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Abstract1

2

Oxidative stress and reactive oxygen species (ROS) are common to many fundamental responses of3

plants. Enormous and ever-growing interest has focused on this research area, leading to an4

extensive literature that documents the tremendous progress made in recent years. As in other areas5

of plant biology, advances have been greatly facilitated by developments in genomics-dependent6

technologies and the application of interdisciplinary techniques that generate information at multiple7

levels. At the same time, advances in understanding ROS are fundamentally reliant on the use of8

biochemical and cell biology techniques that are specific to the study of oxidative stress. It is9

therefore timely to revisit these approaches with the aim of providing a guide to convenient methods10

and assisting interested researchers in avoiding potential pitfalls. Our critical overview of currently11

popular methodologies includes a detailed discussion of approaches used to generate oxidative12

stress, measurements of ROS themselves, determination of major antioxidant metabolites, assays of13

antioxidative enzymes, and marker transcripts for oxidative stress. We consider the applicability of14

metabolomics, proteomics, and transcriptomics approaches, and discuss markers such as damage to15

DNA and RNA. Our discussion of current methodologies is firmly anchored to future technological16

developments within this popular research field.17

18
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Summary statement25

Oxidative stress and related redox processes have become integrated into many parts of plant26

biology research. Here, we provide a critical methodological evaluation of some of the approaches27

that are used to monitor, gauge and dissect oxidative stress and related redox signaling in plants. Our28

Forward Look review discusses current obstacles to progress and foreseeable technological29

developments that are likely to promote ever faster advances within this intensely studied area.30

31

32

33
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Introduction34

35

Current concepts of oxidative stress and related redox signalling in plants depend on accurate,36

unambiguous measurement of a portfolio of relevant factors. These notably include reactive oxygen37

species (ROS), redox metabolites, enzyme activities, protein modifications, and transcript levels.38

While no single measurement gives a complete picture, each one contributes specific and potentially39

useful information. Figure 1 highlights some of the major points to be considered before undertaking40

analysis of redox-related factors. Many of these issues are generally applicable to experimental plant41

biology but some of them are particularly crucial in studies of redox processes. As discussed in more42

detail below, crucial issues include sampling, extraction, and assay specificity. This is because redox-43

linked factors can be highly reactive and vulnerable to chemical reaction and alteration during44

isolation and assay. A further complicating factor is that many of the enzymes that produce and45

process redox compounds in plants have a very high capacity. As a general rule, the key players in46

determining redox state (eg, H2O2, ascorbate, NADPH, thioredoxins) may have turnover times on the47

order of seconds. The culture of due care and attention to this last point is perhaps less widely48

developed in oxidative stress research than in other related areas such as photosynthesis.49

50

It is beyond doubt that the routine incorporation of molecular biological techniques has hugely51

advanced the oxidative stress field in plants. Nevertheless, the decreased emphasis on basic52

biochemistry has perhaps led to less attention being placed on the precautions necessary for precise53

and accurate measurement of metabolites and enzymes. These measurements require just as much54

attention to detail as techniques such as qPCR if reliable data are to be produced. Inaccurate55

conclusions may arise from problems with the measurements themselves, or a failure to understand56

the limitations of the procedures or the information contained within the results, even if the data are57

robust (Fig. 1).58

59

Our aim here is discuss commonly employed approaches and techniques, highlighting some of the60

potential problems and pitfalls, and proposing best-practice solutions. Where appropriate, we draw61

attention to some relevant latest developments in oxidative stress research. The intention is not to62

provide an exhaustive overview of individual assays but rather to focus on general principles that63

should guide the user in obtaining reliable data.64

65

66
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Approaches for assessing oxidative stress responses67

68

Oxidative stress is part of many responses to the environment (Miller et al. 2008), and a range of69

approaches has been applied specifically to assess tolerance to enhanced cellular oxidant production70

and to elucidate the mechanisms underlying the responses. Approaches include direct addition of71

relatively stable ROS such as H2O2, use of ROS-generating reagents, and exploitation of genetic72

backgrounds lacking antioxidant functions. Each of these approaches has advantages and drawbacks.73

74

Elevated ozone75

76

This is probably one of the most environmentally relevant ways of inducing oxidative stress, given77

that plants often have to cope with increased ozone levels in natural or agricultural contexts. In78

addition to studies seeking to establish the importance of components involved in redox homeostasis79

(eg, Conklin et al. 1996; Dizengremel et al. 2009; Brosché & Kangasjärvi 2012; Dghim et al. 2013),80

observations on ozone-exposed plants were crucial in demonstrating the role of oxidative bursts in81

pathogenesis responses (Sandermann et al. 1998; Vainonen & Kangasjärvi 2015). Ozone treatment82

generates a range of ROS within the apoplast, and is probably the only pure oxidative stress that has83

been thoroughly tested in the field, using open-top chambers in which environmentally relevant84

increases in ozone concentration are imposed (Kats et al. 1985; Ainsworth et al. 2012). While85

elevated ozone is an excellent approach for mimicking oxidative burst conditions, studies in86

controlled environment chambers often require rather high concentrations of the gas to elicit effects87

in relatively ozone-tolerant plants. For example, whereas peak tropospheric concentrations rarely88

exceed 100 ppb, lesions only rapidly appear on the leaves of the Columbia ecotype of Arabidopsis89

under acute exposure to ozone if concentrations approach 300 ppb (eg, Dghim et al. 2013).90

91

Direct addition of H2O2 to cells and tissues92

93

This is a very common approach that has been widely employed, particularly in cells in culture. It has94

the advantage of simplicity but complications can arise because of the rapid metabolism of H2O295

even before it enters the cell (Desikan et al. 2001). Like ozone, this treatment probably largely mimics96

an apoplast-localized oxidative burst, and is less likely to simulate the action of metabolically97

generated H2O2 inside the cell. This point may be even more relevant when H2O2 is applied to whole98

tissues. One-time or intermittent spraying may produce relatively little effect unless concentrations99
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are high (>1 mM), and elevated H2O2 concentrations experienced by the plant tissue are likely to be100

transient.101

102

Another common approach involves the inclusion of H2O2 in the agar plates on which plants are103

grown in vitro. If the H2O2 concentration is high enough, this may provide a sustainable oxidative104

stress, and can clearly inhibit germination, root development and plant growth. Again, however,105

these effects may be due to relatively localized extracellular events, and the primary site of action is106

very likely restricted to the roots. Moreover, interpretation may be complicated by the presence of107

metal ions in the media and apoplastic space, which will generate hydroxyl radicals through Fenton108

chemistry, potentially producing a more severe oxidative stress. Addition of transition metals like109

iron or copper together with H2O2 and a metal reductant such as ascorbate can be used to enhance110

production of the hydroxyl radical, if this is the desired effect (eg, Foreman et al. 2003).111

112

ROS-generating reagents113

114

Many approaches of this type benefit from the advantage that ROS production depends on cellular115

metabolism, and therefore oxidative stress can be more appropriately targeted to intracellular116

locations. Paraquat (methyl viologen) is one of the most reliably targeted because its action is closely117

associated with photosynthetic electron transport. Although it is also exploited in studies on animal118

cells, and can stimulate superoxide production by the mitochondrial electron transport chain, its119

main effect in plants (at least at irradiances sufficient to drive photosynthetic electron transport) is to120

catalyze reduction of oxygen at the level of the highly reducing acceptor side of photosystem I. This121

produces an oxidative stress whose origin is light-dependent and considered to be largely localized to122

the chloroplast. Menadione (vitamin K3) is another redox-cycling superoxide-generating reagent,123

which can be reduced by various cellular dehydrogenases, including mitochondrial complex I.124

Antimycin A, an inhibitor of ubiquinol oxidation by the cytochrome bc1 complex (complex III) has125

been applied to promote superoxide generation in the mitochondria (Maxwell et al. 1999; Rhoads et126

al. 2006). Although all these reagents promote the production of superoxide, this initially generated127

ROS should be rapidly converted to H2O2 by superoxide dismutase (SOD).128

129

Another convenient way of generating H2O2 is by using enzymatic systems, such as added glucose130

oxidase/glucose. Unless the glucose oxidase is taken up by the cell, production of H2O2by this system131

will be extracellular. However, transgenic model systems expressing glucose oxidase have been132

exploited, for example, to study pathogenesis responses (Kazan et al. 1998). Ectopic expression of133
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peroxisomal glycolate oxidase in the chloroplast has also been developed as a targeted system to134

study the effect of increased H2O2production in the stroma (Fahnenstich et al. 2008).135

136

Singlet oxygen137

138

Unlike production of the other major ROS, generation of singlet oxygen is a physical rather than139

chemical reaction, ie, it is the result of the transfer of energy rather than electrons to the ground-140

state (triplet) dioxygen molecule. Several reagents can drive increases in singlet oxygen by141

stimulating this process in a light-dependent manner (Fischer et al. 2013). These include rose bengal,142

methylene violet, neutral red, and indigo carmine. While all produce singlet oxygen following their143

photoactivation, they do so with different efficiencies and also accumulate in different parts of the144

cell (Kovacs et al. 2014; Gutierrez et al. 2014). Some of these reagents may have other effects as well145

as direct photosensitization of singlet oxygen production. For instance, rose bengal can inhibit146

photosynthetic electron transport (Kovacs et al. 2014). The most physiologically relevant feature of147

these reagents may be in mimicking endogenous photosensitizers (eg, chlorophyll precursors and148

degradation products) that can promote singlet oxygen formation.149

150

The Arabidopsis fluorescence (flu) mutant, which conditionally produces singlet oxygen due to151

accumulation of the chlorophyll precursor, protochlorophyllide, is a widely exploited genetic tool152

(Meskauskiene et al. 2001; op den Camp et al. 2003; Ramel et al. 2012). Despite the profound153

interest of studies on this system, it should be noted that singlet oxygen is probably not generated154

within photosystem II (PSII) in the flumutant but rather at other sites within chloroplasts. Finally, any155

inhibitor of the photosynthetic electron transport chain that acts downstream of PSII (eg, DCMU,156

DBMIB) will increase the probability of triplet chlorophyll formation and hence be expected to favour157

singlet oxygen production through back- and side-reactions within PSII.158

159

Knocking down antioxidative defenses160

161

Numerous studies have been conducted on plants deficient in antioxidative enzymes with the162

primary aim of evaluating the functional importance of the targeted enzyme. In addition, some163

plants with compromised antioxidative systems can be useful as a model oxidative stress164

background. Perhaps the most intensively studied systems are conditional mutants deficient in165

catalase (Dat et al. 2001). Advantages of using such plants are that H2O2 production can be switched166
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on and off by manipulating light intensity or CO2 levels, and that as long as photorespiratory glycolate167

oxidase remains active, the H2O2production can be sustained (Dat et al. 2001).168

169

Catalase is one of two major routes for removing intracellular H2O2, the other being reactions170

dependent on several types of peroxidase, each of which is encoded by several genes and associated171

with many other reductant-producing pathways that show considerable redundancy. This makes172

catalase-deficient plants particularly appropriate tools with which to unravel the function of other173

genes involved in the metabolism of peroxide produced inside the cell (Mhamdi et al. 2010a). One174

example is that glutathione reductase (GR)-deficient gr1 mutants show a wild-type phenotype when175

grown on H2O2 in agar, suggesting that the enzyme plays little role in oxidative stress (Marty et al.176

2009). In contrast, the gr1 mutation greatly exacerbates both glutathione oxidation and the177

phenotype associated with the cat2 background (Mhamdi et al. 2010b). This difference underlines178

the importance of choosing the appropriate system to explore the effects of H2O2 since it shows that179

producing this ROS through a physiologically relevant pathway (photorespiration) generates different180

effects to stressing plants by simply adding H2O2 externally (Marty et al. 2009; Mhamdi et al. 2010b).181

