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Timed Circus: Timed CSP with the Miracle
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Abstract—Timed Circus is a compact extension to Circus;
that is, it inherits only the CSP part of Circus while intro-
ducing time. Although it looks much like timed CSP from the
viewpoint of syntax, its semantics is very different from that of
timed CSP because it uses a complete lattice in the implication
ordering instead of the complete partial order of the standard
failures-divergences model of CSP. The complete lattice gives
rise to a number of strange processes which violate some
axioms of CSP, especially when the miracle (the top element)
and SKIP meet time. In this paper, compared with timed CSP,
we will extensively explore such strange processes which turn
out to be very useful in specifying a distinct property that
‘something must occur’. Finally, we use a simple example
to demonstrate how our model can contribute to modelling
temporal behaviours with multiple time scales in complex
systems.

I. INTRODUCTION

Recently the combination of different approaches by

means of unifying their semantics has been developed in

order to tackle a wider variety of systems. Circus is one of

the successful combinations, which unifies CSP [3], [7], [9]

and Z [11], [16] and the refinement calculus [5], so that it

can deal with both data and behavioural aspects of a system;

that is, it can describe the change of states and define the

data operations while dealing with concurrency. The first de-

notational semantics of Circus, based on UTP, was published

in [15]. However it actually describes a Circus program as

a Z specification in order to use tools like Z/EVES [8] to

reason about properties. Later, Woodcock et al. [6] proposed

new semantics, also based on UTP, for Circus in which

each process is described as a reactive design. The so-called

reactive designs come from the fact that the new semantics

applies the well-defined healthiness conditions of reactive

processes to embedding the theory of designs. The new

semantics can adopt the sophisticated refinement laws of

CSP in the refinement of Circus specifications.

We subsequently develop a new timed model [13] which

is a compact extension of Circus. In fact, timed Circus does

not inherit Z specification of Circus, and also makes use of

the latest reactive design semantics in order to mechanically

implement the refinement more easily. To some extent, timed

Circus can be considered timed CSP with the miracle (the

top element). However, its semantics is very different from

that of timed CSP since it uses a complete lattice in the

implication ordering instead of the complete partial order of

the standard failures-divergences model of CSP. Prior to our

work, Sherif and He [10] proposed a timed model of Circus

that also took a subset of Circus and created an abstraction

function to map the timed model to the original untimed

model. However, our timed model uses different semantics

for conveniently applying well-defined CSP refinement laws.

Moreover, our model extensively explores the role of the

reactive design miracle in system specifications, so that we

can define brand-new operators to specify some distinct

properties of a system which cannot be easily expressed by

other approaches.

Hoare and He have given new semantics to CSP in their

UTP book [4] where the theory of CSP is a complete

lattice, rather than the complete partial orders of the standard

models of CSP. Our timed Circus, based on the similar

UTP semantics, overhauls the complete lattice and explores

some elements which are usually considered useless in

system specifications. For example, the miracle (false) in the

theory of relations can never be implemented in engineering

practice. Nevertheless this miracle is extremely useful as a

mathematical abstraction to specify and reason about proper-

ties of a system. Woodcock [14] has intuitively discussed and

proved some strange processes involving the reactive design

miracle, each of which violates an axiom of the standard

failures-divergences model of CSP. In this paper, we further

discuss how the miracle impacts on the behaviour of a

process particularly in a timed environment, how successful

termination (SKIP) defined in timed Circus also results in

some strange behaviours, and how these differences from

timed CSP contribute to modelling temporal behaviours with

multiple time scales in complex systems.

This paper is structured as follows. We begin with in-

troducing the theories of designs and reactive processes in

Section II. In Section III, we discuss our model’s difference

from timed CSP by exploring the nature of the miracle

and the strange behaviour of successful termination. In

Section IV we use a simple example to demonstrate how

useful timed Circus is in dealing with temporal behaviours

with multiple time scales, and in Section V we conclude the

paper.

II. REACTIVE DESIGNS

In UTP, Hoare and He use the alphabetised relational

calculus to give denotational semantics that can explain a
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wide variety of programming paradigms. A relation P is

a predicate with an alphabet αP, composed of undashed

variables (a, b, ...) and dashed variables (a′, x′, ...). The

former, written as inαP, stands for initial observations, and

the latter as outαP for intermediate or final observations.

The relation is then called homogeneous if outαP = inαP′,

where inαP′ is simply obtained by putting a dash on all the

variables of inαP.

In UTP a design is a relation that can be expressed

as a precondition-postcondition pair in combination with a

boolean variable, called ok. In designs, ok records that the

program has started, and ok′ records that it has terminated.

If precondition P and postcondition Q are predicates not

containing ok and ok′, a design with P and Q, written as

P ⊢ Q, is defined as follows:

P ⊢ Q =̂ ok ∧ P ⇒ ok′ ∧ Q

which means if a program starts in a state satisfying P, then

it must terminate, and whenever it terminates, it must satisfy

Q.

A reactive process in UTP is a program whose behaviour

may depend on interactions with its environment. To repre-

sent intermediate waiting states, a boolean variable wait is

introduced to the alphabet of a reactive process. For example,

if wait′ is true, then the process is in an intermediate state.

If wait is true, it denotes an intermediate observation of

its predecessor. Thus, we are able to represent any case

of states of a process by combining the values of ok and

wait. If ok′ is false, the process diverges. Since a divergent

process can do anything, there is no constraint on any of

the dashed variables. If ok′ is true, the state of the process

depends on the value of wait′. If wait′ is true, the process is

in an intermediate state; otherwise it successfully terminates

if wait′ is false. Similarly, the values of undashed variables

represent the states of a process’s predecessor.

Timed reactive processes have another four pairs of obser-

vational variables: t, tr, ref , v, and their dashed conterparts.

