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Abstract 

In the early stages of development of a new Active Pharmaceutical Ingredient (API), insufficient 

material quantity is available for addressing processing issues, and it is highly desirable to be 

able to assess processability issues using the smallest possible powder sample quantity. A good 

example is milling of new active pharmaceutical ingredients. For particle breakage that is 

sensitive to strain rate, impact testing is the most appropriate method.  However, there is no 

commercially available single particle impact tester for fine particulate solids. In contrast, dry 

powder dispersers, such as the Scirocco disperser of the Malvern Mastersizer 2000, are widely 

available, and can be used for this purpose, provided particle impact velocity is known. 

However, the distance within which the particles can accelerate before impacting on the bend is 

very short and different particle sizes accelerate to different velocities before impact.  As the 

breakage is proportional to the square of impact velocity, the interpretation of breakage data is 

not straightforward and requires an analysis of particle velocity as a function of size, density and 

shape.  We report our work using an integrated experimental and CFD modelling approach to 
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evaluate the suitability of this device as a grindability testing device, with the particle sizing 

being done immediately following dispersion by laser diffraction. Aspirin, sucrose and Į-lactose 

monohydrate are tested using narrow sieve cuts in order to minimise variations in impact 

velocity.  The tests are carried out at eight different air nozzle pressures. As intuitively expected, 

smaller particles accelerate faster and impact the wall at a higher velocity compared to the larger 

particles. However, for a given velocity the extent of breakage of larger particles is larger. Using 

a numerical simulation based on CFD, the relationship between impact velocity and particle size 

and density has been established assuming a spherical shape, and using one-way coupling, as the 

particle concentration is very low. Taking account of these dependencies, a clear unification of 

the change in the specific surface area as a function of particle size, density and impact velocity 

is observed, and the slope of the fitted line gives a measure of grindability for each material. The 

trend of data obtained here matches the one obtained by single particle impact testing. Hence 

aerodynamic dispersion of solids by the Scirocco disperser can be used to evaluate the ease of 

grindability of different materials. 

 

KEYWORDS: grindability; breakage; Scirocco; impact; aerodynamic dispersion; milling; 

pneumatic 

 

1 Introduction 

In the pharmaceutical, food, chemical and allied industry, including agrochemical, particles are 

often milled before further processing to enhance their dissolution, content uniformity in 
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formulations, tablet strength, etc (Rowe et al., 2012). In order to specify the conditions for 

milling and processing in the early process development stage, it is important to be able to 

characterise particle grindability using the smallest possible quantity, due to the scarcity of the 

test material at this stage.  For particles which break in the semi-brittle mode and are sensitive to 

strain rate, it is most appropriate to evaluate the grindability by impact testing, as it better 

represents the dynamics of the commonly used mills (pin mills and fluid energy mills) and also 

other test methods such as shearing and compression may lead to undesirable compaction.  

Lecoq et al. (2003) designed an air jet particle impactor to study the breakage of particles of a 

known size distribution for a wide range of materials by impacting them on a target at a certain 

velocity. The concentration of particles was kept lean to minimize the particle-particle 

interactions. The breakage was quantified by analysing the size distribution of the impacted 

particles by sieving. Dumas et al. (2011) studied the impact breakage behaviour of precipitated 

silica granules using a Venturi to accelerate the particles. The particle size distribution after 

impact on a target was determined by laser diffraction using a Malvern Mastersizer 2000, based 

on which the fragmentation mechanism was analysed.  Lecoq et al. (2011) applied the model of 

Vogel and Peukert (2003) to an air jet particle impactor for the determination of a particle 

breakage parameter.  A master curve unifying the data was obtained for different materials, when 

the breakage parameter was plotted as a function of the applied kinetic energy to the materials. 

The breakage parameter in this model is based on the Weibull analysis (1988), which is an 

empirical fit to the experimental breakage data and is particularly applicable to the brittle failure 

mode. For the semi-brittle failure mode, the impact breakage of a wide range of materials has 

been investigated by Ghadiri and co-workers, based on which a mechanistic model of particle 
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chipping has been developed (Ghadiri and Zhang, 2002; Samimi et al., 2003; Samimi et al., 

2004; Subero-Couroyer et al., 2005 and Olusanmi et al., 2010). 