One pharmacological tool that mimics genetic loss of catalase function is 3-aminotriazole (eg, May &182

Leaver 1993), although effects may be somewhat more severe because this compound can inhibit183

catalase activity almost completely and can also inhibit other enzymes.184

185

Which approach is the best? There is no simple answer to this question because the approach(es) to186

be chosen will depend on the scientific problem under investigation. An important point is to be187

aware of available knowledge on each approach (eg, site of action, nature of ROS produced,188

anticipated effects on antioxidant status, dose-dependence of effects, specificity, stability). Taking all189

these issues into account, we consider that (1) elevated ozone is the most environmentally relevant190

approach; (2) procedures that involve site-specific generation of ROS are particularly useful, and (3)191

genetic systems with compromised antioxidant enzymes or conditional ROS production may offer192

greater specificity than pharmacological approaches.193

194

The challenges of measuring ROS in plants: Occam�s razor can be a blunt tool195

196

Occam�s razor refers to an influential explanatory principle outlined by the 14th Century scholar,197

William of Occam. It states that among competing hypotheses equally able to explain phenomena,198

the one that requires the fewest assumptions should be favoured. While this simple principle can199

often aid interpretation, it may not always be applicable in the biochemically complex environment200

of the cellular redox network. Oxidative stress is often simply equated to changes in ROS levels. This201
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concept is debatable, because ROS probably do not accumulate uniformly across the cell and may202

increase at sites whose function requires oxidation (Foyer & Noctor 2016). Hence, ROS accumulation203

may not actually be stressful. Apart from the relatively oxidized status of compartments such as the204

intrathylakoid space, endoplasmic reticulum lumen, vacuole, and apoplast, recent work has reported205

that the chloroplast stroma extensions known as stromules may play an important role in the spatial206

transfer of oxidizing molecules and, hence, in oxidative signaling (Caplan et al. 2015).207

208

Measurements of ROS are often required for publication of papers that study oxidative stress.209

However, questions remain concerning the data that are produced by many of the available210

methods. Such methods can be divided into three broad categories: (1) monitoring of ROS produced211

in the solution surrounding the system, most often applied to the study of cell cultures; (2) staining212

methods that can be used in situ on plant tissues; and (3) procedures that aim to quantify ROS213

contents in tissue through extraction and in vitro assay. Within all these categories, many methods214

are available, and their number is increasing all the time. However, most if not all of these215

approaches are subject to artefacts and/or limitations, particularly if not employed correctly, and216

caution must always be exercised in data interpretation. While newly reported probes often show217

encouraging increases in specificity, potential problems persist relating to the stability of ROS,218

interference by other metabolites and processes, and the specificity of the reaction in the assay.219

220

Monitoring ROS release into the medium221

222

Such methods are particularly applicable to the analysis of ROS generated by cells in suspension.223

Although difficult to use on whole plants or some plant organs, they have been applied to seeds or to224

pieces of tissue such as leaf discs. Examples are the H2O2 assay based on oxidation of scopoletin225

catalyzed by exogenous peroxidase, and oxidation of 2�,7�-dichlorofluorescin (H2DCF) to fluorescent226

2�,7�-dichlorofluorescein (DCF; Schopfer et al. 2001; Chong et al. 2002). While a general principle of227

metabolite assays is that enzyme-dependent reactions ensure a degree of specificity, attention has228

nonetheless been drawn to interference in the scopoletin-peroxidase assay (Corbett 1989). It should229

also be noted that such measurements do not provide precise information on either tissue contents230

of ROS or on their rates of production. Rather, the signal will depend on the amount of oxidant that231

escapes into the solution. Hence, the assay should only detect those ROS that elude the antioxidant232

system. Even if this is only a small fraction of the ROS produced, the data are informative as a relative233

measure if the signal is proportional to the rate of production.234

235



9

Examples of common probes for in situ analysis of ROS236

237

This approach is attractive because, in theory, it enables visualization of in vivo processes. Many238

probes are available but, unfortunately, few of them are specific. Moreover, a number of the239

commonly used compounds, such as luminol, nitroblue tetrazolium (NBT), and the sensor green240

probe for singlet oxygen (SOSG), can actually promote production of the reactive species they are241

assumed to merely be detecting (Fridovich 1997; Kim et al. 2013). Based largely on the exploitation242

of in situ stains, there are many reports of patterning of accumulation of specific ROS in different cell243

types (eg, bundle sheath), developmental zones, or tissues within roots, buds, and nodules (Fryer et244

al. 2002; Dunand et al. 2007; Tsukagoshi et al. 2010; Meitha et al. 2015). While these findings are245

very exciting, and sometimes based on results obtained with more than one probe, it is still246

necessary to exercise caution in data interpretation. The suitability of both NBT and 3,3�-247

diaminobenzidine (DAB) is often justified by the argument that they are commonly employed probes.248

Nevertheless, some possible complicating factors that should be considered are shown in Figure 2.249

250

One apparently valid argument that is often advanced in justification of such approaches is that the251

detected signal can be abolished by addition of enzymes known to remove the ROS of interest. Even252

here, however, the interpretation may not always be simple. One example that has been discussed253

for many years concerns the application of NBT to detect superoxide in cells, which has been254

described as �widespread misuse� by the co-discoverer of SOD (Fridovich 1997). While this criticism255

seems somewhat forthright, it is clear that NBT is not specific to superoxide. It has been used256

successfully to screen for ascorbate-deficient mutants (Conklin et al. 1996), and it can also be257

reduced by many dehydrogenases (Fridovich 1997). Further, abolition of the signal by the addition of258

exogenous SOD may be an indirect effect and not a proof that colour formation is reflecting259

superoxide production that is independent of the presence of the probe (Fig. 3; Fridovich 1997). This260

is just one example of how the complex redox environment of plant tissues might lead to problems261

that are sometimes overlooked in data interpretation.262

263

In addition to colour stains, many fluorescent probes are available for measuring ROS (Wardman264

2007; Kalyanaramana et al. 2012; Winterbourn 2014). As mentioned above, H2DCF has been265

employed to monitor ROS release from cells or tissues: this probe has also become accepted as an in266

situ stain for ROS. Two points must be considered in using such approaches. The first is that the267

oxidation that leads to the signal is not mediated by H2O2 directly. It can be achieved by the hydroxyl268

radical produced from H2O2or, like NBT and DAB, by enzyme-dependent reactions (Kalyanaramana et269

al. 2012). A second point is that the diacetate form is considered to aid uptake of H2DCF-DA into270
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cells, where conversion to DCF is considered to report on intracellular oxidants. However, plant cells271

contain high activities of apoplastic esterases (Haslam et al. 2001; Cummins & Edwards 2004), and272

their action may mean that the DCF signal is largely extracellular, which can be problematic if the273

analytical resolution is not sufficient to distinguish signals at the subcellular level. The H2DCF-DA274

probe may be a semi-quantitative in situ indicator of ROS accumulation in organs such as roots.275

Based on our experience, it is very difficult to use reproducibly in leaves, even with confocal276

microscopy to enable subcellular resolution.277

278

Other similar probes, such as 3'-O-Acetyl-6'-O-pentafluorobenzenesulfonyl-2'-7'-difluorofluorescein279

(BES-H2O2-Ac), may be more specific for H2O2 and have been employed in plants (Maeda 2008;280

Biswas & Mano 2015). Fluorescent probes have also been described for specific live-cell imaging281

of lipid peroxides (Soh et al. 2007), a group of compounds that play important roles in282

signalling downstream from primary ROS production (Farmer & Mueller 2013; Biswas & Mano 2015).283

These compounds, and some of the others mentioned above, may generate important information. If284

the aim is to assess oxidative stress intensity, however, it is probably advisable to compare at least285

two of them, and to corroborate the signals by at least one of the other approaches discussed below286

(eg, antioxidants, marker transcripts).287

288

Extraction of ROS for in vitro quantification289

290

The primary ROS (superoxide, H2O2, hydroxyl radical, singlet oxygen) are difficult to quantify reliably291

in plant tissue extracts. Spin-traps, in which electron paramagnetic resonance (EPR) signals are292

captured in planta, have been applied for the more reactive forms (Müller et al. 2009; Fischer et al.293

2013). H2O2 is the most stable of these four compounds and, as a non-radical that is a substrate for294

relatively well-defined enzymes, it is probably the only one that is considered to be quantifiable after295

direct extraction. Nevertheless, the quantification of extracted H2O2 is far from trivial. As is the case296

for other metabolites, the extraction procedure itself requires careful attention. We emphasize that297

H2O2 should not be extracted into water or neutral buffer because this will allow enzymes to remain298

active during the sample preparation. This point should be obvious given that such media are used to299

extract highly active antioxidative enzymes like catalase. Extraction into acid or other media that300

inhibit enzyme activities as well as many chemical redox reactions is essential, and experiments301

should be carried out to check that H2O2 added at the early stage of extraction is recoverable in the302

assay.303

304
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Other compounds present in plants can interfere with assays of extractable H2O2 (Veljovic-Jovanovic305

et al. 2002; Queval et al. 2008). For this reason, it is advisable to check the linearity of the assay306

response using a standard amount of H2O2added together with the extract. Simply observing a linear307

standard curve for H2O2prepared in water or buffer is not sufficient, unless it is established that the308

response is not affected by the presence of the extract. Such issues are clearly recognized in309

metabolomics techniques such as LC-MS, where alteration of the detector response by the chemical310

context is referred to as a « matrix effect ». Effects such as these, as well as an influence of the milieu311

on stability during the extraction, are sometimes overlooked in apparently simpler targeted analysis312

of specific compounds.313

314

Another important point is that the activity be shown to be dose-responsive to the volume of extract315

added in the assay. In our hands, using two different methods to measure H2O2, little effect of extract316

volume on the signal was observed, meaning that the calculated tissue content was inversely317

proportional to the amount of extract added to the assay (Queval et al. 2008). Since different studies318

often employ different tissue mass:volume ratios during the extraction, this could be one of the319

factors leading to the enormous range of basal tissue H2O2 contents in the literature, which might be320

considered highly unusual for an important signalling compound. Other issues relating to the321

contents and assays of H2O2 in plants have been recently discussed in more detail elsewhere (Noctor322

et al. 2015; Foyer & Noctor 2016).323

324

Box 1 describes methods we have employed for luminol and the peroxidase-coupled techniques for325

quantification of H2O2 and peroxides in extracts. Other methods, such as Amplex Red or peroxidase-326

coupled fluorescence, may also be applicable. However, as noted above, the key issue may not be327

related to the assays but rather to the extraction and sample preparation. We also note that many of328

the kits available for measuring ROS and related factors have been developed for use on organisms329

other than plants, and may not take account of plant-specific problems related to extraction and330

interference. One interfering compound in some peroxide assays is ascorbate, which is present in331

high levels in tissues such as leaves (Veljovic-Jovanovic et al. 2002; Queval et al. 2008). For this332

reason, we routinely treat extract supernatant with ascorbate oxidase to minimise concentrations of333

this redox-active compound in the assay (Box 1).334

335

Lipid peroxides are key indicators of oxidative stress and related signalling, and can be profiled by LC-336

MS, with different signatures supplying some information on the source and location of ROS337

(Davoine et al. 2006; Triantaphylidès et al. 2008). Because of its simplicity, the assay of thiobarbituric338

acid-reactive substances (TBARS) remains an assay of choice for many laboratories. This assay gives339
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information on the breakdown products issuing from lipid peroxidation. Malondialdehyde (MDA) is340

often used as a standard but the assay can detect a variety of reactive aldehydes. It usually gives341

contents that are substantially higher than more specific assays of MDA (eg, Moselhy et al. 2013).342

Moreover, MDA can be produced from sources other than lipid peroxides. Signals should therefore343

more accurately be described as �TBARS� rather than �lipid peroxidation� or �MDA�.344

