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Abstract

Biomedical applications of non-equilibrium atmospheric pressure plasmas have attracted intense 

interest in the past few years. Many plasma sources of diverse design have been proposed 

for these applications, but the relationship between source characteristics and application 

performance is not well-understood, and indeed many sources are poorly characterized. This 

circumstance is an impediment to progress in application development. A reference source 

with well-understood and highly reproducible characteristics may be an important tool in this 

context. Researchers around the world should be able to compare the characteristics of their own 

sources and also their results with this device. In this paper, we describe such a reference source, 

developed from the simple and robust micro-scaled atmospheric pressure plasma jet (µ-APPJ) 

concept. This development occurred under the auspices of COST Action MP1101 ‘Biomedical 

Applications of Atmospheric Pressure Plasmas’. Gas contamination and power measurement 

are shown to be major causes of irreproducible results in earlier source designs. These problems 

are resolved in the reference source by refinement of the mechanical and electrical design and 

by specifying an operating protocol. These measures are shown to be absolutely necessary for 

reproducible operation. They include the integration of current and voltage probes into the jet. 

The usual combination of matching unit and power supply is replaced by an integrated LC power 

coupling circuit and a 5 W single frequency generator. The design specification and operating 

protocol for the reference source are being made freely available.

Keywords: plasma medicine, COST reference microplasma jet, atmospheric pressure plasma 

jet, biomedical applications of plasmas, power measurements, capacitively coupled radio 

frequency discharge
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1. Introduction

Microplasmas operated at atmospheric pressure have gained 

very high attention. A series of review papers and topical 

issues of leading scientific journals have discussed their tech-

nological and biomedical promise as well as their scientific 

challenges [1–3]. A major part of the research on cold atmos-

pheric pressure microplasmas aims at the development and 

optimization of plasmas for the production of reactive spe-

cies from a molecular precursor gas. Reactive microplasmas 

have been developed for the deposition of functional organic 

or inorganic coatings and thin films. Other surface treated 

materials range from polymers to living tissue in the emerging 

and particularly promising field of plasma medicine. These 

applications include cancer treatment, sterilization and wound 

healing [4–10]. So-called ‘jet’ devices are especially suited 

for biomedical applications because they are small enough 

to be easily handled and emit a cold gas stream. This gas 

stream contains a multitude of reactive species which can be 

directed towards a target surface. There, a localized interac-

tion can take place due to the small dimensions of the devices. 

However, many groups around the world are investigating dif-

ferent, mostly self-made atmospheric pressure plasma jets for  

biomedical applications [11–14]. Since each device behaves 

differently, a comparison between the results is complicated 

[15]. This leads to a huge delay in scientific progress. This pro-

gress could be improved by correlating the results from different 

groups. Consequently, the basic understanding of atmospheric 

pressure plasmas and their interaction with biological tissue is 

often lagging behind. This impedes their scaling and prevents 

the approval of processes by authorities [10].

To solve these problems, within the European COST 

(Cooperation in Science and Technology) Action MP1011 on 

‘Biomedical Applications of Atmospheric Pressure Plasma 

Technology’ [16], a group was formed to discuss the possi-

bilities of defining a device that could be used as a reference 

source for all groups doing research in the field of plasma 

medicine. Researchers around the world should be able to 

compare the characteristics of their own sources and also their 

results with this device.

A list of key requirements for a reference source was 

defined. This list included:

 • The design should be simple, robust, and inexpensive;

 • The device should be usable in different laboratories 

using standard electrical equipment and gas connectors;

 • The device should be air-tight to minimize the influence 

of ambient air;

 • The device components should be composed of inert or 

medically certified (accepted) materials;

 • Internal probes should be included to allow a continuous 

monitoring of operation conditions;

 • The device should be electrically safe and low in electro-

magnetic radiation;

 • The design should be openly available to all interested 

researchers.

Considering these requirements, the micro-scaled atmos-

pheric pressure plasma jet (µ-APPJ) developed by Schulz-von 

der Gathen and co-workers [17] was selected as the basis for 

the development of a reference source. Here, we present the 

outcome of this development: a reference device for research 

purposes—the COST Reference Microplasma Jet. We briefly 

introduce the technical details and then show a basic charac-

terization that can be used to demonstrate the reproducibility 

of power, optical emission spectroscopy (OES), and gas 

temper ature measurements.

