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Abstract. The principal barrier to gaining understanding of embryonic
stem (ES) cell regulatory networks is their complexity. Reductionist ap-
proaches overlook much of the complexity inherent in these networks
and treat the ES cell regulatory system as more or less equivalent to the
sum of its component parts, studying them in relative isolation. However,
as we learn more about regulatory components it becomes increasingly
difficult to integrate complex layers of knowledge and to develop more
refined understanding. We seek better control of the complexity inher-
ent in non-equilibrium ES cell regulatory networks undergoing lineage
specification by developing computer simulations of self-organisation us-
ing the CoSMoS approach. Simulation, together with the hypothesis that
lineage computation occurs at the edge of chaos, should allow us to inves-
tigate the driving of gradual accumulation of network complexity ‘from
the bottom up’. Here, we present the first step in this design process: use
of the CoSMoS approach to develop a highly abstracted model and sim-
ulation of regulatory network activity driven by just single pluripotent
transcription factors (TF), but at genome-wide scales. We investigate
three TFs in isolation: Oct4, Nanog and Sox2, central elements of the
core pluripotent network of mouse embryonic stem cells. This provides a
suitable basis for future modelling of multiple interacting TFs.

1 Introduction

Mathematical or computational frameworks and tools are indispensable in the
study of cell regulatory networks [Bornholdt, 2005; Zandstra and Clarke, 2014]
because functions, traits and pathologies are rarely caused by single genes [Hartwell
et al., 1999; Weatherall, 2001; Bornholdt, 2005]. However, the principal challenge
that prevents comprehensive understanding (and simulation) of regulatory net-
works is their complexity [Mesarovic et al., 2004]. Indeed, in the era of systems
biology, the icon for molecular biology is the ‘hairball’ graph, which illustrates
how everything seems to interact with almost everything else [Ferrell, 2009; Lan-
der, 2010]. High-throughput technologies generate such large volumes of data
that there is concern about how to grasp the big picture [Bray, 2003; Howe



et al., 2008; Driscoll, 2009] and most data sets are not being used to their full
potential.

Here we present the first iteration of a novel computational framework to
interrogate the complexity of stem cell regulatory networks. We employ a pre-
viously described theoretical framework based on the notion that the backbone
of stem cell fate computation is provided by the critical-like self-organisation of
transcription factor (TF) regulatory networks [Halley and Winkler, 2008; Halley
et al., 2009, 2012].

We apply the modelling framework CoSMoS [Andrews et al., 2010; Stepney
and Andrews, 2015; Stepney et al., 2016], which is specifically designed to capture
the emergent properties of complex systems, and to guide the engineering of
trustworthy computer simulations, i.e., those that are scientifically valid, useful
and credible to third parties.

The models and results in this paper report on the first iteration of the
CoSMoS design cycle. Here, we design and calibrate simulations of single TFs
in isolation. This single TF version of the full model is not biologically realistic;
its purpose is to serve as a building block of complexity that will be iterated in
our next work.

The structure of the paper follows the patterns defined in the CoSMoS ap-
proach outlined in §2. This progresses through the definition of scope and the
model of the scientific domain in §3, then the development of the simulation
software in §4, and use of the simulation to run experiments and explore system
behaviour in §5. We conclude with some reflections on the process in §6, and
discussion of further work in §7.

2 The CoSMoS approach

The CoSMoS approach [Andrews et al., 2010; Stepney and Andrews, 2015; Step-
ney et al., 2016] enables the construction and exploration of computer simula-
tions for the purposes of scientific research. It describes a series of models and
other components that need to be specified, designed, and implemented in or-
der to build and use a fit-for-purpose simulator. The approach is guided by
considering the simulator to be a form of scientific instrument [Andrews et al.,
2012] that needs to be carefully designed, built, calibrated and used in a manner
appropriate to the specific research questions.

The CoSMoS approach is encapsulated as a pattern language [Alexander
et al., 1977]. The CoSMoS patterns provide guidance on what to do at the
various stages of a CoSMoS simulation project [Stepney, 2012; Stepney et al.,
2016]. We structure this paper explicitly in terms of these patterns.

To guide the reader through the pattern structure, we reproduce in boxed
text a brief overview of the pattern: the pattern name and intent, a short phrase
describing what should be done; and, where applicable, any components (in-
cluding sub-patterns) that can be used to decompose the intent. We use section
subheadings to capture the specific pattern names (named with initial capitals,
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such as Research Context) and other components (named in lower case, such as
success criteria) and their position in the overall pattern structure.

We start at the top level of a simulation project, which is formed of three
phases per iteration of the project.

CoSMoS pattern: CoSMoS Simulation Project: Develop a basic fit-for-
purpose simulation of the complex scientific domain of interest.

The components of a CoSMoS Simulation Project are:
– carry out a Discovery Phase

– carry out a Development Phase

– carry out an Explorations Phase

– iterate as required

In this paper we report on the first iteration of our simulation, comprising
a simulation of a single TF branching process. This provides the basis for the
next iteration, which will add multiple interacting TFs. The next three sections
document the results of carrying out this first iteration of each of these three
phase patterns, structured in terms of their sub-patterns.

3 Discovery phase

CoSMoS pattern: Discovery: Decide what scientific instrument to build.
Establish the scientific basis of the project: identify the domain of interest,
model the domain, and shed light on scientific questions.

The components of the Discovery phase are:
– identify the Research Context

– define the Domain

– do Domain Modelling

– define the Expected Behaviours

– Argue Appropriate Instrument Designed (omitted here)

3.1 Discovery > Research Context

CoSMoS pattern: Research Context: Identify the overall scientific context
and scope of the simulation-based research being conducted.