345

Measuring extractable enzyme activities in vitro346

347

An overview of the usefulness of extractable enzyme activity assays has recently been provided348

elsewhere (Stitt & Gibon 2014). Here, we focus our discussion specifically on ROS-related enzymes,349

although generally applicable principles are emphasized at certain points.350

351

Measurements of the maximal extractable activities of antioxidative enzymes have long been352

recognized as indicators of cellular redox status. This approach is facilitated by the high activities of353

the core antioxidative systems based around catalase and the ascorbate-glutathione pathway, a354

feature that allows them to be readily measured using simple spectrophotometric techniques (Fig. 4;355

Boxes 2-6). These enzymes have high capacities because they are involved in ROS-linked redox356

cycling. As ROS production is an integral part of metabolism and can occur at high rates even in the357

absence of stress, SOD and H2O2-processing enzymes are quite strongly expressed even under358

optimal conditions. Lower-capacity enzymes, such as those involved in glutathione and ascorbate359

synthesis, are more difficult to measure and require specialized techniques (Hell and Bergmann 1990;360

Noctor et al. 1998; Dowdle et al. 2007). Moreover, developments over the last two to three decades361

have led to the realization that enzymes exist whose primary physiological function is to generate362

ROS, showing that these oxidants are not simply the product of �imbalances� in metabolism. As363

discussed below, some of these activities are more difficult to reliably quantify than major364

antioxidative redox-cycling enzymes.365

366

ROS-producing enzymes367

368

Over recent years, the best studied ROS-producing components have been the respiratory burst369

oxidase homologue (RBOH) type of enzyme that oxidize NADPH to reduce O2 to superoxide at the370

plasmalemma and, possibly, other sites (Desikan et al. 1996; Torres et al. 2002; Foreman et al. 2003).371

Despite extensive focus on these enzymes, their biochemical activities and capacities remain quite372

poorly characterized. They are highly regulated by a plethora of post-translational modifications373

involving such factors as protein phosphorylation, calcium ions, lipids, and interactions with other374
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proteins, eg, receptor-like kinases (Marino et al. 2012; Kadota et al. 2015). Moroever, AtRbohD,375

perhaps the most studied of the plant NADPH oxidases, is S-nitrosylated on a specific cysteine376

residue, leading to a loss of activity (Yun et al. 2011). Because most of these modifying factors will be377

diluted or altered during sample preparation, it is difficult to relate NADPH oxidase activity in extracts378

to what is happening in vivo. Another problem is that specific analysis of membrane-bound RBOH-379

type NADPH oxidases requires lengthy preparation to remove other enzymes that could contribute380

to the measurement in a non-specific way. Because of these issues, particular caution is required in381

interpreting data obtained from in vitromeasurements of NADPH oxidases.382

383

In addition to the NADPH oxidase family, plant cells contain a battery of other ROS-producing384

enzymes. Some of these are largely soluble and relatively high-capacity, and so they are easier to385

measure. One example is glycolate oxidase. This enzyme may have several functions in plants, but it386

acts most notably in the photorespiratory glycolate-recycling pathway. Unlike NADPH oxidases, the387

primary function of such enzymes is not considered to be in ROS production. Rather, they generate388

H2O2 as a by-product, although some contribution to ROS-signalling pathways cannot be discounted389

(Foyer et al. 2009). Glycolate oxidase is the primary source of H2O2 in photorespiratory catalase390

mutants. Other ROS-producing enzymes include xanthine oxidases, amine oxidases, and class III391

(guaiacol-type) peroxidases (del Rio et al. 2006; Moschou et al. 2008; Angelini et al. 2010; O�Brien et392

al. 2012). Enzymes of the last type may also have an antioxidant (H2O2-consuming) function and,393

classically, were measured as such using model substrates such as guaiacol or pyrogallol. However,394

over 70 genes are thought to encode these enzymes in Arabidopsis (Cosio & Dunand 2009), making it395

rather difficult to link changes in measured activities to specific isoforms or gene products.396

397

Antioxidative enzymes398

399

Because their extractable activities are easy to quantify accurately (if correct procedures are400

followed), assays of the major antioxidative enzymes can provide insight into plant responses to ROS401

such as superoxide and H2O2. However, it is important to be clear on the limitations of the402

information that is generated. It is well documented that oxidative stress triggers increases in the403

total extractable activities of most major antioxidative enzymes, albeit usually to a modest extent404

(1.5- to 5-fold are typical values). Increases in the extractable activities of these enzymes can,405

therefore, be taken as indirect evidence of increases in ROS and/or oxidative stress in the plant at406

some point prior to sampling. However, relative increases in enzyme activities cannot be used to407

infer relative increases in ROS. Neither can in vitro activities easily be related to flux through the408

corresponding reactions in vivo. There are several reasons for this. One is that the protocols are409
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designed to allow maximal activities to be observed, notably by using high or near-saturating410

substrate concentrations. For example, GR is routinely assayed using 0.1 mM NADPH and 0.5 mM411

GSSG (Box 6). Both concentrations are well above the respective KM values of the enzyme (Smith et412

al. 1989; Edwards et al. 1990) and, at least for GSSG, probably well above the in vivo concentrations413

that the enzyme is likely to experience under most conditions (Meyer et al. 2007; Schwarzländer et414

al. 2008). A second complicating factor is that, in nearly all cases, the in vitro activity of a given415

antioxidative enzyme is a composite of the contributions of several isoforms encoded by a gene416

family. Although the gene families of these enzymes are not very large, they do encode isoforms417

present in multiple subcellular compartments, with the possible exception of catalase (Table 1).418

Another issue concerns possible post-translational modifications that may modulate the activity in419

vivo but whose influence is not detected in the measurement, either because the modification is not420

stable throughout the sample preparation or because the assay is not able to detect its effect.421

422

Despite the interest of these assays in probing oxidative stress and the cellular response, the423

literature unfortunately contains many examples of values for extractable enzyme activities that are424

obviously, or very likely, erroneous. While some aberrant values may be explained by typing or425

production errors, others are probably caused by issues such as inappropriate experimental426

procedures or poor data processing. It is obviously important to apply the correct extinction427

coefficient to convert an absorbance change per unit time to moles per unit time. With specific428

regard to catalase, it is worth noting that the absorbance of H2O2 at 240 nm is relatively weak, and so429

the extinction coefficient (about 40 M
-1
cm

-1
) is around 100 times lower than those of substrates430

monitored in other assays (eg, ascorbate or NAD(P)H; Fig. 4). One consequence is that conventional431

techniques are not suited to assaying catalase at physiological concentrations of H2O2 (probably sub-432

mM; Foyer & Noctor 2016). However, most assays performed on extracts of plant tissues are433

basically giving a measure of capacity, not in vivo activity. Hence, a concentration is routinely used434

that is both easily detectable in a spectrophotometer and high enough to drive catalase activities at435

appreciable rates (eg, 40 mM; Box 2). An added advantage of using such high concentrations is that436

any contribution to H2O2 removal in the assay from peroxidases will be a negligible proportion of the437

overall rate. Even if such enzymes were working at maximal rates (which should not be the case, if438

extracts are desalted and H2O2 is the only added substrate), their capacities are orders of magnitude439

below that of catalase (Fig. 4).440

441

Model calculations for three commonly measured enzymes are shown in Fig. 4, based on typical442

rates observed in Arabidopsis leaf extracts. Using the procedures described in Boxes 2, 3, and 6,443

extractable catalase activity is about 100 times higher than APX which is in turn about 5-10 times444
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higher than GR. Similar ratios can be observed in leaf extracts from other C3 plants such as tobacco445

(eg, Dutilleul et al. 2003). In studies where several enzymes are measured, comparing the relative446

values obtained for the activities is an appropriate first check for identifying potential problems.447

While the relationship may vary somewhat between tissues and plants, or be influenced by growth448

conditions, an approximate order of rates obtained in leaf extracts using typical protocols is as449

follows: catalase>>>APX>MDHAR>DHAR>GR (Fig. 4 and Boxes 2-6). For example, if leaf activities are450

being measured in wild-type plants and the calculated APX activity is 10 times higher than the451

catalase activity, there is probably an error. Although the protocols detailed in boxes 2-6 are for452

conventional spectrophotometers, they can be adapted for plate-readers (eg, Murshed et al. 2008).453

454

In-gel activity stains can be used to assess individual isoforms of antioxidative enzymes after455

separation by isolectric focusing or other electrophoretic techniques (eg, Zimmermann et al. 2006).456

In theory, this approach allows closer definition of the antioxidative system, albeit in a less457

quantitative way than assays of extractable activities. In practice, for many enzymes, the information458

is often compromised by poor resolution on gels and diffuse staining. When such analyses do achieve459

relatively high resolution, they often reveal multiple activity bands, sometimes far more than would460

be expected from the number of predicted protein products. Thus far, there is little information that461

allows the functional relevance of these observations to be assessed.462

463

An alternative or additional approach is to measure protein abundance, although immunoblotting464

does not provide information on activity and specific antibodies may not be easy to obtain if gene465

sequences within a given family are highly similar. Particularly in cases where different isoforms are466

difficult to resolve at the protein or enzyme level, quantification of transcripts may provide467

information on the responses of the different members of the antioxidative system. Measuring468

transcripts can provide greater sensitivity because they sometimes show a greater relative change469

than the encoded enzyme activity, especially if the transcript is only one of several encoding the470

proteins that contribute to an extractable activity. It should also be noted, however, that some471

antioxidative enzymes are regulated at both transcriptional and post-transcriptional levels (Mittler &472

Zilinskas 1994). Oxidative stress transcriptomics has revealed that quantification of responsive473

transcripts encoding proteins outside the core high-capacity ROS-processing system may be a474

sensitive approach to assessing the intensity of the oxidative stress response, a point we discuss475

further below.476

477

The antioxidative system is by no means restricted to the enzymes mentioned above. Superoxide478

dismutase (SOD) is a key player and many other enzymes may also have important roles. These479
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include peroxiredoxins (PRX) and related enzymes that are, probably misleadingly, named480

glutathione peroxidases (GPX; Iqbal et al. 2006; Navrot et al. 2006; Tripathi et al. 2009). Based on481

genetic evidence, it is clear that at least some PRX play major roles in ROS metabolism in vivo (Awad482

et al. 2015). While several PRX and GPX have been characterized as recombinant proteins in vitro,483

there is much less information on how their extractable activities change in response to oxidative484

stress. This is because many of these activities require interactions with regenerating proteins that485

are largely prohibited in diluted extracts. To take the chloroplast stroma as an example, protein486

concentrations in vivo are of the order of 200-400 mg ml
-1
, based on a leaf protein content of 10-20487

mg.g
-1
FW, 50% of which is in packed into a stromal volume of about 25 l g-1FW (Heldt 1980). In488

contrast, the protein concentrations of extracts prepared as in Box 2 will not greatly exceed 1 mg ml
-

489

1
.490

491

Using assays such as peroxide-dependent NADPH oxidation in the presence of glutathione and GR,492

�glutathione peroxidase� activity can be measured in extracts. However, this activity is usually493

somewhat lower than that of APX and the enzymes responsible are not clearly identified. As well as494

some contribution from GPX isoforms, which in vivo are probably preferentially coupled to495

thioredoxins, glutathione oxidation may be the result of glutathione S-transferase (GST)-linked496

peroxidase activity (Dixon et al. 2009). Total GST activity can be measured using model substrates497

such as 1-chloro-2,4-dinitrobenzene (CDNB) to probe the conjugase function. Here, there are similar498

problems to those associated with classical assays of class III peroxidases. First, it is difficult to infer499

physiologically important information from an activity measured against a model substrate. Second,500