2. State of the art radio-frequency excited  

micro-scaled atmospheric pressure plasma jet

The micro-scaled atmospheric pressure plasma jet (µ-APPJ) 

is based on the original APPJ as introduced by the group of 

Hicks and Selwyn [18]. The µ-APPJ is a capacitively coupled 

13.56 MHz RF-discharge with symmetric, co-planar, stainless 

steel electrodes enclosed by two quartz panes and a discharge 

volume of    × ×1 mm 1 mm 30 mm, particularly designed for 

optimized optical diagnostic access [19]. The standard opera-

tion condition is a homogeneous α-glow mode with a noble 

gas flow (typically 1.4 slpm He) containing a small molecular 

admixture of oxygen or nitrogen (typically 0.5%) [20, 21].

The µ-APPJ has been and is actively investigated at sev-

eral institutes. Up to today, about 40 articles on experimental 

measurements as well as on models and simulations have been 

published. These results include spatially resolved diagnostics 

of reactive species such as radicals (e.g. atomic oxygen and 

nitrogen, ozone, metastable oxygen molecules), gas temper-

atures, flow patterns, etc in the discharge region and in the 

effluent [19, 22–26]. The emission was investigated down to 

the vacuum ultraviolet as a potentially important contributor 

to biomedical processes [27]. The investigations also com-

prise a variety of biomedical experiments [28–32].

Several modeling investigations have been carried out, 

taking advantage of the simple geometry of the device. 

One-dimensional models were used to describe the elec-

tron excitation within the electrode gap [33–36]. One- and 

two-dimensional simulations have been used to investigate 

the generation of reactive species [37–40] as well as power 

Figure 1. Photograph of the ignited COST Reference Microplasma 
Jet (COST-Jet). The homogeneous discharge is formed between 
the plane-parallel electrodes of the electrode assembly that extends 
from the housing.
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modulation [41]. The µ-APPJ continues to be actively 

investigated.

In preparing the specification for the COST Reference 

Microplasma Jet, several drawbacks of the original design were 

identified that needed an improvement to cover the goals of the 

source.

3. Design of the COST Reference Microplasma Jet

The COST Reference Microplasma Jet (COST-Jet or 

COST-RMJ) was developed based on the original µ-APPJ 

concept. The complete device (see figure 1) consists of two 

main components: (i) the ‘head’ that comprises the electrode 

stack with quartz panes, the gas connector and the gas tubing, 

and (ii) the housing, that holds the head, provides the elec-

trical connections, and internal current and voltage probes. 

Both components will be described in detail below.

3.1. Head

The head (see figure 2) includes the electrode assembly com-

posed of a quartz pane / metal electrode / quartz pane stack. 

This assembly forms the discharge channel. Using a two-comp-

onent glue suitable for high-vacuum applications (TorrSeal®), 

the assembly is glued into a ceramic gas connector that attaches 

the 1/4 inch stainless steel gas tubing to the head.

3.1.1. Electrode assembly. The two metal electrodes of the 

head (see figure 2) are symmetric and separated by a 1 mm 

gap. The 52.5 mm long, 12 mm wide and 1 mm thick elec-

trodes are made of medical stainless steel (SS 316) and form 

the gas channel which features three different zones: (i) A 

region of about 11.5 mm length that is fully covered by quartz 

panes. In this region, the electrode faces are widely spaced so 

that no discharge is ever ignited. Here, gas from the supply 

redistributes before entering the main discharge volume of the 

head. This premix volume is 5 mm wide. (ii) The subsequent 

part extends over 30 mm of length of closely spaced electrodes 

each being 4.5 mm high, defining the 1 mm wide discharge 

channel. At the exit region, the electrode width is reduced to 

1 mm. (iii) The safety zone is formed by the quartz panes and 

prevents contact with the electrodes.

These quartz panes (Corning 7980) are windows that 

allow direct, broadband observation of the discharge down 

to a wavelength of about 200 nm. They are 1.5 mm thick and 

Figure 2. Detailed sketch of the head showing the two symmetric, stainless steel electrodes with connection wings and quartz panes 

covering the symmetric plasma electrodes. The blue line at the circumference indicates seal made from TorrSeal® inside the groove formed 
between the panes and the electrode.