Rozenblat et al. (2012) carried out breakage experiments in an impact device for the 

development and validation of breakage models. The impact velocity of particles was obtained 

by a high speed digital camera. Correlations were developed for the breakage probability and 

breakage kernel as a function of the impact velocity and initial particle size.  There is also 

extensive literature on the breakage and attrition of particles in high velocity air jets in which 

particle-particle collisions are the main mechanisms of particle breakage, e.g. Forsythe and 

Hertwig (1949), Gwyn (1969), Ghadiri et al. (1994), Ghadiri and Boerefijn (1996), Boerefijn et 

al. (2000), Bentham et al. (2004), Dumas et al. (2011), Xiao et al. (2012) and Zhang et al. 

(2012). 

Chen and Lloyd (1994) studied the breakage of agglomerated milk powders in the dry powder 

dispersion unit of the Malvern Mastersizer 2600c. They found that although the device gives 

reliable and reproducible results for standard milk powders (non-agglomerated powders), 

agglomerated milk powders could break during the dispersion stage, and hence erroneous size 

distributions might be obtained (Boiarkina et al., 2015). Rajniak et al. (2008) used a combination 

of theoretical and experimental techniques to analyse the friability of granules in pneumatic 

conveying systems using the Scirocco disperser of Malvern Mastersizer 2000. In a recent work 

by Ali et al. (2015), the breakage of a weak and friable spray-dried powder (burkeite) was 

analysed following the same approach. Their analysis suggests that the Scirocco disperser could 

be used as an impact breakage test device to evaluate the grindability of powders, provided the 

particles break in the range of achievable impact velocities with the nozzle pressures available. 

The advantage of using this device is that it is widely available, and dispersed particles are 
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presented to the laser light immediately for particle size measurement and analysis, hence 

reducing the time and effort required for measuring the size distribution of the impacted 

particles. The work reported here is focused on using this approach for a critical assessment of 

grindability of powders benchmarked against the single particle impact breakage method 

(Ghadiri and Zhang, 2002).  

A schematic diagram of the Scirocco disperser is shown in Figure 1. In this device high 

pressured air is supplied to the air inlet (port 2), which results in a high velocity jet of air at the 

nozzle tip. The particles are slowly fed to the top inlet of the disperser (port 1) and get rapidly 

accelerated by the high velocity air jet stream. The dispersion of particles takes place as they 

impact at the elbow. The dispersed particles exit from the outlet (port 3) and are then presented 

for analysis by  laser diffraction particle size measurement technique.  
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Figure 1. Schematic diagram of Scirocco disperser  

In this study, narrow sieve fractions of several crystalline organic solids are dispersed in the 

Scirocco disperser at different pressures and the resulting particle size distributions are analysed 

by laser diffraction (Malvern Mastersizer 2000), from which the specific surface areas are 

inferred. CFD modelling of the Scirocco disperser is then carried out to evaluate the air flow 

distribution in the disperser. The impact velocity distributions of several particle sizes are then 

calculated by simulating spherical particles injected in the disperser and tracking their trajectory 

using a Lagrangian approach.  The measured relative change of the surface area of the particles 

is then plotted as a function of a group representing particle characteristics and impact dynamics, 

with the slope of the fitted line showing a measure of grindability as an index described in the 

next sections. Comparing the results obtained here with the measure of the breakability obtained 
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from the single particle impact tester provides a quick method to evaluate grindability of 

different materials. 

2 Methodology  

The particles used in this study are crystals of aspirin, sucrose and Į-lactose monohydrate (Į-

LM).  Each material is sieved and separated into narrow size cuts: 80-90 ȝm, 112-125 ȝm, 160-

180 ȝm and 224-250 ȝm for Į-lactose monohydrate, 160-180 ȝm, 224-250 ȝm, 400-425 ȝm and 