GSTs are encoded by a large gene family (55 in Arabidopsis; Dixon et al. 2009). Nevertheless, as501

detailed in the section below on marker transcripts, specific genes for GSTs are among those that are502

most strongly induced, on a fold-change basis, in response to oxidative stress.503

504

Apart from substrate concentrations and allosteric regulation by metabolites, post-translational505

regulation of enzymes through covalent modification is a key mechanism controlling their activities in506

vivo. To date, there have been relatively few in-depth reports of post-translational regulation of507

antioxidative enzymes in plants. In Chlamydomonas, regulation of catalase activity has been linked to508

the thioredoxin system (Shao et al. 2008). Several other studies have detected antioxidative enzymes509

among proteins that interact with thioredoxins or that can undergo thiol modifications such as S-510

nitrosylation (Balmer et al. 2003, 2004; Romero-Puertas et al. 2007, 2008; Rosenwasser et al. 2014;511

Waszczak et al. 2014). In many cases, the in vivo significance of these processes remains to be more512

closely defined. Although assays of extractable enzyme activities have long been adapted to assess513

activation state related to post-translational modifications such as thiol-disulphide exchange and514
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phosphorylation (eg, Charles & Halliwell 1981; Kaiser & Huber 1997), little attention has as yet been515

paid to such issues in relation to major antioxidative enzymes in plants. It is also important to note516

that post-translational modifications may have biologically crucial effects that are independent of517

any impact on enzyme activity. One example is phosphorylation of the yeast CuZnSOD, which drives518

its relocation to the nucleus where it acts as a transcription factor (Tsang et al. 2014).519

520

One antioxidant-linked enzyme that is clearly post-translationally regulated is -glutamylcysteine521

synthetase (-ECS, also known as glutamate-cysteine ligase), which catalyses the first step of522

glutathione synthesis and which is activated by oxidation of protein thiols (Hell and Bergmann 1990;523

Hicks et al. 2007; Gromes et al. 2008). This mode of regulation presumably allows the enzyme to524

rapidly achieve rates of glutathione synthesis that are appropriate to the prevailing cellular redox525

state, for example, to boost glutathione production under conditions of oxidative stress. In crude526

plant extracts, this enzyme is not easy to measure. The activity of the highly purified recombinant527

enzyme can be accurately measured by a conventional coupled assay that monitors ATP hydrolysis.528

Although data obtained by performing this assay on crude extracts can be found in the literature, the529

values are orders of magnitude higher than reliable, specific assays of -EC production using HPLC-530

fluorescence. This is probably because the measured activity is overwhelmingly due to other ATP-531

hydrolyzing enzymes that are abundant in plant extracts and cannot, therefore, be described as �-532

ECS activity�.533

534

Antioxidants and metabolite markers535

536

Major antioxidant metabolites are key compounds that interact directly with ROS. With regard to537

physiologically produced singlet oxygen at photosystem II, the most important are tocopherols and538

carotenoids, which are located at high levels in plastid membranes, notably the thylakoids. While539

they make some contribution to light harvesting, carotenoids are particularly important in avoiding540

excessive accumulation of singlet oxygen through photodynamic quenching of excited chlorophyll541

states (Ruban et al. 2012; Fischer et al. 2013). They can also chemically react with this ROS to yield542

characteristic breakdown products that may be important in signalling (Ramel et al. 2012). Like lipid543

peroxide profiles, these products may be useful as markers for singlet oxygen-induced oxidation.544

545

The most abundant antioxidant metabolites in the soluble phase of cells are ascorbate and546

glutathione. These compounds can chemically scavenge certain ROS and, as noted above, are co-547

factors for several antioxidative enzymes that ensure peroxide processing (Foyer & Noctor 2011;548
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Smirnoff 2011). As well as acting as reductants that regenerate certain PRX (Tripathi et al. 2009),549

ascorbate is the reducing co-factor for APX while glutathione is a substrate for some peroxidases and550

may also contribute to ROS processing indirectly by participating in ascorbate regeneration from551

dehydroascorbate (DHA), either chemically or in the reaction catalyzed by DHARs (Box 5). In addition552

to work specifically focused on ascorbate or glutathione metabolism, numerous studies have553

measured the stable oxidized and reduced forms of these two compounds as markers for cellular554

redox state. This approach is more reliable and has some advantages over direct assays of ROS. First,555

the major forms of ascorbate and glutathione are relatively stable during extraction, providing556

appropriate sample preparation techniques are followed. Second, they can be specifically measured557

using enzyme-dependent assays. Third, because they are in the frontline of ROS-processing, changes558

in their redox states and/or contents can be taken as indicators of oxidative stress inside the cell. The559

primary product of ascorbate oxidation (monodehydroascorbate, MDHA) is an unstable radical that560

rapidly dismutates to ascorbate and DHA, and thus cannot be easily measured. However, EPR561

techniques have been used to demonstrate increased MDHA signal in stress conditions (Veljovic-562

Jovanovic et al. 1998).563

564

Characteristic responses of the major antioxidants to enhanced intracellular H2O2 in leaves are565

accumulation of total glutathione, mainly as glutathione disulphide (GSSG), and decreases in total566

ascorbate (Noctor et al. 2015). However, stress-induced changes in ascorbate redox state can also be567

observed, although often under different conditions from those that greatly influence the568

glutathione pool (Marquez-Garcia et al. 2015). Although these pools are functionally coupled under569

some conditions, they may also work more independently in other circumstances (Foyer & Noctor570

2011). This presumably reflects the number of pathways potentially involved in the oxidation and571

reduction of each of these antioxidants, and their relative engagement in different conditions.572

Hence, one should not necessarily expect the status of ascorbate and glutathione to change in the573

same way.574

575

Like the measurement of antioxidative enzymes, assays of glutathione and ascorbate on whole tissue576

extracts provide only a composite picture. The data do not necessarily report on the status of these577

compounds in the compartments where ROS are produced. Both compounds are heterogeneously578

localized within the cell, and oxidative stress can differentially affect their distribution. This has579

become apparent through the application of techniques such as redox-sensitive green fluorescent580

proteins (roGFPs) that provide compartment-specific information on the glutathione redox potential,581

as well as in situ detection of ascorbate and glutathione by immunolabelling (Meyer et al. 2007;582

Schwarzländer et al. 2008; Zechmann et al. 2008; Zechmann 2011). With respect to glutathione, the583



19

studies using roGFP suggest that much of the GSSG that is detected in extracts do not reflect redox584

states in the cytosol, chloroplasts, or mitochondria (Meyer et al. 2007; Schwarzländer et al. 2008).585

This is probably the case even for the relatively low levels of GSSG found in samples from unstressed586

plants. Marked accumulation of GSSG in oxidative stress conditions partly reflects its sequestration in587

the vacuole (Queval et al. 2011), probably due to import from the cytosol by tonoplast transporters588

(Noctor et al. 2013).589

590

Good oxidative stress markers are likely to be factors that have relative stability because they are the591

result of modifications that are not rapidly reversed. As noted above, ROS will only accumulate592

strongly if they are located in compartments with low antioxidative activity. This situation may be593

rare in many intracellular locations, although more common in the vacuole and endoplasmic594

reticulum. Accumulation of GSSG in compartments like the vacuole, as a secondary product of595

enhanced ROS production, may be a key process allowing glutathione to be used as a marker.596

Without such sequestration, GSSG would be recycled by the action of GR and its accumulation would597

be much more difficult to detect. A similar consideration may apply to ascorbate. The oxidized form,598

DHA, is thought to be largely located in the apoplast, where ascorbate oxidase is found and599

ascorbate-regenerating capacity is lower than inside the cell (Pignocchi & Foyer 2003). The best600

characterized ascorbate degradation pathway proceeds from DHA and is also localized in the601

apoplast (Parsons & Fry 2012). GSSG present in the vacuole will also be degraded (Grzam et al. 2007),602

although this seems not to be fast enough to prevent its accumulation during oxidative stress603

(Queval et al. 2011).604

605

Similarly to transcriptomics (discussed further below), non-specific metabolite profiling using606

techniques such as gas chromatography-mass spectrometry (GC-MS) can reveal a signature indicative607

of an �oxidative stress metabolome�. This signature includes accumulation of several compounds608

implicated in ascorbate and glutathione synthesis and degradation pathways, as well as609

phytohormones that are known to be involved in oxidative stress signaling, such as salicylic acid and610

jasmonic acid (Noctor et al. 2015). It is noteworthy that the signature also includes several611

compounds that are not obviously connected to antioxidant metabolism or redox homeostasis612

(Noctor et al. 2015). For example, the accumulation of certain amino acids, respiratory613

intermediates, and aromatic compounds is indicative of the switch in metabolism that underpins the614

oxidative stress syndrome, perhaps triggered in part by post-translational redox regulation of615

enzymes (Rosenwasser et al. 2014) as well as by processes such as enhanced proteolysis. Based on616

studies that have manipulated the glutathione synthesis pathway directly by altered -ECS expression617
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or indirectly by oxidative stress, glutathione status may be important in linking oxidative stress to618

altered amino acid contents (Noctor et al. 1998; Han et al. 2013).619

620

Pyridine nucleotides are central to both pro-oxidant and antioxidant metabolism (Foyer & Noctor621

2009), and several studies over recent years have explored the roles of specific NADP-dependent622

dehydrogenases in ROS metabolism and related conditions (Valderrama et al. 2006; Mhamdi et al.623

2010c; Voll et al. 2012; Li et al. 2013). As these enzymes produce NADPH, they can be readily624

measured using spectrophotometric techniques. One example of a method for measuring a typical625

dehydrogenase is given in Box 7.626

627

In general, total tissue NAD and NADP reduction states are less clearly indicative of oxidative stress628

than those of ascorbate and glutathione. Redox states are generally more oxidized even in optimal629

conditions, with total tissue NAD pools being largely oxidized and NADP pools being about 50%630

reduced. This reflects their essential role in energy metabolism, which requires redox poising so that631

both oxidized and reduced forms are always sufficiently available. Nevertheless, the abundance of632

total pyridine nucleotide pools can be influenced by oxidative stress through effects on synthesis and633

degradation (Noctor et al. 2011). It can be useful to have data on these compounds alongside634

ascorbate and glutathione. Validated methods that allow analysis of all these compounds have been635

developed (Fig. 5), and are described in Boxes 8-10.636

637

Assays using Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) or ferric ion reduction638

capacity have been used to measure �total antioxidant capacity�. However, the nature of the factors639

that are monitored by these assays is unclear. These techniques may be useful in the food and640

associated industries, or in medical diagnostics, but they are of limited value for dissecting the641

biological complexity of oxidative stress and plant antioxidant systems.642

643

Oxidation of proteins and nucleic acids644

645

Protein oxidation is likely to be a key process in signalling downstream of ROS. The various possible646

oxidant-induced modifications have been reviewed in-depth elsewhere (Møller et al. 2007, 2011;647

Møller & Sweetlove 2010). In some cases, protein oxidation may be rapidly reversible, because of the648

action of thioredoxins or protein methionine sulfoxide reductases (Tarrago et al. 2009). More stable649

modifications include carbonylation, which can occur at several amino acid residues within proteins650

and is not reversible by known enzymes. Protein carbonylation is relatively easy to measure using a651

simple chemical stain, and has been employed as a convenient oxidative stress marker (Kingston-652
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Smith & Foyer 2000; Davletova et al. 2005a). Even here, the interpretation should take into account653

that the assay is only providing information on proteins that are allowed to accumulate following654

oxidation. Protein oxidation is clearly implicated in degradation of enzymes such as Rubisco and655

glutamine synthetase, either by protease-dependent mechanisms or, possibly, direct cleavage656

mediated by hydroxyl radicals (Desimone et al. 1996; Ishida et al. 2002).657

658

There are now extensive lists of proteins that are potential targets for thiol-diulphide regulation.659

