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Abstract

Alternating-time Temporal Logic (ATL) is a logic to reason about strategies that
a set of agents can adopt to achieve a specified collective goal. ATL can also
be used to specify what agents can do in open systems, where they can interact
with their environment in many different ways.

A number of extensions for this logic exist; some of them combine strategies
and partial observability, some others include fairness constraints, but to the best
of our knowledge no work provides a unified framework for strategies, partial
observability and fairness constraints. Integration of these three concepts is of
particular importance when reasoning about the capabilities of agents that do
not have full knowledge of a system, for instance when the agents can assume
that the environment behaves in a fair way.

In this work we present ATLKirF , a logic combining strategies under partial
observability in a system with fairness constraints on states. We introduce a
model-checking algorithm for ATLKirF by extending the algorithm for a full-
observability variant of the logic and we investigate its complexity. We validate
our proposal with a detailed experimental evaluation, using an implementation
that we make publicly available.
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1. Introduction

Alternating-time Temporal Logic (ATL) is a logic for reasoning about the
strategies of a subset of agents in a system, and the goals they can achieve using
these strategies [1]. ATL can be used to reason about the capabilities of the
agents in an open system. ATL considers that the agents have full knowledge of
the system and its execution—that is, in every particular state of the system,
the agents know the full information about it. This hypothesis about the agents
is called full observability or perfect information. On the other hand, some logics
extending ATL allow to reason about agents that do not have the full knowledge
of the system; in any particular state of the system, the agents only see a part
of it. This situation is called partial observability or imperfect information.

Starting from [2], partial observability has been investigated by many authors,
see for instance [3] and references therein. For example, Jamroga and van der
Hoek proposed, among other logics, ATOL, combining partial observability with
strategies of agents [4]. Along the same lines, Schobbens studied ATLir [5], seen
as the minimal ATL-based logic for strategies under partial observability [6].

Furthermore, some efforts have been made on bringing fairness to ATL. For
instance, the work of Alur et al. [1], or the work of Klüppelholz and Baier [7]
introduce the notion of fairness constraints in ATL. But, to the best of our knowl-
edge, no work provides a unified framework for strategies, partial observability
and fairness constraints.

This paper proposes ATLKirF , a logic for reasoning about strategies under
partial observability and epistemic properties of agents in a system with uncondi-
tional fairness constraints on states ; these fairness constraints are unconditional
because they ask states to appear infinitely often, without condition (compared
to strong and weak fairness constraints, that ask for states to appear infinitely
often if other states appear). This paper also presents ATLKIrF , a variant of
ATLKirF with full observability and fairness constraints. Furthermore, this
paper provides model-checking algorithms for both logics.

ATLKIrF and ATLKirF have been named by following the notations of
ATLir. Indeed, the subscripts ir of ATLir means imperfect information for the i,
compared to I standing for perfect information or full observability, and imperfect
recall for the r, compared to R for full recall or memory-full strategies. ATLKIrF

has the subscripts for perfect information (or full observability), imperfect recall,
and F has been added for fairness. Similarly, ATLKirF has the subscripts for
imperfect information, imperfect recall, and fairness.

Furthermore, ATLKirF is restricted to memoryless strategies. Other cases
could be considered; nevertheless, it has been shown that checking the existence
of memory-full strategies with partial observability is undecidable [8]. Also,
reasoning about strategies with bounded memory can be reduced to reasoning
about memoryless strategies in a derived model in which the memory of the
agents is encoded in the states of the model (see [5, 4] for more information). So,
restricting to memoryless strategies keeps the model-checking problem decidable,
while still allowing more general strategies—i.e. bounded-memory strategies—to
be handled.
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While some other extensions of ATL—such as ATOL or CSL [4, 3]—are
rich enough to speak about all kinds of observability capabilities of the agents,
ATLKirF focuses only on one kind of observability. Nevertheless, the general
principles presented in this paper also apply to other variants and the logic could
be easily modified to reason about other kinds of observability capabilities. Some
variations of ATLKirF are discussed in Section 6.

To motivate the need for fairness constraints in ATL under partial observabil-
ity, consider the simple card game example in [4]. The game is played between a
player and a dealer. It uses three cards, A, K and Q; A wins over K, K wins
over Q and Q wins over A. First, the dealer gives one card to the player, keeps
one and leaves the last one on table, face down. Then the player can keep his
card or swap it with the one on the table. The player wins if his card wins over
the dealer’s card. Figure 1 presents the graph of the game, where the dealer first
chooses both cards, then the player can keep his card or swap it with the third
one.

−,−

Q,K

fc1

A,K

fc2

A,Q

fc3

K,Q

fc4

K,A

fc5

Q,A

fc6

Q,K A,K A,Q K,Q K,A Q,A

−,−

player player

player

Figure 1: The graph of the card game. Circles are states, with pairs of cards (K,A means
player has K, dealer has A). Arrows are transitions (actions of both agents are easily infered).
The waved edges link states that are indistinguishable for the player. Fairness constraints fci
label the intermediate states.

First of all, if the player has full observability, he knows the card of the
dealer and thus knows what to do (keeping his card or swapping with the one on
table) to win the game. On the other hand, ATLir considers uniform strategies.
Such strategies choose the same action in all states that are indistinguishable for
the agents. Under ATLir semantics, we say that a group of agents can enforce
a goal if they have a uniform strategy such that all executions following this
strategy satisfy the goal. For example, in the card game, a uniform strategy
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for the player will choose to keep K and A and to change when he has Q. It
cannot, however, choose a different action when the player has K but the dealer
has different cards, because the player does not see the dealer’s card until the
end of the game. Under ATLir, the player has no winning uniform strategy: he
cannot distinguish between, for example, 〈A,K〉 and 〈A,Q〉 (where 〈a, b〉 means
“player has card a, dealer has card b”) and thus has to make the same action in
both states, with a different result in each case.

Consider now a variation of this game: the game does not terminate after the
first round. Instead, cards are redistributed at the end of the game. In this case,
too, the player has no eventually winning strategy, even after an infinite number
of plays: for instance, he will have to choose between keeping or swapping cards
in 〈A,K〉 and 〈A,Q〉, so he will not be able to enforce a win because the dealer
(that chooses the given cards) can be unfair and always give the losing pair.
But if we add one fairness constraint per intermediate state—that is, the states
where the dealer has just dealt the cards—the player has a strategy to eventually
win the game. In this case, we only consider paths along which all fairness
constraints are met infinitely often: this situation corresponds to a fair dealer,
giving all the possible pairs infinitely often. The player can thus eventually win
because 〈A,K〉 will eventually happen—even if he cannot distinguish it from
〈A,Q〉—, so he knows a strategy to eventually win a round: keeping his card.
In fact, in this particular system, any strategy of the player wins since all the
situations have to eventually happen.

Another example of application of fairness constraints in ATL under partial
observability is Multi-Agent Programs [9]. These programs are composed of
concurrent agent programs and fairness constraints are used to avoid unfair sched-
ules. Dastani and Jamroga express fairness as formulas of the logic EATL+

p [9],
a variant of ATL∗ for multi-agent programs that restricts the objectives of
coalitions of programs to Boolean combinations of temporal operators. The
present paper, instead, deals only with ATL and therefore fairness constraints
cannot be expressed as formulas of the logic. By adding fairness constraints
to only consider executions along which the scheduler allows all programs to
run infinitely often, ATLKirF allows the user to reason about the strategies
of these programs under fair schedules. The situation is similar to the case of
LTL versus CTL model checking: in the first case, model checking fairness is
reduced to model checking a more complex formula using the same verification
algorithms; in the second case fairness is incorporated into bespoke verification
algorithms. The advantage of restricting the logic to ATL, that is, to objectives
restricted to single temporal operators, lies in the complexity of model checking
the logic. Indeed, EATL+

p has been shown to be ∆P
3 -complete, while the logic

this paper proposes is only ∆P
2 -complete3.

Other works such as the original ATL paper [1] and the work of Klüppelholz
and Baier [7] introduce fairness constraints on actions, asking for an infinitely

3A ∆P

2
-complete problem needs a polynomial number of calls to a NP oracle (∆P

2
= PNP );

a ∆P

3
-complete problem needs a polynomial number of calls to a Σ2P oracle (∆P

3
= PNP

NP

).
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often enabled action to be taken infinitely often. On the other hand, for CTL
and derived branching logics such as epistemic logics, fairness constraints are
commonly provided on states [10]; this kind of fairness constraints allows the
user to model, for example, a lossy channel that would not lose all the messages
and would actually send the messages infinitely often. Furthermore, it has been
shown that (weak, strong or unconditional) fairness constraints on actions can be
reduced to (weak, strong or unconditional, respectively) fairness constraints on
states getting a penalty on the number of states of the system (see [11, Chapter
5], for instance). ATLKirF combines CTL operators with ATL ones and it is
thus natural to speak about fairness constraints on states in this framework.

The rest of the paper is structured as follows: Section 2 presents the syntax
and semantics of our logics. Section 3 and Section 4 present algorithms for
model checking these logics. Section 5 studies the complexity of the two model-
checking problems. Section 6 discusses some issues and limitations of both logics
and Section 7 describes implementation details and presents some experiments.
Section 8 discusses the recent related work. Finally, Section 9 summarizes the
contribution and draws some future work.

2. Syntax and Semantics

This section presents the syntax and semantics of ATLKIrF and ATLKirF ,
two extensions of ATL with full and partial observability, respectively, under
fairness constraints on states.

2.1. Syntax

Both logics share the same syntax, following this grammar:

φ ::= true | p | ¬φ | φ ∨ φ | Eψ | 〈Γ〉ψ | Kiφ | EΓφ | DΓφ | CΓφ

ψ ::= Xφ | φ U φ | φ W φ

where p is an atomic proposition of a set AP , Γ is a subset of a set of agents Ag,
i is an agent of Ag.

Other operators can be defined in terms of these ones:

false ≡ ¬true

φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2)

φ1 =⇒ φ2 ≡ ¬φ1 ∨ φ2

φ1 ⇐⇒ φ2 ≡ (φ1 =⇒ φ2) ∧ (φ2 =⇒ φ1)

Aψ ≡ ¬E¬ψ

[Γ]ψ ≡ ¬〈Γ〉¬ψ

Fφ ≡ true U φ

Gφ ≡ φ W false
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In particular,

¬〈Γ〉φ1Uφ2 ≡ [Γ](¬φ2)W (¬φ1 ∧ ¬φ2)

¬〈Γ〉φ1Wφ2 ≡ [Γ](¬φ2)U(¬φ1 ∧ ¬φ2).

The logics combine temporal operators (EX, AF , EG, etc.) from CTL [12,
Chapter 3], standard knowledge operators (Ki, EΓ, DΓ, CΓ) [13] and strategic
operators (〈Γ〉X, [Γ]G, etc.) from ATL [1].

Intuitively, the Eψ CTL path quantifier says that there exists a path satisfying
the path formula ψ. A path satisfies Xφ if its second state satisfies φ. A path
satisfies φ1 U φ2 if φ1 is true along the path until φ2 is true, and φ2 is eventually
true. Similarly, a path satisfies φ1 W φ2 if φ1 is true until φ2 is true, but φ2
does not have to be eventually true.

Furthermore, a state s satisfies Kiφ if the agent i knows that φ is true in s.
s satisfies DΓφ if, by sharing their knowledge of s, the agents of Γ know that φ
is true. s satisfies EΓφ if all the agents of Γ know that φ is true, independently.
s satisfies CΓφ if φ is common knowledge among agents of Γ [13].

Finally, a state s satisfies 〈Γ〉ψ if Γ have a strategy in s such that all paths
enforced by the strategy satisfy ψ.

Note that, unlike for CTL, the path operator W (Weak until) is needed for
expressing the dual operator for 〈Γ〉φ1Uφ2 [14]. Furthermore, the standard Gφ
path operator can be expressed as φ W false. We can thus limit ourselves to
the minimal set of path operators composed of X, U and W .

2.2. Models and notation

ATLKIrF and ATLKirF formulas are interpreted over models

M = 〈Ag, S,Act, T, I, {∼i}i∈Ag, V, FC〉 (1)

where

• Ag is a set of n agents;

• S ⊆ S1 × ...× Sn is a set of global states. Each global state s is composed
of n local states s1, . . . , sn, one for each agent;

• Act ⊆ Act1 × ...×Actn is a set of joint actions, each of which is composed
of n actions, one for each agent. We call a partially joint action an element
aΓ of ActΓ =

∏

i∈ΓActi, for Γ ⊆ Ag;

• T ⊆ S ×Act× S is a transition relation between states in S labelled with
joint actions (we write s

a
−→ s′ for (s, a, s′) ∈ T ). We define the function

img : S × Act → 2S as img(s, a) = {s′ ∈ S|s
a
−→ s′}, that is, img(s, a) is

the set of states reached in one step from s through a;

• I ⊆ S is the a set of initial states;
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• {∼i}i∈Ag is a set of equivalence relations between states, one for each agent
i ∈ Ag. ∼i partitions the set of states in terms of knowledge of agent i.
s ∼i s

′ iff si = s′i, that is, two states are indistinguishable for agent i if
they share the same local state for i;

• V : S → 2AP labels states with atomic propositions of AP ;

• FC ⊆ 2S is a set of fairness constraints, each of which is a set of states.

Given a set of agents Γ ⊆ Ag, ∼Γ=
⋂

i∈Γ ∼i is called the distributed knowledge
relation;∼EΓ=

⋃

i∈Γ ∼i is called the everyone knows or group knowledge relation;
∼CΓ is the transitive closure of the relation ∼EΓ and is called the common knowledge
relation. Intuitively, s ∼Γ s

′ if no one in Γ can distinguish s and s′ and s ∼EΓ s′

if someone in Γ cannot distinguish s and s′.
A joint action a = (a1, ..., an) completes a partially joint action aΓ =

(a′i, ..., a
′
j) composed of actions of agents in Γ ⊆ Ag—written aΓ ⊑ a—if the

actions in a for agents in Γ correspond to the actions in aΓ. Given two disjoint
subsets of agents Γ and Γ′, and two partially joint actions aΓ = (ai, ..., aj) and
a′Γ′ = (a′k, ..., a

′
l) for Γ and Γ′ respectively, aΓ ⊔ a′Γ′ is the (partially) joint action

composed of the actions of both joint actions aΓ and a′Γ′ .
We define the function

enabled(s,Γ) = {aΓ ∈ ActΓ|∃s
′ ∈ S, a ∈ Act s.t. aΓ ⊑ a ∧ s

a
−→ s′}, (2)

returning the set of partially joint actions for the group of agents Γ that can be
played by them in s. We also write enabled(s, i), where i is a single agent, for
enabled(s, {i}).

A model M represents a non-deterministic system where each agent has
imperfect information about the current global state. A first restriction is made
on T :

∀s ∈ S, enabled(s,Ag) =
∏

i∈Ag

enabled(s, i), (3)

that is, in every state, the choices of actions for each agent is not constrained by
the choices of other agents. Another restriction made on T is

∀s, s′ ∈ S, s ∼i s
′ =⇒ enabled(s, i) = enabled(s′, i). (4)

This means that the actions an agent can perform in two epistemically equivalent
states are the same. These two restrictions ensure that an agent needs only his
own knowledge of the current state to choose his action, and he will be able to
choose his action, whatever the others choose.