The components needed to identify the Research Context are:
– provide a thumbnail overview of the research context
– document the research goals and project scope
– agree the Simulation Purpose, including criticality and impact
– identify the Team members, including the Domain Scientist, the Do-

main Modeller and the Simulation Engineer, their roles, and experience
– document Assumptions relevant to the research context
– note the available resources, timescales, and other constraints
– determine success criteria
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– decide whether to proceed, or walk away

Discovery > Research Context > overview

The context of this research is the investigation of a conceptual approach: self-
organisation at the edge of chaos. We have argued that if the activity of single
transcription factors can be described as critical-like branching processes, their
interplay should define a critical-like genome-wide interference pattern that cap-
tures in some way the nature of the entire pluripotency transcription factor
regulatory network [Halley et al., 2012].

Here we build a simulation based on the representation of TFs as branching
processes. The mathematical concept of a branching process (BP) is as follows.
Consider a population of individuals. At time t each individual i produces a next
generation of mi offspring individuals, with the value of mi drawn from some
probability distribution. Let the average number of offspring produced be µ. If
µ > 1, then the process is supercritical and the number of individuals grows
without bound. If µ = 1 then the system is critical and can either give rise to
more individuals in the next step or lead to dissipation of the process. If µ < 1
then the process goes to extinction.

Our model of TF BPs builds on this idea, and also allows the TFs to interact

in such a way as to cause the regulatory network to self-organise at the edge
of chaos. We capture the activity of single TFs as BPs in order to predict the
interplay of multiple TFs and the emergent nature of the entire TF regulatory
network, hypothesised to operate in a critical-like state [Halley et al., 2012].

For a TF to be stably expressed, its BP must be supercritical [Halley et al.,
2012]. Therefore, by modelling the activity of TFs known to be expressed in
mouse embryonic stem cells, we link the perturbation of a TF’s cistrome (portion
of the genome in which the TF displays some activity) with a dynamic and
distributed description of TF activity. This is a prerequisite to being able to
simulate the entire TF regulatory network of an ES cell, as argued in [Halley
et al., 2012]. The TFs called Oct4, Sox2 and Nanog are central elements of the
core pluripotent network of mouse embryonic stem cells. In the first instance,
the current work will allow us to calibrate our simulation for these three TFs in
isolation, that is, to characterise how their associated TFBPs propagate in the
absence of interference.

Our iterative approach to the development of the full simulation commences
with the simplest possible system: the operation of one transcription factor at
genome-wide scales. We will later add layers of further complexity, testing and
calibrating as we go.

A model of a single pluripotent TF in isolation is far from complete and
is not biologically realistic. It is only when multiple TF BPs are simulated in
parallel that we can expect to generate the interference patterns predicted to un-
derpin circuitry self-organisation. As greater numbers of pluripotency TFs are
included in the model, we anticipate that our simulations will become increas-
ingly biologically realistic. In future work we will augment the complexity of the
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computational model in a stepwise manner, adding detail and refining assump-
tions as we progress, and increasingly be able to provide insights not accessible
by other means.

Discovery > Research Context > research goals

The overall research goals of this work are:
1. to create a simulation of Branching Process Theory (BPT) as applied to

embryonic stem cell differentiation
2. to use this simulation to validate the application of BPT in this context
3. to make the simulation available for more general use

Here we report on the first iteration, of a single TF branching process.

Discovery > Research Context > Simulation Purpose

CoSMoS pattern: Simulation Purpose: Agree the purpose for which the
simulation is being built and used, within the Research Context.

The components of the Simulation Purpose are:
– define the role of the simulation
– determine the criticality of the simulation results

Simulation role: The role of the simulation is exploratory: to provide evidence of
the usefulness of BPT as a model of decision making in stem cell differentiation.
The simulation will be used to investigate which values of the average branching
ratio are required to set up a sustainable TF branching process.

Simulation criticality: The simulation work is being used to explore the suitabil-
ity of of a particular approach, BPT, in the domain. The simulation results are
not safety, security, or financially critical: they will not be used directly in the
development of any products.

Discovery > Research Context > team

The three main CoSMoS roles are fulfilled by the team members in the following
way:
– Domain Scientist: Halley, an expert on BPT as applied to stem cell differ-

entiation, backed up by a domain expert in ES cell biology (Smith), and a
data collection expert (Dietmann)

– Domain Modeller: Greaves, with CoSMoS domain modelling experience,
backed up by a further CoSMoS modelling expert (Stepney)

– Simulation Engineer: Greaves, with agent based simulation engineering ex-
perience
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Discovery > Research Context > Assumptions

CoSMoS pattern: Document Assumptions: Ensure assumptions are explicit
and justified, and their consequences are understood.

The components of Document Assumptions are:

– identify that an assumption has been made, and record it
– for each assumption, determine its nature and criticality
– for each assumption, document the reason it has been made
– for each reason, document its justification, or flag it as “unjustified” or

“unjustifiable”
– for each assumption, document its connotations and consequences
– for each critical assumption, determine the connotations for the scope

and fitness-for-purpose of the simulation
– for each critical assumption, achieve consensus on the appropriateness

of the assumption, and reflect this in fitness for purpose arguments
– revisit the simulation scope in light of the assumption, as appropriate

A.1 Cistrome data can be provided by processed ChIP-Seq data
reason It is the data we have
justification This is one standard use for ChIP-Seq data
consequence ChIP-Seq data is variable across measurements, so we will

need to check the robustness of our results to this variation
A.2 It is sufficient to consider only the key pluripotency transcription factors:

Nanog, Oct4, Sox2
reason As a first step in providing insight, we consider the three TFs widely

acknowledged to be central components of the core pluripotent network
justification See for example [Boyer et al., 2005]
consequence We will not be able to determine the effect of further TFs.

However, it should be straightforward to incorporate further TF data
into the multi-cistrome model.

A.3 We can use mouse data as a suitable proxy for data from human ES cells
reason Suitable mouse data is more readily available; mouse ES cells have

an unambiguous ‘ground state’; so mouse data is a good basis for eval-
uating the TF BP model

justification Although effective manipulation of human ES cells is a long
term goal, here we are only assessing the TF BP model

consequence We cannot extrapolate results to the human system

Discovery > Research Context > resources, timescales, other
constraints

The project has a one year duration. The Domain Scientist is employed full time,
and Simulation Engineer part time.