These have been produced using techniques such as binding of proteins to columns containing660

mutated thioredoxins (Balmer et al. 2003; Buchanan & Balmer 2005; Michelet et al. 2008;661

Montrichard et al. 2009). Methods have also been described for analyzing S-glutathionylated662

proteins (Gao et al. 2009). Although considered a key signalling molecule, H2O2 itself is not very663

reactive towards most cellular components. Apart from its high rates of metabolism through heme-664

containing enzymes such as catalases and peroxidases, it can react with protein thiols (SH) to665

produce sulphenic acid groups (SOH). Such a reaction is the first step in the catalytic cycle of PRX666

(Dietz 2003), and may occur on other proteins, if they contain a sufficiently reactive thiol. Affinity667

purification with a fusion protein containing the yeast transcription factor YAP1 has recently been668

used to identify more than 100 proteins that undergo this modification after exposure of Arabidopsis669

cell suspensions to H2O2 (Waszczak et al. 2014). It should be noted that protein thiol oxidation can670

also be catalyzed by specific enzymes such as plant cysteine oxidases, which play roles in oxygen671

sensing (Weits et al. 2014). As yet, the importance of such enzymes in ROS signalling is not clear.672

673

Keen interest has focused on protein cysteine S-nitrosylation (Romero-Puertas et al. 2007, 2008).674

However, few studies have thus far reported on quantitative changes in S-nitrosylation of proteins as675

a result of oxidative stress in planta. One issue is that it can be difficult to preserve in vivo protein676

modifications throughout the sample preparation. Likewise, high background signals may be a677

problem using current techniques. Issues such as these may compromise reproducibility between678

biological replicates. As noted above for other types of measurement, this may relate to the679

complexity of the redox network of plant tissues, with high levels of ascorbate (which can efficiently680

reduce protein-SNO groups) being one example of an interfering compound. For these reasons,681

unicellular algae or cell cultures have generally been the preferred material for these kinds of studies682

(Astier et al. 2012).683

684

The difficulty of quantifying the proportion of a given protein that is undergoing post-translational685

oxidation may be resolved by the use of differential labelling of oxidized and reduced cysteines using686

ICAT (isotope coded affinity tag). This approach was recently used to quantify oxidised cysteines in687
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more than 300 different proteins (Rosenwasser et al. 2014). As in many other studies, most of the688

proteins were involved in primary metabolism and, therefore, relatively abundant. The inability to689

detect low-abundance proteins is a key issue hindering the application of proteomics techniques to690

identify redox-sensitive signalling proteins. Nevertheless, future technical advances in these areas691

are likely to be a key development in understanding cellular signalling triggered by oxidative stress.692

For the moment, such approaches remain rather expensive and laborious. While they are crucial to693

pierce the complexity of oxidative stress signalling, they are not as yet well suited as convenient694

markers for oxidative stress in plant tissues.695

696

In addition to proteins, DNA and RNA can also undergo oxidative modifications (Dizdaroglu et al.697

2002). Guanine bases can be oxidised to 7,8-dihydro-8-oxoguanine (8-oxo-G), promoting mis-698

matched pairing with adenine. One study reported accumulation of 8-oxo-G during seed ageing, and699

that overexpression of the repair enzyme, OGG1, mitigated the effects of ageing and also conferred700

enhanced resistance of seeds to oxidative stress (Chen et al. 2012). Double mutants lacking OGG1701

and another enzyme involved in 8-oxo-G repair showed increased DNA damage, and both single and702

double mutants also lost germination capacity more quickly than wild-type seeds during ageing703

(Cordoba-Canero et al. 2014). Guanine bases in RNA can also undergo this modification. Dry seeds704

accumulate stored mRNA, facilitating rapid production of proteins on dormancy breakage (Rajjou et705

al. 2004). Interestingly, specific stored transcripts can undergo oxidation in sunflower seeds, leading706

to altered translation efficiency, an effect that may be involved in the regulation of germination707

capacity during seed storage (Bazin et al. 2011). Accumulation of 8-oxo-G increased with oxidative708

stress intensity when transcripts were exposed in vitro to conditions generating the hydroxyl radical,709

and analyses of extracted mRNAs from seeds showed the 8-oxo-G content was inversely correlated710

with dormancy (Bazin et al. 2011).711

712

A small increase in 8-oxo-G was also reported in leaves of catalase-deficient plants grown in oxidative713

stress conditions, but no increase was observed in a marker for DNA double strand breaks that can714

accompany this modification (Vanderauwera et al. 2011). Accurate estimation of products of715

oxidative modification of DNA is not trivial, and high basal levels of 8-oxo-G have been reported in716

plants as in other organisms, possibly due to DNA oxidation during extraction (Dizdaroglu et al. 2002;717

Bazin et al. 2011; Vanderauwera et al. 2011; Cordoba-Canero et al. 2014).718

719

One enzyme associated with DNA repair that has received some attention is poly(ADP-720

ribose)polymerase (PARP), which modifies nuclear proteins using NAD
+
as a source of ADP-ribosyl721

units (De Block et al. 2005). Mutants lacking AtPARP2 showed decreased oxidative stress responses722



23

at the transcript level, allied to up-regulation of other stress-associated pathways such as those723

linked to abscisic acid (ABA; Vanderauwera et al. 2007). It was suggested that these effects were due724

to a decreased drain on cellular NAD(H) pools with a resultant increase in the production of cyclic725

ADP-ribose and associated calcium-dependent signalling (Vanderauwera et al. 2007). Another study726

has drawn attention to possible redox regulation of PARP function by interactions with nuclear727

glutathione status (Pellny et al. 2009). It should be noted that measurements of PARP and related728

modifications are challenging, and thus the literature does not contain extensive documentation of729

the role of these factors in oxidative stress in plants.730

731

ROS reporter transcripts732

733

Since 2001 there have been numerous reports on ROS-responsive transcriptomes, with initial studies734

of the effect of H2O2 on Arabidopsis cell cultures (Desikan et al. 2001) followed by in planta studies735

using ROS-generating agents, the singlet oxygen-generating flu mutant, or catalase-deficient plants736

(op den Camp et al. 2003; Vandenabeele et al. 2003; Vanderauwera et al. 2005; Gadjev et al. 2006;737

Vandenbrouke et al. 2008; Mhamdi et al. 2010b; Queval et al. 2012). One advantage of this approach738

is that it provides a more comprehensive picture of the cellular response to oxidative stress than739

metabolite profiling or proteomics. The most obvious limitation is that transcriptomics does not740

provide direct insight into function. Nevertheless, oxidative stress transcriptomes have allowed741

identification of several transcription factors and enzymes that have subsequently been shown to742

play key roles in stress responses (Davletova et al. 2005b; Tognetti et al. 2010). They have also743

allowed identification of useful marker transcripts for assessing oxidative stress intensity in plants744

under different conditions.745

746

Several studies have drawn attention to the possibility that each form of ROS produces a specific747

transcriptome. For example, different sets of genes were found to be induced in conditions of singlet748

oxygen accumulation compared to those in which oxidative stress is linked to superoxide or H2O2 (op749

den Camp et al. 2003; Gadjev et al. 2006). Assuming this is the case, specific transcript markers750

would be very useful tools for assessing the relative contribution of different ROS forms to stress751

responses. Catalase-deficient plants, in which the oxidative trigger is primarily peroxisomal H2O2, do752

not produce the same signature as the flu mutant, which overproduces singlet oxygen in the753

chloroplast (Gadjev et al. 2006). It is less clear whether this is a qualitative difference since at least754

some stress-related genes are strongly induced in both systems (Noctor et al. 2014). Several factors755

could make it difficult to unambiguously assign markers that are specific for each ROS form based756

purely on comparison of model systems. The most obvious is possible differences in the intensity of757
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oxidative stress that is achieved in each system. In addition, subcellular location of oxidant758

production and possible site-specificity of signalling pathways could be at least as important, even for759

a given ROS type (Gutierrez et al. 2014). Another complicating factor could be plant history, meaning760

that transcriptomes would have to be compared in plants that are grown side-by-side under identical761

conditions. One factor is growth day length, which modulates the phenotype and transcriptome762

signature of the cat2 mutant (Queval et al. 2012), and also influences the response of wild-type763

Arabidopsis to equal-time exposure to ozone (Dghim et al. 2013). This may reflect the fine-tuning of764

oxidant-induced gene expression by the prevailing metabolic status of the cell. In other words,765

oxidative signalling does not occur in a vacuum, and will be influenced by a host of nutritional and766

environmental inputs.767

768

Despite these uncertainties, the expression of several genes at the transcript level can be measured769

as markers for oxidative stress in plants. Such genes are weakly expressed in optimal conditions and770

strongly induced by increased oxidation. Three transcripts we regularly measure as indicators of771

oxidative stress are detailed in Figure 6. All three of these transcripts are induced more than 10-fold772

in microarray analyses of catalase-deficient mutants compared to wild-type under photorespiratory773

conditions (Fig.6). An even stronger fold increase is usually detectable using RT-qPCR.774

775

Few of the genes most strongly induced by oxidative stress on a fold-change basis encode members776

of the core H2O2-processing system (Table 1). This presumably reflects the relatively strong777

expression of these genes under all conditions. Nevertheless, many of them become even more778

strongly expressed under oxidative stress. Enhanced APX1 transcripts, encoding a cytosolic APX779

shown to be crucial in redox homeostasis (Davletova et al. 2005a), is a particularly reproducible780

response to oxidative stress and probably explains at least part of the increase in extractable APX781

activity in these conditions. Finally, transcripts involved in DNA damage repair (DDR) have been used782

as markers to assess this process in plants because, as discussed above, direct measurement of DNA783

modification remains challenging (Vanderauwera et al. 2011).784

785

Concluding remarks and outlook786

787

In this text, we intended to present an overview of many of the commonly employed and available788

methods to assess oxidative stress, antioxidative systems, and redox homeostasis in plants. Our aim789

was to provide a user guide, highlighting what we consider to be best practice, outlining validated790

methods, and explaining where some of the pitfalls lie with regard to accurate assay and791

interpretation. For this reason, we have provided detailed protocols of convenient and reproducible792
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methods. In our view, seeking to justify a particular procedure and data interpretation by793

emphasizing previous and extensive use is not in itself very convincing, and inadequate to allay794

concerns about specificity and accuracy. We therefore provide a few basic recommendations (Box795

11). Although this advice is not intended to be exhaustive, following it can help avoid ambiguities in796

data analysis and interpretation.797

798

The approaches one chooses to analyze oxidative stress will depend on the aims of the study. The799

reasons why plant biology researchers should be interested in oxidative stress and related processes800

are increasingly numerous. Just three examples of study aims are: (1) to investigate processes801

involved in regulating a specific component of cell redox state; (2) to gauge oxidative stress intensity802

(or the intensity of the plant response) to establish whether and to what extent a given genetic803

modification or condition is indeed generating oxidative stress; (3) to provide new insight into the804

workings of oxidative stress and redox regulation in plants. Such divergent albeit potentially805

overlapping study aims may call for different subsets of techniques. Hence, it is difficult to prescribe806

specific assays that are to be preferred as a universal �oxidative stress indicator�. We note that807

factors that are most central to oxidative stress may not necessarily be the best markers. One808

example is pyridine nucleotides, whose role at the very heart of pro-oxidant and antioxidant809

metabolism, as well as their importance in other cellular functions, may require stability. In our810

experience, factors that track phenotypic evidence of oxidative stress in a relatively reproducible811

fashion and that are readily quantifiable are ascorbate and glutathione status, extractable812

antioxidative enzyme activities, and marker transcripts. Using currently available techniques, changes813

in ROS themselves may be more difficult to detect and, especially, to quantify (Noctor et al. 2015).814