Figure 3. Sketch of the complete assembly consisting of head, housing and adapter to external tubing. In the housing, the fastening and 
guidance of the head, the electrical power connections with matching coil and capacitor and both internal probes are illustrated.

J. Phys. D: Appl. Phys. 49 (2016) 084003
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cover the electrodes over a length of 50 mm. They extend 

slightly beyond the electrode configuration, forming 1 mm 

deep grooves at its outer side. These grooves are used to 

tightly glue together the entire stack with TorrSeal® while 

preventing any contact between the feed gas and plasma with 

the glue. During assembly, the stack is pressed together to 

minimize any space between the electrode and pane and thus 

preventing air intrusion during operation. The glue extends 

from the wing of the electrode up to the flat exit as indi-

cated by the blue boundary lines in figure 2. The width of the 

quartz panes decreases symmetrically to 5 mm over a length 

of 3.5 mm, thus forming a flat exit in combination with the 

electrodes. This wedge shape conveniently enables the inser-

tion of the assembled tip into the cavities of a 24 well titer 

plate.

The 1 mm safety gap formed by the extension of the quartz 

panes beyond the electrode tip serves three purposes: (i) the 

powered electrodes cannot be directly touched, (ii) electrical 

contact with the target is prevented and (iii) even when coming 

in contact with a surface, the gas flow is not shut off immedi-

ately, thus preventing irregular operation of the device.

3.1.2. Gas configuration. The electrode assembly is glued 

into a slot of a cube of machinable ceramic that forms an elec-

trically isolated connection to the gas line (see figure 2). A 1/4 

inch stainless steel tube is inserted into a drilled hole on the 

opposite side of this gas connector and tightly glued. The gas is 

fed from the steel tube through a 1 mm diameter drilling in the 

gas connector into the discharge channel. By selecting these 

materials, we ensure that only stainless steel, quartz, and alu-

mina ceramic come in contact with the gas and the plasma. 

Typically, the feed gas tube has a length of 60 mm, but can 

also be shorter or longer than that, depending on the require-

ments. It can be connected to standard gas fittings using an 

O-ring-to-standard fitting adapter (right of figure 3). Thus, the 

complete head can be separated from the housing into which it 

is inserted for operation.

3.2. Housing

The housing (see figure 3) consists of a rigid metal casing (Fischer 

Elektronik, AKG412450ME) of    × ×41 mm 24 mm 50 mm.  

The casing is made of anodized aluminum and is therefore 

electrically insulated, so that incidental electrical contact is 

prevented. The complete head is inserted into the housing from 

the front side with the 1/4 inch tubing. It is guided and mounted 

by a metal clamp. This provides stable support and excellent 

grounding to the device. The electrode wings are screwed with 

M2 threads into a flat copper conductor for connection to the 

power supply. The complete COST-Jet device can be installed 

on an optical post by using the M5 thread in the bottom of the 

housing.

The front and back cover are tightly connected to the main 

body of the housing. The front cover includes a slot for the head 

and a thread to mount an electrode shielding for the grounded 

electrode. All electrical connectors are combined into the back 

cover of the housing. Here, the power connector (SMA), two 

probe connectors (SMC), and the adjustable tuning capacitor 

are located. To improve discernibility, different connectors for 

power and probes have been selected.

The external connection to the power supply is provided by 

a low loss coax cable (H-155 PE Low Loss) with a damping of 

0.46 dB m−1at 2 GHz. The cable is fitted with a female SMA 

connector on the assembly side and a BNC connector on the 

supply side.

Based on the work by Marinov and Braithwaite [42], an 

internal resonance coupling is used (see figure 4). Thus, there 

is no need for an external tuning network (matchbox).

For this purpose, an LC circuit with a tunable capacitor 

(Sprague Goodman =C 0.8t –8 pF) and an inductor ( =L 9.6 µ H,  

Amidon T68-2 core, 41 windings) was used to tune the circuit 

into resonance at a frequency of 13.56 MHz. The capacitor is 

installed in parallel to the electrode stack. This LC circuit has 

a Q-factor of about 30. This means it provides a thirty-fold 

increase of the applied voltage. Thus, a power supply capable 

of delivering 7 V is enough to ignite the discharge.

3.2.1. Probes. For an easy control of experimental condi-

tions, two probes are integrated into the housing of the COST 

Reference Microplasma Jet.

