
Cyber-Physical Systems Design: Formal
Foundations, Methods and Integrated Tool Chains

(Invited Paper)

John Fitzgerald∗, Carl Gamble∗, Peter Gorm Larsen†, Kenneth Pierce∗, Jim Woodcock‡
∗School of Computing Science Newcastle University, Newcastle upon Tyne, UK

Email: John.Fitzgerald@ncl.ac.uk, Carl.Gamble@ncl.ac.uk, Kenneth.Pierce@ncl.ac.uk
†Dept. of Engineering, Aarhus University, Denmark

Email: pgl@eng.au.dk
‡Dept. of Computer Science, University of York, UK

Email: Jim.Woodcock@york.ac.uk

Abstract—The engineering of dependable cyber-physical sys-
tems (CPSs) is inherently collaborative, demanding cooperation
between diverse disciplines. A goal of current research is the
development of integrated tool chains for model-based CPS
design that support co-modelling, analysis, co-simulation, testing
and implementation. We discuss the role of formal methods in
addressing three key aspects of this goal: providing reasoning
support for semantically heterogeneous models, managing the
complexity and scale of design space exploration, and supporting
traceability and provenance in the CPS design set. We briefly
outline an approach to the development of such a tool chain
based on existing tools and discuss ongoing challenges and open
research questions in this area.

I. INTRODUCTION

Cyber-physical systems (CPSs) consist of interacting com-
puting and physical entities. Examples range from products
incorporating embedded systems to large-scale applications
such as distributed control of driverless vehicles. To the
CPS engineer, the system of interest includes both cyber
and physical elements. Consequently the foundations, methods
and tools of CPS engineering should incorporate both the
discrete models of computing hardware and software, and
the continuous-value formalisms of physical (e.g. mechanical,
electrical, electronic) engineering.

Since system-level dependability properties involve both
cyber and physical aspects, the verification of global be-
haviours must take account of the heterogeneity of models.
If diverse models are brought together only at the end of a
development process, emerging failures are likely to be hard
to both trace back to faults, and to remedy. Treating disciplines
separately within the design process thus has the potential to
slow innovation. If dependable CPSs are to be engineered
economically, the design process must be collaborative and
multi-disciplinary, while also permitting the assurance-raising
activities of simulation, testing and verification.

There is growing interest in sound methods and tools for
CPS engineering. There have been significant research invest-
ments by the National Science Foundation in the US1, and by
Horizon 2020 in the EU [1], as well as by community activities

1See http://www.cps-vo.org

such as a thriving CPS Week and numerous workshops. There
have been repeated calls for better notations for model-based
CPS engineering [2], [3], [4], [5], [6]. However, the nature of
CPS design raises many challenges not currently met [7].

In this paper we motivate the use of formal methods in
addressing three challenges that we believe must be met if
dependable CPSs are to be designed cost-effectively. First,
engineering disciplines have distinct cultures and formalisms.
For example, systems engineers work with notations such as
SysML [8], whereas control engineers use continuous-time
formalisms and software engineers use discrete-event nota-
tions; dialogue between disciplines is essential [9]. Second,
the design space for a CPS is large; we require firm semantic
foundations to allow exploration of trade-offs between phys-
ical components, hardware and software, rapidly modifying
and reevaluating designs. Third, support is needed to help
maintain traceability over the complex collections of artefacts
produced in a CPS development, allowing the provenance of
all elements to be recorded, and the final system linked to
the requirements. In considering the role of formal methods
in CPS design, we aim to adhere to principles identified for
their successful industrial deployment, including the carefully
targeted use of formalism, development of robust tools, and
a focus on the priorities of integration into established design
flows [10].

In Section II we identify some basic concepts of collab-
orative model-based design for cyber-physical systems and
review baseline technologies on which our current work builds.
We then consider the foundations required for heterogeneous
modelling and analysis (Section III), the exploration of the
design space (Section IV) and the need to support traceability
and provenance (Section V). Throughout, we refer to an
example based on a simple 2-wheeled personal transportation
device (the “ChessWay”). We conclude by identifying open
issues in the methods, tools and practice of model-based CPS
design (Section VI), and briefly describe the goals of our
current work in this area.