815

We are keenly aware of the areas where technological advances are essential to drive the field816

forward. Many researchers are looking for user-friendly, inexpensive, and accurate assay systems,817

hence the popularity of kits. Unfortunately, many of the most difficult measurements can only be818

performed with specialized and expensive equipment. The challenge is to develop convenient kit-819

type procedures and probes for metabolites like lipid peroxides, post-translational modifications820

such as S-nitrosylation and S-glutathionylation, and ROS, without sacrificing accuracy or specificity.821

Alongside these developments, the emergence of new in vivo probes able to provide information at822

the subcellular level is crucial. So far, these have notably included the roGFPs that report on823

glutathione redox potential and the HyPer probe for H2O2 (Meyer et al. 2007; Schwarzländer et al.824

2008; Esposito-Rodriguez et al. 2013). These approaches are useful but undoubtably have their825

limitations, necessitating further refinements and the generation of innovative solutions that allow in826

vivo function to be probed in real time. One example of an emerging technique may be in-cell827
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nuclear magnetic resonance (NMR) analysis, which has recently been applied to probe the redox828

state of three proteins in human cell cultures in a non-invasive fashion (Mercatelli et al. 2015).829

Limitations related to extract-based proteomics may to some extent be circumvented by intensified830

use of bait proteins in situ. Such approaches may avoid some of the problems related to extraction or831

even protein abundance, although quantification of post-translational modifications remains a832

thorny issue. As yet, no master-switches have been defined in ROS-dependent oxidative stress833

signalling. However, recent developments in oxygen sensing (Gibbs et al. 2014) suggest that, if they834

exist, their identification is only a matter of time.835

836

The continuing intensive research focus on ROS and related factors, together with advances in837

bioinformatics and artificial intelligence, is likely to allow context-specific transcript, protein and838

metabolite patterns to be closely defined. This will further boost the rapid development of new839

analytical methods. For example, lipid peroxide signatures and marker transcripts, if they are specific840

enough, may be a more reliable and convenient approach than attempting to measure singlet oxygen841

directly. Appropriate marker transcripts are widely used to probe signalling through several842

phytohormone pathways and, given the information now at our disposal, can be applied in a similar843

way to assessing oxidative signalling intensity. High coverage RNA sequencing (RNA seq) is likely to844

significantly advance the field. For example, identification of allelic differences in transcripts offers845

the possibility of discovering protein domains that may be important in ROS signalling. Together with846

analysis of epigenetic regulation of transcription, differences in DNA-binding proteins could be key to847

understanding ROS-linked redox control of gene expression. Further, RNA seq may help to elucidate848

as yet hypothetical interacting protein modules that could be important in sensing and interacting849

ROS-triggered redox signals (Foyer & Noctor 2016).850

851

Another foreseeable development is in nanotechnology, perhaps leading to redox-sensitive in vivo852

reporters that can be used to sense specific components at organellar or even sub-organellar level.853

At the other end of the scale, it is increasingly likely that remote sensing approaches could be854

developed to measure the intensity of stress experienced by a crop in the field or plant in its natural855

environment. As we have emphasized here, reliable and informative markers are crucial to856

understanding how plants exploit and respond to oxidative stress in laboratory conditions, and857

translational application of such markers should greatly aid stress diagnostics in agriculture and858

environmental science. In a physiological rather than diagnostic setting, however, it is unlikely that859

any single measurement, however precise and sensitive it might be, will be sufficient in studies that860

are aiming to dissect the impact of oxidative stress on cellular function. This is because �oxidative861

stress� is a blanket term covering a nexus of cellular changes occurring at multiple levels. Research862
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over the coming years should identify the key nodes and more closely identify the interactions within863

this complex network.864
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Table 1. Genes encoding major antioxidative enzymes in Arabidopsis.

Protein AGI code Subcellular localisation

Superoxide dismutase

CSD1 At1g08830 Cytosolic

CSD2 At2g28190 Chloroplast

CSD3 At5g18100 Peroxisome

FSD1 At4g25100 Plastid
1

FSD2 At5g51100 Chloroplast

FSD3 At5g23310 Chloroplast

MSD1 At3g10920 Mitochondrion

MnSOD-like At3g56350 Mitochondrion

Catalase

CAT1 At1g20630 Peroxisomes

CAT2 At4g35090 Peroxisomes

CAT3 At1g20620 Peroxisomes

Ascorbate peroxidase

APX1 At1g07890 Cytosol

APX2 At3g09640 Cytosol

APX3 At4g35000 Peroxisome
2

APX4 At4g09010 Chloroplast
3

APX5 At4g35970 Peroxisome

APX6 At4g32320 Cytosol

APX7 At1g33660 Pseudogene?

Stromal-APX At4g08390 Chloroplast/mitochondrion
4,5

thylakoid-APX At1g77490 Chloroplast

Monodehydroascorbate reductase

MDAR1 At3g52880 Chloroplast/peroxisome

MDAR2 At5g03630 Cytosol

MDAR3 At3g09940 Cytosol

MDAR4 At3g27820 Peroxisome

MDAR6 At1g63940 Chloroplast/mitochondrion
4,5

Dehydroascorbate reductase

DHAR1 At1g19570 Cytosol/peroxisome
6,7

DHAR2 At1g75270 Cytosol

DHAR3 At5g16710 Mitochondria
5
(Chloroplast?)

Glutathione reductase

GR1 At3g24170 Cytosol/peroxisomes
8

GR2 At3g54660 Chloroplast/mitochondrion
4,5

Information is given for superoxide dismutase and the five enzymes for which methods are described

in Boxes 2-6. Subcellular localisation is based on annotations in databases or studies using GFP-fusion

proteins, numbered as follows: 1. Kuo et al. (2013). 2. Narendra et al. (2006). 3. Wang et al. (2014). 4.

Xu et al. (2013). 5. Chew et al. (2003). 6. Grefen et al. (2010). 7. Reumann et al. (2009). 8. Kataya &

Reumann (2010).
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Box 1. Extractable H2O2

A. Peroxidase-based assay

Grind freshly harvested material (60 mg) in liquid nitrogen and 5% PVP and extract in 2 ml 1M HClO4

Once thawed, centrifuge at 4°C and 14000 rpm for 10 minutes. Add 100 µl of 0.2M phosphate buffer

pH 5.6 to an aliquot of 0.5 ml of the supernatant and adjust to pH 5 using 3 M K2CO3. Centrifuge for

30 seconds to remove insoluble KClO4. Incubate 50 µl of the neutralised extract for 10 minutes with 1

unit of ascorbate oxidase (AO) to oxidise ascorbate. 3-(dimethylamino) benzoic acid (DMAB) and 3-

methyl-2-benzothiazoline hydazone (MBTH) are prepared freshly each day. Add 870 µl of 0.1 M

phosphate buffer (pH 6.5), 20 µl of 165 mM DMAB, 50 µl of 1.4 mM MBTH and 50 ng of peroxidase

to the cuvette. Initiate the reaction by adding 50 µl of the extract. Monitor changes in A590 at 25°C.

Prepare and read H2O2 standards ranging from 0 to 2 nmoles for each experiment. Measure at least

in triplicates for each extract or H2O2 standards.

B. Luminol

Grind freshly harvested material (50-100 mg) in liquid nitrogen 1 ml of 0.2M HCl. On thawing,

centrifuge at 4°C and 14000 rpm for 10 minutes. Add 100µl of 0.2M phosphate buffer pH 5.6 to an

aliquot of 0.5ml supernatant and adjust to pH 5 using 0.2 M NaCl. Incubate 50 µl of the neutralised

extract for 10 minutes with 1 unit AO (10 µl) to remove ascorbate. Prepare luminol and K3Fe(CN)6

reagents using NH3 pH 9.5. In the luminometer tube, add the AO-treated extract (60 µl) to 490 µl of

0.2 M NH3 pH 9.5 and 50 µl of 0.5 mM luminol and vortex. Add 100 µl of 0.5 mM K3Fe(CN)6, mix

rapidly and read immediately for 2s. Perform assay in triplicates. Include H2O2 standards ranging from

0 to 5 nmoles for each experiment.

Remarks: Worthwhile basic checks for H2O2 assays are that the signal is proportional to extract

volume in the cuvette, that it can be abolished by pre-treatment with catalase prior to assay, and

that the response to H2O2 standards is not greatly altered by the presence of the extract.
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Box 2. Catalase

Co-factor: Heme

Number of genes: 3 (Arabidopsis, rice, maize, tobacco, others)

Subcellular location: Peroxisomes, cytosol(?)

Sample preparation: Use freshly harvested tissue or samples or stored at -80°C for no longer than

several months. Grind 100-150 mg fresh weight tissue in liquid nitrogen then add approx. 50 mg

insoluble polyvinylpyrrolidine followed by 1.5 mL 0.1 M phosphate buffer, 1 mM EDTA (pH 7.5)

Protease inhibitors may be included but in our hands do not affect obtained activities in several plant

species. Continue to grind during thawing until a homogenous suspension is obtained. Samples may

be withdrawn for chlorophyll determination if desired. Centrifuge at 4°C and 15000 rpm. Desalt 0.5

ml supernatant on NAP-5 columns pre-equilibrated with 0.1 M phosphate buffer, 1 mM EDTA (pH

7.5). Collect 1 ml as final preparation. Measure protein content in crude and/or desalted extract.

Assay (Figure 4): Add 20 µl H2O2 to 780-930 µl of 0.1 M phosphate buffer, 1 mM EDTA (pH 7.5) in a

quartz cuvette at 25°C to give a final H2O2 concentration of 40 mM (the initial A240 should be about

1.6 as 240H2O2 at 240 nm is around 40 M
-1
cm

-1
). Start reaction by addition of 50-200 µl desalted

extract and monitor decrease in A240 for 1-2 minutes.

Baseline leaf rates in unstressed (C3) plants: 100-200 µmol.mg prot
-1
min

-1

Remarks: The activity is typically measured at supra-physiological H2O2 concentrations (Foyer and

Noctor 2016), producing a rapid reaction that should be monitored promptly to ensure initial rates

are obtained. Monitoring over the first 30 seconds should give enough data-points to obtain a

reproducible rate. This may limit adaptation of catalase assays to plate readers. Otherwise, the

reaction dies off as H2O2 is depleted. At longer assays times, bubbles can cause assay noise as O2

comes out of solution. Alternative method: monitoring oxygen evolution from H2O2

polarographically. In theory, this allows a more specific measurement as H2O2 removal can also be

performed by peroxidases. In practice, however, if the spectrophotometric assay is performed in

desalted extracts at H2O2 concentrations that are super-saturating for peroxidase, their contribution

is negligible compared to catalase.
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Box 3. Ascorbate peroxidase

Co-factor: Heme

Number of genes: 9 (Arabidopsis)

Subcellular location: Chloroplast, Cytosol, Mitochondria, Peroxisomes

Sample preparation: As for catalase except that extraction medium and desalting buffers should

contain least 1 mM ascorbate.

Assay (Figure 4): Add 50 µl of desalted extract and 50 µl of 10 mM ascorbate to 890 µl of 0.1 M

phosphate buffer, 1 mM EDTA (pH 7.5) in a quartz cuvette at 25°C. Start reaction by addition of 10 µl

of 20 mM H2O2 and monitor decrease in A290 for 1-2 minutes (290 ascorbate = 2800 M-1
cm

-1
). Perform

control experiment (with no extract) to correct for chemical oxidation by H2O2 and subtract from

rates obtained with extracts.