Voltage probe. The voltage probe is a pin of 5 mm length 

positioned 4 mm below the powered flat copper conductor 

leading to the electrode. The voltage probe is capacitively 

coupled to the electrode. Once calibrated using an external 

voltage probe, the voltage between the electrodes is obtained 

using an oscilloscope. The calibration procedure is described 

in more detail in section 4.1.

Figure 4. Electrical circuit scheme including LC circuit for matching, the capacitive voltage pick-up probe and Rm for current 
measurements.

J. Phys. D: Appl. Phys. 49 (2016) 084003
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Current probe. The current is measured via a resistive cur-

rent measurement. The precision film resistor ( =R 4.7m  Ω) 

is positioned between the ground-side electrode and ground. 

The voltage drop over this resistor is proportional to the dis-

charge current via Ohm’s law. To ensure that the current probe 

only measures the current that crosses the discharge channel, 

a grounded shielding is fixed around the ground-side of the 

electrode assembly (see figures 1 and 3). Both probes are con-

nected to standard SMC sockets.

3.3. Power supply

The concept of the COST Reference Microplasma Jet pre-

sented here is accompanied by the development of a simple, 

tailored, miniaturized power supply for 13.56 MHz (see 

figure  5). It delivers the required voltage for the LC circuit 

to safely operate the COST-Jet in helium with a 0.5% admix-

ture of oxygen. The maximum output power of the ampli-

fier is 5 W. For reference purposes, the power can be fixed 

to a single power setting. This power supply can be replaced 

by any power generator capable of delivering this voltage 

range, when the required matching to the LC circuitry can be 

achieved.

3.4. OES reference cover, reference fiber spacer

A second possibility to control experimental conditions is 

OES using an optical fiber. To ensure reproducible OES 

measurements, we introduced two simple accessories for the 

COST-Jet: (i) The OES reference cover and (ii) the reference 

fiber spacer.

The OES reference cover is made of black cardboard and 

encloses the electrode assembly completely. It has a rectan-

gular hole with a size of   ×2 mm 5 mm positioned at the center 

of the discharge.

The fiber-spacer is made of opaque plastic. The spacer 

was manufactured for optical fiber with SMA termination and 

ensures a fixed distance of 5 mm between the fiber entrance 

and glass pane of the COST-Jet. It has a core drilling of 3 mm 

diameter that fits to the rectangular hole in the OES reference 

cover. The fiber spacer prevents any electric disturbance of the 

COST-Jet operation by metallic fiber jacketing. The combina-

tion of the OES reference cover and fiber spacer ensures a 

reproducible positioning of the observation hole in the center 

of the discharge and prevents the collection of stray light by 

the fiber.

4. Basic characterization

To demonstrate the performance of the COST Reference 

Microplasma Jet, a basic characterization was conducted at 

the Ruhr-Universität Bochum. This characterization includes 

electrical measurements, such as voltage, current and power 

measurements, as well as OES and temperature measurements. 

The built-in probes of the COST Reference Microplasma Jet 

allow simple monitoring of electrode voltage and plasma cur-

rent of the device. Here, the results are presented.

For all measurements, the COST-Jet was operated at a 

helium gas flow of 1.0 slpm of helium (purity 99.999%) and 

an oxygen admixture of 0.5% (purity 99.998%). This gas flow 

ensures a low gas temperature and yet keeps the flow low 

enough to avoid or reduce evaporation with biological sub-

strates. The results of current and voltage measurements are 

presented in rms values, unless denoted otherwise.

4.1. Voltage probe calibration

Prior to measurements, the internal voltage probe has to be 

calibrated.

To calibrate the internal voltage probe, a commercial 

voltage probe (see table 1 for detailed description of equip-

ment) was connected to the electrodes of the COST-Jet. The 

probe was properly matched to the oscilloscope (see table 1) 

to ensure high fidelity in the 13.56 MHz region. This was done 

by connecting it to the calibration signal of the scope. This 

Figure 5. Image of the home-made ‘on/off’ 13.56 MHz power supply tailored to the LC resonance circuit.

J. Phys. D: Appl. Phys. 49 (2016) 084003
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adjustment can make a significant difference especially with 

higher attenuation probes.

The internal voltage and current probes were connected to 

two different oscilloscopes using a 50 Ω termination to mini-

mize signal reflection.