2015 IEEE/ACM 3rd FME Workshop on Formal Methods in Software Engineering

978-1-4673-7043-1/15 $31.00 © 2015 IEEE

DOI 10.1109/FormaliSE.2015.14

40

II. BASIC CONCEPTS

We regard a system as a combination of interacting el-
ements organised to achieve a stated purpose [11], and a
dependable system as one on which reliance may justifiably
be placed [12]. A CPS is a system in which some of the
elements are computational and some are physical [3]. The
verification of CPS dependability therefore entails analysis of
computational and physical processes, and their interactions.
The goal of our research is to free CPS engineers to explore
design alternatives, allocating and reallocating responsibilities
to cyber and physical elements in an effort to deliver the
functional and extra-functional behaviours required at the CPS
system level. We use the term design space exploration (DSE)
to refer to the construction and evaluation of a range of designs
in order to identify a preferred solution.

In our work, designs are represented as models. A model is
an abstract representation of a putative CPS. The abstractions
in the model should be guided by its declared purpose, but the
model should be competent in that it should contain features
sufficient to allow confidence to be placed in the outcome
of analyses conducted on it. The challenge that we address
in our work is that of creating methods and tools to support
multi-disciplinary model-based development. A collaborative
model (co-model) contains discrete-event (DE) models of CPS
cyber elements with continuous-time (CT) models of physical
elements (typically the environment and/or controlled plant).

We have developed and demonstrated methods and tools
for the construction of co-models, and their analysis through
co-simulation, using VDM [13] as the DE formalism and 20-
sim2 [14] as the CT framework. The approach, which has
been implemented in the Crescendo3 open tools platform [15],
has been applied in case studies that have demonstrated the
value of early co-modelling in reducing the number of physical
prototypes required in design [16]. However, the technology
is limited to co-models of single controllers and plant, rather
than networked controllers and multiple physical elements.
The approach has so far also been restricted to verification
by means of co-simulation.

The CPS concept is often used to refer to networked “smart”
devices interacting with their physical environment. In many
such applications, notably in areas such as transport and
infrastructure, the elements of the system of interest are them-
selves operationally and managerially independent systems,
often pre-existing, but brought together to deliver an emerging
collaborative behaviour. Such systems of systems (SoSs) share
CPS characteristics [17], and also merit holistic and collab-
orative design [18]. In our previous work on model-based
approaches to SoS engineering [19] we have sought to provide
common semantic foundations for heterogeneous SoS models
at the DE level only; there is potential to extend this to the
demands of CPS engineering.

2http://www.20sim.com
3http://www.crescendotool.org

III. HETEROGENEOUS MODELLING AND ANALYSIS

A. Current Capabilities

Semantic heterogeneity arises in two contexts. First, at a
given level of abstraction, we would expect co-models to
integrate diverse engineering formalisms. Second, while much
research in formal methods for model-based design focuses on
the delivery of individually effective tools, multi-disciplinary
CPS design requires coherent tool chains formed from diverse
tools, each optimised for a given purpose.

There have been calls for a science and technology foun-
dation for CPS design that is model-based, precise, and
predictable [20] while supporting integration of a range of
semantic bases [21]. The state of the art has been charac-
terised as almost exclusively involving discrete abstractions
of continuous behaviour [22], although several model-based
approaches, including that of Ptolemy [23], support heteroge-
neous modelling and simulation.

The state of the art is still some way from providing
generic life-cycle tool chains from requirements to mainte-
nance, especially with sound formal foundations. Such an
integrated tool chain for CPS requires that evidence supplied
by the different tools can be reconciled to produce coherent
analysis results. Different analysis tools are based on different
notations, for example a simulator may work at the level of
a transition relation described using Structural Operational
Semantics (SOS) rules (as is the case for the Crescendo
co-simulation tool), whilst a program verifier may use an
axiomatic Hoare calculus.

Although comprehensive formal foundations are still re-
quired, there is progress on platforms to support key links
in tool chains, e.g. Cosimate4 is a backplane co-simulation
tool offering interfaces to tools like Simulink, Modelsim, and
Modelica [24], test automation, DSE and system description
in SysML. Canedo [25] has developed a multi-disciplinary,
integrated, design automation tool for automotive CPS that
evaluates system-level impact of domain-specific design deci-
sions using simulation.