Baseline leaf rates in unstressed plants: 200-2000 nmol.mg prot
-1
min

-1

Remarks: Ascorbate is included throughout the extraction and sample preparation to avoid

inactivation of chloroplastic isoforms (Amako et al. 1994). By omission of ascorbate and pre-

incubation with H2O2 for a defined period, much of the chloroplast activity can be removed, thereby

providing information on activities in other compartments such as the cytosol (eg, Veljovic-Jovanovic

et al. 2001).
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Box 4. Monodehydroascorbate reductase

Co-factor: FAD

Number of genes: 5 (Arabidopsis)

Subcellular location: Chloroplast, Cytosol, Mitochondria, Peroxisomes

Sample preparation: Prepare extraction buffer freshly each day. Grind 250 mg of leaves in liquid

nitrogen then add approx. 50 mg insoluble polyvinylpyrrolidine followed by 1 mL 50 mM MES/KOH

buffer, pH6, 1 mM ascorbate, 40 mM KCl and 2 mM CaCl2. Centrifuge at 14000 rpm and 4°C for 10

minutes. Immediately use the supernatant for enzyme activity assay.

Assay: Perform assay at 25°C. Mix 925 µl 50 mM HEPES pH 7.6, 10 µl 25 mM NADH (or NADPH), 10 µl

250 mM ascorbate and 50 µl extract. Start the reaction by adding 0.4 units of ascorbate oxidase (5

µl). Monitor the decrease in A340 for 2-3 minutes. 340NAD(P)H = 6200 M
-1
cm

-1
.

Baseline leaf rates in unstressed plants: 200-500 nmol.mg prot
-1
min

-1

Remarks:MDHAR can use both NADH and NADPH. In our hands, NADPH-dependent rates are higher

in Arabidopsis leaf extracts.
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Box 5. Dehydroascorbate reductase

Co-factor: Cysteines

Number of genes: 3 (Arabidopsis)

Subcellular location: Chloroplast, Cytosol, Peroxisomes (Mitochondria?)

Sample preparation: As for catalase.

Assay: Add 50 µl 4 mM DHA and 25 µl 100 mM GSH to 905 µl 0.1 M phosphate buffer, 1 mM EDTA

(pH 7.0) in a quartz cuvette at 25°C. Start reaction by addition of 20 µl of desalted extract and

monitor decrease in A265 for 2-3 minutes. 265 ascorbate = 14000 M-1
cm

-1
. Perform control experiment

(with no extract) to correct for chemical reduction of DHA by GSH by and subtract from rates

obtained with extracts. A second control can be performed to estimate GSH-independent DHA

reduction in the presence of extract, but rates of this reaction are normally very low in desalted

extracts.

Baseline leaf rates in unstressed plants: 100-300 nmol.mg prot
-1
min

-1

Remarks: The chemical reaction is rapid and must be controlled for. It is substantially accelerated as

pH increases because deprotonation of the glutathione thiol group to produce the reactive thiolate

anion is favoured. Hence, the relative contribution of the enzymatic reaction can be increased by

lowering the assay pH (eg, to 6.5).
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Box 6. Glutathione reductase

Co-factor: FAD, cysteines

Number of genes: 2 (Arabidopsis)

Subcellular location: Chloroplast, Cytosol, Mitochondria, Peroxisomes

Sample preparation: As for catalase.

Assay (Figure 4): Add 10 µl of 10 mM NADPH and 100 µl of desalted extract 880 µl of 0.1 M

phosphate buffer, 1 mM EDTA (pH 7.5) in disposable plastic cuvette at 25°C. Start reaction by

addition of 10 µl of 50 mM GSSG and monitor decrease in A340 for 2-3 minutes.340NADPH = 6200 M
-

1
cm

-1
.

Baseline leaf rates in unstressed plants: 50-200 nmol.mg prot
-1
min

-1

Remarks: This enzyme and its assay are generally stable and very reproducible. Because some plant

groups have glutathione homologs rather than glutathione (eg, homoglutathione in legumes or

hydroxymethylglutathione in grasses), low rates may be obtained when using classical GSSG (-Glu-

Cys-Gly disulfide).
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Box 7. NADPH-generating enzymes

Co-factor: Various

Example of enzymes: Ferredoxin-NADP
+
reductase, glucose-6-phosphate dehydrogenase, isocitrate

dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, NADP-malic enzyme

Subcellular locations: Chloroplast, Cytosol, Mitochondria, Peroxisomes

Example: G6PDH

Number of genes: 6 (Arabidopsis)

Subcellular location: Chloroplast, Cytosol, Peroxisomes

Sample preparation: About 100 mg of leaf tissue, harvested freshly or stored at -80°C, are ground in

liquid nitrogen in the presence of 20 mg insoluble polyvinylpyrrolidine. Add 1 ml extraction media

containing 0.05 M Tris-HCl buffer pH 8, 10 mM MgCl2, 5 mM EDTA and 1 mM DTT. After thawing,

clarify the sample by centrifugation at 4°C and 14000 rpm for 10 min.

Assay: Add 12 µl 10 mM NADP
+
, 50 µl 100 mM MgCl2 and 100 µl extract to 808 µl 0.05 M Tris-HCl

buffer pH 8, in disposable plastic cuvette at 25°C. Start reaction by addition of 30 µl of 100 mM G6P

and monitor increase in A340 for 5 minutes.340NADPH = 6200 M
-1
cm

-1
.

Baseline leaf rates in unstressed plants: 25-100 nmol.mg prot
-1
min

-1

Remarks: In our hands no difference was observed between desalted and undesalted extracts of

Arabidopsis. Because chloroplastic isoforms are inhibited by disulfide reduction, the samples can be

treated with 10-20 mM DTT for 30 minutes to separate chloroplastic activities from those in other

compartments.
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Box 8. Ascorbate

Sample extraction (acid extraction): Grind about 100 mg of leaf tissue to a fine powder in liquid

nitrogen and extract into 1 ml 0.2 M HCl. Continue to grind continuously when the slurry starts to

thawing and clarify by centrifugation at 4°C and 14000 rpm for 10 min.

Sample neutralization. Add an aliquot of 0.5 ml of supernatant to 100 µl 0.2 M phosphate buffer pH

5.6 and vortex. Adjust pH to 4~5 by adding small volumes of 0.2 M NaOH, vortexing each time.

Neutralisation of 0.5 ml of leaf extract from Arabidopsis requires approximately 400 µl of 0.2 NaOH.

The neutralised extract can be used to assay both ascorbate and glutathione. The assay is performed

in triplicate using 96 well UV plates and a microplate reader.

Enzyme preparation: Prepare ascorbate oxidase in 0.2 M NaH2PO4 pH 5.6 to 40 U.ml
-1
. Use 5µL of this

preparation for assay.

Assays (Figure 5): Add 100 µl of 0.2 M phosphate buffer pH 5.6, 55 µl H2O and 40 µl of neutralised

extract to the plate wells, mix twice by programmed shaking and measure absorbance at A265. After

the first read add 5 µl ascorbate oxidase (40 unit.ml
-1
) to the mixture, mix and read for 5 min. This

procedure gives the ascorbate present as such in the plant (reduced form). To measure ascorbate

and its oxidized form dehydroascorbate (DHA) as total ascorbate, treat separate extract aliquots with

a DHA-reducing compound such as dithiothreitol. Mix an aliquot of 0.1 ml neutralized extract with

0.14 ml 0.12 M phosphate buffer pH 7.5 and 10 µl 25 mM DTT, and incubate at room temperature

for 30 min. Assay triplicate aliquots of 40 µl incubated extracts as described for ascorbate.

Baseline leaf contents in unstressed plants: 2-10 µmol.g
-1
fresh weight, 80-95% reduced form.

Remarks: Contents can vary as a function of environmental conditions, most notably growth

irradiance. Higher light promotes higher total ascorbate (Dowdle et al. 2007). Although we find

acceptable recovery rates of added antioxidants in Arabidopsis (Queval & Noctor 2007), the

extraction protocol may require modification for some material, eg, those containing high contents

of phenolic compounds.
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Box 9. Glutathione

Sample extraction and neutralization: As for ascorbate (Box 8)

Enzyme preparation: To prepare GR from the concentrated enzyme preparation, centrifuge an

aliquot of ammonium sulphate suspension for 5 min at 4°C and resuspend the pellet in 0.2 M

phosphate buffer, 10 mM EDTA pH 7.5 to a concentration of 20 U.ml
-1
.

Assays (Figure 5): Total glutathione (reduced glutathione (GSH) and oxidized glutathione GSSG) is

directly measured using the extract prepared as for ascorbate (Box 8). Specific assay of GSSG requires

removal of GSH, for example, by incubating extract aliquots with a GSH-complexing reagent such as

2-vinylpyridine (VPD). To measure GSSG, pre-incubate extracts (200 µl) as well as GSSG standards (0

to 80 pmol) with 2 µl VPD for 30 min at room temperature. Next, centrifuge the mixture twice at 4°C

and 14000 rpm for 15 min. To measure total glutathione add 10 µl of neutralized extract to plate

wells containing 0.1 ml 0.2 M phosphate buffer, 10 mM EDTA (pH 7.5), 60 µl H2O, 10 µl 10 mM

NADPH and 10 µl 12 mM 5,5-dithiobis 2-nitro-benzoic acid (DTNB, Ellman�s reagent), pH 7.5. Mix by

automatic shaking of plate twice and add 10 µl glutathione reductase (GR, 0.2U) to the wells.

Monitor increase in A412 for 5 min. 412DTNB is about 13600 M
-1
cm

-1
but rates are calculated relative

to standards run concurrently. GSH standards (0 to 1 nmol GSH) should be run in triplicates. GSSG is

measured using the same protocol used for total glutathione assay, but triplicate samples of 20 µl

supernatant (produced after the final centrifugation following incubation with VPD) are assayed and

the volume of water is adjusted to 50 µl. Pre-treatment of GSSG standards alongside extract aliquots,

as described above, improves accuracy because it corrects, to some extent, for a progressive

inhibitory influence of residual VPD in the assay on the reaction rate.

Baseline leaf contents in unstressed plants: 200-1000 nmol.g
-1
fresh weight, 90-95% reduced form.

Remarks: Contents can be affected by growth irradiance albeit not usually as strongly as ascorbate.

See Box 8 for comment on extraction method.



55

Box 10. Pyridine nucleotides

Sample extraction

Acid extraction: The oxidized forms NAD
+
and NADP

+
are extracted as described for ascorbate (Box

8), into 1 ml 0.2 M HCl. Basic extraction: About 100 mg leaf tissue is ground to a fine powder in liquid

nitrogen and extracted into 1 ml 0.2 M NaOH. In both cases, the sample is homogenized continuously

until thawing and clarified by centrifugation at 4°C and 14000 rpm for 10 min.

Sample preparation

Acid extract: Boil 0.2 ml extract supernatant for 1 min and cool rapidly on ice then add 35 µl of 0.2 M

phosphate buffer (pH 5.6) and vortex. Adjust pH to 6-7 by addition of small volumes of 0.2 M NaOH,

vortexing each time. Neutralisation of 0.2 ml leaf extract from Arabidopsis requires about 200 µl 0.2

M NaOH. Use the neutralised extract to assay oxidized forms (NAD
+
and NADP

+
). Basic extract: Boil

0.2 ml extract supernatant for 1 min and cool rapidly on ice then add 35 µl of 0.2 M phosphate buffer

(pH 5.6) and vortex. Adjust pH to 6-7 by addition of small volumes of 0.2 M HCl, vortexing each time.

Neutralisation of 0.2 ml leaf extract from Arabidopsis requires approximately 200 µl 0.2 M HCl. Use

the neutralised extract to assay reduced forms (NADH and NADPH).

Enzyme preparation: Prepare alcohol dehydrogenase (ADH) freshly each day by resuspending the

powder in 0.1 M HEPES, 2 mM EDTA (pH 7.5) to 2500 U ml
-1
. Prepare glucose-6-phosphate

dehydrogenase (G6PDH) by centrifugation of an ammonium sulphate aliquot and by resuspending

the pellet in 0.1 M HEPES, 2 mM EDTA pH 7.5 to 200 U ml
-1
.