600-630 ȝm for sucrose, and 224-250 ȝm, 400-425 ȝm and 600-630 ȝm for aspirin. Each sieve 

fraction is then fed into the Scirocco disperser at a rate meeting the minimum obscuration 

requirement for particle size analysis by laser diffraction. The experiments are carried out at 

eight different nozzle pressures, i.e. 50, 100, 150, 200, 250, 300, 350 and 400 kPa (corresponding 

to 0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4 barg). The impact velocity for each sieve fraction is predicted 

by CFD calculations. The particle size distribution after impact is measured using the 

Mastersizer 2000 (Malvern Instruments, Malvern, UK) and the specific surface area (SSA) of the 

particles is calculated using surface mean diameter, d3,2.  In order to calculate the relative change 

in the specific surface area due to particle breakage, the specific surface area of the feed (SSAo) 

is also required. This was taken to be the SSA obtained at the pressure of 10 kPa (0.1 barg) for 

each sieve fraction, thus assuming that no breakage took place at this pressure.  This is actually 

not the case for very weak and friable materials, such as burkeite, for which SSAo had to be 

measured using the Spraytec (Malvern Instrument, Malvern, UK), where impact damage could 

be avoided (Ali et al., 2015).  
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3 Predicted particle impact velocity 

The air flow profiles in the disperser influence the dispersion of the particles as well as their 

impact velocity. Hence it is necessary to model air flow profiles to calculate the particle impact 

velocity. The time-averaged form of the continuity and Navier-Stokes equations are solved along 

with the Reynolds Stress Turbulence (RST) model for the modelling of turbulence. The time-

averaged form of the continuity equation for compressible flow, assuming steady state is given 

by: 
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The general form of the Reynolds stress transport equation is given by: 
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   Eq. (3) 

The convection term and stress production (Pij) terms are exact. The diffusion term (DTij) is 

modelled via a gradient-diffusion approximation (Shir, 1973). The dissipation term (ѓij) is 

assumed to be isotropic and is modelled in terms of the rate of dissipation of turbulent kinetic 

energy, which is given by: 
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Eq. (4) 

The pressure strain redistribution term (׋ij) is modelled using the linear approximation of 

Launder et al. (1975) and is modelled as the sum of the “slow” pressure strain term ( 1,ij ), the 

“rapid” pressure strain term )( 2,ij , and the “wall reflection” term ( wij , ). The pressure strain 

redistribution term ( ij ) can be written as: 

wijijijij ,2,1,    
Eq. (5) 

The slow pressure strain term 1,ij , which is also known as the return to isotropy term, takes into 

account the effects of pressure on the Reynolds stresses. It is given by: 
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The rapid pressure strain term2,ij , which is also known as the turbulence-mean flow interaction 

term, takes into account the effect of mean flow on the Reynolds stresses. It is given by 

(Launder, 1989): 
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The wall reflection term wij , takes into account the near wall effects on the Reynolds stresses 

(Gibson and Launder, 1978). It tends to damp the normal stress perpendicular to the wall and 

enhances the normal stress parallel to the wall. It is given by: 



10 
 

w
kijkkjikijmkkm

w
kikjkjkiijmkmkwij

d

kC
nnnnnn

k
C

d

kC
nnuunnuunnuu

k
C













2/34/3

2,2,2,
'
2

2/34/3_____
''

_____
''

_____
'''

1,

2

3

2

3

2
3

2
3







 











 
Eq. (8) 

The model constants in Eqs. (4), (6), (7) and (8) are assigned the following values: 

C =0.09, 1C =1.44, 2C =1.92,  =1.3, 1C =1.8, 2C =0.60, '
1C =0.5, '

2C =0.3 

The near-wall flow is modelled using the standard wall functions. The discrete phase comprises 

particles, introduced into the disperser from the top. The trajectories of the particles are tracked 

using the Lagrangian approach. The equation of motion for the particles is given by: 
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The first term on the right hand side represents the drag force per unit mass and the second term 

represents the gravitational force per unit mass. 