A path in a model M is a sequence π = s0
a1−→ s1

a2−→ ... such that
(si, ai+1, si+1) ∈ T for all i ≤ 0. We use π(d) for sd. A state s is reach-
able in M if there exist a path π and d ≥ 0 such that π(0) ∈ I and π(d) = s.
A path π is fair according to a set of fairness conditions FC = {fc1, ..., fck} if
for each fairness condition fc, there exist infinitely many positions d ≥ 0 such

7



that π(d) ∈ fc. A state s is fair if there exists a fair path starting at s. A fair
reachable state is thus a state belonging to a fair path starting at an initial state.

A memory-full strategy for a group of agents Γ is a function fΓ : S+ → ActΓ
where, for any path prefix π = s0...sm, fΓ(π) ∈ enabled(sm,Γ); a memory-full
strategy maps the sequence of visited states to an enabled action for Γ. A
memoryless strategy for a group of agents Γ is a memory-full strategy fΓ such
that, for any two path prefixes π = s0...sm and π′ = s′0...s

′
m′ , fΓ(π) = fΓ(π

′) if
sm = s′m′ ; that is, a memoryless strategy only needs to know the current state
to produce the next action, and can be viewed as a function fΓ : S → ActΓ. A
memoryless uniform strategy for the group Γ—abbreviated as uniform strategy
for Γ in the sequel—is a memoryless strategy fΓ where ∀s, s′ ∈ S, s′ ∼Γ s =⇒
fΓ(s) = fΓ(s

′), that is, the group cannot choose two different actions for two
indistinguishable states. Intuitively, a strategy is uniform for Γ if Γ can effectively
run it, that is, in every state, Γ only need to share their knowledge of the current
global state to know which action to choose. In the sequel, we mainly speak
about memoryless uniform strategies.

The strategy outcomes from a state s for a strategy fΓ, denoted with out(s, fΓ),

is the set of paths a strategy can reach, that is, out(s, fΓ) = {π = s0
a1−→ s1...|s0 =

s ∧ ∀d ≥ 0, sd+1 ∈ img(sd, ad+1) ∧ fΓ(s0...sd) ⊑ ad+1}.
Note that the models described above are a generalization of standard ATL

and ATLir models, namely (imperfect information) concurrent game structures
((i)CGS in short) [1, 5]. First, fairness constraints are added to the model to
specify which paths are fair. Second, our models describe a non-deterministic
transition relation: for a state and a joint action, there can be several successors.
On the contrary, (i)CGS are described such that the transition relation is
deterministic, that is, for any given state and joint action, there is at most one
successor.

This generalization to non-deterministic transition relations does not add
expressivity to the models. It is possible to transform any non-deterministic
model into a deterministic one by adding a new agent to the model responsible
for breaking the non-determinism when needed. More precisely, we can add a
new agent ND and update the transition relation such that, for any given state
s and partially joint action aAg\ND (for all agents except ND), ND can choose
a different action for each possible successor of s through aAg\ND. In this way,
for any given state and joint action, there is only one successor; the model thus
becomes deterministic and is equivalent to an (i)CGS.

The determinization of models is illustrated in Figure 2. The model—shown
in Figure 2(a)—is composed of one agent and four states. The transition
relation is non-deterministic because the top state has two successors through
the joint action (1). Figure 2(b) shows the determinized model: a new agent is
added (showed by new actions on the transitions), and for every previously non-
deterministic transition, the action of the new agent breaks the non-determinism.
In this determinized model, the transition from the top state through action 1
of the first agent is not non-deterministic anymore. Note that we need to extend
action (0) with two new actions as well to keep the constraint on the model
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given in Equation 3, that is, the set of enabled joint actions in any state (in this
case, the top state) is the cartesian product of the sets of each agent’s enabled
actions.

(1)

(0)

(1)

(a) Non-deterministic model

(1, 0)

(0, 0)
(0, 1)

(1, 1)

(b) Determinized model

Figure 2: Determinizing a non-deterministic model with one agent. Vertices are states; edges
are transitions, labelled with joint actions.

On the other hand, while this generalization to non-deterministic transition
relations adds no expressivity to the model, it can be used to abstract away
agents of a system. For example, the scheduler of a multi-agent program can be
modeled as part of the non-deterministic environment. Another application is
the case of lossy communication channels: using non-deterministic transitions,
the lossy channels do not have to be defined as different agents, and the fact
that a message sent on a channel is lost or not is non-deterministically handled
by the environment.

2.3. Semantics

The semantics of both logics are defined over states of a model M by the rela-
tions M, s |=IrF φ and M, s |=irF φ, for ATLKIrF and ATLKirF , respectively.
M is omitted when clear from the context.

Both relations share a part of their definition; we write s |=rF φ when
s |=IrF φ and s |=irF φ are defined in the same way. The relations s |=IrF φ and
s |=irF φ are recursively defined over the structure of φ and follow the standard
interpretation for most of the operators:

s |=rF true

s |=rF p⇔ p ∈ V (s)

s |=rF ¬φ⇔ s 6|=rF φ

s |=rF φ1 ∨ φ2 ⇔ s |=rF φ1 or s |=rF φ2

s |=rF Eψ ⇔ there exists a fair path π such that π(0) = s and π |=rF ψ

s |=rF Kiφ⇔ s′ |=rF φ for all s′ s.t. s ∼i s
′ and s′ is a fair reachable state

s |=rF DΓφ⇔ s′ |=rF φ for all s′ s.t. s ∼Γ s
′ and s′ is a fair reachable state

s |=rF EΓφ⇔ s′ |=rF φ for all s′ s.t. s ∼EΓ s′ and s′ is a fair reachable state

s |=rF CΓφ⇔ s′ |=rF φ for all s′ s.t. s ∼CΓ s′ and s′ is a fair reachable state.
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The relation π |=rF ψ over paths π of the model is defined as:

π |=rF Xφ⇔ π(1) |=rF φ

π |=rF φ1Uφ2 ⇔
there exists d ≥ 0 such that π(d) |=rF φ2
and for all e < d, π(e) |=rF φ1

π |=rF φ1Wφ2 ⇔
there exists d ≥ 0 such that π(d) |=rF φ2
and for all e < d, π(e) |=rF φ1,
or for all d ≥ 0, π(d) |=rF φ1.

The meaning of the 〈Γ〉 operator is different in the two semantics:

s |=IrF 〈Γ〉ψ ⇔
there exists a memoryless strategy fΓ for Γ,
such that for all fair paths π ∈ out(s, fΓ), π |=IrF ψ;

s |=irF 〈Γ〉ψ ⇔
there exists a uniform strategy fΓ for Γ,
such that for all s′ ∼Γ s,
for all fair paths π ∈ out(s′, fΓ), π |=irF ψ.

The first semantics can be viewed, in the case of strategic operators, as a
particular case of the second one where the equivalence relation used for uniform
strategies distinguishes all states. The first semantics allows Γ to know everything
about the system when choosing and playing their strategies, while the second
one restricts them to knowledge they effectively have.

Intuitively, both semantics say that s satisfies 〈Γ〉ψ if agents in Γ have a
collective strategy—that is, a choice of a Γ partially joint action in every state—
such that, whatever the action of the other agents is, the objective ψ will be
satisfied by all the resulting fair paths. The main difference with the standard
ATL semantics is the fact that only fair paths are considered. We can understand
it the following way: s satisfies 〈Γ〉ψ if Γ have a strategy to enforce ψ, assuming
all other agents will act fairly, that is, the other agents only follow fair paths. For
example, in the case of multi-agent programs, s satisfies 〈Γ〉ψ if the programs in
Γ have a strategy to enforce ψ, assuming that the scheduler—modeled as another
agent of the system, or as the environment—is fair, that is, each program will
run infinitely often.

Furthermore, ATLKirF compares to ATLKIrF like ATLir compares to
vanilla ATL: ATLKirF restricts Γ to only use strategies that they can effectively
apply, according to their (shared) knowledge of the system [5]. This notion of
applicable strategies is out of the scope of this paper and is further discussed
in [4].

The proposed semantics for ATLKirF considers the group of agents Γ as
a single agent (by using the distributed knowledge relation), regarding the
uniformity of strategies, as well as the equivalence of starting points of these
strategies. Intuitively, this semantics captures the cases where all the agents
of Γ gather to decide about the possible strategies to win (thus, sharing their
knowledge of the current state), and then stay together to actually play the
chosen strategy (that is, sharing their knowledge of the visited states along the
reached paths). We can also understand this semantics as the agents of Γ being
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controlled by a unique controller, able to use their distributed knowledge to gain
more information about the current state of the system. The implicit universal
quantification over all Γ-indistinguishable starting states captures the fact that
the agents of Γ know that they have a uniform strategy to win; together with
the restriction to uniform strategies, this amounts to reasoning about strategies
that Γ can effectively play, as exposed by Jamroga and van der Hoek in [4]. The
fact that Γ is considered as a single agent is further discussed in Section 6.2.

Note that the restriction to memoryless strategies in both semantics is strong.
Nevertheless, it is necessary in the case of partial observability: it has been
shown that the problem of the existence of a memory-full uniform strategy under
partial observability is undecidable [8]. On the other hand, the restriction to
memoryless strategies in the case of full observability is not an actual restriction:
Section 3.3 will show that there exists a winning memoryless strategy if and only
if there exists a winning memory-full one. We express the semantics in terms of
memoryless strategies for the sake of homogeneity with the partial observability
case.

There are redundancies between the temporal and the strategic operators.
The formula Eψ can be expressed in vanilla ATL as [∅]ψ: there is a path satisfying
ψ if the empty set of agents cannot avoid ψ, that is, all the agents can cooperate
to lead to at least one path satisfying ψ [1]. Similarly, Aψ can be expressed as
〈∅〉ψ, that is, all paths satisfy ψ if, whatever all agents do, ψ is enforced. The
same equivalences apply under ATLKIrF and ATLKirF . Nevertheless, both
kinds of operators are kept in the logics to clearly separate operators about the
pure execution of the model (the temporal ones) and operators speaking about
strategies (the strategic ones). Furthermore the model-checking algorithms for
ATLKirF presented in this paper are clearly more efficient when dealing with
temporal operators than with strategic ones.

Because we deal with non-deterministic models with fairness constraints (see
Section 2.2), some equivalences that exist in ATL are not kept: Aψ 6≡ [Ag]ψ
and Eψ 6≡ 〈Ag〉ψ. These equivalences are broken because of non-determinism,
but also because of fairness constraints. Let us illustrate this with two examples.

The first example is given in Figure 3. This model is composed of one agent
and the transition relation is non-deterministic because, in the top state, the
joint action (1) leads to two successors. In this top state, the property EX p is
true, because there is a successor where p is true. But the property 〈Ag〉X p

is not true because the (single) agent has no strategy to enforce that the next
states satisfy p: playing action 1 may lead to either successor, and p is false
in the right one. Dually, the top state does not satisfy AX p, but it satisfies
[Ag]X p.

The second example is given in Figure 4. In this case, the model contains
no fair path since the right state can be visited at most once. In the top state
of this model, the property EX p is trivially false because there is no fair path
(at all) satisfying X p; on the other hand, the property 〈Ag〉X p is vacuously
true because Ag has a strategy such that all fair paths (there are none) satisfy
X p. Dually, the top state satisfies AX p, but it does not satisfy [Ag]X p. Note
that this case is due to an ill-defined model containing no fair path, and this
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p ¬p

(1) (1)

(1) (1)

Figure 3: A model with one agent where the equivalences Aψ 6≡ [Ag]ψ and Eψ 6≡ 〈Ag〉ψ are
broken due to non-determinism. Vertices are states, labelled with propositions true in this
state; edges are transitions, labelled with joint actions. The bold states belong to the (single)
fairness constraint of the model (all paths are fair).

should be avoided in meaningful models. The problem of vacuous strategies will
be further discussed in Section 6.3.

¬p p

(1) (1)

(1)

(1)

Figure 4: A model with one agent where the equivalences Aψ 6≡ [Ag]ψ and Eψ 6≡ 〈Ag〉ψ are
broken due to presence of fairness constraints. Vertices are states, labelled with propositions
true in this state; edges are transitions, labelled with joint actions. The bold state belongs to
the (single) fairness constraint of the model.

3. Model Checking Strategies under Full Observability

This section presents a model-checking algorithm for ATLKIrF and a proof
of correctness for this algorithm. We first present the algorithm for the variant
with full observability because the model-checking algorithm for the variant with
partial observability is based on this one.

3.1. A model-checking algorithm using fixpoint computations

The proposed model-checking algorithm for ATLKIrF is defined by the
function evalIrF : ATLKIrF → 2S returning the set of states of a given (implicit)
model M satisfying a given ATLKIrF property. This function is defined in
the standard way for Boolean connectors, CTL [12, Chapter 6] and knowledge
operators [15].
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The evaluation for strategic operators relies on functions Pre[.] : 2
Ag × 2S →

2S and Reach[.] : 2
Ag × 2S × 2S → 2S defined as

Pre[Γ](Z) = {s|∀aΓ ∈ enabled(s,Γ), ∃a s.t. aΓ ⊑ a ∧ img(s, a) ∩ Z 6= ∅}, (5)

Reach[Γ](P1, P2) = µY.P2 ∪ (P1 ∩ Pre[Γ](Y )). (6)

Intuitively, Pre[Γ](Z) returns the set of states in which Γ cannot avoid to
reach a state of Z in one step; that is, the set of states in which, whatever Γ
do, the other agents have a way to potentially reach Z by choosing the right
action. Furthermore, Reach[Γ](P1, P2) returns the set of states from which Γ
cannot avoid a finite path to a state of P2 through states of P1.

The [Γ] operators are evaluated as follows:

evalIrF ([Γ]Xφ) = Pre[Γ]
(

evalIrF (φ) ∩ Fair[Γ]
)

(7)

evalIrF ([Γ]φ1Uφ2) = Reach[Γ]
(

Φ1,Φ2,F

)

(8)

evalIrF ([Γ]φ1Wφ2) =

νZ.Φ2,F ∪

(

Φ1 ∩
⋂

fc∈FC

Pre[Γ]

(

Reach[Γ]
(

Φ1,Φ2,F ∪ (Z ∩ fc)
)

)

)

(9)

where

Φ1 = evalIrF (φ1), (10)

Φ2,F = evalIrF (φ2) ∩ Fair[Γ], (11)

Fair[Γ] = νZ.
⋂

fc∈FC

Pre[Γ]
(

Reach[Γ](S,Z ∩ fc)
)

. (12)

µZ.τ(Z) and νZ.τ(Z) are the least and greatest fixpoints of function τ(Z).
Note that all functions τ involved in the fixpoint computations are monotonic;
since S is finite, then

µY.τ(Y ) =
⋃

i

τ i(∅) = τ∞(∅) (13)

νY.τ(Y ) =
⋂

i

τ i(S) = τ∞(S), (14)

where τ i+1(Z) = τ(τ i(Z)) and τ0(Z) = Z [12, Chapter 6].
The other [Γ] and 〈Γ〉 operators are expressible thanks to the ones above and

the ¬ operator (see Section 2.1).
Intuitively, Fair[Γ] returns the set of states in which Γ cannot avoid a path

going through all fairness constraints infinitely often, that is, a fair path. We
say that s is Γ-fair if s ∈ Fair[Γ].

evalIrF ([Γ]Xφ) is the set of states from which Γ cannot avoid a Γ-fair
successor satisfying φ. evalIrF ([Γ]φ1Uφ2) is the set of states from which Γ
cannot avoid to reach a Γ-fair state satisfying φ2 through states satisfying φ1.
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evalIrF ([Γ]φ1Wφ2) is the set of states from which Γ cannot avoid a path of
states satisfying φ1 and going through all fc ∈ FC infinitely often, or a path of
states satisfying φ1 until a Γ-fair state satisfying φ2 is reached.