The tr and ref observations denote timed traces and its

refusal sets. Note that a timed trace is a sequence of timed

events which are pairs drawn from R
+ × Σ (Σ denotes a

universal set of events). A refusal is simply a set of events,

rather than a set of time events in timed CSP, since other

variables can assist in representing enough information of

when those events are refused. The v observation expresses a

process’s local variables, and t represents a time point when

observing the process. There are three healthiness conditions

in UTP that untimed reactive processes must satisfy. Our

timed model inherits and extends them to embrace the factor

of time.

R1 : P = P ∧ tr ≤ tr′

R2 : P(tr, tr′) = P(⟨⟩, tr′ − tr)

R3 : P = IIrea ✁ wait ✄ P

If a relation P describes a reactive process behaviour, R1
states that it never changes history, or the trace is always

increasing. The second, R2, states that the undashed variable

tr has no influence on the behaviour of the process, and

therefore P does not change if tr is an empty sequence. The

final healthiness condition, R3, defines that a process should

not start if its predecessor has not finished, while it preserves

states unchanged. Here, the reactive identity, IIrea, is defined

as follows:

IIrea =̂ (¬ ok ∧ tr ≤ tr′ ∧ t ≤ t′) ∨ (ok′ ∧ tr′ = tr

∧ ref ′ = ref ∧ v′ = v ∧ wait′ = wait ∧ t′ = t)

In consideration of our time model of reactive processes,

additional healthiness conditions must also be satisfied in

order to constrain the time and the behaviour of timed traces.

As idempotent functions, they are defined as follow:

R4 : P = P ∧ t ≤ t′

R5 : P = P ∧ ∀ i, j : dom(tr′ − tr) • i ≤ j ⇒

strip(tr′ − tr)(i) ≤ strip(tr′ − tr)(j)

R6 : P = P ∧ ∀ u ∈ ran ◦ strip(tr′ − tr) • t ≤ u ≤ t′

where the function strip removes the event of each element

of a timed trace and returns a sequence of time points, and

◦ is the function composition. R4 states time always moves

forward;R5 requires that the events occur in an ascending

order; R6 constrains that all the events taking place during

the execution of the process happen within a correct time

frame. As a result, P is a timed reactive process if and only

if it is a fixed point of R =̂ R1◦R2◦R3◦R4◦R5◦R6. For a

more detailed introduction to the theory of reactive designs,

the reader is referred to the tutorial [2].

In UTP, the theory of CSP is built by applying a number

of healthiness conditions to reactive processes. However it

can also be achieved by using the healthiness conditions R

to embed designs within the theory of reactive processes.

The theory of timed Circus is built by the same approach,

in which processes are expressed in the form of R-healthy

designs. For example, the reactive design miracle, which is

the top element of our timed model, is defined in terms of

the design miracle made R-healthy:

⊤R =̂ R(true ⊢ false)

= R(ok ∧ true ⇒ ok′ ∧ false)

= R(ok ⇒ false)

= R(¬ ok)

Therefore, for a reactive design process1, it also automat-

ically satisfies the following two healthiness conditions:

CSP1(P) = P ∨ (¬ ok ∧ tr ≤ tr′ ∧ t ≤ t′)

CSP2(P) = P ; J

1As proved in [2], a reactive process defined in terms of a design is
always CSP1 healthy, and CSP2 is simply a recast of H2, a healthiness
condition of the theory of designs.
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where J = (ok ⇒ ok′) ∧ wait′ = wait ∧ tr′ = tr ∧ ref ′ =
ref ∧ t′ = t ∧ v′ = v. The first healthiness condition requires

that, in case of divergence, extension of the trace and the

time should be the only guaranteed property. The second

one means that P cannot require nontermination, so that it

is always possible to terminate.

Except for the deadline and assignment operators, the

syntax of timedCircus is similar to that of timed CSP, as

described by the following grammar:

P ::=⊤R | ⊥R | SKIP | STOP | a → P | P1 ; P2 | x :=A e |

g&P | P1 ✷ P2 | P1 ⊓ P2 | P1 ∥
A

P2 | P \ A |

WAIT d | P1 ◃ {d}P2 | P ◮ d | P1△{a}P2 | µX.P

The miracle ⊤R is the top element in the implication

ordering, which expresses a process that has not started

yet. The bottom element ⊥R is called Abort which can do

absolutely anything. The process STOP is deadlocked and

its only behaviour is to allow time to elapse. The process

SKIP simply terminates immediately.

The sequential composition P1 ; P2 behaves as P1 until

P1 terminates, and then behaves as P2. In the meanwhile the

final state of P1 is passed on as the initial state of P2. The

prefix process a → P is able to execute the event a (a ∈ Σ)

and then behaves as P. The process g&P has a boolean

expression g which must be satisfied before P starts. The

notation (x :=A e) represents that a process simply assigns

the value of an expression e to a process variable x, and then

any other variable in the alphabet A remains unchanged.

The process P1 ✷ P2 behaves either like P1 or P2, but

the first event of which can resolve the choice. Compared

with the external choice, the internal choice P1 ⊓ P2 can

also behave either like P1 or like P2, but it is out of control

of its environment. Both external and internal choices have

indexed choices. For example, if I is a finite indexing set

such that Pi is defined for each i ∈ I, written as ✷
i∈I

Pi.

The indexing external choice is also used to define the input

operator. For example, if c is a channel name of type T and v

is a particular value, the process c!v → P outputting v along

the channel c is equal to c.v → P. The inputting process

c?x : T → P(x) describes a process that is ready to accept

any value x of type T , and it is defined as ✷
x∈T

c.x → P(x).