The drag force is given by: 
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where Re is the particle Reynolds number defined as: 


 uud ppa ir
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The correlation for the drag coefficient (CD) for particles proposed by Morsi and Alexander 

(1972) is used, which is applicable to smooth spherical bodies. The effect of the fluctuating 

velocities of air on the particle dispersion is taken into account using the discrete random walk 

model (Hutchinson et al., 1971). The particle-particle interaction is ignored in the simulation. 
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The coupling between the air and particles is one way, i.e. the air flow influences the trajectories 

of particles but the momentum exerted by the particles on the gas phase is ignored. This 

assumption is valid for flows involving a lean concentration of particles, i.e. solids volume 

fractions less than ͳͲି଺ (Loth et al., 2005). This is the case for the experimental work carried out 

here. The particle velocity is primarily influenced by the mean air velocity, which is not expected 

to change appreciably due to a lean concentration of particles. The restitution coefficient (defined 

as the ratio of rebound to incident particle velocities) is assumed to be 0.5 for all the sizes and for 

all the materials considered.  

 

The conservation equations for the continuous and discrete phases in three-dimensions are solved 

using the CFD software Fluent v. 12 (2009), which utilises the finite volume discretisation 

method for the governing equations. The meshing of the disperser is carried out using Gambit 

(2006). The selected mesh comprised of 4.1×105 tetrahedral and hexahedral cells. The second-

order upwind discretisation scheme (Versteeg and Malalasekera, 1995) was used for the 

convective terms. For the pressure-velocity coupling the SIMPLE scheme (Versteeg and 

Malalasekera, 1995) was used, and for the pressure interpolation, the second-order scheme was 

used.  

For the inlet nozzle boundary condition, a pressure inlet is specified at the face of the air nozzle 

with values varying for different cases. A pressure outlet with a value of 0 kPa (0 barg) is 

specified at the outlet face. To enable the entrainment of air from the top of the disperser, where 

the particles are introduced, a pressure outlet boundary condition is specified at the top with a 

value of 0 kPa (0 barg). For the turbulence boundary conditions, a turbulence intensity of 5% at 

the corresponding faces of the inlet and exit ports are specified. The inlet pressures considered 
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are: 50, 100, 150, 200, 250, 300, 350 and 400 kPa (corresponding to 0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 

4 barg). The spherical particle diameters considered for prediction of the impact velocity are: 170 

ʅm, 237 ʅm, 412 ʅm and 615 µm, corresponding to the geometric mean of the sieve cuts 160-

180 ʅm, 224-250 ʅm, 400-425 ʅm and 600-630 µm, respectively. To obtain a statistically 

reliable particle impact velocity distribution when they impact at the elbow of the disperser, 200 

particles were injected from a circular area with 10 mm diameter at the centre of the powder inlet 

face (port 1 in Figure 1). 

The convergence criteria for the continuity, momentum and Reynolds stresses were specified as 

1×104 and for the energy equation, it was 1×106. The residuals converged to the required 

tolerance limit for the cases in which the inlet pressure was from 50 kPa to 250 kPa (0.5 barg to 

2.5 barg). However, at 300 kPa (3 barg) inlet pressure, the residuals did not converge to the 

required tolerance level. For this case, the simulation was considered to have converged when 

the residuals did not reduce any further after reaching a certain level. 

Figures 2-4 are plots of the average impact velocity of all the materials considered as a function 

of the inlet air pressure. The average impact velocity is calculated by taking the mean of the 

impact velocity of all the particles upon the first impact with the elbow, which was found to be 

the highest particle-wall impact velocity compared to other secondary collisions with the wall.  
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Figure 2. Average impact velocity of particles as a function of nozzle air pressure for aspirin 

 

Figure 3. Average impact velocity of particles as a function of nozzle air pressure for sucrose 
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Figure 4. Average impact velocity of particles as a function of nozzle air pressure for Į-lactose monohydrate 
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the particle size distribution was analysed. A sensitivity analysis was carried out to find out the 

optimum vibratory feed rate as well as the minimum mass required to provide an adequate 

obscuration (2-4%), whilst ensuring minimal interparticle interactions. In the work carried out 

here the volume fraction of solids fed to the disperser was roughly ͸ ൈ ͳͲି଻, in line with the lean 

phase requirement for comparison with simulation results. Using a very small mass quantity is 

one of the advantages of using the Scirocco disperser to evaluate the grindability of the particles, 

as the sample quantity could be a critical issue (i.e. 1-2 g depending on the particle size).  