The work has access to a local computer cluster, for running simulations and
gathering performance metrics.

The team members are split between York (Halley, Greaves, Stepney) and
Cambridge (Smith, Dietmann)
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Discovery > Research Context > success criteria

1. a single-cistrome simulator that exhibits the expected behaviours, and can
be used as the basis for multi-cistrome simulator development

2. a multi-cistrome simulator that can justify the use of the TF BP model to
analyse stem cell fates
This paper documents the first iteration: the single-cistrome simulator

3.2 Discovery > Domain

CoSMoS pattern: Domain: Identify the subject of simulation: the real-world
biological system, and the relevant information known about it.

The components are:
– draw an explanatory Cartoon

– provide an overview description of the domain
– provide a Glossary of relevant domain-specific terminology
– Document Assumptions relevant to the domain
– define the scope and boundary of the domain – what is inside and what

is outside
– identify relevant sources: people, literature, data, models, etc

Discovery > Domain > Cartoon

CoSMoS pattern: Cartoon: Sketch an informal overview picture of the Do-

main.

Figure 1 is a cartoon of the regulatory process. A single gene regulation and
its expression is conceptually relatively straightforward; the complex interplay
of multiple interacting regulatory processes is not.

Discovery > Domain > overview: embryonic stem (ES) cell biology

Modern, high-throughput laboratory techniques routinely provide large-scale
datasets including complete genome sequences, dynamic measurements of gene
expression, extensive lists of regulatory proteins and RNAs, and in vivo occu-
pancy of DNA by TFs, cofactors and nucleosomes [Ay and Arnosti, 2011]. Such
datasets facilitate the investigation of ES cell regulatory networks. To create a
complete multi-layered model of a stem cell network one should exploit these big
data to bridge gaps between the phenotypic behaviour of whole cells and key
regulatory molecules [Xu et al., 2010].

We need to capture the results of multiple high-throughput experiments
within a logical and transparent conceptual and computational framework in
order to facilitate the interrogation of multiple layers of complex regulatory
information. Our initial model is based on the complete genome sequence of
mouse embryonic stem cells and on ChIP-Seq data that capture the density of
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Fig. 1. Domain > Cartoon: (top) The regulatory process: a TF protein binds to DNA
at the BS, thereby regulating production of protein (which may be a TF) from the cor-
responding gene (gene expression). (bottom) Expressed proteins may include other TFs
that can regulate expression of other genes: a ‘hairball graph’ of the human proteome
and its binding interactions [Ferrell, 2009, fig.1]

TF binding sites throughout the genome. TFs operate in parallel, influencing
each other; according to our hypothesis, they produce genome-wide interference
patterns that capture in some way the predicted nature of the entire pluripotent
circuitry.

Embryonic stem (ES) cells have the potential to produce all of the different
cell types within the body, but this behaviour cannot yet be efficiently exploited
in vitro. We have considerable knowledge of the component parts of the reg-
ulation of ES cells maintained under precise external conditions [Martello and
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Smith, 2014], but during normal development many different types of regulatory
factors interact, enabling cells to respond flexibly to changing environments.
The regulatory network of single ES cells is therefore some function of both cell
intrinsic and cell extrinsic variables.

Here we assume that pluripotency is a state of individual ES cells. ES cells
exit pluripotency via a transient ‘primed’ state that facilitates cell fate compu-
tation [Nichols and Smith, 2009]. Our knowledge of this exit process and the
transient primed state is incomplete, partly because it is difficult to obtain data
from transient cell states [Teles et al., 2013]. The process of pluripotency exit
itself is intrinsically disorganised and/or chaotic in order for it to integrate intrin-
sic and extrinsic information and compute cell fate. According to our conceptual
framework, regulatory circuitries compute cell fate trajectories via ‘critical-like
dynamics’ at the edge of chaos [Halley et al., 2012].

Nanog, Oct4 and Sox2 form part of the core pluripotency circuitry of ES cells
[Boyer et al., 2005]. Oct4 in particular seems central to understanding pluripo-
tency. Oct4 expression level is closely regulated, with deviations either above or
below a certain expression range resulting in differentiation [Niwa et al., 2000].
It has been suggested that protein complexes, in which Oct4 is involved, help to
establish a dynamic competition between individual elements, serving to buffer
the differentiation-promoting activity of Oct4 [Muñoz Descalzo et al., 2013].

Fluctuations are inevitable in any system that has many degrees of freedom.
At static equilibrium, such fluctuations ultimately disappear but under non-
equilibrium conditions, fluctuations are often great enough to drive reorganisa-
tion toward new dynamic states [Nicolis and Prigogine, 1977; Chaisson, 2004].
If continual driving is experienced, complex spatiotemporal patterning usually
results and systems are said to have ‘self-organised’ [Nicolis and Prigogine, 1977;
Gollub and Langer, 1999; Ball, 2001].

In biology, the growth and development of organisms occurs far from equi-
librium. The stem cell regulatory networks that facilitate these processes are
replete with positive and negative feedback loops and nonlinear interactions.
When faced with overwhelming complexity, the natural tendency of humans is
to either reduce, simplify or ignore it. Reductionist thinking makes systems (a)
easier to think about, (b) easier to consider manipulating, and (c) easier to
predict, provided non-equilibrium driving is minimal.

Over the last few decades, there has been increasing awareness of the limita-
tions of the reductionist approach [Crutchfield et al., 1986; Farmer and Packard,
1986; Bak and Paczuski, 1993; Parisi, 1993; Kauffman, 1995] and it has become
clear that some laws of nature cannot be deduced by resolving more detail [Vic-
sek, 2002]. This so called ‘new era of physics’ focuses on developing complex
behaviour out of simplicity, instead of the traditional reductionist approach that
reduced complexity to its simplest possible form [Kadanoff, 1987; Anderson,
1991; Parisi, 1993]. Non-equilibrium driving can have profound consequences on
system behaviour, a realisation that contrasts with our natural tendency to as-
sume systems are near equilibrium or at least show some steady state behaviour.
Equilibrium and reductionist thinking pervades most scientific disciplines [Bak
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and Paczuski, 1995; Ball, 1999, 2001; Ekeland, 2002], including molecular and
stem cell biology.