Note that the 〈Γ〉 operators can be evaluated using the [Γ] and ¬ operators,
but can also be computed directly using the dual forms of the ones above. More
precisely, let

Pre〈Γ〉(Z) = Pre[Γ](Z)
= {s|∃aΓ ∈ enabled(s,Γ) s.t. ∀a, aΓ ⊑ a =⇒ img(s, a) ⊆ Z}

(15)

be the dual of the Pre[Γ] function returning the set of states in which Γ can
surely reach Z in one step, and

NFair〈Γ〉 = Fair[Γ] = µZ.
⋃

fc∈FC

Pre〈Γ〉
(

νY.(Z ∪ fc) ∩ Pre〈Γ〉(Y )
)

(16)

be the set of states in which Γ can avoid fair paths. Using these two new
functions, the direct computation of 〈Γ〉 operators can be written as

evalIrF (〈Γ〉Xφ) = Pre〈Γ〉
(

evalIrF (φ) ∪NFair〈Γ〉
)

(17)

evalIrF (〈Γ〉φ1Uφ2) =

µZ.Φ1,2,N ∩

(

Φ2 ∪
⋃

fc∈FC

Pre〈Γ〉

(

νY.Φ1,2,N ∩ (Z ∪ fc) ∩
(

Φ2 ∪ Pre〈Γ〉(Y )
)

)

)

(18)

evalIrF (〈Γ〉φ1Wφ2) = νZ.Φ1,2,N ∩
(

Φ2 ∪ Pre〈Γ〉(Z)
)

(19)

where

Φ2 = evalIrF (φ2), (20)

Φ1,2,N = evalIrF (φ1) ∪ evalIrF (φ2) ∪NFair〈Γ〉. (21)

3.2. Correctness of the algorithm

This section proves the correctness of the model-checking algorithm presented
in the previous section, that is, it proves that for any state s of a given (implicit)
model M and any ATLKIrF formula φ,

s ∈ evalIrF (φ) iff s |=IrF φ. (22)

The proof is composed of two parts: this section proves that the algorithm
effectively computes the set of states in which Γ have a memory-full strategy to
win. The next section proves that Γ have a memory-full strategy to win if and
only if they have a memoryless one. For this latter part, we use game theory
results to show that our objectives do not need memory to be won.
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In the sequel, we say that Γ cannot avoid x if for any strategy fΓ, x can
happen. For example, Γ cannot avoid a fair path satisfying Fφ in s if for any
strategy fΓ, there exists a fair path π ∈ out(s, fΓ) satisfying Fφ.

Before proving the correctness of the algorithm for the different strategic
operators, we need to show some intermediate results.

Lemma 1. Reach[Γ](P1, P2) computes the set of states in which Γ cannot avoid
a finite path of states of P1 to a state of P2.

Proof. We can prove this lemma by induction over the computation of the least
fixpoint of function τ(Y ) = P2∪ (P1∩Pre[Γ](Y )). Indeed, it is easy to show that
τ i(∅) computes the set of states in which Γ cannot avoid a finite path of length
at most i− 1 of states of P1 to a state of P2. Thus, in s ∈ τ∞(∅), Γ cannot avoid
to reach P2 through P1 in a finite number of steps.

Lemma 2. Fair[Γ] computes the set of states in which Γ cannot avoid a fair
path.

Proof. We can prove this lemma by induction over the computation of the greatest
fixpoint of function τ(Z) =

⋂

fc∈FC Pre[Γ](Reach[Γ](S,Z ∩ fc)). Indeed, it is

easy to show that τ i(S) computes the set of states in which Γ cannot avoid to
reach any fairness condition fc ∈ FC at least i times, in at least one step. Thus,
in s ∈ τ∞(S), Γ cannot avoid to visit any fc ∈ FC infinitely many times, that
is, Γ cannot avoid a fair path.

We can now prove the correctness of the algorithm for the three strategic
operators [Γ]Xφ, [Γ]φ1Uφ2 and [Γ]φ1Wφ2.

Lemma 3. evalIrF ([Γ]Xφ) returns the set of states s of M in which for any
memory-full strategy fΓ for Γ, there exists a fair path π ∈ out(s, fΓ) such that
π |= Xφ.

Proof. The proof is trivial by definition of Pre[.] and Lemma 2.

Lemma 4. evalIrF ([Γ]φ1Uφ2) returns the set of states s of M in which for any
memory-full strategy fΓ for Γ, there exists a fair path π ∈ out(s, fΓ) such that
π |= φ1Uφ2.

Proof. evalIrF ([Γ]φ1Uφ2) computes the set of states in which Γ cannot avoid
a finite path through states satisfying φ1 to a Γ-fair state satisfying φ2, by
Lemma 1.

Lemma 5. evalIrF ([Γ]φ1Wφ2) returns the set of states s of M in which for
any memory-full strategy fΓ for Γ, there exists a fair path π ∈ out(s, fΓ) such
that π |= φ1Wφ2.

15



Proof. We can prove this lemma by induction over the computation of the
greatest fixpoint of function

τ(Z) =
(evalIrF (φ2) ∩ Fair[Γ]) ∪ (evalIrF (φ1) ∩
⋂

fc∈FC Pre[Γ](Reach(
evalIrF (φ1),
(evalIrF (φ2) ∩ Fair[Γ]) ∪ (Z ∩ fc)

))).
(23)

Indeed, it is easy to show that τ i(S) computes the set of states in which Γ
cannot avoid to reach a Γ-fair state satisfying φ2 through states satisfying φ1,
or in which Γ cannot avoid to visit any fairness condition fc ∈ FC at least i
times through states satisfying φ1, in at least one step. Thus, if s ∈ τ∞(S), Γ
cannot avoid to reach either a Γ-fair state satisfying φ2, or to visit any fc ∈ FC

infinitely many times, through states satisfying φ1, thus Γ cannot avoid a fair
path satisfying φ1Uφ2 or a fair path satisfying Gφ1, that is, they cannot avoid a
fair path satisfying φ1Wφ2.

Lemmas 3, 4 and 5 can be now combined into Theorem 6 saying that the
algorithm is correct regarding the existence of memory-full strategies winning
the objectives.

Theorem 6. Let s be the state of a model M and ψ be an ATLKIrF path
formula, s ∈ evalIrF (〈Γ〉ψ) iff, in s, Γ have a memory-full strategy fΓ such
that all fair paths π ∈ out(s, fΓ) satisfy ψ.

Proof. The proof directly follows from Lemmas 3, 4 and 5 and the equivalence
[Γ]ψ ≡ ¬〈Γ〉¬ψ.

Theorem 6 says that the proposed model-checking algorithm effectively
computes, for strategic operators, the set of states in which Γ have a memory-

full strategy to win. Nothing in the computation or in the proof restricts Γ
to always play the same action in any given state. But ATLKIrF is about
memoryless strategies. The next section shows that there is a memory-full
strategy to win iff there is a memoryless one, ending the proof of correctness.

3.3. ATLKIrF and memoryless strategies

This section gives the outline of the proof that the model-checking algorithm
presented in Section 3.1 is correct according to the existence of winning memo-
ryless strategies, that is, it effectively computes the set of states in which Γ have
a memoryless strategy to win. To show that, we use results from game theory
about memory of strategies for different objectives. The full proof is available in
Appendix A. This full proof uses results from the work of E. Grädel [16] and W.
Thomas [17], and gets inspiration from results presented in [18].

First, given a model and a strategic ATLKIrF property 〈Γ〉ψ, we can build a
two-player, turn-based game such that a state of the model satisfies the property
if and only if the corresponding state of the game is winning for the player
corresponding to Γ. Intuitively, Γ is mapped to the first player 0 and Γ is
mapped to the second player 1. Furthermore, for each action aΓ of Γ enabled
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in a state s, a new state saΓ for 1 is created, representing the fact that Γ chose
the corresponding action; in these states for 1, Γ can then choose the next state.
This mapping is illustrated in Figure 5.

(1, 1)

(0, 1)

(0, 0) (0, 1)

(0, 0)

(a) A model

1

1

0 0

0

1 0

1

0

(b) The corresponding game graph

Figure 5: A model and its corresponding game graph. Γ is the first agent, Γ is the second one.
Vertices are states; circles in the game graph are player 0 states, squares are player 1 states;
edges are transitions, labelled with actions (for clarity, in the game graph).

On the other hand, the ATLKIrF property is translated into an objective
for the corresponding two-player turn-based game, and we can show that, to a
strategy for 0 winning the objective on the game, there corresponds a strategy
for Γ in the original model. Indeed, whenever the player 0 chooses a successor in
the game, there exists a corresponding action in the original model, and every
path enforced in the game by the winning strategy can be mapped to a path in
the original model, enforced by the corresponding strategy.

Furthermore, using standard results in game theory about memoryless strate-
gies of particular objectives, we can show that our objectives do not need memory
to be won in such games. For this, we propose custom algorithms to find all the
winning states of the game; by the way the algorithms compute these states,
we can show that there exists a winning memoryless strategy in these states,
and so the player does not need memory to win the game. Thus, since there
exists a correspondance between winning strategies in the game and winning
strategies in the original model, agents do not need memory either in the cases
of ATLKIrF objectives on our models.

Finally, the correctness of the model-checking algorithm for ATLKIrF follows
from Theorem 7.

Theorem 7. evalIrF (〈Γ〉ψ) returns the set of states of M satisfying 〈Γ〉ψ under
ATLKIrF , that is

∀s ∈ S, s |=IrF 〈Γ〉ψ if and only if s ∈ evalIrF (〈Γ〉ψ). (24)

Proof. From Theorem 6, we know that evalIrF (〈Γ〉ψ) computes the set of states
of the model in which Γ have a memory-full strategy to win ψ. Furthermore,
we know that Γ have a memory-full strategy to win if and only if they have
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a memoryless one. Thus, we can conclude that in the states computed by
evalIrF (〈Γ〉ψ), Γ have a memoryless strategy to win, and that the algorithm is
correct for strategic operators.

Note that for other operators, the algorithm follows the standard algorithms
and the proof is the same (see [12, Chapter 6], for example).

4. Model Checking Strategies under Partial Observability

This section presents three model-checking algorithms for ATLKirF . The
first one splits the model into uniform strategies and uses the model-checking
algorithm for ATLKIrF to get states satisfying the property. The second one
improves the approach by alternating between splitting the model and filtering
out losing actions. Finally, Section 4.3 discusses the ideas behind the two
algorithms, generalizes them and proposes a third algorithm combining the
advantages of the two first approaches.

4.1. Splitting then filtering
A first algorithm for model checking ATLKirF strategic properties is pre-

sented in Algorithm 1. It relies on the model-checking algorithm for ATLKIrF

and uses two sub-algorithms: Split and a modified version of evalIrF . Split
divides the transition relation of the model into uniform strategies strat and
evalIrF performs the model-checking algorithm for ATLKIrF on the fraction of
the model restricted to strat. Note that for the other operators (CTL opera-
tors, Boolean connectors, etc.) model checking ATLKirF is identical to model
checking ATLKIrF , and evalirF works as evalIrF .

Algorithm 1: evalirF (〈Γ〉ψ)

Data: M a given (implicit) model, Γ a subset of agents of M , ψ an
ATLKirF path formula.

Result: The set of states of M satisfying 〈Γ〉ψ.

sat = {}
for strat ∈ Split(S ×ActΓ) do

winning = evalIrF (〈Γ〉ψ, strat)
sat = sat ∪ {s ∈ winning|∀s′ ∼Γ s, s

′ ∈ winning}

return sat

Intuitively, Algorithm 1 gets all the possible uniform strategies for Γ thanks
to Split. Then, for each of these strategies, it calls the model-checking algorithm
for ATLKIrF , restricted to the strategy. Finally, it only keeps the states for
which all equivalent states satisfy the property in the given strategy.

The evalIrF algorithm is modified by adding an argument strat to Pre〈Γ〉,
where, given strat ⊆ S ×ActΓ and Z ⊆ S,

Pre〈Γ〉(Z, strat) =

{

s

∣

∣

∣

∣

∃aΓ ∈ enabled(s,Γ) s.t. 〈s, aΓ〉 ∈ strat

∧ ∀a, aΓ ⊑ a =⇒ img(s, a) ⊆ Z

}

. (25)
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Pre〈Γ〉(Z, strat) is Pre〈Γ〉(Z) restricted to states and actions allowed by strat.
Furthermore, evalIrF recursively calls evalirF on sub-formulas, instead of evalIrF .
More precisely,

evalIrF (〈Γ〉Xφ, strat) = Pre〈Γ〉
(

evalirF (φ) ∪NFair〈Γ〉(strat), strat
)

(26)

evalIrF (〈Γ〉φ1Uφ2, strat) =

µZ.Φ1,2,N ∩

(

Φ2 ∪
⋃

fc∈FC

Pre〈Γ〉

(

νY.
Φ1,2,N ∩ (Z ∪ fc) ∩
(

Φ2 ∪ Pre〈Γ〉(Y, strat)
) , strat

)

)

(27)

evalIrF (〈Γ〉φ1Wφ2, strat) = νZ.Φ1,2,N ∩
(

Φ2 ∪ Pre〈Γ〉(Z, strat)
)

(28)

where

Φ2 = evalirF (φ2), (29)

Φ1,2,N = evalirF (φ1) ∪ evalirF (φ2) ∪NFair〈Γ〉(strat), (30)

NFair〈Γ〉(strat) = µZ.
⋃

fc∈FC

Pre〈Γ〉(νY.(Z ∪ fc) ∩ Pre〈Γ〉(Y, strat), strat).

(31)

The Split algorithm is given in Algorithm 2. Split(S ×ActΓ) returns the set
of uniform strategies for Γ, where each strategy fΓ is represented by the action
fΓ(s) for group Γ allowed in each state s. This action needs to be the same for
each state in the same equivalence class. We call a move an element of S×ActΓ;
such an element 〈s, aΓ〉 corresponds to Γ choosing the action aΓ in state s.

We say that two moves 〈s, aΓ〉 and 〈s′, a′Γ〉 are conflicting, and we write
〈s, aΓ〉⊥〈s′, a′Γ〉, if both states are equivalent (s ∼Γ s′) and the actions are
different (aΓ 6= a′Γ). Given a set of moves SA ⊆ S ×ActΓ,

Conflicts(SA) = {m ∈ SA|∃m′ ∈ SA s.t. m⊥m′} (32)

returns the set of conflicting moves of SA.
Intuitively, Split gets all the conflicting equivalence classes. If there are no

such conflicts, SA represents a uniform strategy. Otherwise, Split picks one
conflicting equivalence class equivalent, gets all the possible actions actions in
this class and, for each of these actions aΓ, creates a new strategy by computing
the cross product of the strategy playing aΓ in the equivalence class, and
the strategies substrats for other equivalence classes recursively computed by
Split. In other words, Split iteratively splits conflicting equivalence classes and
computes the cross product of all the splittings to build all possible uniform
strategies of the model.