The particle size distributions of aspirin, sucrose and Į-lactose monohydrate particles for the 

feed size of 224-250 ʅm, having passed through the Scirocco at different nozzle pressures, are 

shown in Figures 5-7 as typical examples. The rest of data for all sieve fractions are shown in the 

appendix. 
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Figure 5. Relative shift in size distribution of 224-250 ȝm of aspirin at different nozzle pressures 
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Figure 6. Relative shift in size distribution of 224-250 ȝm of sucrose at different nozzle pressures 
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Figure 7. Relative shift in size distribution of 224-250 ȝm of Į-lactose monohydrate at different nozzle pressures 
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reported by the Malvern Mastersizer 2000 at different impact velocities is used to calculate the 

shift in the specific surface area, ǻSSA. This is normalised with respect to the initial specific 

surface area, SSA0 (relative shift) and plotted as a function of impact velocity for the test 

materials as shown in Figures 8-10: 

 

Figure 8. Relative shift in the specific surface area of aspirin as a function of impact velocity in Scirocco disperser 

0

5

10

15

20

25

30

20 30 40 50 60 70 80

ǻS
SA

/S
SA

o

V (m/s)

224-250 ȝm 400-425 ȝm 600-630 ȝm



20 
 

 

Figure 9. Relative shift in the specific surface area of sucrose as a function of impact velocity in Scirocco disperser 

 

 

Figure 10. Relative shift in the specific surface area of Į-lactose monohydrate as a function of impact velocity in Scirocco 
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A family of curves is observed for all the test materials with clear trends for the effect of impact 

velocity and particle size. At a constant impact velocity, the larger particle sizes tend to break 

more than the smaller ones. 

The test materials used here all fail through the semi-brittle failure mode (Olusanmi et al., 2010), 

i.e. crack propagation is preceded by plastic flow of the impact site. We therefore use the model 

of Ghadiri and Zhang (2002) for the analysis of impact breakage as shown below:  

כܴ ൌ ߟߙ ൌ ߙ ఘ೑ௗ೑ǡೡு௄೎మ ܸଶ ൌ  ௙݀௙ǡ௩ܸଶ                                              Eq. (12)ߩܥ

where ܴ כ  is the extent of breakage, expressed on a gravimetric basis, describing the mass 

fraction of debris obtained experimentally and ߟ  is a dimensionless group representing the 

breakage propensity of the semi-brittle materials. ݀௙ǡ௩ is a measure of feed particle size (on a 

volumetric basis), ߩ௙ is the envelope density of feed particles and ܸ is their impact velocity. The 

parameter ܥ ሺߙ ܪ ௖ଶሻΤܭ  is a lumped parameter describing the mechanical properties of the 

material, in which ܪ ,ߙ and ܭ௖ represent proportionality factor, hardness and fracture toughness 

of the material, respectively.  

 is expressed on a gravimetric basis, but using the Malvern Mastersizer 2000, the particle size כܴ

distribution is characterised by laser diffraction and expressed on a volumetric basis. So it is 

necessary to relate the shift in particle size distribution to ܴכ. As the breakage process could 

produce a wide size distribution, it is more convenient to express ܴכ in terms of the relative 

change in the specific surface area. This approach has been presented by Ali et al. (2015) and is 

adopted here for the analysis of breakage of aspirin, sucrose and Į-lactose monohydrate in the 
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Scirocco disperser. Considering the definition of ܴכ, the mass fraction of debris can be expressed 

by Eq. (13) 

כܴ ൌ ߟߙ ൌ ௡೏ఘ೏ሺഏలௗത೏ǡೡయ ሻ௡೑ఘ೑ሺഏలௗത೑ǡೡయ ሻ  Eq. (13) 

where ߩ௙  and ߩௗ  are the densities of feed particles and debris, respectively. ௙݊  and ݊ ௗ  are the 

numbers of feed particles and debris, respectively. ҧ݀௙ǡ௩ is the average size (volumetric basis) of 

the feed material, and ҧ݀ௗǡ௩ is the average size of the debris, which is calculated based on the 

particle size distribution after Scirocco testing, as qualitatively shown in Figure 11 and described 

below. The size distribution of the debris is obtained from the shaded area, from which the 

volume-weighted arithmetic mean size, ҧ݀ௗǡ௩ , and the relative shift in the specific surface area 

ܣܵܵ߂) ଴ൗܣܵܵ ) are calculated. 