The differentiation of pluripotent cells in the early embryo is a fascinating
non-equilibrium process that results in the production of numerous specialised
cell types. More than 600 different proteins have been implicated in exit from
a näıve pluripotent state and control of early state transitions in the mouse
[Kalkan and Smith, 2014]. As our focus shifts from individual components to
complex communication networks, experimental studies have become more dif-
ficult. Not only do central features of complex networks, such as robustness,
prevent straight forward analysis and interpretation of network behaviours, but
many experiments cannot be performed because of ethical reasons surrounding
the use of human embryos.

Computer simulation sidesteps the ethical, moral and political issues sur-
rounding use of human embryos. It therefore represents an alternative route to
gaining new insight in to this promising field of regenerative medicine. Our over-
arching aim is to gain sufficient understanding so that any cell type of therapeutic
interest can be generated effectively at will.

Discovery > Domain > Glossary: terms and acronyms

CoSMoS pattern: Glossary: Provide a common terminology across the sim-
ulation project.

The main biological terms used in the various models are:

binding site (BS) : section of DNA that binds a given TF and influences tran-
scription of associated genes

branching process (BP) : the mathematical model underlying inspiration of
the TF BP framework being investigated here

ChIP-Seq : a technique to identify the binding sites of transcription factors on
DNA

cistrome : the portion of the genome associated with a specific TF; a pattern
of genome-wide binding sites to which the TF displays some activity

pluripotent stem cell : a cell capable of generating all the cell types present
in the adult body

segment : the genome data is segmented, into say 10k or 50k base-pair se-
quences, in order to apply the TFBP framework

transcription factor (TF) : a protein that binds to DNA to influence tran-
scription of the associated gene

Discovery > Domain > assumptions

See §3.1 for the Assumptions pattern requirements.

A.4 The genome can be modelled as a set of overlapping TF cistromes without
needing epigenetic factors
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reason We are looking only at TF segments, and the pluripotent state can
be induced by TFs alone

justification See, for example, [Kim et al., 2008]
consequence Behaviours facilitated by other factors, such as epigenetics,

will be unseen in the model
A.5 a TFBS is either bound or unbound, there is no partial TF binding

reason not enough data to say otherwise
A.6 a segment can be either activated or deactivated, there are no differing

amounts of activation
reason Simplification: the data does say whether a segment has one or more

binding sites
justification This is the first iteration; we will revisit the necessity/impact

of this assumption in later iterations
consequence We will not be able to separate out behaviours of groups of

genes in a segment. In order to do so, we could use smaller segments.
But segments cannot be made too small, else we would lose correlations
between related TFs.

A.7 we can investigate cell decision making by modelling an individual cell, not
a population
reason cells have internal decision making, although they can also be influ-

enced by their environment
justification See, for example, [Loh et al., 2006]
consequence We will not be able to investigate population-level decision

making

Discovery > Domain > scope

– single cell model
– single transcription factor model
– later iterations will add more, coupled TFs, and more interacting cells

Discovery > Domain > sources

– Domain scientists
– Biological literature, as referenced in the various overviews
– Chip-seq data for various cistromes (source: Dietmann)

3.3 Discovery > Domain Modelling

CoSMoS pattern: Domain Modelling: Produce an explicit description of the
relevant domain concepts.

The components of Domain Modelling are:
– collaborate with the identified Domain Scientist
– draw an explanatory Cartoon

– discuss and choose the Modelling Approach and level of abstraction
– build the Domain Model using the chosen modelling approach
– build the Data Dictionary
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– document Assumptions relevant to the domain model
– Argue Domain Model Appropriate (omitted here)

Discovery > Domain Modelling > collaborate

The lead domain scientist (Halley) and the domain modellers (Greaves, Step-
ney) collaborated closely throughout the development of the domain model,
translating and abstracting the conceptual TF BP model into a form suitable
for simulation.

The domain scientists (Halley, Smith, Dietmann) collaborated on refining the
research context.

The simulation engineer (Greaves) collaborated with the the data collection
expert (Dietmann) on the form and content of the biological data provided.

Discovery > Domain Modelling > Cartoon

See §3.2 for the Cartoon pattern.
Due to the structure of our Domain Model description, the Domain Modelling

Cartoon is presented in the section on the TF BP model (figure 4), and should
be read in in that context.

Discovery > Domain Modelling > Modelling Approach

CoSMoS pattern: Modelling Approach: Choose an appropriate modelling ap-
proach and notation.

A central part of this design process is to develop the simplest possible work-
ing model at each stage of the modelling process. This ‘agile’ approach ensures
that simulation code is not unnecessarily complicated. It also helps to ensure
that if a coding problem is found, it is simple matter to backtrack to the last
working model.

The domain model is captured using UML, in anticipation of an agent-based,
object-oriented design and implementation of the simulator.

Discovery > Domain Modelling > Domain Model

Our domain modelling gives rise to several models at different levels of abstrac-
tion: a specifically biological stem cell model of regulatory networks, a model
simplifying detailed transcription regulatory networks using branching process
theory, and a generic abstract model, which we refer to as the ‘sparking posts’
model.

Note that the sparking posts model could also be used as a domain model
for other biological phenomena as captured by branching process theory, such
as patterns of information flow in the human brain.
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Fig. 2. A representation of a set of ChIP-Seq data for a cistrome (part of the genome
relevant to a specific TF). Each square represents a 50kb segment of DNA. A white
square is a segment that contains at least one BS site for a product that is not a TF.
A red squares is a segment that contains at least one BS site for a product that is a
TF. A black square is a segment that does not belong to this cistrome.