The process P1 ∥
A

P2 is the process where all events in

the set A must be synchronised, and the events outside A

can execute independently. The parallel process terminates

only if both P1 and P2 terminate, and it becomes divergent

after either one of P1 and P2 does so. An interleaving of

two processes, P1 ||| P2, executes each part independently

and is equivalent to P1 ∥
∅

P2. The hiding operator P \ A

makes the events in the set A become invisible or internal

to the process. The process P1△{a}P2 behaves as P1, but

at any stage before its termination the occurrence of a

(a /∈ αP1) will interrupt P1 and pass the program control to

P2. The recursive process µX.P behaves like P with every

occurrence of the system variable X in P representing a

recursive invocation.

The delay process WAIT d does nothing except that it

allows d time units to pass. The timeout operator P1 ◃ {d}P2

resolves the choice in favour of P1 if P1 is able to execute

observable (external) events by d time units, otherwise

executes P2. The deadline operator ◮ is similar to the

timeout operator, but it uses the miracle to force that P must

execute observable events by d.

Here, we will not give detailed definitions to these op-

erators because this paper focuses on how those primitive

processes such as the miracle, termination and assignment

lead to some strange behaviours when connected with other

operators. For full explanation of all operators, the reader is

referred to the technical report [12].

III. THE DIFFERENCE FROM TIMED CSP

Although timed Circus is similar to timed CSP in syntax

and also inherits assumptions of timed CSP such as maximal

parallelism and maximal progress, the introduction of the

miracle makes it different from timed CSP in many aspects.

A. The reactive design miracle

The miracle itself is a very ‘strange’ process since it

expresses a process that has not started yet. However, it

is very useful as a mathematical abstraction in reasoning

about properties of a system. The semantics for the reactive

design miracle introduced in Section II can be furthermore

simplified somewhat:

⊤R = (tr ≤ tr′ ∧ t ≤ t′ ∧ ¬ ok) ∨ (wait ∧ ok′ ∧ II)

where II is called relational identity which simply means

that all dashed variables in the alphabet are equivalent to

correspondingly undashed variables. The observation of the

miracle consists of two parts: the left part of the disjunction

states that, since ok is false, its predecessor diverges and the

miracle is in an unstable state; the second one states that

the miracle is waiting for its predecessor’s termination (e.g.,

wait is true) but in a stable state (e.g., ok′ is true). However,

in both cases, the miracle has not started yet.

In fact, the key idea of figuring out the role of the miracle

in a process is that the program control should never meet the

miracle if the process has started. This idea can be applies

to intuitively getting a number of laws even without the

semantic proofs2.

1) Sequential composition with the miracle: Since the

miracle never starts, the left zero law is immediately val-

idated if P is a timed reactive process:

L1: ⊤R ; P = ⊤R

Also, the following two laws can be easily proved. For

example, in L2, the process should never start because, once

2The proofs of all theorems and lemmas can be found in the appendix.
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it starts, the program will inevitably meet ⊤R during the

execution.

L2: SKIP ; ⊤R = ⊤R

L3: STOP ; ⊤R = STOP

What happens if a process executes a delay and then

behaves miraculously? Should it be a miracle too, similar

to L2? The following theorem will provide an answer.

Theorem 1:

WAIT d ; ⊤R = R(true ⊢ tr′ = tr ∧ v′ = v

∧ wait′ ∧ t′ − t < d)

The result is clearly feasible, so it is not a miracle but

very interesting. This process behaves just like STOP when

t′ − t < d, and like the miracle when otherwise. However,

does it contradict with our previous conclusion that a process

should never meet the miracle during the execution? In fact,

this process still preserves such a conclusion because the

postcondition of the design in the semantics constrains that

the observation after the process starts in a stable state

should be made within d, and the control can never be

passed over to ⊤R (since wait′ is always true). Note that

this strange process is very useful in the definition of the

deadline operator, which forces other participants to happen

as soon as possible so as to avoid the miracle.

2) Prefixing the miracle: Woodcock [14] has proved that,

when combining the miracle with a simple prefix, it violates

an axiom of the failures-divergences model of CSP. For

example, the semantics for the following simple process is

given in [14]:

Theorem 2:

a → ⊤R = R(true ⊢ tr′ = tr ∧ a ̸∈ ref ′ ∧ wait′ ∧ v′ = v)

which states that the process never refuses to execute the

event a, but it never actually does. Of course, such a strange

process has the same behaviour in timed Circus. Notice that

the process results in an unexpected fact to the timeout

operator.

Usually, we use the external choice and the hiding oper-

ator to define the timeout, as follows:

P1 ◃ {d}P2 =̂ (P1 ; e → SKIP

✷ WAIT d ; e → P2) \ {e}

Obviously, if P2 is replaced by ⊤R, we are not going to

see that the external choice is resolved by e (e /∈ (αP1 ∪
αP2)) because it will never happen. Therefore, to define the

deadline operator, we can not simply replace P2 with the

miracle in the timeout definition.

3) External choice with the miracle: Another strange

process, (a → SKIP) ✷ ⊤R, is given in [14] when we

offer a choice between the miracle and engaging in an

event. In an untimed model this process performs the event

a and terminates immediately. There is no state in which

the process is waiting for the environment to offer a. It

simply occurs instantly and no empty trace exists for such

a process. Obviously, it violates another important axiom

of the failures-divergences model of CSP where traces are

prefix closed.