Before proving the correctness of the model-checking algorithm, let us prove
the correctness of the Split algorithm.
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Algorithm 2: Split(SA)

Data: Γ a given (implicit) subset of agents, SA ⊆ S ×ActΓ.
Result: The set of all the largest subsets strat of SA such that no conflict

appears in strat.

conflicting = Conflicts(SA)
if conflicting = ∅ then return {SA}
else

〈s, aΓ〉 = pick one element in conflicting
equivalent = {〈s′, a′Γ〉 ∈ SA|s′ ∼Γ s}
actions = {a′Γ ∈ ActΓ|∃〈s, a

′
Γ〉 ∈ equivalent}

substrats = Split(SA\equivalent)
strats = {}
for aΓ ∈ actions do

equivStrat = {〈s′, aΓ〉 ∈ equivalent}
strats = strats ∪ {equivStrat ∪ substrat|substrat ∈ substrats}

return strats

Lemma 8. Split(SA) computes the set of all the largest subsets strat of SA ⊆
S ×ActΓ such that no conflicts appear in strat.

Proof. We can prove the correctness of Split by induction over the number of
conflicting equivalence classes of SA. If SA does not contain any conflicting
equivalence classes, SA is its own single largest subset in which no conflicts
appear. Otherwise, let us assume that Split(SA\equivalent), with equivalent
a conflicting equivalence class of SA, returns the set of all the largest non-
conflicting subsets of SA\equivalent. Then, Split returns the cartesian product
between all the largest non-conflicting subsets of equivalent and all the largest
non-conflicting subsets of SA\equivalent. Because these cannot be conflicting as
they belong to different equivalence classes, we can conclude that Split returns
the set of the largest non-conflicting subsets of SA.

The correctness of Algorithm 1 is then given by the following theorem.

Theorem 9. Given an (implicit) model M , a subset Γ of agents of M and an
ATLKirF formula 〈Γ〉ψ,

∀s ∈ S, s |=irF 〈Γ〉ψ if and only if s ∈ evalirF (〈Γ〉ψ). (33)

Proof. First, Split(S ×ActΓ) returns all the possible uniform strategies of the
system, where a uniform strategy is represented by the only action allowed in
each equivalence class of states (states equivalent in terms of the knowledge of
Γ), this action being the same for every state of the class. Indeed, the set of
the largest non-conflicting subsets of S × ActΓ is the set of possible uniform
strategies.

Furthermore, winning = evalIrF (〈Γ〉ψ, strat) returns the set of states for
which the strategy strat is winning. Indeed, it uses ATLKIrF model-checking

20



algorithm, restricted to actions in strat. It thus returns the set of states for
which there is a (not necessarily uniform) winning strategy in strat. As strat is,
by construction, a uniform strategy for Γ, winning is the set of states for which
there exists a uniform winning strategy—in fact, it is strat itself.

Finally, the set {s ∈ winning|∀s′ ∼Γ s, s
′ ∈ winning} is the set of states s

for which strat is a winning strategy for all s′ ∼Γ s. sat accumulates all the
states s for which there is a winning strategy for all states indistinguishable from
s. As this is exactly the semantics of the property, that is, sat is exactly the set
of states of the system satisfying the property, the proof is done.

Note that for other operators, the model-checking algorithm for ATLKirF

follows the standard algorithms, like the one for ATLKIrF , and the proof is the
same.

4.2. Alternating between splitting and filtering

One problem of the algorithm presented in the previous section is the number
of uniform strategies it considers. This number can be very huge (see Section 5)
while the number of winning strategies can be small. This comes from the fact
that evalirF blindly splits equivalence classes in which no winning strategy exists,
increasing drastically the number uniform strategies to consider.

A solution presented in this section is to filter out states and actions that
surely cannot be winning. For this, we use the ATLKIrF model-checking
algorithm to filter out states and actions that are not part of a (not necessarily
uniform) strategy; because the filtered states (and actions) cannot be part of
a winning strategy, they cannot be part of a winning uniform strategy. More
precisely, the proposed improvement consists in alternating between filtering out
states and actions that cannot be part of a strategy, and splitting remaining
conflicting equivalence classes. The filtering is performed using a modified version
of the ATLKIrF model-checking algorithm presented in Section 3. Note that
we can filter states that do not satisfy the property under ATLKIrF semantics
since they cannot satisfy the property under ATLKirF semantics neither.

The improved algorithm is presented in Algorithm 3. Using this algorithm,
we can compute the set of states satisfying 〈Γ〉ψ as evalimprovedirF (〈Γ〉ψ, S×ActΓ).
This algorithm uses the function evalmovesIrF . This function is a modification of
the evalIrF function restricted to a set of moves and where moves are returned
instead of states. More precisely, let

MovesΓ(Z, SA) = {〈s, aΓ〉 ∈ SA|s ∈ Z ∧ aΓ ∈ enabled(s,Γ)} (34)

returning the moves composed of states of Z and the enabled actions that are
allowed by SA. Let

Premoves〈Γ〉 (Z, SA) =

{

〈s, aΓ〉 ∈ SA

∣

∣

∣

∣

aΓ ∈ enabled(s,Γ)
∧∀a, aΓ ⊑ a =⇒ img(s, a) ⊆ Z

}

(35)

returning the states from which Γ can enforce to reach Z in one step, associated
with the actions that allow them to do so, but restricted to actions allowed by
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SA. That is, the set of moves of SA allowing Γ to surely reach Z in one step.
Let

NFairmoves〈Γ〉 (SA) = µZ.
⋃

fc∈FC

Premoves〈Γ〉

(

νY.
MovesΓ(Z ∪ fc, SA))
∩ Premoves〈Γ〉 (Y, SA)

, SA

)

(36)

be the set of states in which Γ can avoid fair paths thanks to moves of SA, with
the actions involved in the possible strategies.

Given a set of moves SA, evalmovesIrF is defined as

evalmovesIrF (〈Γ〉Xφ, SA) =

Premoves〈Γ〉

(

MovesΓ(evalirF (φ), S ×ActΓ) ∪NFair
moves
〈Γ〉 (SA), SA

)

(37)

evalmovesIrF (〈Γ〉φ1Uφ2, SA) =

µZ.Φ1,2,N ∩

(

Φ2 ∪
⋃

fc∈FC

Premoves〈Γ〉

(

νY.
Φ1,2,N ∩MovesΓ(Z ∪ fc, SA)
∩
(

Φ2 ∪ Pre
moves
〈Γ〉 (Y, SA)

) , SA
)

)

(38)

evalmovesIrF (〈Γ〉φ1Wφ2, SA) = νZ.Φ1,2,N ∩
(

Φ2 ∪ Pre
moves
〈Γ〉 (Z, SA)

)

(39)

where

Φ1,2,N =
MovesΓ(evalirF (φ1), SA) ∪MovesΓ(evalirF (φ2), SA) ∪NFair

moves
〈Γ〉 (SA),

(40)

Φ2 =MovesΓ(evalirF (φ2), SA). (41)

Intuitively, evalmovesIrF (〈Γ〉ψ, SA) returns the states satisfying 〈Γ〉ψ associated
to the actions of SA that allow them to do so, restricted to the ones of SA.

Note that in the expression for 〈Γ〉Xφ, the set of moves extracted from
evalirF (φ) is not restricted to SA. This is necessary because these moves do
not belong to a strategy to win Xφ. As the idea of the algorithm is to filter
out moves until the result is a uniform strategy, the set of moves extracted from
evalirF (φ) do not belong to such strategy; on the other hand, the corresponding
states are necessary for the computation of evalmovesIrF (〈Γ〉Xφ).

The intuition behind Algorithm 3 is to start by computing the set of states
and the associated actions from which a (not necessarily uniform) strategy exists
(line 1), then get all conflicting equivalence classes (line 2) and, if there are
conflicts, choose one conflicting equivalence class of states and possible actions
(lines 6 to 8) and for each possible action aΓ, recursively call the algorithm with
the strategies following aΓ (lines 11 and 12)—that is, split the class into uniform
strategies for this class and recursively call the algorithm on each strategy.
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Algorithm 3: eval
improved
irF (〈Γ〉ψ, SA)

Data: M a given (implicit) model, Γ a subset of agents of M , ψ an
ATLKirF path formula, SA ⊆ S ×ActΓ.

Result: The set of states of M satisfying 〈Γ〉ψ in SA.

1 SA′ = evalmovesIrF (〈Γ〉ψ, SA)
2 conflicting = Conflicts(SA′)
if conflicting = ∅ then

4 return {s ∈ S|∀s′ ∼Γ s, ∃aΓ ∈ ActΓ s.t. 〈s′, aΓ〉 ∈ SA′}

else

6 〈s, aΓ〉 = pick one element in conflicting
7 equivalent = {〈s′, a′Γ〉 ∈ SA′|s ∼Γ s

′}
8 actions = {aΓ ∈ ActΓ|∃〈s, aΓ〉 ∈ equivalent}

sat = {}
for aΓ ∈ actions do

11 strat = {〈s′, aΓ〉 ∈ equivalent} ∪ (SA′\equivalent)

12 sat = sat ∪ evalimprovedirF (〈Γ〉ψ, strat)

return sat

Algorithm 3 returns the set of states satisfying the property in SA, that
is, states s in which Γ has a uniform strategy using only actions in SA that is
winning for all states equivalent to s. So, to get the states of the model satisfying
the property, we have to take all the states for which there is a winning uniform
strategy in S ×ActΓ.

The correctness of Algorithm 3 is given by the following theorem.

Theorem 10. eval
improved
irF (〈Γ〉ψ, S × ActΓ) computes the set of states of M

satisfying 〈Γ〉ψ, i.e.

∀s ∈ S, s ∈ eval
improved
irF (〈Γ〉ψ, S ×ActΓ) iff s |=irF 〈Γ〉ψ. (42)

Proof. First, evalmovesIrF (〈Γ〉, SA) computes the moves of SA composed of the
states for which there exists a winning strategy in SA, and actions that compose
these winning strategies. In other words, evalmovesIrF (〈Γ〉, SA) filters out from SA

the states for which there is no winning strategy in SA, and the actions that are
not part of a winning strategy. Indeed, the fixpoint computations of evalmovesIrF

correspond to the fixpoint computations of evalIrF where the Premoves〈Γ〉 operator
only consider moves available in SA. Thus, the states returned by these fixpoint
computations are the states for which there exists a winning strategy in SA

instead of in the whole system.
Furthermore, we can show, with a proof similar to the ones of Lemmas 1 to

5, that a move of SA is returned by evalmovesIrF iff this move belongs to a winning
strategy of SA. Indeed, Pre〈Γ〉 computes, through fixpoint computations, the
states for which there exists a winning strategy; Premoves〈Γ〉 computes, in addition,
the actions that allow Γ to win.
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Second, evalimprovedirF (〈Γ〉, SA) computes the states for which there exists
a winning uniform strategy in SA. Indeed, if SA′ contains no conflict, this
means that SA′ represents a (unique) winning uniform strategy. The states
satisfying 〈Γ〉ψ in SA′ are the ones for which all equivalent states are in SA′,
and this is what is computed and returned at Line 4. On the other hand, if SA′

contains some conflicts, SA′ represents several uniform strategies. In this case,
the algorithm splits one conflicting equivalence class and tries all the possible
splittings for this class, thus missing no potential uniform strategy.

Finally, evalimprovedirF (〈Γ〉, S ×ActΓ) is the set of states satisfying 〈Γ〉ψ since
the whole model is considered.

4.3. Mixing splitting and filtering

The two algorithms presented above can be viewed as particular cases of
algorithms mixing filtering and splitting. Indeed, Algorithm 1 first splits all
conflicting equivalence classes of the model—by using the Split sub-algorithm—
and then filters out states that are losing for each strategy to get all states
satisfying the property. On the other hand, Algorithm 3 alternates between
filtering out states that are losing for the current subset of strategies, and splitting
the current subset of strategies into uniform ones, one conflicting equivalence
class at a time, until the strategy is uniform and the remaining states are winning.

We can imagine other variants of mixing filtering and splitting. In particular,
evalFSFirF (〈Γ〉ψ)—given as Algorithm 4—first filters out states that have no
winning strategy, as well as losing moves, then splits all equivalence classes and
ends by, for each resulting uniform strategy, filtering out the states for which the
strategy is losing4. Compared to the first solution, this algorithm gains much
from the first filtering, giving fewer equivalence classes to split, while gaining
from the second solution by avoiding to filter between each equivalence class
splitting. This algorithm really combines the advantages of both approaches in
practice, as shown by experimental results presented in Section 7.

Algorithm 4: evalFSFirF (〈Γ〉ψ)

Data: M a given (implicit) model, Γ a subset of agents of M , ψ an
ATLKirF path formula.

Result: The set of states of M satisfying 〈Γ〉ψ.

sat = {}
SA = evalmovesIrF (〈Γ〉ψ, S ×ActΓ)
for strat ∈ Split(SA) do

winning = evalIrF (〈Γ〉ψ, strat)
sat = sat ∪ {s ∈ winning|∀s′ ∼Γ s, s

′ ∈ winning}

return sat

4The FSF superscript stands for “filter, split, filter”.
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The correctness of Algorithm 4 is given by the following theorem. The proof
is similar to the ones for the two previous algorithms.

Theorem 11. evalFSFirF (〈Γ〉ψ) computes the set of states of M satisfying 〈Γ〉ψ,
i.e.

∀s ∈ S, s ∈ evalFSFirF (〈Γ〉ψ) iff s |=irF 〈Γ〉ψ. (43)

Proof. First, the proof of Theorem 10 showed that evalmovesIrF do not lose winning
moves. So, the moves of (S ×ActΓ)\eval

moves
IrF (〈Γ〉ψ, S ×ActΓ) cannot be part

of a winning uniform strategy and there exists a winning uniform strategy from
a given state s in S ×ActΓ if and only if there exists a winning uniform strategy
from s in evalmovesIrF (〈Γ〉ψ, S × ActΓ). Furthermore, the proof of Theorem 9
showed that enumerating all uniform strategies in S ×ActΓ and accumulating
the states for which these strategies are winning correctly computes the set of
states satisfying 〈Γ〉ψ. Thus, since we showed that filtering out losing moves
does not ignore winning uniform strategies, Algorithm 4 correctly computes the
set of states satisfying 〈Γ〉ψ.

5. Complexity Considerations

This section discusses complexities ofATLKIrF andATLKirF model-checking
problems. While the first one is in P, the second is one is ∆P

2 -complete. A
problem is in ∆P

2 = PNP if it can be solved in deterministic polynomial time
with subcalls to an NP-oracle.

5.1. ATLKIrF model-checking complexity
This section shows that the model-checking problem for ATLKIrF is in P,

that is, there exists an algorithm to solve the problem that is polynomial in
terms of the size of the model and of the formula. Let us show that the algorithm
proposed in Section 3 is effectively polynomial in terms of the size of M and φ.
This section only focuses on the evaluation of strategic operators; for the other
operators, standard literature already discusses the problem.

First, the computation of the Pre[Γ](Z) operator is polynomial: given any
set of states Z, it is necessary to check each state and transition of the system at
most once to get all the states belonging to Pre[Γ](Z). Second, Reach[Γ](P,Q)
can be computed in polynomial time: τ(Z) = Q ∪ (P ∩ Pre[Γ](Z)) is monotonic,
thus the least fixpoint of τ(Z) is reached in at most |S| steps. Each step computes
the Pre[Γ] operator, thus the Pre[Γ] operator is evaluated at most |S| times,
hence the polynomial time complexity of Reach[Γ]. Third, Fair[Γ] can also be
computed in polynomial time: it is composed of a greatest fixpoint of a τ function
evaluating Reach[Γ] for each fairness constraint fc ∈ FC. The τ function is
monotonic, thus only a polynomial number of calls to Reach[Γ] are needed, hence
a polynomial time complexity.