Regulatory network

We have mouse genome data including the suite of BSs within it. For convenience
and simplicity, we divide this sequence in to 50 kilobase (kb) segments, any of
which may or may not contain binding sites for a particular TF of interest. If
a 50kb segment contains a binding site for our transcription factor, X, then the
segment is said to be part of the X cistrome.

Data about the locations of the transcription factor binding sites, in relation
to the gene segments in the model, is provided experimentally by ChIP-Seq data.
Figure 2 is a representation of ChIP-Seq data.

The regulatory network components can be captured in a model such as
that shown in figure 3. However, we abstract away from many of these ‘hairball’
inducing details, and consider the system instead in terms of the TF BP model.
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Fig. 3. Class diagram model of a stem cell pluripotency regulatory network. The stem
cell has a genome comprised of genes, which can alternatively be described as a cistrome
(or set of cistromes), each being comprised of segments of gene which may or may not
contain transcription factor binding sites.

Transcription Factor Branching Process model

A common approach to understanding cell regulatory processes is the appli-
cation of concepts, tools and techniques developed in mathematics, physics or
computer science [MacArthur et al., 2008]. Network representations, for example,
can accommodate multiple types of data within a single visual illustration that
provides an overview of regulatory pathways and components [Gallagher and
Appenzeller, 1999; MacArthur et al., 2008]. As already mentioned, empirically-
derived interaction networks can be difficult to interpret, often appearing as a
’hairball’ graph as regulatory mechanisms are increasingly dissected.

We use here a novel way to visualise and simulate genome-wide regulatory
network interactions. Our coarse-grained approach does not require details of
binding constants prerequisite for most ODE models of stem cell regulation.
In many previous computational or mathematical models of stem cell regula-
tory networks, TFs are represented as single nodes with binary (on/off ) be-
haviour. Here, we use a different approach that captures TF activity as a dis-
sipative branching process that propagates within the bounds imposed by the
TF’s unique cistrome.

Unlike reductionist models that capture TF activity using single variables in
an equation, in our model we explicitly represent a background delocalisation of
TF activity throughout the genome. We can visualise the activity of each TF’s
BP as a kind of gateway through which regulatory information pertaining to the
TF passes over time.

The TF BP model allows a decoupling between details of BS constants and
the emergent effect of TF activity throughout the genome. Instead of struggling
with countless (often unknown) binding constants, we consider the overall flow
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of regulatory information at genome-wide scales. It is thus more suitable for at-
tempts to discover how the ES cell regulatory network behaves as a whole during
computation of lineage choice. Through this more coarse-grained methodology,
we hope to discover complex interactions that can easily be overlooked by studies
that focus on only a handful of key regulatory components at a time.

The potential binding of a TF to target regions throughout the genome is
determined by ChIP-Sequencing. The data set or ‘footprint’ for a given TF
comprises a unique pattern of TF-DNA interactions that is somewhat dependent
upon the precise methods used to infer interactions. The precise footprint for a
specific TF may vary between different experimental datasets. Such ‘fuzziness’,
rather than being a nuisance, is intrinsic to the TF BP model.

If we understand the activity of any given TF as a branching process of
regulatory information propagating through time, it makes sense that there will
be some correlation between observed TF expression and the saturation of target
sites influenced by TF activity. The significance of this important point will
become clearer in later work, when we simulate multiple cistrome data sets.
Here, we focus on simulating a single TF’s BP to introduce the groundwork for
our approach.

Figure 4 presents a Cartoon of the TF BP model. Each square in the figure
corresponds to a 50kb segment of the mouse genome. Black squares represent
segments that contain no BSs for the TF of interest, while red and white squares
represent segments with at least one BS for the TF of interest. The difference
between a red and white segment lies in their products. A red segment has
products that include TFs, whereas none of the products of a white segment is a
TF. Henceforth, when we refer to a ‘red’ segment we mean a gene segment that
can bind TF and thus become stimulated into transcribing further TFs.

We capture the countless (ill-defined or unknown) cascades of gene activation
via TF production and feedback as a branching process in which TFs produce
other TFs while also regulating the remainder of the genome. There are po-
tentially three qualitatively different types of behaviour for any TFX branching
process. Firstly, the cistrome X is saturated and the TFX gene is continually and
stably expressed. Alternatively, there is the opposite type of emergent behaviour,
with TFX expression occurring at a very low noisy level that is not sustainable
unless TFX is supported by continual activation of the TFX gene via some ex-
ternal signal. Finally there is a dynamic intermediate between these extremes
where a branching process only just percolates through the TFX cistrome. In all
cases, the targets of TFX are divided in to two types: (1) dissipative targets that
do not propagate information back in to the TFX cistrome and (2) amplifying
targets that are either TFs themselves and capable of propagating information
or code for signalling molecules that are involved in signal transduction.

We define an average branching ratio, called m, for our gene regulation
branching process. That is to say that once transcribed, a gene (or gene seg-
ment in our case) will produce m product molecules (in this single cistrome
model these will all be the TF that binds to binding sites within the cistrome of
interest). If the activated site is associated with TF products then new TFs are
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Fig. 4. Domain Modelling > Cartoon: A branching process representation of the overall
flow of regulatory information, which serves as the basis of our simulation. At t, assume
the circled red segment is activated. At time t+1 this will activate m further randomly
chosen segments (arrows), and itself deactivate. At time t + 2, any of these newly
activated segments that are themselves red, will each activate a further m randomly
chosen segments, and deactivate.
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produced and these can bind to other TF binding sites in the system. In this
way, up to m segments will be activated in the next time step of the algorithm.
In the time step after this each of the activated segments can go on to activate
m further segments and so on as illustrated in Figure 4.

This TF BP model is built on the classical BP theory outlined in section
‘Domain > overview’, and is adapted in the following ways:

– m is related to the BP branching factor µ, but is not the same, because here
the m ‘offspring’ include both white and red segments, yet only red segments
go on to produce further ‘offspring’.