In timed Circus, this process reveals a more interesting

feature that is revealed in the following theorem:

Theorem 3:

(a → SKIP) ✷ ⊤R = R(true ⊢¬ wait′ ∧

tr′ = tr a ⟨(t′, a)⟩ ∧ v′ = v)

The result is very similar to the one initially given by

Woodcock [14], but a does not happen instantly as it does in

an untimed environment. Because of no constraint on timing

in the above semantics, a will occur when the environment

is willing to interact with it. However, there is still no

state between the start of the process and the occurrence

of a; that is, we observe nothing during [t, t′] and directly

get the observation at the time point t′. Such an event is

called an urgent event, and the miracle forces the event to

become urgent. The traces (expressed by T ) of the process

in Theorem 3 can partially illustrate the strange behaviour,

as follows:

T (a → SKIP ✷ ⊤R) = {⟨(t′, a)⟩ | t′ ∈ R
+}

where, besides the absence of the empty trace (because wait′

is always false.), the value of t′ completely depends on the

environment.

Understanding the behaviour of the process in Theorem 3

is very helpful for explaining the definition of the deadline

operator which is described as follows:

P ◮ d =̂ (((P;e1 → SKIP) ✷ (WAIT d;e2 → STOP)) \ {e2}

✷ WAIT d ; ⊤R) \ {e1}

which uses e1 (e1 /∈ αP) to resolve both two external

choices if P does not execute external events and terminates

before d, and e2 (e2 /∈ αP) to resolve the first external choice

if P does nothing when d is due. For example, if d = 0 and

P will execute an external event such as a → SKIP, it can

be simplified as follows:

(a → SKIP) ◮ 0

=(((a → SKIP) ; e1 → SKIP ✷ (e2 → STOP)) \ {e2})

✷ ⊤R) \ {e1}

where a must occur instantly, or e2 will resolve the first

external choice and then make the whole process behave

like the miracle. In other words, this is really a very strong

requirement in which there is no alternative but to meet the

deadline, otherwise P will never start.

4) The miracle in parallel: What happens if we put the

miracle and an ordinary process in parallel? It should be

the miracle deduced from our intuitive conclusion that all

processes participating in a parallel must start at the same
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time, but the miracle can never start, and thereby the whole

process can never start either.

L4: P ∥
A

⊤R = ⊤R

B. Successful termination

Successful termination, SKIP, is the point that a process

reaches when its execution has completed. However, the

interpretation of SKIP is different between the standard CSP

model and our timed Circus model. In CSP, a special event

X is used to purely denote termination, and so it is not an

element of the universal alphabet Σ. In timed CSP, SKIP

is immediately ready to terminate, or unable to refuse X,

and meanwhile it remains in the same state except for the

lapse of time. When SKIP is combined with other operators,

the employment of X enables these processes to behave as

we expect, with a careful treatment. For example, a policy

called distributed termination is used to make X coordinate

all participants to terminate when all have terminated.

The interpretation of SKIP in timed Circus is that it ter-

minates instantly without changing anything, as its reactive

design semantics is given:

SKIP =̂ R(true ⊢ tr′ = tr ∧ v′ = v ∧ ¬ wait′ ∧ t′ = t)

where the refusal set is irrelevant after termination and no

time elapses here if it starts in a stable state. Note that SKIP

does have an empty trace because of tr′ = tr, though wait′ is

false. We do not need the special event X in the semantics,

and so may remove those constraints on processes, e.g., X

is not a member of Σ, X appears only in the end of a trace,

and X is always implicit in the interface when involved in

a parallel. However SKIP in timed Circus gives rise to an

unexpected behaviour when we offer a choice between it

and an event.

Normally one would not write a process like P ✷ SKIP,

since it does not always have well-behaved executions. It is

a bit strange to provide the environment with the choice of

terminating or not because termination is something that the

environment observes rather than controls. In CSP, the way

to deal with this process is

P ✷ SKIP ⊑ SKIP (III.1)

This says that whenever this process can terminate, it can

do so and there is nothing that the environment can do to

stop it.

In our timed model, P ✷ SKIP has a different behaviour,

e.g., the following theorem shows a strange behaviour when

making a choice between SKIP and a simple prefix.

Theorem 4:

(a → SKIP) ✷ SKIP

= R(true ⊢ (¬ wait′ ∧ tr′ = tr ∧ v′ = v ∧ t′ = t) ∨

(¬ wait′ ∧ tr′ = tr a ⟨(t′, a)⟩ ∧ v′ = v))

The rule III.1 can also be applied to such a process in

timed Circus, saying that the process can terminate whenever

it can do so. By comparison with Theorem 3, the result

of this theorem shows even more strange behaviour. It

says that either the process behaves like SKIP to terminate

instantly or a becomes urgent. In other words, similar to the

miracle, SKIP can make an event become urgent but also

nondeterministic.

In addition, an assignment in timed Circus has the same

influence on other operators because of its similar semantics

as SKIP.

x :=A e =̂ R (true ⊢ tr′ = tr ∧ ¬ wait′ ∧ t′ = t

∧ x′ = e ∧ y′ = y ∧ ... ∧ z′ = z)

where the set A is defined as A = {x, y, ..., z, x′, y′, ...z′} and

α(x :=A e) = A; that is, x is a member of v.

As a result, we should avoid directly using these strange

processes unless necessary. For example, P ✷ SKIP was

banned in Hoare’s book [3], but it was allowed in later

versions of CSP [7], [9] to make the semantics work for

more elaborate processes, e.g., (P ✷ (a → SKIP)) \ {a}. In

this section, we have explored and proved its exact behaviour

when combining with the external choice, which provides

us with much confidence to generate the right operational

semantics.

IV. APPLICATIONS

The involvement of miracles with other operators of the

timed Circus gives rise to some very strange processes,

which violate some axioms of the standard CSP failures-

divergences model. However, it provides more powerful and

flexible expressiveness in system specifications, so that we

can define some distinct properties which cannot be properly

defined in other approaches.