Furthermore, all the strategic operators are compositions of the above three
functions, thus they have a polynomial time complexity. Finally, one evaluation
is needed for each subformula of the checked formula φ to check it. Thus, the
model-checking problem for ATLKIrF is in P.
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5.2. ATLKirF model-checking complexity

This section shows that the model-checking problem for ATLKirF is ∆P
2 -

complete.
Model checking ATL with perfect recall and partial observability is an unde-

cidable problem [8], while model checking ATLir is a ∆P
2 -complete problem [6].

Let us show that ATLKirF subsumes ATLir in the case of two agents; its
model-checking problem is therefore ∆P

2 -hard, since the model-checking problem
for ATLir is already ∆P

2 -complete for only two agents [6].
Intuitively, any iCGS—amodel over whichATLir properties are interpreted—

can be transformed into a model with only one fairness constraint composed of
the full state-space; the corresponding model shares the same labeled graph as
the iCGS and fairness constraints say that any path of the model is a fair path.

It is obvious that there exists a uniform strategy for an agent i in an iCGS
such that all enforced paths satisfy ψ if and only if there exists a uniform strategy
for the same agent in the corresponding model such that all enforced fair paths
satisfy ψ, since every path of the model is fair.

Note that there is a difference in the definition of strategies for a group of
agents in ATLir and ATLKirF : collective strategies in ATLir are tuples of
individual strategies for the agents of the coalition, while strategies in ATLKirF

consider Γ as a single agent. This difference has no impact on the complexity of
ATLKirF model checking since the proof of ∆P

2 -hardness of ATLir is based on
a two-agents game [6], and ATLir and ATLKirF coincide when Γ is composed
of only one agent.

Let us now show that there is a ∆P
2 algorithm for model checking ATLKirF

property, thus that the problem is ∆P
2 -complete. The proposed algorithm uses a

non-deterministic variant of Algorithm 1 where the uniform strategies are non-
deterministically chosen among the possible ones. More precisely, the proposed
algorithm uses Algorithm 5 to compute the states of the model satisfying a given
strategic operator.

Algorithm 5: evalNDirF (〈Γ〉ψ)

Data: M a given (implicit) model, Γ a subset of agents of M , ψ an
ATLKirF path formula.

Result: The set of states of M satisfying 〈Γ〉ψ.

states = S

strat = {}
while states 6= ∅ do

s = pick one element in states
states = states\{s′|s′ ∼Γ s}

6 aΓ = choose one action in enabled(s,Γ)
strat = strat ∪ {〈s′, aΓ〉|s

′ ∼Γ s}

winIrF = evalIrF |strat(〈Γ〉ψ)
return {s ∈ S|∀s′ ∼Γ s, s

′ ∈ winIrF }

26



Algorithm 5 is effectively non-deterministic: the choose operation at Line 6
is a non-deterministic choice among the enabled actions of Γ in s. Furthermore,
this algorithm is polynomial: the while loop is repeated at most |S| times since
the size of states is decreased by at least one at each step. Furthermore, as shown
in the previous section, the evalIrF |strat(〈Γ〉ψ) algorithm runs in polynomial
time, thus Algorithm 5 is in NP.

Finally, the model-checking problem for ATLKirF is in ∆P
2 since we need to

call an NP algorithm for each subformula of the formula to check, thus P calls
to an NP procedure. We can then conclude that model checking ATLKirF is a
∆P

2 -complete problem.

6. Discussion

This section discusses two choices that have been made when designing
ATLKIrF and ATLKirF semantics: the type of fairness constraints and the
knowledge relations used for uniform strategies. Furthermore, it discusses the
issue of vacuous strategies and presents possible solutions.

6.1. Fairness constraints

This section presents the fairness constraints chosen in the semantics of
ATLKIrF and discusses alternatives. It also discusses the link between fairness
and strategies.

Let us remind the semantics of ATLKIrF strategic operators. Given a state
s of a model M = 〈Ag, S,Act, T, I, {∼i}i∈Ag, V, FC〉 and a path property ψ,

s |=IrF 〈Γ〉ψ ⇔
there exists a memoryless strategy fΓ for Γ,
such that for all fair paths π ∈ out(s, fΓ), π |=IrF ψ;

(44)

where a path is fair iff it meets all fairness constraints fc ∈ FC infinitely often.
This kind of fairness definition is called unconditional fairness and is standard in
the framework of Fair CTL and is used in the family of SMV model checkers
(e.g. NuSMV) [12]. There exist other kinds of fairness such as strong and
weak fairness, expressed on actions or on states. For example, a strong fairness
constraint over actions says that a path π is fair iff an action that is enabled along
states of π infinitely many times must be taken infinitely many times; a weak
fairness constraint says that a path is fair iff an action that is eventually enabled
permanently must be taken infinitely many times. While fairness constraints can
be expressed on actions or on states, it has been shown that fairness constraints
on actions can be reduced to fairness constraints on states, thus it is sufficient
to limit ourselves to fairness constraints on states [11, Chapter 3].

The three kinds of fairness constraints can be useful to reason about the
strategies of agents. For example, unconditional fairness constraints can be used
to reason about the strategies of multi-agent programs under a fair scheduler; in
this case, unconditional fairness constraints ensure that only executions along
which the scheduler allows all programs to run infinitely often are considered, by
tracking the last run program and constraining each program to run infinitely
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often [9]. In the same vein, weak and strong fairness constraints can be used to
reason about strategies of agents under particular circumstances. For example,
suppose a multi-agent program where one particular program controls a mutex
in the system; if an agent needs to lock this mutex to achieve its task, it cannot
win its objective without the cooperation of the controlling program. On the
other hand, by adding strong fairness constraints to ensure that if the agent asks
infinitely often for a mutex, the controlling program will grant it, the agent has
a strategy to win its objective.

The advantage of unconditional fairness, compared to strong and weak
fairness, is that it does not differentiate between memoryless and memory-full
strategies, that is, we can only focus on memoryless ones without losing any
expressive power. On the other hand, it has been shown that in the case of strong
and weak fairness, memory is necessary to win the objectives: two variants on
ATL have been proposed, both needing memory [1]. Nevertheless, the amount
of memory needed to win the objectives under weak and strong fairness is finite.
Furthermore, we know that strategies that are allowed to use a bounded amount
of memory for choosing the next action can be reduced to memoryless strategies
in a derived model where the memory is encoded in the states [4, 5], allowing
the reasoning to be restricted to memoryless strategies.

Another concern about fairness constraints is about the set of agents that
must enforce fair paths. In ATLKIrF semantics, Γ win if they have a strategy
such that all fair paths satisfy the objective; in this case, Γ have to produce
fair paths that violate the objective to prevent Γ to win. Let us call this semantics
the weak-strategy semantics. Another choice is possible: Γ win if they have a
strategy such that all enforced paths are fair and satisfy the objective;
in this case, Γ have to enforce only fair paths to win, and Γ can prevent them
to win by avoiding fair paths (regardless of the objective). Let us call this new
semantics the strong-strategy semantics.

While weak strategy objectives do not need memory to be won (see Section 3.3
and Appendix A), strong-strategy ones need memory to be won. For example,
let us consider the model presented in Figure 6 and the property 〈Ag〉Fp. The
model contains only one agent that can play two different actions in the top state.
For a path to be fair, both the left and right states must be visited infinitely often.
Under the weak-strategy semantics, the property is true in the top state: by
playing 0 in the top state, the agent will enforce no fair path (the only enforced
path never meets the right state), and the property is vacuously true. Note that
if the agent can use memory, the result is the same, the agent still has a strategy
to win. On the other hand, under the strong-strategy semantics, the agent has a
memory-full strategy to win the objective in the top state—for example, play 0
and 1 alternatively—but no memoryless strategy to win. He has to stick to the
same action in the top state, and will never meet the other state. Thus, in the
case of the strong-strategy semantics, memory makes a difference.

When designing ATLKIrF semantics, we kept the weak-strategy semantics
because it corresponds to the usual situation in which fairness is an assumption
about the environment. Furthermore, this semantics is useful, for example, to
reason about multi-agent programs [9]; in this case, the weak-strategy semantics
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p ¬p

(0) (1)

(1) (1)

Figure 6: A model with one agent where the agent needs memory to win under the strong-
strategy semantics. Vertices are states, labelled with propositions true in this state; edges are
transitions, labelled with joint actions; the bold state belongs to one fairness constraint, the
double-lined one to another.

allows the user to reason about the strategies of the programs while assuming a
fair scheduler.

6.2. Knowledge relations

This section presents the different knowledge relations used in the semantics
of ATLKirF , discusses alternatives and motivates the choice made for ATLKirF .

Let us remind the semantics of ATLKirF strategic operators. Given a state
s of a model M = 〈Ag, S,Act, T, I, {∼i}i∈Ag, V, FC〉 and a path property ψ,

s |=irF 〈Γ〉ψ ⇔
there exists a uniform strategy fΓ for Γ,
such that for all s′ ∼Γ s,
for all fair paths π ∈ out(s′, fΓ), π |=irF ψ.

(45)

There are two different knowledge relations used in this semantics. The first
one is about the states in which the strategy must start: the property is satisfied
in s if there is a strategy that wins in all states s′ equivalent to s. In the sequel,
this equivalence relation is called the starting-point equivalence relation. In the
case of ATLKirF , this relation is the distributed knowledge relation ∼Γ.

The second knowledge relation used in ATLKirF semantics is the one used in
the definition of uniform strategies. ATLKirF only considers uniform strategies,
that is, strategies that play the same action in two different equivalent states.
In the sequel, this equivalence relation is called the strategy-points equivalence
relation. In the case of ATLKirF , this relation is also the distributed knowledge
relation ∼Γ.

Several equivalence relations could be used in place of the starting point
and the strategy-points equivalence relations. For example, ATLir diverges
from ATLKirF by defining a collective strategy for Γ as a tuple of strategies
for agents of Γ; this can be seen as using the individual knowledge relation
of each agent to define the strategy-points equivalence relation. The intuition
behind ATLKirF semantics (already explained in Section 2.3) is that the group
of agents is considered as controlled by a single controller: they gather to choose
the strategy (they can use their distributed knowledge to know where they start)
but also to play the strategy (and they can also use their distributed knowledge
to play the strategy). The intuition behind ATLir is slightly different: the
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agents are completely separated and cannot share their knowledge for choosing
the strategy (using only their own knowledge to know where they start), as well
as to play the chosen strategy (they can only rely on their individual knowledge
of the encountered states to know which action to play).

Other combinations for both equivalence relations can be used. For example,
Jamroga and Bulling use the everyone knows relation for the starting-point
equivalence relation and the individual knowledge relation for the strategy-points
equivalence relation [19]. Technically, any standard knowledge relation (group
knowledge, common knowledge, distributed knowledge) can be used for either
equivalence. We chose to use the distributed knowledge for both equivalences
because the intuition is natural and uniform.

Finally, the algorithms presented in this paper can be easily adapted to use
other knowledge relations for both equivalences. Most of them (such as group,
common and distributed knowledge) only need a change of knowledge relation
used in the algorithms. On the other hand, the case of individual knowledge, as
used in ATLir, needs to split conflicting equivalence classes one agent at a time,
leading to an additional blow-up of the number of uniform strategies to consider.
Nevertheless, this is a minor modification of the presented algorithms.

6.3. Vacuous strategies

This section discusses the problem of vacuous strategies and presents possible
solutions. Let us illustrate this problem with the example of the card game
presented in the Introduction. We already discussed the case of the player, who
can eventually win the game, relying on the fair behavior of the dealer: because
he knows the dealer will eventually deal a winning hand for him, he can always
keep his card and finally win the game. On the other hand, the dealer can also
always win the game; he has a strategy such that the player never wins. This
strategy is to avoid any fair path; if he enforces no fair path, all enforced fair
paths vacuously satisfy any objective and, in particular, the objective consisting
in never letting the player win.

More generally, the problem of vacuous strategies is that if a group of agents
can avoid fair paths, that is, they have a strategy such that no fair paths are
enforced, then they can win over any objective, even an unsatisfiable one such
as F false. Since their strategy allows to avoid fair paths, all the fair paths
(there are none) trivially satisfy any temporal property. Note that this problem
is already present in CTL, where a state s satisfies any Aψ property if s is not
fair, that is, no fair path starts in s. In the case of CTL, the usual approach is
to inform the user whenever the model accepts no fair paths. This solution can
be used in the present case, and we can inform the user whenever Γ can avoid
fair paths. This can be performed by checking whether s ∈ NFair〈Γ〉.

Nevertheless, there are other ways to address the problem by changing the
semantics. For example, we can change the semantics (and the algorithms accord-
ingly) such that only strategies enforcing at least one fair path are considered.
This is different from the strong-strategy semantics discussed above in the sense
that, in the present case, the agents still do not need to enforce only fair paths.
The only requirement is that their strategy enforce at least one fair path. This
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can be achieved, for example, by checking whether there exists a fair path in a
generated uniform strategy before checking whether it is winning or not. In the
case of the card game, this would solve the concern above: if we only consider
strategies that contain at least one fair path, the dealer has no strategy to
prevent the player to win, since he will need to deal each pair of cards infinitely
often.

7. Experiments

The algorithms for model checking ATLKIrF and ATLKirF have been imple-
mented in a BDD-based framework. This section discusses the implementation
of these algorithms with BDDs, focusing on parts that have been implemented
slightly differently to fit the BDD framework.

Second, this section presents some early experiments showing performances
of the algorithms. The implementation is a prototype showing the applicability
of the presented approaches, that would not compete with industrial tools
performing the same kind of tasks. These experiments are thus not meant to
show the absolute performances of the implementation but the relative gain of
the proposed algorithms.

7.1. Implementing model-checking algorithms with BDDs

The algorithms presented in this paper have been implemented with BDDs,
thanks to PyNuSMV, a Python framework based on NuSMV [20]. While most
of the parts can be directly implemented through BDD operations and simple
loops, such as unions, intersections and fixpoint computations, some operations
and algorithms need more work to be implemented. This section focuses on
the Pre〈Γ〉 operator and its variations, and on the Split algorithm and the
computation of conflicting classes.

In the BDD-based model-checking framework, sets of states and sets of
actions are represented with BDDs. Furthermore, the whole transition relation
of the system, as well as the different knowledge relations for each agent, are also
represented with BDDs (see for example [12, Chapter 6]). In this framework, any
operation over sets of states or actions is performed as an operation on BDDs.

Given a BDD representing the transition relation of the system, we can easily
define the operator Pre′(Z) returning the BDD of the moves leading to at least
one state of the BDD of the set Z, that is,

Pre′(Z) = {〈s, a〉|∃s′ ∈ Z s.t. s′ ∈ img(s, a)}. (46)

This operator is present in BDD-based model-checking tools like NuSMV because
it is the basis operator for BDD-based CTL model checking. The implementation
of this operator relies on the BDD representation of the transition relation and
the existential quantification on BDDs.

Given the Pre′ operator and a BDD representing a set of states Z, we can
implement the Pre〈Γ〉 with BDD operations:

Pre〈Γ〉(Z) = ∃a.(∃aΓ.P re
′(Z) ∩ Pre′(Z)), (47)
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where ∃ is the existential quantification over BDDs, ∩ is the conjunct of BDDs,
and is the negation of BDDs. Intuitively, ∃aΓ.P re

′(Z) is the set of pairs of
states and actions of Γ such that there exists a completing action leading to Z.