B. Example: a Personal Transporter

We introduce a small example to illustrate the need for het-
erogenous modelling and analysis: a 2-wheeled self-balancing
personal transporter called the “ChessWay” (described in detail
elsewhere [16]). We refer to this example in describing further
challenges in Sections IV and Section V below.

The ChessWay (Fig. 1, left) consists of a platform, a
handlebar and two wheels. It has two powerful motors to
drive the wheels and keep the device upright— without active
control, the device will fall over. The rider stands on the
platform and holds the handlebar. By leaning forwards and
backwards, the rider can command the device to move for-
wards and backwards. The device has various sensors to allow
its position and movement to be detected, as well as on/off,
safety cut out and direction switches, shown in the simplified
schematic (Fig. 1, left). Active control is performed by two

4http://www.chiastek.com/products/cosimate.html

41

Fig. 1. Photograph of the ChessWay personal transporter (left) and a
schematic of its important components (right).

networked controllers that each control one wheel and have
access to different sets of sensors. Therefore the controllers
must communicate regularly to maintain safe operation.

The ChessWay was initially studied with a high-fidelity
physics model created in 20-sim using bond graphs. It was
also possible to design the low-level, discrete-time (DT) loop
controllers that balance the device. However, the ChessWay
requires much more than this loop controller can deliver,
including modal behaviours for safe startup and shutdown,
fault tolerance mechanisms such as a safety monitor, and
synchronisation between distributed controllers. These are
much better studied in a DE model, such as the one produced
for the ChessWay study in VDM. These two models were
combined using the Crescendo technologies [16] to produce a
co-model that better captures the ChessWay as a whole cyber-
physical system.

Other elements of the ChessWay system could be bet-
ter modelled in other formalisms, supported by other tools,
to create better system models. For example, the network
connection between the two controllers receives significant
electro-magnetic interference from the large motors, therefore
a realistic model of network loss and corruption is necessary to
truly demonstrate the control software’s suitability. On the CT
side, contact modelling and collision response are currently
not well supported in 20-sim or the bond graph formalism.
Other modelling tools could provide more realistic models to
enhance the physical model of the ChessWay.

In other cases it is not always clear where to model certain
behaviours. For example, the DT loop controller was originally
designed in the CT formalism, however in order to analyse the
potential system performance and distribution across multiple
controllers, it was necessary to move this behaviour to the
DE model in VDM. Consider also that the rider’s behaviour
has a profound effect on the system’s behaviour. They are
responsible for moving their centre of gravity around to
command the ChessWay where to go, and by acting erratically
—such as swinging back-and-forth at a resonant frequency—

can cause serious control problems. The question of where and
how to model human reactions is unresolved in the Crescendo
approach and has received limited attention in the context of
co-modelling.

C. New Challenges: well-founded integration via UTP

Even a dependable CPS as simple as the ChessWay illus-
trates the need for multi-paradigm modelling. In developing
dependable CPSs, we have therefore to achieve semantically
well-founded integration of models and tools across disciplines
and paradigms. We have also identified (and will illustrate in
Section V) the need for well-founded integration across whole
tool chains. In our current work we are exploring the use of
Unifying Theories of Programming (UTP) as a source for the
foundations of this integration.

UTP is originally the work of Hoare & He [26], who set
out an open-ended research programme to unify the different
paradigms for modelling and implementing computer systems.
Their motivation was to bridge the gap between the academic
and industrial cultures, where academic researchers propose
sound theories to underpin system development and industrial
practitioners propose pragmatic techniques to develop real
systems. Hoare & He’s programme was to study the links
between all paradigms, both academic and industrial, and in
UTP they developed a framework with three orthogonal axes:

1) Computational Paradigms: UTP groups modelling no-
tations according to their classification by computational
model; for example, this might be object-oriented, con-
current, synchronous, real-time, discrete, continuous or
hybrid. The technique used to give semantics to each
computational model is to identify common concepts
and deal separately with additions and variations. In
doing this, UTP exploits uses two of the most impor-
tant scientific principles: simplicity of presentation and
separation of concerns.