Comparing absolute amplitude values of the voltage meas-

ured with the commercial and the internal voltage probe, we 

calculated a calibration factor for the internal probe. Internal 

and commercial voltage probe measurements showed a linear 

correlation (see figure  6). Therefore, a single calibration 

factor could be calculated by a linear regression curve. The 

calibration was done multiple times using two different oscil-

loscopes. The calibration factor from internal to commercial 

probe voltage was ±2630 50. The differences in calibration 

factors can most likely be attributed to imprecise calibration 

of the commercial voltage probe. This inaccuracy cannot be 

entirely avoided.

It has to be noted that this calibration factor has to be meas-

ured and calculated for each COST-Jet. This recalibration is 

necessary due to variations of probe positioning inside the 

housing.

The discharge current was calculated from the voltage 

measured by the internal current probe. Since the internal cur-

rent probe measures the voltage drop, Uc, over a resistor of 

=R 4.7m  Ω (see figure 4) and is connected to the oscilloscope 

using a termination of =R 50t  Ω, the current can be calculated 

via Ohm’s law:

=
+

I U
R R

R R
c

m t

m t
 (1)

4.2. Power measurement

The power, that is dissipated in the plasma can be obtained 

using current, voltage and the phase shift between them.

( )= ⋅ ⋅ ΦP U I cos (2)

The current and voltage signals are measured at different 

locations and with different cables and therefore have a dif-

ferent phase than the signals at the electrode. Hence, it is nec-

essary to have a reference at which the value of the phase is 

known. Without the discharge, the COST-Jet electrodes basi-

cally form a capacitor and the active power should be equal to 

0 W. Therefore, the phase between current and voltage without 

a discharge is 90°. The change in phase from this reference 

can then be used to calculate the power, using equation (2). 

For the power measurements, an oscilloscope with a minimum 

 sampling rate of 1 GS s−1 is recommended.

Voltage, current and power were measured using the 

described method. At a voltage of approximately 150 V, break-

down occurred and the discharge was ignited (see figure 7). 

A stable operation of the device in a homogeneous mode 

was possible in a voltage range of 155–335 V. This corre-

sponds to an active power of 0.2 W–1.7 W. This power range 

agrees very well with model calculations by Waskoenig et al 

Table 1. Equipment used for basic electrical and optical characterization.

Oscilloscope type Voltage probe Spectrometer

LeCroy WavePro 735Zi Tektronix P5100A Ocean optics HR4000

(40 GS s−1, 3.5 GHz) (100x)

Tektronix DPO 2024 Tektronix P5100A Ocean optics HR4000

(1 Gs s−1, 200 MHz) (100x)

Figure 6. Comparison of internal probe to commercial probe 
(Tektronix P5100A). The linear regression curve provides a 
calibration factor for the internal voltage probe. Each individual 
COST-Jet has to be calibrated due to small manufacturing 
differences. The legend indicates the used equipment. For the 
measurement represented by the square symbols only one value out 
of 20 is shown.

Figure 7. Active power from ignition through the transition to 
constricted mode.

J. Phys. D: Appl. Phys. 49 (2016) 084003
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[43]. At higher voltages, a transition to a constricted mode 

was observed. With the transition to this mode, the voltage 

dropped and the power consumption strongly increased. In the 

constricted mode, the plasma is located in a small area at the 

very tip of the electrodes close to the exit. The gas temper-

ature considerably exceeds room temperature and might even 

damage the COST-Jet if operated longer than a few seconds.

At approximately 240 V and 0.45 W (see figure 7), a change 

in the power-voltage-curve was observed. For voltages lower 

than 240 V, the power rises linearly with voltage. For higher 

voltages, an additional exponential trend becomes dominant. 

This change corresponds to a transition of the discharge from 

an α-like mode to a γ-like mode. This transition has been dis-

cussed previously [35, 44].

4.3. Optical characterization

OES allows for the estimation of stability and reproduc-

ibility of the operation as well as the influence of impurities 

in the different devices. To study the response of the plasma 

chemistry to different plasma parameters, we investigated the 

plasma emission using a broad band spectrometer (Ocean 

Optics HR 4000, 200 nm–1100 nm, 3648 pixels) and fiber 

optics (Ocean Optics QP 600-2-UV-BX). To ensure a defined 

distance between fiber optics and discharge, we used the fiber 

distance spacer and the OES reference cover (see section 3.4). 