Thus, ∃aΓ.P re
′(Z) is the set of pairs of states and actions of Γ such that all

completing actions surely lead to Z. Then, ∃a.(∃aΓ.P re
′(Z) ∩ Pre′(Z)) is the

set of states such that there is an action for Γ surely leading to Z. Note that

∃aΓ.P re
′(Z) must be restricted to Pre′(Z) to be sure to only keep actions that

are actually enabled.
The Split algorithm is, on the other hand, not easily implemented as described

in Algorithm 2. More precisely, the computation of

Conflicts(SA) (48)

needs some modifications to be implemented with BDDs. In fact, to directly
compute this set of conflicting state/action pairs, we need to quantify over a
relation between two state/action pairs; that is, we need to quantify over a BDD
ranging over two copies of state and action variables. Such a BDD can become
really huge and is not necessarily available in a BDD-based model-checking
framework like NuSMV.

One way to implement the Split algorithm is to pick one state/action pair
in SA, get all equivalent states—by using a BDD ranging over two copies of
state variables, instead of two copies of state and action variables, as discussed
above—then all state/action pairs of SA restricted to these states, and finally
check that there is only one available action for these states in SA. If this is
not the case, this particular equivalence class is conflicting and needs to be split.
Otherwise, we can ignore this equivalence class and pick another state/action
pair from SA.

This implementation is less efficient than Algorithm 2 because it has to
enumerate all equivalence classes (through picking state/action pairs) before
concluding that SA is non-conflicting. On the other hand, it does not need to
build a huge BDD representing the relation between two state/action pairs.

7.2. Experimental evaluation

To test the implementation of the algorithms presented in this paper, two sets
of models have been designed. The first set of models is based on a modification
of the problem of the card game presented in the Introduction; the second set
is based on the ancient Chinese story of Tian Ji. The two sets are designed
such that it is easy to build larger models, to show how the approach scales
up. This section first describes the two sets of models, discusses their modelling,
and performs experimentations with the implementation of the algorithms with
PyNuSMV.

First, the card game is modified as follows. The game is still composed of a
dealer and player; there are N cards c1, ..., cN such that ci wins over cj iff i > j,
but c1 wins over cN . The game is divided into four phases. In the first phase,
the dealer takes one card for him; in the second phase, he gives one card to the
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player. In the third phase, the player has two choices: either to keep his card, or
to discard it and get one card from the stack of remaining cards; he can change
his card as many times as he wants, but can never get back a discarded card.
The fourth phase is entered when the player chooses to keep his card or when
the stack is empty. The winner is known during the last phase; the winner is
the one with the winning card. The game is replayed infinitely.

The formal model of this problem is composed of two agents, the player and
the dealer. The states are composed of the card of the player, the card of the
dealer, the stack of remaining cards and a counter to keep track of the current
phase. The dealer can choose the card to give at different phases and the player
can choose to keep or change his card. The dealer knows both cards while the
player only knows his card. Finally, the fairness conditions are set such that a
path is fair if the two first cards (the dealer’s card and the player’s first card)
follow a fair distribution.

Second, the Tian Ji’s model is inspired from the ancient Chinese story of
Tian Ji. The system is composed of two agents: a king and his general Tian Ji.
They play a horse racing game. They both own N horses h1, ..., hN with different
speeds; if the king races with horse hi and Tian Ji with hj , the winner is the one
with the highest index; if i = j, the winner is chosen non-deterministically. N
races are played, and the final winner is the one with the most races won. The
game is replayed infinitely.

The formal model of this problem is composed of two agents, Tian Ji and
the king. The states are composed of Tian Ji’s remaining horses, the king’s
remaining horses, and the score of each of them. At each step of the game, both
can choose between their respective remaining horses the one to play at the next
race. Tian Ji only knows which horses he chooses but not the king’s. Finally, the
fairness conditions are set such that a path is fair if the king chooses his horses
in all possible orders, infinitely many times each; these fairness constraints have
been implemented by asking the king to choose the full order of his horses a
priori, before starting the first race, and asking that a fair path goes through all
the possible choices infinitely often.

The first property checked over the card game is Φ1 = 〈player〉F win. The
property is satisfied under both ATLKIrF and ATLKirF semantics; in the first
case, the player knows the card of the dealer—because he has full observability—
and thus knows if he has to change or keep his card. In the second case, the
player does not know the card of the dealer, but knowing that the dealer is fair
is enough for him to win: by keeping his card in every game, he knows that the
dealer will eventually give him a winning card. In fact, all uniform memoryless
strategies are winning because, for each of them, the player knows that the fair
dealer will eventually give the winning pair of cards.

A similar property has been checked over the problem of Tian Ji: Φ2 =
〈T ianJi〉F win. This property is satisfied by the model under both semantics:
under ATLKIrF Tian Ji knows a priori the order of the horses of the king
and can thus choose the right horses to race. Under ATLKirF semantics, he
can choose a unique order and play it repeatedly; he knows that the king will
eventually run an order that is losing for him. Again, all memoryless uniform
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strategies are winning because, for each of them, the corresponding losing horses
order for the king will eventually be played.

Tables 1 and 2 show the running time of the implemented algorithms for
Φ1 and Φ2, respectively

5. First, we can see that the time needed to check the
properties under ATLKIrF slowly increases. This is expected since the algorithm
is polynomial in terms of the size of the model. On the other hand, the time
needed by the basic algorithm evalirF grows exponentially, showing the bad
complexity of the algorithm: the number of uniform strategies to check grows
exponentially and, for each of them, a polynomial check has to be performed.
Note also that the improved algorithm eval

improved
irF performs worse than the

basic algorithm: because almost all states and actions of the system can be
part of a winning strategy, filtering the losing ones does not remove many of
them. Furthermore, as the algorithm alternates between filtering and splitting
conflicting equivalence classes, the number of filtering steps is higher than for
the basic algorithm. Finally, the third proposed approach, evalFSFirF performs as
well as the basic algorithm: because there are only a few losing moves, filtering
them out does not give some advantage against the basic approach; nevertheless,
since there is only one application of filtering, the useless extra effort has no
significant impact on performances.

Table 1: Running time for model checking Φ1 over the card game models.

Cards States ATLKIrF evalirF eval
improved
irF evalFSFirF

3 28 0m0.351s 0m0.610s 0m0.998s 0m0.664s
5 326 0m0.764s 0m10.991s 0m21.410s 0m12.575s
7 2696 0m2.517s 7m2.823s 13m33.928s 7m15.172s
9 18442 0m31.405s > 30m > 30m > 30m
10 46091 8m52.097s

Table 2: Running time for model checking Φ2 over Tian Ji’s models.

Horses States ATLKIrF evalirF eval
improved
irF evalFSFirF

3 61 0m0.214s 0m1.401s 0m2.582s 0m1.494s
4 409 0m1.685s > 30m > 30m > 30m
5 3271 3m33.885s

The improved algorithm eval
improved
irF performs worse than the basic one on

the first two checked properties. To show that this improved algorithm can
perform better than the basic one on some formulas and models, one more
property has been checked on both models. These formulas do not highlight
relevant properties of the application but, by their nature, they allow the

5All the presented results have been obtained by running the PyNuSMV implementation
on a Intel R© Xeon R© CPU E5-2630 at 2.30GHz, with Ubuntu 13.04. The time limit has been
set to 2000 seconds and the memory limit to 30GB.
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improved algorithm to perform better.
The second property checked over the card game is

Φ3 = AG

(

(phase = 3 ∧ player.card = c1)
=⇒ 〈player〉X player.card = c1

)

. (49)

This property says that when the player can choose to keep his card or change
it—that is, the system is in the third phase—and he has the c1 card, then he
can keep it. Again, the property is satisfied under both semantics. It includes a
strategic subformula that is satisfied by only a few states of the model. Indeed,
the player needs to already own c1 to be able to enforce next states in which he
owns the card. Thus, by filtering out losing states before splitting the remaining
moves, evalimprovedirF should be able to drastically reduce the number of uniform
strategies to consider, compared to the basic algorithm.

A similar property has been checked over the problem of Tian Ji:

Φ4 = AG

(

TJ.horses = “all horses”
=⇒ 〈T ianJi〉X TJ.horses = “all horses but the lowest one”

)

.

(50)

This property says that when Tian Ji can still choose any horse, then he can
choose the lowest one. Again, this property is satisfied under both semantics.
Similarly to Φ3, this property includes a strategic subformula that is satisfied by
only a few states of the model. evalimprovedirF should also drastically reduce the
number of strategies to consider in this case.

Tables 3 and 4 show the running time of the implemented algorithms for
Φ3 and Φ4, respectively. First of all, note that the properties are composed of
one CTL operator AG and one strategic operator 〈Γ〉X. While the former is
easily checked in polynomial time, the latter needs more time to be checked
under ATLKirF semantics. Again, we can see the slow growing of the time
needed to check the properties under ATLKIrF . Furthermore, checking them
under ATLKirF semantics with the basic algorithm still needs an exponentially
growing time: the algorithm still needs to enumerate all uniform strategies. On
the other hand, evalimprovedirF performs really better. As expected, pre-filtering
out the losing actions gets only a few states left; the strategic subformulas in both
properties are satisfied by only a few states, leading to a few uniform strategies
to check. This greatly decreases the time needed to check the property. Finally,
evalFSFirF even outperforms evalimprovedirF . Indeed, while evalimprovedirF filters out
losing moves several times, evalFSFirF only performs filtering once. In fact, this
first filtering is really important because it removes most of the losing moves;
on the other hand, the subsequent filters of evalimprovedirF do not remove a lot of
moves, performing extra useless work.

These results show that evalirF and evalimprovedirF can be interesting, depend-

ing on the checked property and the model itself. Note that the evalimprovedirF

performs worse in the case of Φ1 and Φ2 because it repeatedly tries to filter out
losing actions while these actions are not numerous. These results also show that
the third approach evalFSFirF outperforms the two first approaches on the tested
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Table 3: Running time for model checking Φ3 over the card game models.

Cards States ATLKIrF evalirF eval
improved
irF evalFSFirF

3 28 0m0.165s 0m0.296s 0m0.184s 0m0.187s
5 326 0m0.759s 0m3.398s 0m0.437s 0m0.632s
7 2696 0m1.583s 2m9.233s 0m2.108s 0m1.820s
9 18442 0m24.610s > 30m 0m47.673s 0m26.190s
10 46091 1m56.126s 9m10.488s 2m6.998s

Table 4: Running time for model checking Φ4 over Tian Ji’s models.

Horses States ATLKIrF evalirF eval
improved
irF evalFSFirF

3 61 0m0.186s 0m0.546s 0m0.183s 0m0.202s
4 409 0m0.961s 29m38.394s 0m0.890s 0m1.097s
5 3271 1m9.873s > 30m 0m27.088s 0m51.896s

models. These good results come from the fact that, for the tested models and
properties, the subsequent filters of evalimprovedirF are not useful, and only the
first filtering is important.

8. Related Work

While model checking ATL under full observability has received a great deal
of attention, to the best of our knowledge results about implementations for
model checking strategies under partial observability are more limited. In this
section we present some recent work in this direction.

First, the work presented in this paper has been extended by the authors [21].
The idea of this extension is to improve the model-checking process by reducing
the number of strategies to check. Indeed, if we are interested in whether there
exists a winning uniform strategy in the initial states for a given set of agents,
it is not necessary to check all uniform strategies, but only the ones that are
reachable from the initial states; these reachable strategies are called partial
strategies because they do not specify a move in every state, but only in the states
that matter. Furthermore, this extension proposes three practical optimizations
to further improve the process.

Second, Pilecki, Bednarczyk and Jamroga proposed a similar approach based
on the notion of partial strategies [22]. To generate these partial strategies, a
forward traversal of the model is performed, starting from the initial state and
splitting equivalence classes that are encountered in the traversal. The work of
Pilecki et al. interleaves this forward traversal with CTL computations to stop
the process as soon as a winning partial strategy has been found. This approach is
closely related to the idea of alternating between splitting and filtering presented
in Section 4.2. Indeed, the idea of alternating between splitting and filtering is
to stop the process of generating a uniform strategy as soon as we know that
there cannot exist a winning uniform strategy. While the approach of Pilecki
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et al. still has strong limitations—it is limited to one initial state and one top
strategic operator—and is based on an explicit model-checking approach, it can
be extended to handle the full logic and to fit the symbolic model-checking
framework of this paper.

Third, Huang and van der Meyden proposed a fully symbolic approach to
check the existence of winning uniform strategies [23]. More precisely, their
approach is more general since the logic they present subsumes several strategic
logics, and ATLKirF can be defined in their framework. The present paper
proposes to represent each uniform strategy as a unique BDD in order to keep
the number of variables of these BDDs small. On the other hand, the work of
Huang and van der Meyden proposes to encode the strategies of the agents in the
model itself, resulting to a much larger set of BDD variables. The model-checking
problem is then reduced to fixpoint computations on the extended model. Finally,
they showed that their approach is more efficient than the one presented in this
paper for the case of ATLir. Nevertheless, the efficiency of their approach is
similar to the efficiency of the two ones presented earlier in this section.

Finally, model checking uniform strategies has also been discussed by Calta
et al. [24]. Their approach is also based on splitting possible actions into uniform
strategies, but their algorithm is tightly linked to the nature of the objectives,
namely CTL-like objectives. So, their approach cannot be easily adapted to deal
with fairness constraints.

9. Conclusion

A number of studies in the past have investigated the problem of model
checking strategies under partial observability and, separately, some work has
provided algorithms for including fairness constraints on actions in the case of
full observability. To the best of our knowledge, the issue of fairness constraints
and partial observability have never been addressed together.

In this paper we presented ATLKirF , a logic combining partial observability
and fairness constraints on states (which is the standard approach for temporal
and epistemic logics), and we have provided a model-checking algorithm.

Furthermore, the structure of our algorithm is compatible with symbolic
model checking using BDDs, and we worked on its implementation in the model
checker MCMAS [25], where fairness constraints are only supported for temporal
and epistemic operators, and with PyNuSMV [20], a Python framework for
prototyping BDD-based model-checking algorithms. This paper presented some
early experiments illustrating the high complexity of ATLKirF model checking.

Further work. Several discussions about the particular choices made in this
paper have been presented. In particular, ATLKirF uses unconditional fairness
constraints to define fair paths in the system. While this kind of fairness is
useful, for example, to reason about the strategies of multi-agent programs under
a fair scheduler, other kinds of fairness such as strong fairness would also lead
to interesting properties. Nevertheless, this paper explained that using strong
fairness constraints instead of unconditional fairness constraints leads to other
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difficulties related to the memory of the agents. It is not obvious for the authors
how to adapt the current algorithms to reason about strategies under strong
fairness constraints, and this is left as future work.

Second, the strategies discussed in this paper are completely deterministic.
One extension of this work could consider randomized strategies, allowing the
agents to randomly choose played actions with different probabilities. Another
extension could consider probabilistic notions of fairness, asking for unfair paths
to occur with probability zero. Nevertheless, these approaches use model checking
techniques that are dramatically different from the ones developed in this paper.
This is so left as future work as well.