2) Abstraction: An orthogonal concern involves studying
different levels of abstraction in the development pro-
cess. The highest level is a statement of requirements,
whilst the lowest level is the platform-specific technol-
ogy of an implementation. An idealised development
process runs through these levels of abstraction, bridging
various semantic gaps to show how the requirements
are correctly implemented. Interfaces are specified using
contracts to guarantee the correctness of moving a model
from one level to another. This mapping between levels
is based on a formal notion of refinement that provides
guarantees of correctness all the way from requirements
to code.

3) Presentation: The third classification is by the method
chosen to present a language definition. These are the
following:

a) Denotational, given by a function from syntax to
a single mathematical meaning: its denotation. A
specification is then just a set of denotations: the
permitted behaviours of a system. Refinement is
simply inclusion: every behaviour of the program

42

must also be a behaviour permitted by the specifi-
cation.

b) Algebraic, given by a collection of equations relat-
ing descriptions in the language.

c) Axiomatic, where the meaning of a command in
a program is described by its effect on assertions
about the program state. Axiomatic semantics un-
derpins the assertional technique, the most widely
used formal method in industry.

d) Operational, given by a set of rules describing how
the language is executed on an idealised abstract
mathematical machine.

As Hoare & He point out, a comprehensive account of
constructing systems in any theory needs all four kinds of
presentation. The UTP technique allows studies differences
and mutual embeddings, and derives each semantics from the
others by mathematical definition, calculation, and proof.

A practical and large-scale application of UTP is in the
definition of the COMPASS Modelling Language, CML [19],
which has been used to develop and verify systems of sys-
tems [27]. The approach is to create models of the constituent
systems being used, whether they are new systems under de-
velopment or existing systems. Naturally, a system of systems
tends to be composed of semantically heterogeneous con-
stituent systems. CPSs, for example, will have both discrete-
time controllers and continuous-time plant; there may may
be synchronous hardware and asynchronous message passing
over the internet between software components; some hard-
ware components may be deterministic, whilst some software
may be stochastic. Within these different paradigms, there
may be different levels of abstraction. For example, a socio-
technical cyber-physical system may have components that
operate at different granularities of time: patients may have
courses of treatment that last for several months, while their
personally prescribed medicines must be taken on a daily basis
and their adaptive pacemaker be accurate to 100ms. Each of
these different paradigms and levels of abstraction can be
formalised in UTP and the relationships between them can
be expressed.

Currently, CML contains a few paradigms relevant to CPS
modelling. These are largely “cyber-side” paradigms, but
nevertheless they demonstrate the compositional approach:

1) State-based description. The theory of designs in UTP
provides a nondeterministic programming language with
pre- and postcondition specifications as contracts. The
concrete realisation of this theory is the VDM language
with its type system and structuring mechanisms.

2) Concurrency and communication. The theory of re-
active processes in UTP provides a way of constructing
networks of processes that communicate by passing mes-
sages. The concrete realisation is the CSPM language
with its rich collection of process combinators.

3) Object orientation. The theory of object orientation
in UTP is build on top of the theory of designs and
provides a way of structuring state-based descriptions

through sub-typing, inheritance, and dynamic binding,
with mechanisms for object creation, type testing, type
casting, and state-component access.

4) Pointers. The theory of pointers in UTP provides a
way of modelling heap storage and its manipulations,
as found in implementations of object orientation. Cru-
cially, it supports modular reasoning about the heap.

5) Time. The theory of timed traces in UTP supports the
observation of events in discrete time. It is used in a
theory of Timed CSP.

Theories of continuous time, probability, and dynamic recon-
figuration are all under development.

IV. EXPLORING THE CPS DESIGN SPACE

A. Support for DSE

A key role of collaborative modelling is to permit systematic
exploration of the space of solutions to a given design problem.
DSE is the process of building and evaluating co-models in
order to reach a design from a set of requirements. in DSE,
there are important selection points when design alternatives
are selected on the basis of criteria that are important to the
developer (e.g. cost, performance). The alternative selected at
each point constrains the range of designs that may be viable
next steps forward from the current position. Support for DSE
permits the selection of a single design from a (possibly large)
set of alternatives. Ranges of values for co-model settings and
design parameters can be defined before co-simulations are run
for each combination of these settings. Results are stored for
each simulation and can be analysed. In the Crescendo tools,
we call this feature Automated Co-model Analysis (ACA). The
simulation results typically report upon multiple objectives
such as speed, accuracy and energy consumed and a method
for selecting the best designs must be employed. One way is to
define a ranking function on which to evaluate designs; another
is to compute a non-dominated set of designs to determine the
Pareto Optimal front [28].