If not stated otherwise, all results were obtained at an active 

power of 0.4 W (212 V) and a gas flow of 1 slpm helium and 

admixture of 5 sccm oxygen.

Notably, atomic oxygen lines (777 nm, 844 nm) were the 

most prominent emission lines in the emission spectrum (see 

figure 8). The helium atomic lines (706 nm, 587 nm, 668 nm) 

were less pronounced. The weak molecular nitrogen emission 

of the second positive band (336 nm, 357 nm) as well as the 

hydroxide emission (308 nm) can be attributed to impurities 

in the gas supply. Impurities from leakages or backflow are 

unlikely due to steel tubing and high gas flow. The low impu-

rity level in the spectrum was obtained using stainless steel 

tubing and flushing with helium prior to ignition of the dis-

charge. This procedure has been shown to reduce humidity 

in the gas supply due to water attached to the gas tubing [45]. 

Control of impurities is essential for reproducible results and 

thus is a major issue in atmospheric pressure plasmas.

For flow variations (see figure 9), the value at 1 slpm helium 

flow was selected as the normalization point. Figure 9 shows the 

behavior of the strongest atomic lines (ratio of the 844 nm O line 

and the 706 nm He line) for a flow variation from 0.25 slpm to 

1.5 slpm. The error bars represent an upper limit of 5% devia-

tion of the absolute line intensity and are shown only for the first 

measurement point. The ratio of the two lines slightly decreases 

by about 5% for increasing flow. This relative reduction of the 

oxygen contribution can be attributed to the decreasing residence 

time up to the measurement point at higher flows [19]. The ratio 

of the oxygen line to the emission of the 357 nm molecular 

nitrogen band of the second positive system gives an indication 

of the impurities in the device. An increase in the He/N2 ratio 

was observed with rising flow. This is explained by an apparent 

decrease in nitrogen contribution either from the gas system or 

back flow through the exit. The back flow argument is supported 

by the steeper increase at the lowest flow of 0.25 slpm. For any 

further interpretation, it has to be kept in mind that the emission 

is influenced by the number of species as well as the energy dis-

tribution of the exciting electrons.

5. Gas temperature

A crucial parameter for biomedical applications with living 

tissue and to a lesser extent interactions with temperature sen-

sitive materials is the gas temperature of the effluent. Since 

increased temperatures above 37 °C can damage living tissue, 

it is crucial to control the heat impact. Therefore, the heating 

of the effluent gas needs to be low.

Figure 8. Atomic oxygen lines (777 nm, 844 nm) are most prominent in the survey spectrum measured at 0.4 W (212 V), 1 slpm helium and 
5 sccm O2.

J. Phys. D: Appl. Phys. 49 (2016) 084003
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The gas temperature of the effluent was measured using 

an RF-insulated thermocouple in a distance of 3 mm of the 

electrode tip (see figure 10); this is also a typical distance used 

for biomedical application interactions. Note that the 0 mm 

position represents the COST-Jet exit, i.e. the tip of the elec-

trodes. Since investigations usually cover both the discharge 

region and the effluent, it was chosen that positive ‘+’ coor-

dinates point into the effluent and negative ‘-’ values into the 

discharge region, with zero defined at the electrode edge.

Temperature rises at an active power of 0.2 W within the 

first 5 min from ambient temperature of 19.9 °C (not dis-

played here) to 30.5 °C. After this increase, the temperature 

reaches a steady state of approximately 32.5 °C within 30 min. 

This corresponds to the typical heat-up time of the complete 

system [46] and partially motivates our recommended warm-

up time for the system. The error bars for the temperature 

represent a 0.5 °C uncertainty. In figure 10, the development 

of the emission lines of the most prominent atomic lines of 

helium and oxygen is shown. The intensities for these meas-

urements were averaged over 4 min. The error bars represent 

the standard deviation of the mean value. Here, the intensi-

ties of the observed lines increase by a few percent until they 

reach a steady state after about 30 min. The increase corre-

sponds partially to the rise in temperature mentioned before. 

Another reason for this behavior is the reduction of impurities, 

mainly water and nitrogen, in the gas tubing. The duration of 

Figure 9. Intensity ratios of oxygen 844 nm, helium 706 nm and molecular nitrogen (357 nm) emission for a flow variation measured in the 
center at a power of 0.4 W (212 V).