Assays (Figure 5): Assay NAD
+
and NADH in the acid and basic extracts, respectively. Add 20 µl of

each neutralized extract to a plate well containing 100 µL 0.1 M HEPES, 2 mM EDTA (pH 7.5), 20 µL

1.2 mM 2,6-dichlorophenolindophenol (DCPIP), 10 µL 20 mM phenazine methosulphate (PMS), 10 µL

ADH, and 25 µL H2O. Mix by automatic shaking and start the reaction by addition of 15 µL of absolute

ethanol. Monitor decrease in A600 for 5 min. To assay NADP
+
and NADPH, add 20 µL aliquots of the

neutralized extract (acid extraction for NADP
+
and basic extraction for NADPH) to plate wells

containing 100 µL 0.1 M HEPES, 2 mM EDTA (pH 7.5), 20 µL 1.2 mM DCPIP, 10 µL 20 mM PMS, 10 µL

10 mM glucose 6-phosphate, and 30 µL H2O. After automatic shaking, start the reaction by addition

of 10 µL G6PDH. Monitor decrease in A600 for 5 min.

Baseline leaf contents in unstressed plants: NAD(H), 20-80 nmol.g
-1
fresh weight, 10-20% reduced

form. NADP(H), 10-60 nmol.g
-1
fresh weight, 40-60% reduced form.

Remarks: See Box 8 for comment on extraction method.
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Box 11. Basic does and don�ts

GENERAL

While technical repeats are always advisable, where possible, independent biological replicates are

required. Variation is usually greater between biological replicates than technical repeats. The

contrary may indicate some problem in the assay. Statistical analysis should be performed on single

values derived from technical repeats for each biological replicate. For example, if three technical

repeats are done on three independent biological samples, analysis of significant difference should

use n=3, not n=9.

If measuring a factor for the first time, consult reliable work in the literature to verify whether the

values are realistic.

Rapid and appropriate sampling is needed to preserve the factor in quantities as close as possible to

those found in vivo.

Avoid non-specific assays where possible.

ROS and REDOX METABOLITES

Standard curves, where employed, should be designed to cover the range found in the sample.

Perform recovery experiments, especially on new species or tissues (addition of known amounts of

the measured metabolite to parallel samples).

Do not extract metabolites that can be produced or consumed by highly active enzymes in neutral

buffers or solvents that are not sufficient to inactivate these enzymes.

Perform assays rapidly after extraction.

ENZYMES

Use an appropriate buffer for extraction and assay.

Do not assume that an assay that is appropriate for a highly purified enzyme can be used to measure

the enzyme in a crude extract. Specificity is a particularly important issue for the measurement of

low capacity enzymes.

Assays using boiled protein extract provide a classical control that the signal is fully enzyme-

dependent, and should be used if in doubt.
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Figure legends

Figure 1. Checkpoints before starting. Some of the issues to be considered in measuring factors

associated with redox processes and the antioxidative system. Many of these general principles are

widely applicable to many kinds of measurement, but are particularly pertinent to the measurement

of oxidants, antioxidants, and related factors.

Figure 2. Potential difficulties in interpretation of zonal distribution of reactive oxygen species using

popular in situ cell staining techniques such as nitroblue tetrazolium (NBT) and 3,3�-diaminobenzidine

(DAB). As well as the specific complicating factors indicated on the right, differences in uptake and

access at different zones could also hinder interpretation, particularly in the case of NBT, which can

actually lead to superoxide generation, as shown in Figure 3.

Figure 3. One example of how in planta complexity may obscure the interpretation of cell staining

procedures commonly used to detect ROS. Reduction of NBT to a blue formazan occurs via an

intermediate radical (NBTH
.
) from which the coloured compound is produced by dismutation.

Although many enzymes and metabolites can reduce NBT, inhibition of colour formation by

superoxide dismutase (SOD) is usually advanced as a proof that superoxide is the causative agent.

However, the complexity of cellular redox pathways may distort interpretation, as noted by Fridovich

(1997). For example, reduction of NBT by cellular compounds other than superoxide could produce

the blue formazan via NBTH
.
(top). Oxygen competes with conversion of NBTH

.
to the formazan dye, a

reaction that produces superoxide in a manner that is dependent on the presence of NBT (middle).

Added SOD can favour this competing pathway by displacing the equilibrium towards superoxide

production and, therefore, NBT formation. Hence, inhibition of colour formation by SOD does not

necessarily indicate that superoxide is the primary agent driving formazan formation or even that

this ROS is accumulating to significant levels in the absence of NBT. Further, any superoxide that is

artefactually generated may reduce NBT and contribute to the colour formation.

Figure 4. Back to basics. Examples of simple spectrophotometric assays of three major antioxidative

enzymes highlighting the principles of measurement and calculation. Note the relationship between

the extinction coefficients and the typical activities of the three enzymes.

Figure 5. Principles of assays of ascorbate, glutathione, thiols, and pyridine nucleotides. Assays are

shown in simplified form. Acetald, acetaldehyde .AO, ascorbate oxidase. ADH, alcohol

dehydrogenase. ASC, ascorbate (reduced form). DCPIP, dichlorophenolindophenol. DHA,
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dehydroascorbate. DTNB, 5,5�-dithiobis-(2-nitrobenzoic acid). DTT, dithiothreitol.EtOH, ethanol. GSH,

glutathione (reduced form). GR, glutathione reductase. GSSG, glutathione disulphide. 6-PG, 6-6-

phosphoglucono--lactone. G6P(DH), glucose-6-phosphate (dehydrogenase). PMS, phenazine

methosulphate. VPD, 2-vinylpyridine. More details are given on methods in boxes 8-10.

Figure 6. Validated examples of H2O2-inducible transcripts. Data are from the microarray analyses

reported by Queval et al. (2012). Primers that can be used for qRT-PCR are given for each gene.

Numbers above the bars indicates fold-change in the catalase-deficient cat2mutant relative to Col-0.
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Sample preparation

- Are growth conditions appropriate for the question to be addressed ?

- Are there enough biological replicates and not just technical repeats?

- Is sampling rapid enough to prevent alteration of the factor from its state in the plant?

Plant material and sampling

- Is the extraction medium appropriate (pH, temperature, compounds required for stability)?

- Does the sample preparation procedure remove enzymes or metabolites that may interfere with the assay?

Assay procedures
- Is the assay sufficiently specific, accurate and sensitive?

- Is optimization required (eg, recovery experiments for metabolites)?

- Is the response linear to the amount of extract in the assay?

Interpretation
- Are statistics used appropriately? Avoid treating technical and biological repeats as on the same level.

- Have the limitations of the data being adequately taken into account? Compartmentation, differences between

enzyme activity in vitro and in planta, between pool size and rates of synthesis, between transcript abundance and

protein level, etc

- Biological systems are complicated and interpretation of biological data is far from trivial: Occam’s razor can be a

very blunt instrument!

Data processing and validation

- Are the calculations correct? Check extinction coefficients, dilution factors, etc.

- Are the data expressed relative to some physiologically relevant factor (tissue mass, protein, chlorophyll, etc)?

- How will the validity of the values be verified? Check against reliable literature values if these are available.
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Figure 2. Potential difficulties in interpretation of zonal distribution of reactive oxygen species using popular in situ cell staining techniques such as

nitroblue tetrazolium (NBT) and 3,3�-diaminobenzidine (DAB). As well as the specific complicating factors indicated on the right, differences in uptake

and access at different zones could also hinder interpretation, particularly in the case of NBT, which can actually lead to superoxide generation, as

shown in Figure 3.
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Figure 3. One example of how in planta complexity may obscure the interpretation of cell staining procedures commonly used to detect ROS.

Reduction of nitroblue tetrazolium (NBT) to a blue formazan occurs via an intermediate radical (NBTH.) from which the coloured compound is

produced by dismutation. Although many enzymes and metabolites can reduce NBT, inhibition of colour formation by superoxide dismutase (SOD) is

usually advanced as a proof that superoxide is the causative agent. However, the complexity of cellular redox pathways may distort interpretation, as

noted by Fridovich (1997). For example, reduction of NBT by cellular compounds other than superoxide could produce the blue formazan via NBTH.

(top). Oxygen competes with conversion of NBTH. to the formazan dye, a reaction that produces superoxide in a manner that is dependent on the

presence of NBT (middle). Added SOD can favour this competing pathway by displacing the equilibrium towards superoxide production and, therefore,

NBT formation. Hence, inhibition of colour formation by SOD does not necessarily indicate that superoxide is the primary agent driving formazan

formation or even that this ROS is accumulating to significant levels in the absence of NBT. Further, any superoxide that is artefactually generated may

reduce NBT and contribute to the colour formation.



Figure 4. Back to basics. Examples of simple spectrophotometric assays of three major antioxidative enzymes highlighting the principles of

measurement and calculation. Note the relationship between the extinction coefficients and the typical activities of the three enzymes.
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2 GSH + NADP+

GSSG + NADPH

Ascorbate

peroxidase
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2 H2O + 2 MDHA

H2O2 + 2 Ascorbate

Typical calculation

100 mg Arabidopsis leaves, soluble protein content = 9 mg.g-1FW. Extracted in 1.5 ml buffer and desalted as described in Box 2.

Assayed in 1 ml final volume in a Cary spectrophotometer (path length = 1 cm).

Catalase
100 µl extract/assay

Measured DA240 min-1 = 0.2

Activity = 0.2 x 103/40 x 1/0.1 x 1.5/0.5 x 10/9

= 167 µmol mg-1 prot min-1

Glutathione reductase
100 µl extract/assay

Measured DA340 min-1 = 0.02

Activity = 0.02 x 106/6200 x 1/0.1 x 1.5/0.5 x 10/9

= 108 nmol mg-1 prot min-1

Ascorbate peroxidase
50 µl extract/assay

Measured DA290 min-1 = 0.03

Activity = 0.03 x 106/2800 x 1/0.05 x 1.5/0.5 x 10/9

= 714 nmol mg-1 prot min-1
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Figure 5. Principles of assays of ascorbate, glutathione, thiols, and pyridine nucleotides (Queval & Noctor 2007). Assays are shown in simplified form.

Acetald, acetaldehyde. AO, ascorbate oxidase. ADH, alcohol dehydrogenase. ASC, ascorbate (reduced form). DCPIP, dichlorophenolindophenol. DHA,

dehydroascorbate. DTNB, 5,5�-dithiobis-(2-nitrobenzoic acid). DTT, dithiothreitol. EtOH, ethanol. GSH, glutathione (reduced form). GR, glutathione

reductase. GSSG, glutathione disulphide. 6-PGgL, 6-phosphoglucono-γ-lactone. G6P(DH), glucose-6-phosphate (dehydrogenase). PMS, phenazine

methosulphate. VPD, 2-vinylpyridine. More details are given on methods in boxes 8-10.
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Figure 6. Validated example of H2O2 inducible transcripts. Data are from the microarray analyses reported by Queval et al. (2012). Primers that can

be used for qRT-PCR are given for each gene. Numbers above the bars indicates fold-change in the catalase-deficient cat2mutant relative to Col-0.
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Transcript name: GSTU24

Gene identifier: At1g17170

Primer sequences

GSTU24-LP: GGCGAGTATGTTTGGGATG

GSTU24-RP: TTCATCTCGAGGAGCAAGG

Transcript name: HSP17.6

Gene identifier: At2g29500

Primer sequences

HSP17.6-LP: GGAGAAAGAAGATAAGAATGACACG

HSP17.6-RP: TCAACACACCATTCTCCATCG

Transcript name: UGT73B3

Gene identifier: At4g34131

Primer sequences

UGT73B3-LP: CCTCACCACACCTCTCAACTC

UGT73B3-RP: TCTGGTAACCCGAGATCCAC
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