B. Example: a Wireless ChessWay?

The ChessWay pilot study offered several opportunities for
DSE. For example, it was necessary to determine how fast the
controllers could run to maintain safe balancing. Additionally,
the (higher) frequency for the safety monitor needed to be
determined. The monitor intervenes to cut power to the motors
in unsafe situations (for example, when the ChessWay leans
over too far) and therefore needs to react with sufficient speed
to minimise danger to the rider. Also, since the ChessWay
has two controllers with diverse sensor inputs, the distribution
of functionality was also considered. The design space was
explored by sweeping through various controller and moni-
tor frequencies, combined with functionality distributions, to
determine the optimal setup.

As mentioned above, the communication between con-
trollers is affected by electromagnetic interference from the
motors, causing data to be corrupted. This could be solved
in physics by adding more shielding, but this takes space
and increases weight. Alternatively, a software solution might

43

deal with corrupted data by sending it more often between
the controllers, or including some form of dead reckoning
until updated data comes in. To test the software solution,
the ChessWay engineers determined how much lost data the
controllers could tolerate and still function correctly. To do
this, lossy communications were added to the co-model in
Crescendo, with the percentage of lost messages as a pa-
rameter. Then a design sweep was performed with increasing
amounts of data loss, to find the safe threshold. At the selected
controller frequency, the ChessWay controller could handle
about 15% message loss (above the limit offered by the
existing shielding solution). In fact, the engineers were able
to demonstrate that a wireless ChessWay would be possible if
data loss (due to message collisions, for example) remained
under this threshold.

C. New Challenges

DSE is a systematic process, and tool performance remains
critical. For example, in the automotive domain, one can
imagine having tens or hundreds of thousands of parameters
that can be varied in a DSE campaign. The tacit knowledge
of engineers and their “gut instinct” is clearly vital in these
areas, but there are – at least on the surface – grounds to
suppose that formal analysis could help in taming the scale and
complexity of the design space to be explored. The properties
of interest in DSE may well be extra-functional, such as power
consumption or performance measures. Approaches have been
proposed to exploit constraint solving in support of static DSE
encompassing functional and extra-functional properties [29],
while control performance analysis has been explored using
co-simulation and DSE [30], and the results combined with
other trade-off factors such as monetary cost and energy
consumption.

The Crescendo tool enables the user to carry out DSE by
sweeping over model parameter values on both DE and CT
models [16], and this has been used to explore the design
space from an energy perspective [31]. Techniques from test
automation, while typically restricted to the discrete-event
domain, might also prove valuable in managing DSE.

V. TRACEABILITY AND PROVENANCE IN CPS DESIGN

A. The Role of Traceability and Provenance

The artefacts produced in CPS development will be diverse,
covering cyber and physical elements, including requirements
statements, models, records of DSE and analysis results, and
generated code. Further, they will change over time. In order
to understand the ramifications of change, and to obtain the
rationale for design decisions, it is necessary to record the
semantic relationships between elements of the design set.
The goal is to provide traceability, both up and down the
development chain, and through time during design evolution.
The maintenance of traceability documentation can be labour-
intensive and is often dropped under pressure [32]. While
many tools support basic traceability links, none of them yet do
this automatically [33], and there is limited semantic support.
The model management required to support the retrieval of

Fig. 2. A fragment of the PROV-N provenance graph for the ChessWay
example. It relates results generated by simulation (wgb) to the simulation
tools used (used), input models (used) and associated engineers (assoc.)

the multiple models and their respective parameters involved in
co-simulations is lacking in automated support and is therefore
performed manually.

Further motivation for structuring the design set comes from
the need for CPS technology in domains in which certification
is necessary. Hence, there is a need to record the provenance
of designs, and claims about system elements.

B. Example: Changing Independent Suppliers

Traceability is important to maintain the record of CPS
development, both internally for mapping requirements to
functionality, and externally for certification. Traceability al-
lows arguments of correctness to be rebuilt and determination
of how evidence of correctness was produced. For example,
imagine that the ChessWay was certified for use on public
roads in some jurisdiction. Then a few years later, a ChessWay
is involved in an accident. The investigation may look back
for the models to see the results that generated the evidence
for certification. In which case the correct versions of models
have to be retained and found, along with their parameters and
also the version of the tools that were used (Fig. 2).