A. Instant and uninterrupted events

The deadline operator in our timed model is different from

the deadline operator used in most other models. In timed

CSP, the deadline operator is usually constructed by the

timeout operator and the process STOP, i.e., the process will

be deadlocked if the deadline is breached. By comparison,

our strong deadline operator is constructed by the reactive

design miracle. Due to the fact that the miracle cannot be

executed, the deadline operator can push the process to the

limit, or even force the process to always choose qualified

paths to meet the deadline. If the deadline cannot be satisfied

anyway, the whole process will not start at all.

Setting the value of the deadline as zero can make a

process or an event become instant. For the sake of con-

venience, we use the following abbreviations as a shorthand
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x
x
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x
x

Band Week

Band Hour

Band Minute

Event lecture 

l1 l2

Activity L 

Activity B 

c1 c2

Event break

Figure 1. Mapping between different bands

to represent instant events or processes:

‡P = P ◮ 0

P1‡P2 =̂ P1 ; (P2 ◮ 0)

a‡b =̂ (a → SKIP)‡(b → SKIP)

Here the instantaneity operator squeezes the ‘distance’ of

events and processes to zero.

One possible application of instantaneity is that we can

construct uninterrupted events in which either all events

can happen or none of them can happen individually. For

example, we can define a process as follows:

P = (a ◮ 0) ; WAIT 1 ; (b ◮ 0)

where a and b are uninterrupted events. That is to say, a

can happen only if b can at an interval of one time unit.

The traces of P are expressed as follows:

T (P) = {⟨(0, a), (1, b)⟩}

where the ‘uninterrupted’ property comes from the absence

of the single trace ⟨(0, a)⟩.

B. Modelling temporal behaviours with timebands

Complex real-time systems exhibit dynamic behaviours

on many different time levels. For example, circuits have

nanosecond speeds for computation in a component, whereas

slower functional units may take seconds to achieve their

goals; moreover, the involvement of human activities related

to calendar units such as days, weeks, months and even

years may take more time. To overcome the weakness

of traditional approaches which model dynamic temporal

behaviours in a single flat time, Burns and Hayes [1] propose

a timebands model in which a system is decomposed to

reveal different behaviours in different time bands. Apart

from defining time bands by granularities, a key aspect of

the timebands framework is that events are considered to be

instantaneous in a band, and then in a finer band they can

be mapped into activities that have duration.

For example, to express a statement that one week a

lecturer has a lecture which takes two hours and has a five-

minute break, as illustrated in Figure 1, the timebands model

specifies the lecture as an instantaneous event in a week band

and subsequently maps it into an activity in an hour band.

Furthermore, the break in the activity of the hour band is

mapped again into an activity with five minutes in a minute

band. This clearly allows dynamic temporal behaviours to

be partitioned but not isolated from each other. Otherwise,

we may have to state it in a very cumbersome way, e.g.,

within a period of 60*24*7 minutes, a lecture which takes

60*2 minutes has a five-minute break.

To deal with events and activities, we naturally choose

process algebra approaches to formalise the timebands

model. However, a few issues arise immediately when

embedding time granularity in a process algebra approach.

For example, how to maintain consistency of different time

bands when mapping events to corresponding activities.

Asynchronous occurrence of an event and an activity within

their own bands definitely leads to inconsistency.

Our timed Circus provides an elegant solution to the

formalism of the timebands model. In combination with the

lecture example in Figure 1, we first define a signature event

(e.g., l2 is marked with an overline to denote the end of

activity L) in the hour band, and then make event lecture in

the week band instant to the signature event. Thus, the in-

stantaneity of the two events guarantees coordination of the

mapped event and the signature event of its corresponding

activity. Intuitively, we find that l1 in the hour band actually

occurs earlier than lecture in the week band. Therefore, how

can we restrict that l1 simply occurs at a right time, thereby

preserving integrity of activity L. For example, if we say that

lecture occurs right at 10:00, and then the instant l2 must

occur at 10:00 as well, which in fact turns out to say that l1
must occur at 8:00. That is, activity L should automatically

locate its position in the hour band and l1 just happens in

a right time to maintain integrity of the activity. To achieve

integrity of an activity, we simply require that all events

in the activity are uninterrupted. For example, we can easily

define that l1 and l2 are uninterrupted events with an interval

of two hours. As a result, by means of the miracle, instant

and uninterrupted events comprise the main framework of

the formalism of the timebands model.

V. CONCLUSION

We have proposed a timed model of Circus involving the

reactive design miracle, which can also be consider timed

CSP with the miracle in UTP. Although Woodcock has given

some properties of the miracle in [14], the behaviour caused

by the miracle in a timed environment is more complex. In

addition, successful termination and assignment also result

in unexpected behaviours when connected with an external

choice. The full proof of these strange behaviours given in

this paper is very helpful in understanding our timed Circus

and provides us with much confidence to generate the right

operational semantics. Our timed Circus has the potential

to tackle temporal behaviours with multiple time scales in
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a complex system in terms of formalising the timebands

model.
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APPENDIX

As a matter of fact, we only need R1,R3,R4 in the proof

of all lemmas and theorems given in this paper. Therefore,

other healthiness conditions are ignored for convenience.

⊤R [def]

=R1 ◦ R3j ◦ R4(true ⊢ false) [R3j3]

=R1 ◦ R4((true ⊢ II) ✁ wait ✄ (true ⊢ false))
[design-conditional]

=R1 ◦ R4((true ✁ wait ✄ true) ⊢ (II ✁ wait ✄ false))
[propositional calculus]

=R1 ◦ R4(true ∧ ok ⇒ ok′ ∧ II ∧ wait) [p. c.]