– In the supercritical case, the number of offspring cannot increase without
bound, but only up to the number of relevant segments in the cistrome.

– The individulas are segments, and do not ‘die’ at the end of a generation;
rather they can be reused (reselected) in subsequent generations.

Domain Model: Sparking Posts

In order to model a branching process, we produce our domain model in terms of
a metaphor. To capture the nature of critical-like self-organisation hypothesised
to underpin lineage computation, we have reduced the system to a ‘sparking
posts model’. This computational model is used to define the backbone of critical-
like self-organisation upon which other layers of complexity are elaborated.

The TF BP representation of our system is modelled as a ‘sparking posts’
representation of the cistrome in which each segment is modelled as a metal ‘post’
which emits ‘sparks’ once it has been activated by an incoming spark emitted by
another post in the previous timestep. The sparks represent the TF products of
the genes contained within a given segment and are therefore the principal mode
of communication between cistromes, the genome being effectively the sum of
all cistromes in the system.

So the Domain Model is as follows.
Consider an arena containing metal posts, some red, some white. The arena is

an abstraction of a particular cistrome; the posts are abstractions of the segments
containing BSs (red and white squares in figure 2); red posts are abstractions of
segments that express TFs (red squares in figure 2).

Posts may be active (on) or not. In a timestep, an active red post emits
m sparks. A post being active is an abstraction of a gene in a segment being
activated; a red post sparking is an abstraction of an activated gene expressing
a TF.

Posts become deactivated after they have sparked. A spark lands on a random
post in the arena (that is, the model is aspatial), and activates it.

Continued propagation of sparks relies on the activation of sufficient red posts
at each timestep.

Figures 5 and 6 capture this Domain Model.
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Fig. 5. A class diagram capturing the sparking posts model components. An Arena
has multiple Posts; Posts produce Sparks, and are activated by Sparks.

Fig. 6. A state diagram of a post. Posts are initially off; become activated (on) if a
spark lands; then become deactivated in the next timestep.

Discovery > Domain Modelling > Data Dictionary

CoSMoS pattern: Data Dictionary: Define the modelling data used to build
the simulation, and the experimental data that is produced by domain ex-
periments and the corresponding simulation experiments.

The sparking post model’s parameters and variables are shown in figure 7.
Figure 8 shows the values of some of these parameters for the cistromes of interest
here.
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p total number of posts in the arena
r number of red posts
m sparks emitted per active red post
s0 number of red posts active initially

t timestep
st number of red posts active at timestep t

Fig. 7. Sparking post model: (top) parameters, constant during a simulation run; (bot-
tom) variables, changing during a simulation run

Nanog Sox2 Oct4

p 4310 3330 2540
r 631 542 466
r/p 0.146 0.163 0.183
p/r = mc 6.8 6.1 5.5

Fig. 8. The values of the parameters p (number of posts, or segments in the cistrome)
and r (the number of red posts, or red segments in the cistrome) for the TFs investigated
in this study

Discovery > Domain Modelling > assumptions

See §3.1 for the Assumptions pattern requirements.
First, we have some assumptions related to the TF BP model, which we note

as they have an impact on the sparking posts model.

A.8 the product of a TF producing segment is the TF whose cistrome we are
modelling
reason An assumption underlying use of the TF BP model
justification The TF may not be directly produced; there may be a cascade

of production, but the TF BP model collapses this cascade. We are
investigating this model.

consequence This is an abstraction from the biology, made to allow us to
model the highly complex processes. If it works, this abstraction could
also provide an approach to include other features such as epigenetics
and mRNAs in a tractable model.

A.9 the identity of the TFs produced during transcription is irrelevant in the
single cistrome model
reason An assumption underlying use of the TF BP model
justification The TF BP model assumes that the relevant scale of com-

putation is the cistrome level, abstracted from specific details of the
individual TFs

Assumptions directly related to the sparking posts model are:

A.10 a spark from a post can hit any post with equal probability: there is no
notion of a ‘distance’ between posts
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reason an aspatial model
justification the TF BP model collapses a potential cascade of TFs into

a single ‘proxy’ TF. This cascade would lose any spatial dependence in
the DNA.

A.11 a post cannot be hit by more than one spark per timestep: there is no notion
of different ‘capacity’ posts
reason follows from assumption A.6

Discovery > Domain Modelling > Expected Behaviours

CoSMoS pattern: Expected Behaviours: Describe the expected emergent be-
haviours of the underlying system.

The ‘sparking posts’ domain model forms the basis for subsequent simulation
development.

We can form a much simpler version of the model, in order to help understand
the effect of noise. Since there are a finite number of posts, stochastic fluctuations
will occur, and sparks might occasionally miss many or all of the red posts. Here
we instead assume that posts are always hit the average number of times. We
are interested in the proportion of red posts active in the ‘steady state’, in limit
of large time.

At time t there are st red posts active. Each of these active post emits m
sparks, so a total of st × m sparks are emitted. Let each of these sparks be
absorbed by a separate post, of which a fraction r/p are red. So at the next
timestep, there are st+1 = stmr/p red posts active.

The number of active red posts reduces with time if m < p/r, and so the
arena is extinguished, with s∞ = 0.

The number of active red posts steadily grows with time if p/r < m, until
there are more sparks emitted than there are posts in total (moving outside our
assumption of each spark being absorbed by a separate post), and so the arena
saturates with s∞ = r.

The critical value, mc, where this change of behaviour happens is mc = p/r.
Values for mc for the TFs of interest are shown in figure 8.

Hence the expected behaviour of the single cistrome simulation is to quench
for low values of m, saturate for high values of m, and have a tipping point
around mc.

4 Development phase

CoSMoS pattern: Development: Build the scientific instrument: produce a
simulation platform to perform repeated simulation, based on the output
of the Discovery phase.