Provenance data can be necessary along with traceability
data, when external manufacturers are used as suppliers. For
example, consider that the ChessWay tyres would likely be
sourced from an external manufacturer, and that that man-
ufacturer provided models for simulation purposes during
development. Component suppliers may wish to keep certain
trade secrets and thus only be willing to supply models in
“black box” form, for instance as a compiled functional mock-
up unit (FMU) for use in a functional mock-up interface
(FMI) co-simulation. These models can then be used in co-
simulation, however sensitive data cannot be gathered. In the
case of an investigation into a ChessWay accident, it would be
necessary to record the provenance of the data on the tyres, in
order to determine on what authority their behaviour is trusted
(Fig. 2, top left).

C. New Challenges

Richer models of the design set could capture the rela-
tionship between co-models, co-simulations, DSE outcomes,

44

test information, etc. Features supporting this exist to some
extent already in the W3C provenance notation (PROV-N)
model [34]. However, we have not yet seen this integrated
with a model-based tool chain. While developed for a different
domain, PROV-N has been successfully mapped to a graph
database that could support large scale developments. From a
tool support perspective, graph queries and graph abstractions
are necessary to reduce the potentially very large provenance
graphs to smaller but still semantically correct versions [35].
Such graph reduction may be required to support information
hiding in the context of CPSs with elements procured exter-
nally.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have argued that there is a significant role
for formal methods in the model-based engineering of cyber-
physical systems. First, we have emphasised the need for a
rigorous approach to semantic heterogeneity. Second, formal
techniques have potential to help manage the complexity
of exploring the CPS design space, particularly if formal
theories can be sufficiently diverse to permit the analysis of
extra-functional properties. Third, effective traceability of the
complex design set that arises in model-based CPS engineer-
ing, and the management of provenance data, benefit from
semantically rich descriptions of the relationships between the
artefacts produced in design, DSE, test and maintenance.

The goal of our current work5 is to develop a well-founded
tool chain rather than a single “factotum” tool. Using founda-
tions defined using UTP, we aim to create a family of inter-
linked tools, supporting CPS development from requirements
and architectural modelling formalised using SysML, via FMI
interface definitions to co-models. The tool chain is intended to
permit static analysis of co-models, as well as co-simulation,
including co-simulation of models with implementations of
cyber and/or physical elements. We aim to allow these co-
simulations to be exploited in DSE and test automation. The
baseline technologies are Modelio6 for SysML, co-modelling
and co-simulation using VDM Overture, 20-sim7, and Open-
Modelica8. Co-simulation will build on Crescendo and the
TWT co-simulation engine9, and test automation builds on RT-
Tester10. We plan to evaluate the framework using applications
in railways, agriculture, automotive systems and building
automation.

There are ample opportunities for formal methods to play
a key role in enabling the cost-effective design of cyber-
physical systems. These arise not only because of the need for
dependability, but because they enable exploration and man-
agement of design spaces. The targeted application of formal
techniques, integrated with sound but established development

5http://into-cps.au.dk/
6http://www.modelio.org/
6http://overturetool.org/
7http://www.20sim.com/
8https://www.openmodelica.org/
9http://www.twt-gmbh.de/produkte/co-simulationen/

co-simulation-framework.html/
10http://www.verified.de/products/rt-tester/

practices, has the potential to deliver significant improvements
in this emerging and exciting engineering discipline.

ACKNOWLEDGMENT

The work presented here is partially supported by the INTO-
CPS project funded by the European Commission’s Horizon
2020 programme under grant agreement number 664047.

REFERENCES

[1] H. Thompson, Ed., Cyber-Physical Systems: Uplifting Europe’s Inno-
vation Capacity. European Commission Unit A3 - DG CONNECT,
December 2013.

[2] M. Broy, “Engineering Cyber-Physical Systems: Challenges and
Foundations,” in Complex Systems Design & Management, M. Aiguier,
Y. Caseau, D. Krob, and A. Rauzy, Eds. Springer Berlin
Heidelberg, 2013, pp. 1–13. [Online]. Available: http://dx.doi.org/
10.1007/978-3-642-34404-6 1

[3] E. A. Lee, “CPS foundations,” in Proceedings of the 47th Design
Automation Conference, ser. DAC ’10. New York, NY, USA: ACM,
2010, pp. 737–742.