Finally, the approach considers only memoryless strategies. Some more
general kinds of strategies such as bounded-memory strategies can be reduced
to memoryless strategies; on the other hand, the case of memory-full uniform
strategies has been shown to be undecidable [8]. Nevertheless, it is not obvious
for the authors whether unbounded-memory strategies—that is, strategies that
can use a finite but unbounded amount of memory—can be reduced to one case
or the other, and this question is also left as future work.
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Appendix A. ATLKIrF and memoryless strategies

This section proves that the objectives of games involved in ATLKIrF do
not need memory to be won, filling the gap between the semantics presented in
Section 2 and the proof of correctness of the algorithm of Section 3. To show
that, we use game theory results. We first have to transform the models and
ATLKIrF properties into games. Thanks to this transformation, we can use
several existing results about other objectives to prove that our objectives do
not need memory to be won.

A game graph [16] is a structure G = (V, V0, V1, E,Ω) where

• V is a finite set of states, partitioned into V0 and V1. Vi are states where
player i chooses the next state;

• E : V × V is a transition function;

• Ω : V → C assigns a color of C to each state.
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A play of G is an infinite sequence of states v0v1v2... of V such that (vi, vi+1) ∈
E, ∀i ≥ 0.

To a game graph G we can associate a winning condition Win representing
the set of plays that are winning for each player. The couple (G,Win) represents
a game.

A strategy for player i in a game graph is a function fi : V
∗Vi → V associating

to a finite prefix ending in a state of Vi the successor to choose. We say that a
strategy fi for player i is memoryless if the same successor is given for any two
prefixes ending in the same state, that is, if fi(πv) = fi(π

′v) for any π, π′ ∈ V ∗,
v ∈ Vi.

Given a model M = 〈Ag, S,Act, T, I, {∼i}i∈Ag, V, FC〉 and an ATLKIrF

property 〈Γ〉ψ, we can build the corresponding game (GM,Γ,ψ,WinM,Γ,ψ).
GM,Γ,ψ = (V, V0, V1, E,Ω) where

• to each state s ∈ S corresponds a state v0,s in V0;

• to each state s ∈ S and action aΓ ∈ enabled(s,Γ) corresponds a state
v1,s,aΓ in V1;

• V = V0 ∪ V1;

• (v0,s, v1,s,aΓ) ∈ E for any s ∈ S and aΓ ∈ enabled(s,Γ),
and (v1,s,aΓ , v0,T (s,a)) ∈ E, for any s ∈ S and a = aΓ ⊔ aΓ,

where aΓ ∈ enabled(s,Γ) and aΓ ∈ enabled(s,Γ);

• the set of colors C is composed of all fairness constraints fc ∈ FC and all
first-depth state subformulas of ψ;

• the states v0,s and v1,s,aΓ (∀aΓ ∈ enabled(s,Γ)) are colored by Ω with all
the first-depth state subformulas of ψ and the fairness conditions fc ∈ FC

that hold in s.

Intuitively, Γ is mapped to player 0 and Γ to player 1. We decompose each
state s of M into a single V0 state, from which Γ can choose a V1 state, where
player 1 can choose to go to one V0 state. The states are labelled with the
first-depth state subformulas of ψ that are satisfied by their corresponding state.
Note that, by construction, the game graph GM,Γ,ψ is always bipartite, that is,
Vi states only lead to V1−i states. An example of a model and the corresponding
game graph is given in Figure A.7 (omitting coloring). Note that we only consider
deterministic models here, but it is not a limitation (see Section 2.2).

We define the acceptance conditionWinM,Γ,ψ of the game as an LTL formula
with colors of GM,Γ,ψ as atomic propositions. The set of plays that are winning
for player 0 are the ones satisfying the LTL formula; the other plays, satisfying
the negation of the formula, are winning for player 1. The acceptance condition
WinM,Γ,ψ depends on the set of fairness conditions FC ofM and on the property
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(1, 1)

(0, 1)

(0, 0) (0, 1)

(0, 0)

(a) A model

1

1

0 0

0

1 0

1

0

(b) The corresponding game graph

Figure A.7: A model and its corresponding game graph. Γ is the first agent, Γ is the second
one. Vertices are states; circles in the game graph are player 0 states, squares are player 1
states; edges are transitions, labelled with actions (for clarity, in the game graph).

ψ:

if ψ = Xφ, then WinM,Γ,ψ =
∧

fc∈FC

GFfc =⇒ XXφ; (A.1)

if ψ = φ1Uφ2, then WinM,Γ,ψ =
∧

fc∈FC

GFfc =⇒ φ1Uφ2; (A.2)

if ψ = φ1Wφ2, then WinM,Γ,ψ =
∧

fc∈FC

GFfc =⇒ φ1Wφ2. (A.3)

The objective of Equation A.1 says that a strategy is winning in state v for
player 0 if all paths enforced by this strategy starting at v meet at least one
fc ∈ FC only finitely many times or their third state—that is the next state
belonging to the same Vi as v—is labelled by φ. The objective of Equation A.2
says that winning strategies only enforce paths meeting at least one fc ∈ FC

only finitely many times or reaching a state labelled by φ2 through states labelled
by φ1. Similarly, the objective of Equation A.3 says that winning strategies
only enforce paths meeting at least one fc ∈ FC only finitely many times or
composed of states labelled by φ1 until a state labelled by φ2, if any.

By construction, given an objective 〈Γ〉ψ, there is a winning strategy in s
of M iff there is a winning strategy in the corresponding state v0,s of the game
(GM,Γ,ψ,WinM,Γ,ψ). This is expressed by the following lemma.

Lemma 12. Let ψ be an ATLKIrF path formula, s be a state of a model M .
s |= 〈Γ〉ψ in M iff there exists a winning strategy for player 0 in the state v0,s
of the corresponding game (GM,Γ,ψ,WinM,Γ,ψ).

Proof. Let fΓ be a strategy for Γ in M . The corresponding strategy f0 in

(GM,Γ,ψ,WinM,Γ,ψ) is defined as follows. For any prefix path π = s0
aΓ1

⊔a
Γ1−−−−−→

42



s1...sn in M , fΓ(π) returns an action aΓ; to π corresponds, in GM,Γ,ψ, the prefix
path π′ = v0,s0v1,s0,aΓ1

v0,s1 ...v0,sn . f0(π
′) simply returns the successor of v0,sn

given by v1,sn,fΓ(π), that is, the state corresponding to Γ playing fΓ(π) in sn.
Note that while the labelling of an infinite path π = s0s1s2... with atomic

propositions in M leads to the infinite sequence V (s0)V (s1)V (s2)..., the corre-
sponding path π′ = v0,s0v1,s0,aΓ1

v0,s1v1,s1,aΓ2
v0,s2v1,s2,aΓ2

... in GM,Γ,ψ is labelled
with the same labels, but repeated twice in sequence: the labelling of π′ is
V (s0)V (s0)V (s1)V (s1)V (s2)V (s2)...

Let us show that if fΓ is winning for ψ in a state s of M , then f0 is winning
for the corresponding objective in state v0,s of (GM,Γ,ψ,WinM,Γ,ψ). We can
prove it by contradiction. If f0 is not winning, there is a path π′ starting at
v0,s enforced by f0 that does not satisfy the objective, that is, π′ meets each
fc ∈ FC infinitely often and violates ψ. The corresponding path π inM starting
at s is enforced by fΓ since the corresponding actions are used, and is labelled
with the same atomic propositions as shown above. π is fair—since it meets each
fc ∈ FC infinitely often—and violates ψ. Thus π does not satisfy the objective,
the strategy enforces a fair path violating ψ, and thus is not winning, leading to
the contradiction.

To show that if f0 is winning, then fΓ is winning for the corresponding
objective, we can simply use the symmetric argument.

Note that the result is true for Γ but not for Γ. This means that Γ do not neces-
sarily win in states ofM corresponding to states of the game (GM,Γ,ψ,WinM,Γ,ψ)
where player 1 wins. This is due to the fact that, in (GM,Γ,ψ,WinM,Γ,ψ), player
1 can choose a different successor depending on the previous choice of player 0;
on the other hand, in M , for Γ to have a winning strategy, they must be able
to choose one winning action, regardless of the one chosen by Γ. In fact, if we
want to speak about strategies of Γ, it is necessary to build another game graph
(GM,Γ,ψ,WinM,Γ,ψ), in which the results are different.

We can now prove that in the game theory framework, the objectives above
do not need memory to be won by player 0, that is, player 0 has a strategy to
win his objective iff he has a memoryless strategy to win it. Before proving this,
we need to show some intermediate results.

First, let Safei(Φ) be defined as the winning region for player i for the game
(G,Gφ), where φ labels all states of Φ (and only them). In v ∈ Safei(Φ), player
i has a memoryless strategy to stay in Φ [17]. Furthermore, we define the new
game graph G′ = G\Z as the game graph G where all states of Z are removed,
as well as their adjacent edges.

Lemma 13. Let G = (V, V0, V1, E,Ω) and Win =
∨

fc∈FC FG¬fc, player 0
has a winning memoryless strategy in his winning region of the game (G,Win).

Proof. A Streett-Rabin condition on colors of C is composed of two sets (F0,F1)
such that F0 ⊆ P(C), F1 = P(C)\F0 and F0 is closed under union. Player i
wins a play iff the set of colors met infinitely often on the play belongs to Fi.
Given a Streett-Rabin condition, player 1 has a winning memoryless strategy in
his winning region [16].
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We can express the winning condition Win =
∨

fc∈FC FG¬fc has a Streett-
Rabin condition by swapping the roles of players (player 0 becomes player 1,
and vice versa) and setting

F0 = {FC} and F1 = P(FC)\F0. (A.4)

Because player 0 wins this objective iff all fairness constraints fc ∈ FC are met
infinitely often, player 1 wins if the original Win =

∨

fc∈FC FG¬fc objective is
met. Finally, Theorem 4 of [16] tells us that player 1—player 0 in our original
game—has a winning memoryless strategy to win in his winning region. Thus
the Win =

∨

fc∈FC FG¬fc objective can be won with a memoryless strategy in
the winning region of player 0.

Lemma 14. Let G = (V, V0, V1, E,Ω) and Reachi(A,B) =Wk such that Wk =
Wk+1, where

W0 = B

Wj+1 =
Wj ∪ {v ∈ Vi ∩A|∃v

′ ∈Wj s.t. (v, v′) ∈ E}
∪{v ∈ V1−i ∩A| 6 ∃v

′ ∈ V \Wj s.t. (v, v′) ∈ E}.

Let Φ1 = Ω−1(φ1) and Φ2 = Ω−1(φ2), the two sets of states labeled with φ1 and
φ2, respectively. Reachi(Φ1,Φ2), computes the winning region of player i in the
game graph G with winning condition φ1Uφ2. Furthermore, both players have a
memoryless strategy to win in their winning region.

Proof. Let v ∈ Reachi(Φ1,Φ2), we can prove by induction over j that player
i has a strategy to win φ1Uφ2 in v. If v ∈ W0 = Φ2, v is labeled by φ2 and
player i already wins φ1Uφ2. Otherwise, v ∈Wj+1. In this case, v is labeled by
φ1. Furthermore, player i can lead, from v, to states v′ of Wj where he has, by
induction hypothesis, a strategy to win φ1Uφ2. He thus has a strategy to win
φ1Uφ2 in v: going to any such v′, and playing the winning strategy there.

On the other hand, player 1− i has a strategy in v ∈ V \Reachi(Φ1,Φ2) to
win ¬φ2W (¬φ1 ∧ ¬φ2). Indeed, either v is in V \(Φ1 ∪ Φ2), satisfies ¬φ1 ∧ ¬φ2,
and player 1− i already wins his objective. Or v is in (V ∩ Φ1)\Reachi(Φ1,Φ2)
and satisfies φ1 and ¬φ2. In this latter case, in v, player 1− i can lead to states
v′ of V \Reachi(Φ1,Φ2), otherwise it would belong to Reachi(Φ1,Φ2) because
it belongs to Φ1 and could not avoid to reach Reachi(Φ1,Φ2). That is, from v,
player 1− i has a strategy to stay in V \Reachi(Φ1,Φ2) or to reach V \(Φ1 ∪Φ2),
i.e. a strategy to win G¬φ2 ∨ (¬φ2U(¬φ1 ∧ ¬φ2)) = ¬φ2W (¬φ1 ∧ ¬φ2).

Finally, we can show that in their winning regions, both players have a
memoryless winning strategy. Indeed, in v ∈ Wj+1, player i can choose any
successor belonging toWj . This way, it will not come back to v before winning his
objective, thus the strategy is memoryless in v. Furthermore, in v ∈W0, he can
choose any successor he wants. On the other hand, in v ∈ V \(Φ1∪Φ2), player 1−i
already wins and can choose any successor and, in v ∈ (V ∩Φ1)\Reachi(Φ1,Φ2),
player 1 − i can always choose the same successor in V \Reachi(Φ1,Φ2), thus
the strategy is memoryless in v.
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Note that Lemma 14 implies that φ1Wφ2 can also be won without memory:
if player i wins ¬φ2U(¬φ1 ∧¬φ2) in Reachi(Φ2,Φ1 ∩Φ2), then player 1− i wins
φ1Wφ2 without memory in V \Reachi(Φ2,Φ1 ∩ Φ2).

Now that we showed that the objectives Win =
∨

fc∈FC FG¬fc, Win =
φ1Uφ2 and Win = φ1Wφ2 do not need memory to be won, we can show that
the objectives of interest (Equations A.1, A.2 and A.3) neither need memory to
be won. For this, we show how to compute the winning region and then show
that, from this computation, we can extract a memoryless strategy.

Lemma 15. Let G = (V, V0, V1, E,Ω) and Win =
∨

fc∈FC FG¬f ∨XXφ. If
the game graph G is bipartite, player 0 has a winning memoryless strategy in his
winning region of the game (G,Win).

Proof. First, let Prei(Z) be defined as

Prei(Z) =
{v ∈ Vi|∃v

′ ∈ Z s.t. (v, v′) ∈ E}
∪{v ∈ V1−i| 6 ∃v

′ ∈ V \Z s.t. (v, v′) ∈ E}.
(A.5)

Intuitively, Prei(Z) returns the set of states in which player i can force to reach
Z in one step.

Algorithm 6 returns the winning regions for both players in the game (G,Win).
It relies on the Prei operator and on the sub-algorithm Solve(G,

∨

fc∈FC FG¬fc)
returning the winning regions for both players in the game (G,

∨

fc∈FC FG¬fc).

Algorithm 6: Solve(G,
∨

fc∈FC FG¬fc ∨XXφ)

Data: G = (V, V0, V1, E,Ω) a game graph with {φ} ∪ FC the set of colors
coloring the states of G.

Result: (W0,W1), the winning regions of players 0 and 1, respectively, in
the game (G,

∨

fc∈FC FG¬fc ∨XXφ).