The components of the development phase are:
– revisit the Research Context
– develop a Platform Model
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– develop a Simulation Platform

– Argue Instrument Built Appropriately (omitted here)

4.1 Development > revisit

The research context is unchanged in the light of Discovery phase activities. The
TF concepts need to be reinterpreted in terms of the sparking posts model.

4.2 Development > Platform Modelling

CoSMoS pattern: Platform Modelling: From the Domain Model, develop a
platform model suitable to form the requirements specification for the Sim-

ulation Platform.
The relevant components of Platform modelling are:

– choose a Modelling Approach for the platform modelling
– develop the Platform Model from the Domain Model
– document Assumptions relevant to the platform model

Development > Platform Modelling > Modelling Approach

We use the same approach as for domain model, assisting seamless development.

Development > Platform Modelling > Platform Model

The emergent tipping point behaviour is not part of the platform model. The rest
of the ‘sparking posts’ model carries over from the domain model unchanged.

Instrumentation is added, to collect statistics from the simulator, including
post sparking activity. A user interface and visualisation component is added,
to control the simulator runs (set the simulation parameters), and examine the
output.

Development > Platform Modelling > Assumptions

A.12 the sparks due to an activated post last for one simulation time step
reason simplicity
justification first iteration
consequence half lives and decay rates are not modelled; they may be

added in later iterations

4.3 Development > Simulation Platform

CoSMoS pattern: Simulation Platform: Develop the executable simulation
platform that can be used to run the Simulation Experiment.

The relevant components of developing the simulation platform are:
– choose an Implementation Approach
– code and test (details omitted here)
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– perform calibration (details omitted here)
– document Assumptions relevant to the simulation platform

Development > Simulation Platform > implementation approach

The simulation is implemented as an object-oriented Java application using the
MASON simulation environment to handle such things as time-stepping the
simulation and on screen graphics (when running in graphical mode).

5 Exploration phase

CoSMoS pattern: Exploration: Use the simulation platform resulting from
Development to explore the scientific questions established during Discov-

ery.
The components are:

– revisit the Research Context
– perform Results Modelling

– perform a Simulation Experiment

– Argue Instrument Used Appropriately (omitted here)

5.1 Exploration > revisit

The research context is unchanged in the light of Discovery and Development

phase activities.

5.2 Exploration > Results Modelling

CoSMoS pattern: Results Modelling: Develop a results model suitable for
interpreting simulation experiment data in Domain Model terms.

The relevant components of results modelling are:
– build a Visualisation Model

– build a Results Model

– Argue Results Model Appropriate and Consistent (omitted here)

Exploration > Results Modelling > Visualisation Model

CoSMoS pattern: Visualisation Model: Visualise the simulation experiment
results of the Data Dictionary in a manner relevant to the users.

The visualisation mimics the cistrome data in figure 2.
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Exploration > Results Modelling > Results Model

The results model is the cistrome activity (number of activated posts) as a
function of time.

5.3 Exploration > Simulation Experiment

CoSMoS pattern: Simulation Experiment: Use the simulation as a scientific
instrument to explore the behaviour of the system.

The relevant components of a simulation experiment are:
– design the experiment
– perform the experiment
– analyse the results

Exploration > Simulation Experiment > design

The parameters p (number of posts) and r (number of red posts) are effectively
fixed for any given set of experimentally derived cistrome data (figure 8). We
can also generate synthetic data to create systems with a range of p and r values
to explore general behaviours.

We identify 4 experiments to perform on the single-arena simulation:

experiment 0 : Effect of m. With p and r fixed and s0 = r, explore the effect of
m by locating those values ofm for which the system remains fully saturated:
all red posts are activated at all time steps. Compare this with the expected
mc value (figure 8) for a noiseless system.

experiment 1 : Effect of s0, sensitivity to initial conditions. Repeat experiment
0 with smaller values of s0.

experiment 2 : Effect of r. Create arenas with a fixed p and a range of r values.
At each value of r, determine the values of m for which the system remains
saturated throughout the simulation.

experiment 3 : Effect of noise. Keeping the ratio of p to r fixed at the value in
the biological data, investigate the effect of reducing p. This will give some
insight into how the data scales up within the context of our model, and
whether we can use smaller arenas in experiments to improve simulation
performance.

Number of simulation runs. We are not performing any statistical analyses at
this stage of the project, merely inspecting behaviour. However, the simulation
is essentially stochastic, and when we do come to perform statistics, we will need
to choose the number of runs based on the significance, power, and effect size of
interest. For consistency, we make that choice now, and use the relevant number
of runs.

We require a statistical significance of 99% (a 1% false positive rate), a statis-
tical power of 99% (a 1% false negative rate), and a ‘medium’ effect size (Cohen’s
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Fig. 9. p and r corresponding to Nanog data; (left) experiment 0: s0 = r; (right)
experiment 1: s0 = r/2. Recall mc = 6.8

d = 0.5, the ability to distinguish a difference in means of 0.5 of a standard devi-
ation). Calculating the required sample size for these experimental parameters3

gives 192.

We round this up, and take the number of runs to be N = 200.

Protocol. One simulation run comprises the p and r values of a particular arena
(chosen to match Nanog, Sox2, Oct4 data), an m value (1–50), and a starting
activity (s0 = r for experiment 0; s0 = r/2 for experiment 1).

For each simulation run, we record the proportion of active red posts at the
final timestep, T = 1000.

For each parameter set (p, r, m, s0), we run the simulation N = 200 times.

5.4 Exploration > Simulation Experiment > analyse results

Experiments 0 and 1

Experiment 0 uses s0 = r: all red posts initially active. Experiment 1 uses
s0 = r/2: half the red posts initially active.

See figures 9–11 for the results of the simulation runs.

The observed values of m where the system ‘switches on’, and can maintain
saturation, are close to the calculatedmc values. However,m has to be somewhat
higher than this to saturate the finite-sized arena.

Starting with only half the posts active makes little difference to the results.