[4] K. Wan, D. Hughes, K. L. Man, and T. Krilavicius, “Composition
Challenges and Approaches for Cyber Physical Systems,” in Networked
Embedded Systems for Enterprise Applications (NESEA), 2010 IEEE
International Conference on, 2010, pp. 1–7.

[5] P. Derler, E. A. Lee, and A. Sangiovanni-Vincentelli, “Modeling
Cyber-Physical Systems,” Proceedings of the IEEE (special issue on
CPS), vol. 100, no. 1, pp. 13 – 28, January 2012. [Online]. Available:
http://chess.eecs.berkeley.edu/pubs/843.html

[6] I. Horvath and B. H. Gerritsen, “Outlining nine Major Design Challenges
of Open, Decentralized, Adaptive Cyber-Physical Systems,” in Proceed-
ings of the ASME 2013 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference
IDETC/CIE 2013, Portland, Oregon, USA, August 2013.

[7] M. Törngren, S. Bensalem, M. V. Cengarle, D.-J. Chen, J. McDermid,
R. Passerone, A. Sangiovanni-Vincentelli, and T. Runkler, “CPS State
of the Art,” EC FP7 Project 611430 CyPhERS, Tech. Rep. Deliverable
D5.1, 2014.

[8] “OMG Systems Modeling Language (OMG SysMLTM),”
SysML Modelling team, Tech. Rep. Version 1.3, June 2012,
http://www.omg.org/spec/SysML/1.3/.

[9] Thomas A. Henzinger and Joseph Sifakis, “The Embedded Systems
Design Challenge,” in FM 2006: Formal Methods, 14th International
Symposium on Formal Methods, Hamilton, Canada, August 21-27, 2006,
Proceedings, 2006, pp. 1–15.

[10] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal
Methods: Practice and Experience,” ACM Computing Surveys, vol. 41,
no. 4, pp. 1–36, October 2009.

[11] INCOSE, “Systems Engineering Handbook. A Guide for System Life
Cycle Processes and Activities, Version 3.2.2.” International Council
on Systems Engineering (INCOSE), Tech. Rep. INCOSE-TP-2003-002-
03.2.2, October 2011.

[12] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic Con-
cepts and Taxonomy of Dependable and Secure Computing,” IEEE
Transactions on Dependable and Secure Computing, vol. 1, pp. 11–33,
2004.

[13] J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat, and M. Verhoef,
Validated Designs for Object–oriented Systems. Springer, New York,
2005. [Online]. Available: http://www.vdmbook.com

[14] J. van Amerongen, Dynamical Systems for Creative Technology. Con-
trollab Products, Enschede, Netherlands, 2010.

[15] J. Fitzgerald, K. Pierce, and P. G. Larsen, Industry and Research
Perspectives on Embedded System Design. IGI Global, 2014, ch.
Collaborative Development of Dependable Cyber-Physical Systems by
Co-modelling and Co-simulation.

[16] J. Fitzgerald, P. G. Larsen, and M. Verhoef, Eds., Collaborative
Design for Embedded Systems – Co-modelling and Co-simulation.
Springer, 2014. [Online]. Available: http://link.springer.com/book/10.
1007/978-3-642-54118-6

[17] H. Thompson, R. Paulen, M. Reniers, C. Sonntag, and S. Engell,
“Analysis of the State-of-the-Art and Future Challenges in Cyber-
physical Systems of Systems,” EC FP7 project 611115 CPSoS, Tech.
Rep. D2.4, February 2015. [Online]. Available: http://www.cpsos.eu

45

[18] J. Fitzgerald, J. Bryans, P. G. Larsen, and H. Salim, “Collaborative
systems of systems need collaborative design,” in PRO-VE 2014 – 15th
Working Conference on Virtual Enterprises, October 2014.

[19] J. Fitzgerald, P. G. Larsen, and J. Woodcock, “Foundations for Model-
based Engineering of Systems of Systems,” in Complex Systems Design
and Management, M. A. et al., Ed. Springer, January 2014, pp. 1–19.