=R1 ◦ R4(¬ ok ∨ (wait ∧ ok′ ∧ II)) [R1-R4]

=R1 ◦ R4(¬ ok) ∨ (wait ∧ ok′ ∧ II)

L1: ⊤R ; P = ⊤R

Proof:

⊤R ; P [simplified ⊤R]

=(R1 ◦ R4(¬ ok) ∨ (wait ∧ ok′ ∧ II)) ; P [∨-; distr]

=(R1 ◦ R4(¬ ok) ; P) ∨ ((wait ∧ ok′ ∧ II) ; P)
[R1-R4]

=(¬ ok ∧ tr ≤ tr′ ∧ t ≤ t′ ; P) ∨ ((wait ∧ ok′ ∧ II) ; P)
[relational calculus]

=(¬ ok ∧ (tr ≤ tr′ ∧ t ≤ t′ ; P)) ∨ ((wait ∧ ok′ ∧ II) ; P)
[Lemma 1]

=(¬ ok ∧ tr ≤ tr′ ∧ t ≤ t′) ∨ ((wait ∧ ok′ ∧ II) ; P)
[lemma 2]

=R1 ◦ R4(¬ ok) ∨ (wait ∧ ok′ ∧ II) [⊤R]

=⊤R

Lemma 1: For a reactive process P 4,

(tr ≤ tr′) ; P = tr ≤ tr′

3Woodcock [14] introduced R3j to replace the original R3 in order to
make a design behave like the design identity when waiting, and proved
that it was equivalent to R3 when combined with R1.

4This lemmas has been proved in the tutorial [2].

Lemma 2: For a reactive process P ,

(wait ∧ ok′ ∧ II) ; P = wait ∧ ok ∧ II

Proof:

(wait ∧ ok′ ∧ II) ; P [r. c.]

=wait ∧ ok ∧ (II ; P) [II -unit]

=wait ∧ ok ∧ P [R3]

=wait ∧ ok ∧ (IIrea ✁ wait ✄ P) [p. c.]

=wait ∧ ok ∧ IIrea [p. c.]

=wait ∧ ok′ ∧ II

The definition of delay is as follows:

WAIT d =̂ R(true ⊢ W)

W = (tr′ = tr ∧ v′ = v ∧ ((wait′ ∧ t′ − t < d) ∨

(¬ wait′ ∧ t′ − t = d)))

Theorem 1

WAIT d ; ⊤R = R(true ⊢tr′ = tr ∧ v′ = v

∧ wait′ ∧ t′ − t < d)

Proof:

WAIT d ; ⊤R [def-WAIT]

=R(true ⊢ W) ; ⊤R [R3j, design-conditional]

=R1 ◦ R4(true ⊢ (II ✁ wait ✄ W)) ; ⊤R [def-⊤R]

=R1 ◦ R4(true ⊢ (II ✁ wait ✄ W)) ; [;-∨ distr]

(R1 ◦ R4(¬ ok) ∨ (wait ∧ ok′ ∧ II))

=(R1 ◦ R4(true ⊢ II ✁ wait ✄ W) ; R1 ◦ R4(¬ ok)) ∨

(R1 ◦ R4(true ⊢ II ✁ wait ✄ W) ; (wait ∧ ok′ ∧ II))
[r. c.]

=R1 ◦ R4(¬ ok) ∨ (R1 ◦ R4(ok′ ∧ II ✁ wait ✄ W) ;

(wait ∧ ok′ ∧ II)) [∨-; distr]

=R1 ◦ R4(¬ ok) ∨

R1 ◦ R4(wait ∧ ok′ ∧ II) ; (wait ∧ ok′ ∧ II) ∨

R1 ◦ R4(ok′ ∧ ¬ wait ∧ tr′ = tr ∧ v′ = v ∧ wait′ ∧

t′ − t < d) ; (wait ∧ ok′ ∧ II) ∨

R1 ◦ R4(ok′ ∧ ¬ wait ∧ tr′ = tr ∧ v′ = v ∧ ¬ wait′ ∧

t′ − t = d) ; (wait ∧ ok′ ∧ II) [p. c.]

=R1 ◦ R4(¬ ok) ∨ R1 ◦ R4(wait ∧ ok′ ∧ II) ∨ [R3j]

R1 ◦ R4(ok′ ∧ ¬ wait ∧ tr′ = tr ∧ v′ = v ∧

wait′ ∧ t′ − t < d) ∨ false

=R(true ⊢ tr′ = tr ∧ v′ = v ∧ wait′ ∧ t′ − t < d)
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The definitions of the external choice and a simple prefix

are as follows:

P1 ✷ P2 =̂ R ((¬ P1
f

f ∧ ¬ P2
f

f ) ⊢

(P1
t
f ∧ P2

t
f ✁ tr′ = tr ∧ wait′ ✄ P1

t
f ∨ P2

t
f ))

where Pt
f = P[true, false/ok′,wait].

a → SKIP =̂ R


true ⊢

tr′ = tr ∧ a /∈ ref ′

✁ wait′ ✄

tr′ = tr a ⟨(t′, a)⟩

∧ v′ = v




Lemma 3:

(a → SKIP)f

f = ⊤R
f

f = ⊤R
t
f = R1 ◦ R4(¬ ok)

Proof:

(a → SKIP)f

f [def]

=R(true ⊢ tr′ = tr ∧ a ̸∈ ref ′ ∧ wait′ ∧ v′ = v)f

f [R3j]

=R1 ◦ R4(true ⊢ II ✁ wait ✄ tr′ = tr [wait=false]

∧ a ̸∈ ref ′ ∧ wait′ ∧ v′ = v)f

f

=R1 ◦ R4(true ⊢ tr′ = tr ∧ a ̸∈ ref ′ ∧ wait′ ∧ v′ = v)f

=R1 ◦ R4(¬ ok ∨ false) [p. c.]