(W01,W11) = Solve(G,
∨

fc∈FC FG¬fc)

W02 = Pre0(W01 ∪ Pre0(W01 ∪ Ω−1(φ)))
return (W02, V \W02)

We can show that Algorithm 6 effectively computes the winning regions in
the game of interest. First, note that in W01, player 0 has a strategy to win
∨

fc∈FC FG¬fc and thus wins
∨

fc∈FC FG¬fc ∨ XXφ. In v ∈ Pre0(W01 ∪

Ω−1(φ)), player 0 has a strategy to win
∨

fc∈FC FG¬fc ∨ Xφ because either

the successors are in W01, and the player wins
∨

fc∈FC FG¬fc, or in Ω−1(φ),

and he wins Xφ. Finally, in v ∈ Pre0(W01 ∪Pre0(W01 ∪Ω−1(φ))), player 0 can
force a successor in which he has a strategy to win X(

∨

fc∈FC FG¬fc ∨Xφ) =
∨

fc∈FC XFG¬fc ∨XXφ =
∨

fc∈FC FG¬fc ∨XXφ.
On the other hand, player 1 has a strategy to win

∧

fc∈FC GFfc ∧XX¬φ

in v ∈ V \W02. Indeed, in v ∈ V \Pre0(W01 ∪ Pre0(W01 ∪ Ω−1(φ))), player
1 has a strategy to avoid W01 and Pre0(W01 ∪ Ω−1(φ)) in one step and in
v ∈ V \Pre0(W01 ∪ Ω−1(φ)) he has a strategy to avoid W01 and Ω−1(φ) in one
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step. Thus he can always avoid W01 and avoid Ω−1(φ) in two steps, thus wins
∧

fc∈FC GFfc ∧XX¬φ.
Finally, we can show that there exists a memoryless strategy for player 0

in his winning region W02. Indeed, if v ∈ W01, player 0 has a memoryless
strategy to win

∨

fc∈FC FG¬fc (see Lemma 13). In v ∈ W02\W01, player 0

can choose a successor in W01 ∪ Pre0(W01 ∪ Ω−1(φ)). Then, he can either play
to win

∨

fc∈FC FG¬fc (if possible), otherwise he can choose a successor of

W01 ∪ Ω−1(φ). For the strategy to be memoryless, the choices made in both
steps must be either identical, or made in different states. Because the game
graphs under interest are bipartite, in v ∈ V player 0 cannot choose v as the
successor, and the two choices are always made in different states. Thus, the
strategy described above is memoryless, and player 0 has a memoryless strategy
to win

∨

fc∈FC FG¬fc ∨XXφ.

Lemma 16. Let G = (V, V0, V1, E,Ω) and Win =
∨

fc∈FC FG¬fc ∨ φ1Uφ2.
Player 0 has a winning memoryless strategy in his winning region of the game
(G,Win).

Proof. Algorithm 7 returns the winning regions for both players in the game
(G,Win). This algorithm relies on the sub-algorithm Solve(G,

∨

fc∈FC FG¬fc),
Reachi(Φ1,Φ2) and Safei(Φ) and on Algorithm 8 returning the winning region
in a game (G,φ1U

∨

fc∈FC(G(φ1 ∧ ¬fc)).

Algorithm 7: Solve(G,
∨

fc∈FC FG¬fc ∨ φ1Uφ2)

Data: G = (V, V0, V1, E,Ω) a game graph with {φ1, φ2} ∪ FC the set of
colors coloring the states of G.

Result: (W0,W1), the winning regions of players 0 and 1, respectively, in
the game (G,

∨

fc∈FC FG¬fc ∨ φ1Uφ2).

P = Ω−1(φ1)
Q = Ω−1(φ2)
(W01,W11) = Solve(G,

∨

fc∈FC FG¬fc)

W02 = Reach0(P,Q ∪W01)
(W03,W13) = Solve(G\W02, φ1U

∨

fc∈FC G(φ1 ∧ ¬fc))
return (W03 ∪W02,W13)

First, let us show that Algorithm 8 effectively returns the winning regions of
both players in game (G,φ1U

∨

fc∈FC G(φ1 ∧ ¬fc)) and that there is a winning
memoryless strategy for player 0 in his winning region. We can prove it by
induction over the size of the game. The base case of the induction arises
when W ′

01 = ∅. In this case,
⋃

fc∈FC Safe0(P ∩ V \Ω−1(fc)) = ∅. Thus for
all v ∈ V , player 1 has a strategy to win F (¬φ1 ∨ fc) for any fc ∈ FC.
Player 1 has thus a strategy to win

∧

fc∈FC GF (¬φ1 ∨ fc): play the strategy
to win F (¬φ1 ∨ fc) for fc ∈ FC, this ends up in any state from which the
player can still play the strategy to win F (¬φ1 ∨ fc′) for another fc′ ∈ FC,
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Algorithm 8: Solve(G,φ1U
∨

fc∈FC G(φ1 ∧ ¬fc))

Data: G = (V, V0, V1, E,Ω) a game graph with {φ1} ∪ FC the set of
colors coloring the states of G.

Result: (W0,W1), the winning regions of players 0 and 1, respectively, in
the game (G,φ1U

∨

fc∈FC G(φ1 ∧ ¬fc)).

P = Ω−1(φ1)
W ′

01 = Reach0(P,
⋃

fc∈FC Safe0(P ∩ V \Ω−1(fc)))

if W ′
01 = ∅ then

return (∅, V )

else

(W ′
02,W

′
12) = Solve(G\W ′

01, φ1U
∨

fc∈FC G(φ1 ∧ ¬fc))
return (W ′

02 ∪W
′
01,W

′
12)

and so on. Finally, since player 1 can win
∧

fc∈FC GF (¬φ1 ∨ fc), he can win
∧

fc∈FC F (¬φ1∨fc)W (¬φ1∧F (¬φ1∨fc)), his objective of interest, in any state
v ∈ V .

The inductive case supposes that Solve(G′, φ1U
∨

fc∈FC G(φ1∧¬fc)) returns
the correct winning regions for any game graph G′ smaller than G. In this case,
we can show that (1) W ′

01 is winning for player 0 in G; (2) if W ′
02 is winning for

player 0 in G\W ′
01, then it is winning in G; (3) if W ′

12 is winning for player 1 in
G\W ′

01, then it is winning in G too.
Let us show the first point. In v ∈W ′

01, player 0 can reach in a finite number
of steps through states of P a state v′ of

⋃

fc∈FC Safe0(P ∩ V \Ω−1(fc)). In v′,
player 0 has a strategy to win G(φ1 ∧ ¬fc) for a fc ∈ FC. Thus, in v, player
0 has a strategy to win φ1U

∨

fc∈FC G(φ1 ∧ ¬fc): use the strategy to reach v′

and then use a the strategy to win G(φ1 ∧ ¬fc) for the specified fc ∈ FC.
Let us show now the second point. If v belongs toW ′

02, player 0 has a strategy
in G\W ′

01 to win φ1U
∨

fc∈FC G(φ1 ∧ ¬fc). We can show that whenever such
a strategy meets a state v′ with a successor in W ′

01, player 1 has no interest
to play this transition: from v to v′, all states satisfy φ1, by definition of the
objective of the sub-game; thus, if player 1 chooses the successor in W ′

01, player
0 can still play the strategy to win φ1U

∨

fc∈FC G(φ1 ∧ ¬fc), and thus all the
resulting paths will be winning for player 0. The winning region W ′

02 is thus also
winning in G.

Furthermore, let us show the third point. If v ∈ W ′
12, player 1 has also a

wining strategy in G: whenever such a strategy meets a state v′ with a successor
in W ′

01, player 1 can still win. Indeed, either v′ 6∈ P , thus player 0 already loses;
or, v′ ∈ P , v′ ∈ V1 and v′ has another successor outside W ′

01, otherwise v
′ would

belong to W ′
01. Thus, player 1 can avoid this successor in W ′

01 and follow the
original strategy.

Finally, let us show that there is a memoryless strategy for player 0 in his win-
ning region. In W ′

01, he has a memoryless strategy: in W ′
01\
⋃

fc∈FC Safe0(P ∩
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V \Ω−1(fc)) use the strategy to reach
⋃

fc∈FC Safe0(P ∩V \Ω−1(fc)), and then
use the memoryless strategy to win G(φ1 ∧ ¬fc) for one possible fc ∈ FC.
Furthermore, let us assume that in W ′

02, there exists a memoryless strategy f0;
the corresponding strategy in G is to follow f0 whenever W ′

01 is not reached,
and the strategy described above when W ′

01 is reached.
Let us now show that Algorithm 7 effectively returns the winning regions for

both players in game (G,
∨

fc∈FC FG¬fc ∨ φ1Uφ2) and that there is a winning
memoryless strategy for player 0 in his winning region. For this, we have to
show that (1) W01 is winning for player 0, (2) W02 is winning for player 0, (3) if
W03 is winning for player 0 in G\W02, then it is winning for him in G and (4) if
W13 is winning for player 1 in G\W02, then it is winning for him in G.

First, W01 is effectively winning for player 0: he has a strategy to win
∨

fc∈FC FG¬fc, thus a strategy to win the objective of interest. Second, in W02,
player 0 can reach Q∪W01 through P , thus can win

∨

fc∈FC FG¬fc∨ (φ1Uφ2):
play the strategy to reach Q ∪W01 through P , if Q is reached, player 0 is done,
otherwise, play the strategy to win

∨

fc∈FC FG¬fc, and thus win the objective.
The third point can be proved by considering two cases. In the first case, the
winning strategy for player 0 in G\W02 never reaches a state with a successor
in W02: the strategy is also winning for φ1U

∨

fc∈FC G(φ1 ∧ ¬fc) in G, thus
winning for

∨

fc∈FC FG¬fc, thus winning for the objective of interest. In the
second case, the strategy meets a state v′ with a successor in W02. Choosing
this successor will not allow player 1 to win: all states already met satisfy φ1,
thus choosing the successor in W02 still allow player 0 to win the objective of
interest.

Let us now show the fourth point. If v ∈W13, then player 1 can win

Win′ =
∧

fc∈FC

F (¬φ1 ∨ fc)W (¬φ1 ∧
∧

fc∈FC

F (¬φ1 ∨ fc)) (A.6)

with strategy f1. Note that W13 ∩Q = ∅, thus v satisfies ¬φ2. If f1 never meets
a state v′ with a successor in W02, then f1 wins the objective Win′ in G, thus all
enforced paths either satisfy G

∧

fc∈FC F (¬φ1 ∨ fc) and never meet ¬φ1, satisfy
∧

fc∈FC GFfc∧G(¬φ1∧¬φ2), thus the objective of interest, or meet ¬φ1∧¬φ2,
wins ¬φ2U(¬φ1 ∧ ¬φ2), and from there can win

∧

fc∈FC GFfc (because out of
W01).

Otherwise, f1 meets a state v′ with a successor in W02. Either v′ satisfies
¬φ1 and player 1 can win

∧

fc∈FC GFfc, thus the objective of interest, or v′

satisfies φ1, v
′ ∈ V1, and v

′ has another successor in V \W02. Player 1 can thus
choose this successor and follow the same strategy as above.

Finally, let us show that there is a memoryless strategy in the winning region
of player 0: in W01, he can play the memoryless strategy to win

∨

fc∈FC FG¬fc;
in W02\W01, he can play the memoryless strategy to win Q ∪W01, and if W01

is reached, he can play the corresponding strategy; finally, player 0 also has a
memoryless strategy in W03, ending the proof.
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Lemma 17. Let G = (V, V0, V1, E,Ω) and Win =
∨

fc∈FC FG¬fc ∨ φ1Wφ2.
Player 0 has a winning memoryless strategy in his winning region of the game
(G,Win).

Proof. Algorithm 9 returns the winning regions for both players in the game
(G,Win). It relies on the sub-algorithm Solve(G,

∨

fc∈FC FG¬fc) and Reachi.

Algorithm 9: Solve(G,
∨

fc∈FC FG¬fc ∨ φ1Wφ2)

Data: G = (V, V0, V1, E,Ω) a game graph with {φ1, φ2} ∪ FC the set of
colors coloring the states of G.

Result: (W0,W1), the winning regions of players 0 and 1, respectively, in
the game (G,

∨

fc∈FC FG¬fc ∨ φ1Wφ2).

P = Ω−1(φ1)
Q = Ω−1(φ2)
(W01,W11) = Solve(G,

∨

fc∈FC FG¬fc)

G′ = G\W01

W12 = Reach1(G
′, V ′\Q, V ′\(P ∪Q))

return (V \W12,W12)

We can show that Algorithm 9 computes the winning regions for both
players in the game of interest. First, in v ∈W01, player 0 has a strategy to win
∨

fc∈FC FG¬fc, thus a strategy to win the objective of interest
∨

fc∈FC FG¬fc∨
φ1Wφ2. Second, in v ∈ W12, player 1 has a strategy to win ¬φ2U(¬φ1 ∧ ¬φ2)
by definition of Reach. Thus, in v ∈ V ′\W12, player 0 has a strategy to win
(φ1 ∨ φ2)W ((φ1 ∨ φ2) ∧ φ2) = φ1Wφ2. Let us show that player 0 also has a
strategy to win the objective of interest in v ∈ V ′\W12 in G. Consider that the
strategy never reaches a state with a successor in W01. In this case, player 0 also
wins φ1Wφ2 in G, thus the objective of interest. Consider now that the strategy
reaches a states v′ with a successor in W01. Note that v′ satisfies φ1 or the game
is already won, otherwise it would not be part of the strategy, and in that case
v′ ∈ V1, otherwise it would belong to W01. By choosing the successor in W01,
player 1 would also lose because then all paths would satisfy

∨

fc∈FC FG¬fc,
thus player 0 would also win.

In v ∈ W12, player 1 has a strategy to win ¬φ2U(¬φ1 ∧ ¬φ2) in G′. Let
us now show that player 1 also has a strategy in v to win in G the objective
of interest. First, consider that the strategy in v never reaches a state with a
successor in W01; in this case, the strategy also wins ¬φ2U(¬φ1 ∧ ¬φ2) in G.
Furthermore, when reaching a state satisfying ¬φ1∧¬φ2 (and this will eventually
happen), player 1 is still in V \W01, and thus can win

∧

fc∈FC GFfc in this
state. Player 1 can thus win ¬φ2U(¬φ1 ∧ ¬φ2) ∧

∧

fc∈FC GFfc, the objective
of interest. Consider now that the strategy reaches a state v′ with a successor
in W01. v

′ belongs to V1 otherwise it would already belong to W01. Either v′

satisfies ¬φ1 ∧ ¬φ2, and belongs to V \W01, and can win the objective as above,
or it satisfies φ1 ∧ ¬φ2, has successor in the next iteration of Reach1, and thus
can avoid to go into W01, and also win the objective as above.
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Let us show now that player 0 has a memoryless strategy in his winning
region. Let v ∈W01, we know that player 0 has a memoryless strategy to win
∨

fc∈FC FG¬fc, thus to win the objective of interest. Let v ∈ V \(W12 ∪W01),
player 0 has a memoryless strategy to win φ1Wφ2. We can modify this strategy
such that whenever a state in W01 is reached, the memoryless strategy to
win

∨

fc∈FC FG¬fc is played, resulting into a memoryless strategy to win the
objective of interest.

Lemma 12 and Lemmas 15, 16 and 17 can now be combined into Theorem 18
saying that no memory is needed to win the objectives of interest.

Theorem 18. Let s be a state of a given (implicit) model and ψ an ATLKIrF

path formula. Γ have a memoryless strategy to enforce ψ in s if and only if they
have a memory-full strategy to enforce ψ in s.

Proof. By Lemma 12, Γ have a strategy to win ψ in s iff the state corresponding
to s in the game (GM,Γ,ψ,WinM,Γ,ψ) is winning for player 0. Furthermore, by
Lemmas 15, 16 and 17, for any objective of interest, there is a memoryless
strategy in the winning region of player 0. Thus, Γ have a memoryless strategy
to win ψ in s iff there is a memory-full strategy to win ψ in s.
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