)2

]

exp

(
–

β̂1
2

2(V + W)

)

f ′′(W = β̂1
2

– V) =
–K

2
(β̂1

2
)–5/2exp (–1/2) .

So if β̂1
2

– V ≥ 0 then the stationary point W = β̂1
2

– V is a

maximum. If β̂1
2

– V < 0 then f (W) is maximised at W = 0.
If follows that f (W), the WBF, is maximized at

WEB =

{
β̂1

2
– V if β̂1

2 ≥ V
0 otherwise.
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