=R1 ◦ R4(¬ ok)

Lemma 4:

(a → SKIP)t
f

=R1 ◦ R4


true ⊢

tr′ = tr ∧ a /∈ ref ′

✁ wait′ ✄

tr′ = tr a ⟨(t′, a)⟩

∧ v′ = v




Lemma 5:

⊤R
t
f ∧ (a → SKIP)t

f = R1 ◦ R4(¬ ok)

Theorem 2

(a → SKIP) ✷ ⊤R

=R(true ⊢ ¬ wait′ ∧ tr = tr a ⟨(t′, a)⟩ ∧ v′ = v)

Proof:

(a → SKIP) ✷ ⊤R [def-✷]

=R(¬ ⊤R
f

f ∧ ¬ (a → SKIP)f

f ⊢


⊤R
t
f ∧ (a → SKIP)t

f

✁ tr′ = tr ∧ wait′ ✄

⊤R
t
f ∨ (a → SKIP)t

f


) [Lemma 3-5]

=R(¬ R1 ◦ R4(¬ ok) ⊢


R1 ◦ R4(¬ ok)
✁ tr′ = tr ∧ wait′ ✄

R1 ◦ R4(¬ ok) ∨ (a → SKIP)t
f


) [def-design]

=R(¬ R1 ◦ R4(¬ ok) ∧ ok ⇒ ok′ ∧


R1 ◦ R4(¬ ok)
✁ tr′ = tr ∧ wait′ ✄

R1 ◦ R4(¬ ok) ∨ (a → SKIP)t
f


) [p. c.]

=R(R1 ◦ R4(¬ ok) ∨ ¬ ok ∨ (ok′ ∧ R1 ◦ R4(¬ ok)

∧ tr′ = tr ∧ wait′) ∨ (ok′ ∧ ¬ (tr′ = tr ∧ wait′) ∧

(R1 ◦ R4(¬ ok) ∨ (a → SKIP)t
f )))

[absorption-∨ and p.c.]

=R(R1 ◦ R4(¬ ok) ∨ ¬ ok [absorption-∨ and p.c.]

∨ (ok′ ∧ ¬ (tr′ = tr ∧ wait′) ∧ R1 ◦ R4(¬ ok))

∨ (ok′ ∧ ¬ (tr′ = tr ∧ wait′) ∧ (a → SKIP)t
f ))

=R(¬ ok ∨ (ok′ ∧ ¬ (tr′ = tr ∧ wait′) ∧ (a → SKIP)t
f ))

[Lemma 4]

=R(¬ ok ∨ (ok′ ∧ ¬ (tr′ = tr ∧ wait′) ∧

true ⊢

tr′ = tr ∧ a /∈ ref ′

✁ wait′ ✄

tr′ = tr a ⟨(t′, a)⟩

∧ v′ = v


)

[absorption-∨ and p.c.]

=R(¬ ok ∨ (ok′ ∧ ¬ (tr′ = tr ∧ wait′) [p.c.]

∧ (¬ wait′ ∧ tr′ = tr a ⟨(t′, a)⟩ ∧ v′ = v)))

=R(¬ ok ∨ (ok′ ∧ (¬ wait′ ∧ tr′ = tr a ⟨(t′, a)⟩

∧ v′ = v))) [def-⊢]

=R(true ⊢ ¬ wait′ ∧ tr′ = tr a ⟨(t′, a)⟩ ∧ v′ = v)

The reactive design semantics for parallel composition

is the most complicated one, in which its precondition

describes the behaviour of the process when it diverges, and

its postcondition represents the parallel-by-merge semantics.

Here, we will not give a detailed introduction to the seman-

tics, and the interested reader is referred to the technical
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report [12].

P1 ∥
A

P2 =̂

R




(¬ ∃ 1.tr′, 2.tr′ • (P1
f

f ; (1.tr
′ = tr)) ∧ (P2f ; (2.tr

′ = tr))

∧ 1.tr′ − tr ↾ A = 2.tr′ − tr ↾ A)
∧

(¬ ∃ 1.tr′, 2.tr′ • (P1f ; (1.tr
′ = tr)) ∧ (P2

f

f ; (2.tr
′ = tr))

∧ 1.tr′ − tr ↾ A = 2.tr′ − tr ↾ A)
⊢

((P1
t
f ; U1(outαP1)) ∧ (P2

t
f ; U2(outαP2)))+{v,tr} ; M∥(A)




Lemma 6: For a reactive design process P,

R1 ◦ R4(¬ ok) ∧ P = R1 ◦ R4(¬ ok)

Proof:

R1 ◦ R4(¬ ok) ∧ P [CSP1-healthy]

=R1 ◦ R4(¬ ok) ∧ CSP1(P) [def-CSP1]

=R1 ◦ R4(¬ ok) ∧ (P ∨ R1 ◦ R4(¬ ok))
[absorption-∧]

=R1 ◦ R4(¬ ok)

Lemma 7: For a reactive design process P,

(
∃ 1.tr′, 2.tr′ • (Pf

f ; (1.tr
′ = tr)) ∧ (⊤Rf ; (2.tr

′ = tr))

∧ 1.tr′ − tr ↾ A = 2.tr′ − tr ↾ A)

)

= R1 ◦ R4(¬ ok)

Proof:

(
∃ 1.tr′, 2.tr′ • (Pf

f ; (1.tr
′ = tr)) ∧ (⊤Rf ; (2.tr

′ = tr))

∧ 1.tr′ − tr ↾ A = 2.tr′ − tr ↾ A)

)

[Lemma 3]

= ∃ 1.tr′, 2.tr′ • (Pf

f ; (1.tr
′ = tr)) ∧ [R1 and p. c.]

(R1 ◦ R4(¬ ok); (2.tr′ = tr)) ∧

1.tr′ − tr ↾ A = 2.tr′ − tr ↾ A)

=(tr ≤ tr′ ∧ R4(P)f

f ; (tr
′ = tr)) ∧ [Lemma 6, r. c.]