3 using, for example, the calculator at http://powerandsamplesize.com/Calculators/
Compare-2-Means/2-Sample-Equality
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Fig. 10. p and r corresponding to Sox2 data; (left) experiment 0: s0 = r; (right)
experiment 1: s0 = r/2. Recall mc = 6.1
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Fig. 11. p and r corresponding to Oct4 data; (left) experiment 0: s0 = r; (right)
experiment 1: s0 = r/2. Recall mc = 5.5

Experiment 2

For experiment 2, we took p = 4310 (as in Nanog), and r = 200, 400, 600, 800,
to see how the value of mc changes. We used s0 = r throughout.

See figures 12–13 for the results of the simulation runs.
Recall that the theoretical tiping point value is mc = p/r. So as r increases,

mc should decrease. This is observed (figure 12).
Also note that the smaller r, the noisier the behaviour. This is expected

as stochastic effects will be more prominent when there are fewer red posts
available.
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Fig. 12. Experiment 2: varying r; here p = 4310: (top left) r = 200; (top right) r = 400;
(bottom left) r = 600; (bottom right) r = 800

r m obs mc

200 23–24 21.6
400 11-12 10.8
600 7–8 7.2
800 5–6 5.4

Fig. 13. Experient 2: observed value of m at tipping point, versus calculated value mc
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Fig. 14. Experiment 3: varying p with constant p/r: (left) p = 2000, r = 293; (right)
p = 1000, r = 146

Experiment 3

For experiment 3, we took p/r = 4310/631 (as in Nanog), and reduced p keeping
p/r constant (mimicking a smaller arena but with the same density of red posts).
We used s0 = r throughout.

See figure 14 for the results of the simulation runs; compare with figure 9(top)
for the ‘full’ arena.

The systems tip at the same point, but the behaviour gets noisier as p (and
hence r) decreases, and stochastic effects become more pronounced.

6 Discussion

This paper documents and illustrates the use of CoSMoS patterns to perform
a complete iteration of a CoSMoS simulation project, from initial discovery,
through development, to exploration. There were several lessons learned, sum-
marised here.

It is not always clear whether information should be included in the Domain,
or Domain Model, sections, particularly relating to assumptions. However, it
is more important to document the information that to agonise over precisely
which section to document it in.

Not all patterns are applicable. For example, here the Domain Model Cartoon
had to be presented within the Domain Model section, rather than as a prior
illustration. Additionally, the TF BP model is so abstracted from the Domain,
that aspects such as the Domain Experiment Model [Andrews and Stepney,
2015] are not relevant, and so have been omitted. Again, it is more important to
follow the spirit of the CoSMoS approach rather than the letter of every pattern.
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Not every aspect of the CoSMoS approach needs to be performed with com-
plete rigour. This simulation is not safety critical, so some aspects have been
omitted (such as justification of all assumptions, and argumentation of fitness-
for-purpose). The extra effort needed to complete all aspects should be expended
only if it gives benefit.

Although the presentation is sequential and hierarchical, the historical pro-
cess was not. We spent many short iterations, and considerable backtracking (for
example, see figure 3), before finally fixing on the ‘sparking posts’ model. The
CoSMoS patterns define what information should be recorded by the end of the
project, but not the order it needs to be produced. Some uses of CoSMoS can
apply the patterns in significantly different orders, for example [Andrews and
Stepney, 2014].

We might not have arrived at the conceptual sparking posts model without
taking an iterative approach. The need to have just a single-cistrome model for
this first iteration revealed a fundamental misunderstanding that the modellers
were having about the background TF BP model.

Although we were taking an agile approach, producing minimal simulation
models and code, collaborations meetings would often generate interesting but
out of current scope ideas. We invented the concept of the “to don’t” list: a place
to record the ideas for future reference, in a manner that made it clear they were
not to be included in the current iteration. Some of these ideas also prompted
the recognition of assumptions in the current iteration.

The Domain Scientist (Halley) was new to the CoSMoS approach at the start
of the project, but had previous experience working with modellers using differ-
ent approaches on other projects. Halley reports that CoSMoS is a flexible tool
to produce objective scientific simulations, and allows progress without being
funnelled into preconceptions imposed by a specific toolset or implementation
approach.

7 Summary, Conclusions, Future Work

This work has run through a complete CoSMoS cycle, producing the first itera-
tion of the system: a single cistrome model.

The results demonstrate that the single-cistrome model exhibits its tipping
point close to the predicted value of mc, but the tipping is not particularly sharp,
so for values of m close to mc, there is a lot of noise in the system.

In order to generate results that have genuine biological relevance, it will be
necessary to create a simulation of two or more cistromes interacting with each
other via the TFs that each produces. For example, we will investigate model
behaviour when the Oct4, Sox2 and Nanog branching processes are allowed to in-
teract. Given the groundwork developed in this first iteration, the modelling and
simulation work in for the second iteration, to augment the system with multiple
cistromes, should be relatively straightforward. We are currently developing this
second iteration.

Beyond this, future iterations could include:
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– More complex connections within networks of cistromes, including inhibition
and negative feedback, combinatorial binding of TFs, and indicators of 3D
genomic or chromosomal architecture. The inclusion of inhibition of gene
expression is particularly relevant to the process of pluripotency exit, as
batteries of differentiation genes are suddenly expressed.

– A Domain Specific Language with which we can describe the network

– TF half life variability

– Epigenetic histone marks that may help to shape circuitry self-organisation

– Combinatorial binding of TFs to enhancer sites that impart transcriptional
synergy [Struhl, 2001]

– Multicellular model incorporating cell-cell signalling

The model presented here represents a novel example of self-organisation
that may apply to other complex systems. It is of interest from a purely theo-
retical perspective because it helps to demonstrate how distributed interactions
among units result in higher ordered emergent behaviours. Such complexity could
provide dynamic templates of organisation upon which natural selection builds
additional elaborations [Halley and Winkler, 2008].
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