Figure 11. Calculation of debris size distribution based on the distribution of feed and broken materials 
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Conversion of Eq. (13) to a surface area basis requires ҧ݀௙ǡ௩ and ݀ ҧௗǡ௩ to be expressed in terms of 

surface-area equivalent diameters. This can be done by the use of the sphericity shape factor, ߰, 

defined as the ratio of the surface area of the volume-equivalent sphere (݀ߨ௩ଶ) to the actual 

particle surface area, ܵ: ݊ௗ ҧ݀ௗǡ௩ଶ ൌ ߰ௗܵௗ and ݊ ௙ ҧ݀௙ǡ௩ଶ ൌ ߰௙ ௙ܵ . Therefore we get 

ఘ೏ௗത೏ǡೡఘ೑ௗത೑ǡೡ ൈ ట೏ௌ೏ట೑ௌ೑ ൌ  Eq. (14)   ߟߙ

where ܵ ௗ and ܵ ௙ are the surface area of debris and feed material, respectively. ߰ௗ and ߰ ௙ are the 

sphericity shape factor of debris and feed particles, respectively. The ratio ܵௗ ௙ܵ൘  represents the 

relative shift in the surface area, i.e. 

 

ௌ೏ௌ೑ ൌ ௱ௌௌ஺ௌௌ஺బ      Eq. (15) 

where ܣܵܵ߂ is the specific surface area of debris. 

Therefore by converting the extent of breakage (gravimetric basis) to the relative shift in the 

surface area, we get 

ߙ ఘ೑ௗത೑ǡೡ௏మு௄೎మ ൈ ఘ೑ௗത೑ǡೡఘ೏ௗത೏ǡೡ ൈ ట೑ట೏ ൌ ௱ௌௌ஺ௌௌ஺ι    Eq. (16) 

The characterisation of the ratio of sphericity of feed material to debris requires extensive work. 

In the first instance this is considered as a constant. Hence Eq. (16) can be presented as below: 

ߚ ఘ೑ௗത೑ǡೡ௏మு௄೎మ ൈ ఘ೑ௗത೑ǡೡఘ೏ௗത೏ǡೡ ൌ ௱ௌௌ஺ௌௌ஺ι   Eq. (17) 
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where ߚ is a new proportionality factor corresponding to ߙ ట೑ట೏. 

The relative shift in the specific surface area can now be plotted as a function of 

௙ߩ ҧ݀௙ǡ௩ܸଶሺఘ೑ௗത೑ǡೡఘ೏ௗത೏ǡೡሻ for all the three test materials as shown in Figure 12. For crystalline solids, the 

envelope density is not expected to change as particles undergo size reduction, so ߩௗ ൌ  ௙. Itߩ

should be noted that for porous particles, such as the spray-dried particles analysed by Ali et al. 

(2015), this is not the case and the density ratio has to be evaluated. 

 

Figure 12. Shift in the specific surface area of aspirin, sucrose and lactose particles as a function of ࢊࢌ࣋ഥࢌǡࢂ࢜૛ሺࢊࢊ࢓ࢊ ሻ  
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data obtained by the single particle impact breakage method, provided interparticle interaction in 

the Scirocco disperser does not affect the rate of breakage. Furthermore, the intercept of each 

line gives the impact velocity for a given particle size below which the particles would not break. 

This provides a design rule for mitigating particle breakage in pneumatic conveying lines. 

6 Single particle impact breakage parameter 
 

Experiments have been carried out by various research workers in the past in which ܪߙ ௖ଶΤܭ  , the 

breakability index, of Eq. (12) has been determined from the slope of the line of ܴכ as a function 

of ߩ௙ ҧ݀௙ǡ௩ܸଶ(Ali et al., 2015). The material mechanical properties of aspirin, sucrose and Į-

lactose monohydrate have been obtained using the same approach. The most recent analysis is 

summarised in Table 1.  