(tr ≤ tr′ ∧ R4(¬ ok); (tr′ = tr)) ∧

tr′ − tr ↾ A = tr′ − tr ↾ A)

=R1 ◦ R4(¬ ok)

Lemma 8: For a reactive design process P,

(
∃ 1.tr′, 2.tr′ • (Pf ; (1.tr

′ = tr)) ∧ (⊤R
f

f ; (2.tr
′ = tr))

∧ 1.tr′ − tr ↾ A = 2.tr′ − tr ↾ A)

)

= R1 ◦ R4(¬ ok)

Proof:

(
∃ 1.tr′, 2.tr′ • (Pf ; (1.tr

′ = tr)) ∧ (⊤R
f

f ; (2.tr
′ = tr))

∧ 1.tr′ − tr ↾ A = 2.tr′ − tr ↾ A)

)

[Lemma 3]

=∃ 1.tr′, 2.tr′ •(Pf ; (1.tr
′= tr)) ∧ [R1]

(R1◦R4(¬ ok); (2.tr′= tr)) ∧

1.tr′ − tr ↾ A = 2.tr′ − tr ↾ A)

=(tr ≤ tr′ ∧ Pf ; (tr
′= tr)) ∧ [Lemma 6, r. c.]

(tr ≤ tr′ ∧ R4(¬ ok); (tr′= tr)) ∧

tr′ − tr ↾ A = tr′ − tr ↾ A)

=R1 ◦ R4(¬ ok)

Lemma 9: For a reactive design process P,

((Pt
f ; U1(outαP)) ∧ (⊤R

t
f ; U2(outα⊤R)))+{v,tr} ; M∥(A)

= R1 ◦ R4(¬ ok)

Proof:

((Pt
f ; U1(outαP)) ∧ (⊤R

t
f ; U2(outα⊤R)))+{v,tr} ; M∥(A)

[Lemma 3]

=((Pt
f ; U1(outαP)) ∧

(R1 ◦ R4(¬ ok); U2(outα⊤R)))+{v,tr} ; M∥(A)
[Lemma 1]

=((Pt
f ; U1(outαP)) ∧ R1 ◦ R4(¬ ok))+{v,tr} ; M∥(A)

[Lemma 6]

=(R1 ◦ R4(¬ ok))+{v,tr} ; M∥(A) [Lemma 1, p.c.]

=R1 ◦ R4(¬ ok)

L4: P ∥
A

⊤R = ⊤R

Proof:

P ∥
A

⊤R [Lemma 7,8,9]

=R((¬ R1 ◦ R4(¬ ok) ∧ ¬ R1 ◦ R4(¬ ok))

⊢ R1 ◦ R4(¬ ok)) [def-⊢]

=R(R1 ◦ R4(¬ ok) ∨ ¬ ok ∨ (ok′ ∧ R1 ◦ R4(¬ ok)))
[absorption-∨]

=R(¬ ok)

Theorem 4

(a → SKIP) ✷ SKIP

=R(true ⊢ (¬ wait′ ∧ tr′ = tr ∧ v′ = v ∧ t′ = t) ∨

(¬ wait′ ∧ tr′ = tr a ⟨(t′, a)⟩ ∧ v′ = v))
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Proof:

(a → SKIP) ✷ SKIP [def-✷]

=R(¬ (a → SKIP)f

f ∧ ¬ SKIP
f

f

⊢




(a → SKIP)t
f ∧ SKIPt

f

✁ tr′ = tr ∧ wait′ ✄

(a → SKIP)t
f ∨ SKIPt

f


) [Lemma 3]

=R(¬ R1 ◦ R4(¬ ok)

⊢




(a → SKIP)t
f ∧ SKIPt

f

✁ tr′ = tr ∧ wait′ ✄

(a → SKIP)t
f ∨ SKIPt

f


) [def-⊢]

=R(R1 ◦ R4(¬ ok) ∨ ¬ ok ∨ ((a → SKIP)t
f ∧ SKIPt

f

∧ tr′ = tr ∧ wait′) ∨ (((a → SKIP)t
f ∨ SKIPt

f )

∧ ¬ (tr′ = tr ∧ wait′))) [absorption-∨]

=R(¬ ok ∨ ((a → SKIP)t
f ∧ SKIPt

f ∧ tr′ = tr ∧ wait′)

∨ (((a → SKIP)t
f ∨ SKIPt

f ) ∧ ¬ (tr′ = tr ∧ wait′)))
[def-SKIP]

=R(¬ ok ∨ ((a → SKIP)t
f [Lemma 4, p. c.]

∧ R1 ◦ R4(true ⊢ tr′ = tr ∧ v′ = v ∧ ¬ wait′

∧ t′ = t) ∧ tr′ = tr ∧ wait′)

∨ (((a → SKIP)t
f ∨ SKIPt

f ) ∧ ¬ (tr′ = tr ∧ wait′)))

=R(¬ ok ∨ R1 ◦ R4(¬ ok) [p. c.]

∨ (((a → SKIP)t
f ∨ SKIPt

f ) ∧ ¬ (tr′ = tr ∧ wait′)))

=R(¬ ok ∨ (ok′ ∧ (¬ wait′ ∧ tr′ = tr ∧ v′ = v ∧ t′ = t)

∨ (¬ wait′ ∧ tr′ = tr a ⟨(t′, a)⟩ ∧ v′ = v))) [def-⊢]

=R(true ⊢ (¬ wait′ ∧ tr′ = tr ∧ v′ = v ∧ t′ = t) ∨

(¬ wait′ ∧ tr′ = tr a ⟨(t′, a)⟩ ∧ v′ = v))
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