Figure 10. Change in line intensity and effluent temperature in the first 60 min after discharge ignition, measured at 0.2 W, 1 slpm helium,  
5 sccm O2 at  +3 mm distance.
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the reduction process and the intensity change of the emission 

lines strongly depends on the initial amount of impurities in 

the gas tubing.

In figure 11, we show the dependence of the steady state 

temperature on a power variation from 0.1 W to 1 W meas-

ured under otherwise identical conditions at  +3 mm distance. 

Again, the error bars for the line intensities represent an upper 

limit of 5% deviation and are exemplarily shown for the 

strongest atomic oxygen line (777 nm). The error for temper-

ature measurement is 0.5 °C. The temperature of the effluent 

showed a linear correlation to the active power in the dis-

charge rising from 30 °C to 75 °C. For powers below 0.25 W, 

the temperature remains below 37 °C and hence is well-suited 

for the treatment of heat-sensitive biological tissue. At 1.0 W, 

the effluent temperature was above 70 °C. This has to be kept 

in mind when conducting biomedical research.

The intensities of the prominent atomic oxygen lines 

showed a linear correlation to the power dissipated in the dis-

charge (see figure 11). This corresponds to the linear increase 

of atomic oxygen with rising (generator) power that has been 

observed by two-photon absorption laser-induced fluores-

cence spectroscopy in the original µ-APPJ [20]. The inten-

sity of the most prominent helium line at 706 nm increased 

exponentially with increased power since the helium emission 

follows the electron excitation (see figure 7).

6. Protocols

Based on various investigations of the COST-Jet, several addi-

tional decisions have been made on operation protocols:

 • Gas tubing should consist of stainless steel tubing. Any 

plastic tubing is prone to introduce impurities into the 

feed gas by diffusion [45].

 • Prior to any reproducible measurement, the COST-Jet 

should be operated for at least 30 min continuously (see 

figure 10). This allows the temperature of the device to 

stabilize [46] and removes a good part of the humidity 

stored in the tubing.

 • Valves closing the tubing should be installed as close as 

possible to the COST-Jet to minimize humidity entering 

the tubing.

 • Humidity and temperature in the laboratory should be 

recorded.

 • When presenting results obtained with the COST-Jet, the 

standard coordinate system should be used. In this coordi-

nate system, the origin represents the end of the discharge 

channel, i.e. the tip of the electrodes. Positive coordinates 

are in the space outside the discharge channel.

7. Further developments

Within the cooperation, a printed circuit board was designed 

for the COST-Jet that replaces the voltage and current probes. 

The circuitry yields a direct measure of the plasma power. 

Details of the device are described in a publication by Beijer 

et al [47]. Another publication presents a modified set of 

COST-Jets to separate species and radiation components of 

the plasma [48].

8. Summary and conclusions

Based on the µ-APPJ, a reference source was developed to 

improve reproducibility and comparability of results obtained 

by different research groups. The simple, inexpensive and 

robust COST Reference Microplasma Jet was presented and 

described in detail. Two probes integrated into the device allow 

Figure 11. Effluent temperature measured at  +3 mm distance and line intensity under variation of the power. Effluent temperature and the 
atomic oxygen lines at 777 nm and 844 nm show a linear correlation to the active power.
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a measurement of current and voltage. With high enough tem-

poral resolution, these measurements yield the input power into 

the electrode system of the COST Reference Microplasma Jet. 

This is a vast improvement compared to the usually available 

generator readings for the power input. Those are measured at 

the entrance and not at the exit of the matching network and 

are hence influenced by cables, matching elements and so on.

A set of basic power, temperature and OES measurements 

was described that will be used for the comparison of different 

devices.

The complete technical drawings of the COST-Jet and 

information on acquisition or assembly will be available on 

request online (www.cost-jet.eu). We would like to invite any 

researcher interested in performing measurements using a 

COST Reference Microplasma Jet to contact us.

To demonstrate the reproducibility of the performance 

of the COST Reference Microplasma Jet, two sets of the 

basic characterizations described above are presently being 

performed with a total number of five COST Reference 

Microplasma Jets. One set describes the comparison of the 

results at one institute, while the second set expands on the 

comparison of measurements at the participating institutes. 

The results of these investigations will be presented in a suc-

cessive publication. A further planned publication will give 

details on the bio-medical protocols.
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