 

Table 1. Material properties of aspirin, sucrose and Į-lactose monohydrate 

Material Density (kg/m3) ĮH/Kc
2 

Aspirin 1397 0.050 

Sucrose 1587 0.026 

Į-LM 1520 0.017 

 

The slopes of the two lines of particle breakage obtained by Scirocco testing and from single 

particle impact testing, as given in Figure 12 and Table 1, should be correlated as they both 
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reflect the impact damage. The larger they are, the easier the particles break. Therefore the ratio 

of the slopes for the same set of materials should be comparable. This is shown in Table 2. 

Table 2. The ratio of slopes for each two materials obtained from single particle impact testing and Scirocco testing 

Material 
Ratio of slopes from  

single particle impact testing 

Ratio of slopes from 

Scirocco testing ݊݅ݎ݅݌ݏܣ Τ݁ݏ݋ݎܿݑܵ ݁ݏ݋ݎܿݑܵ 2.0 1.9  Τ݁ݏ݋ݐܿܽܮ ݊݅ݎ݅݌ݏܣ 1.5 1.5  Τ݁ݏ݋ݐܿܽܮ  2.9 3.0 

 

In summary, a very good match is observed between the ratio of mechanical properties obtained 

by the Scirocco disperser and by the single particle impact tester. The ratios show the ease of 

breakability of one material compared to another. For instance, the ratio of the slopes for sucrose 

to Į-lactose monohydrate is 1.5, which shows that sucrose can be milled 1.5 times easier than Į-

lactose monohydrate. This information can be used to evaluate the grindability of different 

materials. Considering that the mass required to be tested in the Scirocco is very low, the method 

is attractive for cases where the sample supply is scarce, e.g. new active pharmaceutical 

ingredients in the pharmaceutical industry. 

 

7 Conclusions 

An experimental study of particle breakage integrated with a CFD analysis of particle impact in 

the Scirocco disperser has been carried out to evaluate its suitability as a grindability test device. 
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The impact velocities of three test materials, i.e. aspirin, sucrose and Į-lactose monohydrate, for 

a range of particle sizes have been calculated for eight nozzle pressures.  The impact velocity of 

particles increases almost linearly initially with increasing the nozzle pressure, but the rate of 

increase slows down at high pressures.  

The relative increase in the specific surface area of the particles, with respect to the initial value 

following impact in the Scirocco disperser, shows a linear dependence on ߩ௙ ҧ݀௙ǡ௩ܸଶሺௗത೑ǡೡௗത೏ǡೡሻ. The 

slope of the fitted line reflects the particle breakage propensity and correlates well with ߙ ܪ ௖ଶΤܭ , 

obtained by single particle impact testing. Therefore this method can be used to evaluate the 

grindability of powders and grains, provided the particle impact velocity is first determined. 
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Appendix 

 

 

Figure a1: Shift in size distribution of 400-425 ȝm of aspirin at different nozzle air pressures 

0

0.5

1

1.5

2

2.5

3

1 10 100 1000

P
ro

ba
bi

lit
y 

de
ns

it
y 

fu
nc

ti
on

 (
%

/ȝ
m

)

Particle size (um)

10 kPa (0.1 barg) 50 kPa (0.5 barg) 100 kPa (1 barg)

150 kPa (1.5 barg) 200 kPa (2 barg) 250 kPa (2.5 barg)

300 kPa (3 barg) 350 kPa (3.5 barg) 400 kPa (4 barg)



34 
 

 

 

Figure a2: Shift in size distribution of 600-630 ȝm of aspirin at different nozzle air pressures 

 

 

Figure a3: Shift in size distribution of 160-180 ȝm of sucrose at different nozzle air pressures 
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Figure a4: Shift in size distribution of 400-425 ȝm of sucrose at different nozzle air pressures 

 

Figure a5: Shift in size distribution of 600-630 ȝm of sucrose at different nozzle air pressures 
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Figure a6: Shift in size distribution of 80-90 ȝm of Į-lactose monohydrate at different nozzle air pressures 
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Figure a7: Shift in size distribution of 112-125 ȝm of Į-lactose monohydrate at different nozzle air pressures 
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Figure a8: Shift in size distribution of 160-180 ȝm of Į-lactose monohydrate at different nozzle air pressures 
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