[20] J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kottenstette, P. Antsaklis,
V. Gupta, B. Goodwine, J. Baras, and S. Wang, “Toward a Science of
Cyber-Physical System Integration,” Proceedings of the IEEE, vol. 100,
no. 1, pp. 29–44, 2012.

[21] X. Zheng, C. Julien, M. Kim, and S. Khurshid, “On the State of the
Art in Verification and Validation in Cyber Physical Systems,” The
University of Texas at Austin, The Center for Advanced Research in
Software Engineering, Tech. Rep. TR-ARiSE-2014-001, 2014.

[22] M. Sanwal and O. Hasan, “Formal Verification of Cyber-Physical Sys-
tems: Coping with Continuous Elements,” in Computational Science and
Its Applications – ICCSA 2013, ser. Lecture Notes in Computer Science,
B. Murgante, S. Misra, M. Carlini, C. Torre, H.-Q. Nguyen, D. Taniar,
B. Apduhan, and O. Gervasi, Eds. Springer Berlin Heidelberg, 2013,
vol. 7971, pp. 358–371.

[23] J. Davis, R. Galicia, M. Goel, C. Hylands, E. Lee, J. Liu, X. Liu,
L. Muliadi, S. Neuendorffer, J. Reekie, N. Smyth, J. Tsay, and Y. Xiong,
“Ptolemy-II: Heterogeneous concurrent modeling and design in Java,”
University of California at Berkeley, Technical Memorandum UCB/ERL
No. M99/40, July 1999.

[24] S. S. Phatak, D. McCune, and G. Saikalis, “Cyber Physical System: A
Virtual CPU Based Mechatronic Simulation,” in 5th IFAC Symposium on
Mechatronic Systems, G. T.-C. Chiu and K. Youcef-Toumi, Eds., IFAC.
Elsevier, 2010, pp. 405–410.

[25] A. Canedo, M. A. A. Faruque, and J. Richter, “Multi-disciplinary inte-
grated design automation tool for automotive cyber-physical systems,” in

IEEE/ACM Design Automation and Test in Europe (DATE’14), Dresden,
Germany, 2014, pp. 1–2.

[26] T. Hoare and H. Jifeng, Unifying Theories of Programming. Prentice
Hall, April 1998.

[27] J. Woodcock, “Engineering UToPiA - Formal Semantics for CML,” in
FM 2014: Formal Methods, ser. Lecture Notes in Computer Science,
C. Jones, P. Pihlajasaari, and J. Sun, Eds., vol. 8442. Springer, 2014,
pp. 22–41.

[28] K. Deb, Multi-objective optimization using evolutionary algorithms.
John Wiley & Sons, 2001, vol. 16.

[29] B. Hockner, P. Hofstedt, S. Kaltschmidt, P. Sauer, and T. Vörtler,
“Design space exploration for cyber physical system design using
constraint solving,” in Proceedings of the 2013 Forum on specification
and Design Languages, FDL 2013, Paris, France, September 24–26,
2013. IEEE, 2013, pp. 1–4.

[30] N. Mühleis, M. Glaß, L. Zhang, and J. Teich, “A co-simulation approach
for control performance analysis during design space exploration of
cyber-physical systems,” SIGBED Review, vol. 8, no. 2, pp. 23–26, 2011.

[31] J. A. E. Isasa, P. W. Jørgensen, and P. G. Larsen, “Hardware In
the Loop for VDM-Real Time Modelling of Embedded Systems,” in
MODELSWARD 2014, Second International Conference on Model-
Driven Engineering and Software Development, January 2014.

[32] M. Jarke, “Requirements tracing,” vol. 41, no. 12, pp. 32–36, December
1998.

[33] P. Mäder, Rule-based Maintenance of Post-requirements Traceability,
ser. MV Wissenschaft. MV-Verlag, 2010.

[34] “PROV-DM: The PROV Data Model,” World Wide Web Consortium,
Tech. Rep., 2012. [Online]. Available: http://www.w3.org/TR/prov-dm/

[35] P. Missier, J. Bryans, C. Gamble, V. Curcin, and R. Danger, “ProvAbs:
model, policy, and tooling for abstracting PROV graphs,” in Procs. IPAW

2014 (Provenance and Annotations). Springer, 2014.

46

