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RIGID AND SCHURIAN MODULES OVER CLUSTER-TILTED

ALGEBRAS OF TAME TYPE

ROBERT J. MARSH AND IDUN REITEN

Abstract. We give an example of a cluster-tilted algebra Λ with quiver Q, such that

the associated cluster algebra A(Q) has a denominator vector which is not the dimension
vector of any indecomposable Λ-module. This answers a question posed by T. Nakanishi.
The relevant example is a cluster-tilted algebra associated with a tame hereditary algebra.

We show that for such a cluster-tilted algebra Λ, we can write any denominator vector as
a sum of the dimension vectors of at most three indecomposable rigid Λ-modules. In order
to do this it is necessary, and of independent interest, to first classify the indecomposable
rigid Λ-modules in this case.

Introduction

In the theory of cluster algebras initiated by Fomin and Zelevinsky, the authors introduced
some important kinds of vectors, amongst them the d-vectors (denominator vectors) [15] and
the c-vectors [16]. These vectors have played an important role in the theory. In particular,
they have been important for establishing connections with the representation theory of
finite dimensional algebras.

Let Q be a finite quiver with n vertices, without loops or two-cycles, and let A(Q) be the
associated cluster algebra with initial cluster {x1, . . . , xn}. Each non-initial cluster variable

is known to be of the form f/m, where m = xd1

1 · · ·xdn
n for nonnegative integers di and f

is not divisible by any xi. Then the associated d-vector is (d1, . . . , dn). For the definition
of c-vector we refer to [16]. On the other hand, we have the dimension vectors of the finite
dimensional rigid indecomposable KQ-modules.

Assume first that Q is acyclic. Then there are known interesting connections between the
d-vectors and the c-vectors on the one hand and the dimension vectors of the indecomposable
rigid KQ-modules on the other hand. More specifically, there is a bijection between the
non-initial cluster variables and the indecomposable rigid KQ-modules such that the d-
vector of a cluster variable coincides with the dimension vector of the corresponding module
(see [11, 12, 13]). Furthermore, the (positive) c-vectors of A(Q) and the dimension vectors
of the indecomposable rigid KQ-modules coincide (see [14, 27]).

However, when the initial quiver Q is not acyclic, we do not have such nice connections
(see [2, 6, 9] for work in this direction). Answering a question posed to us by Nakanishi, we
found an example showing the following:
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(*) There is a cluster-tilted algebra Λ with quiver Q such that A(Q) has a denominator
vector which is not the dimension vector of any indecomposable Λ-module.

Since we know that there are denominator vectors which are not dimension vectors, it
is natural to ask if the denominator vectors can be written as a sum of a small number
of dimension vectors of indecomposable rigid Λ-modules. We consider this question for
cluster-tilted algebras associated to tame hereditary algebras. Note that by [17, Theorem
3.6], using [5, Theorem 5.2] and [8, Theorem 5.1], such cluster-tilted algebras are exactly the
cluster-tilted algebras of tame representation type (noting that the cluster-tilted algebras of
finite representation type are those arising from hereditary algebras of finite representation
type by [7, Theorem A]). In this case we show that it is possible to use at most 3 summands.
We do not know if it is always possible with 2 summands.

In order to prove the results discussed in the previous paragraph we need to locate the
indecomposable rigid Λ-modules in the AR-quiver of Λ-mod. This investigation should be
interesting in itself. Closely related is the class of indecomposable Schurian modules, which
we also describe. If H is a hereditary algebra, then every indecomposable rigid (equivalently,
τ -rigid) module is Schurian. So one might ask what the relationships are between the rigid,
τ -rigid and Schurian Λ-modules. In general there are τ -rigid (hence rigid) Λ-modules which
are not Schurian. However, it turns out that every indecomposable Λ-module which is rigid,
but not τ -rigid, is Schurian.

In Section 1, we recall some basic definitions and results relating to cluster categories.
In Section 2 we discuss tubes in general. In Section 3 we fix a cluster-tilting object T in
a cluster category associated to a tame hereditary algebra and investigate its properties in
relation to a tube. Section 4 is devoted to identifying the rigid and Schurian EndC(T )opp-
modules. In Section 5, we investigate an example in the wild case which appears to behave
in a similar way to the tame case. In Section 6, we give the example providing a negative
answer to the question of Nakanishi. Finally, in Section 7, we also show that for cluster-
tilted algebras associated to tame hereditary algebras each denominator vector is a sum of
at most 3 dimension vectors of indecomposable rigid Λ-modules.

We refer to [3, 4] for standard facts from representation theory. We would like to thank
Otto Kerner for helpful conversations about wild hereditary algebras.

1. Setup

In this section we recall some definitions and results related to cluster categories and
rigid and τ -rigid objects. We also include some lemmas which are useful for showing that a
module is Schurian or rigid.

For a modulus N , we choose representatives ZN = {0, 1, . . . , N − 1}, writing [a]N for the
reduction of an integer a mod N . If N = 0, we take ZN to be the empty set.

We fix an algebraically closed field K; all categories considered will be assumed to be K-
additive. For an object X in a category X , we denote by add(X) the additive subcategory
generated by X. Suppose that X is a module category with AR-translate τ . Then we say
that X is rigid if Ext1(X,X) = 0, τ -rigid if Hom(X, τX) = 0, Schurian if End(X) ∼= K,
or strongly Schurian if the multiplicity of each simple module as a composition factor is at
most one. Note that any strongly Schurian module is necessarily Schurian.

If X is a triangulated category with shift [1] and AR-translate τ , we define rigid, τ -rigid
and Schurian objects similarly, where we write Ext1(X,Y ) for Hom(X,Y [1]). For both
module categories and triangulated categories, we shall consider objects of the category up
to isomorphism.
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For modules X,Y in a module category over a finite dimensional algebra, we write
Hom(X,Y ) for the injectively stable morphisms from X to Y , i.e. the quotient of Hom(X,Y )
by the morphisms from X to Y which factorize through an injective module. We similarly
write Hom(X,Y ) for the projectively stable morphisms. Then we have the AR-formula:

(1.1) DHom(X, τY ) ∼= Ext1(X,Y ) ∼= DHom(τ−1X,Y ),

where D denotes the functor Hom(−,K).
Let Q = (Q0, Q1) and Q′ = (Q′

0, Q
′
1) be quivers with vertices Q0, Q

′
0 and arrows Q1, Q

′
1.

Recall that a morphism of quivers from Q to Q′ is a pair of maps fi : Qi → Q′
i, i = 0, 1, such

that whenever α : i → j is an arrow in Q, we have that f1(α) starts at f0(i) and ends at
f0(j). In order to describe the modules we are working with, it is convenient to use notation
from [25], which we now recall.

Definition 1.1. Let Q be a quiver with vertices Q0. A Q-coloured quiver is a pair (Γ, π),
where Γ is a quiver and π : Γ → Q is a morphism of quivers. We shall always assume that
Γ is a tree.

As Ringel points out, a Q-coloured quiver (Γ, π) can be regarded as a quiver Γ in which
each vertex is coloured by a vertex of Q and each arrow is coloured by an arrow of Q. In
addition, if an arrow γ : v → w in Γ is coloured by an arrow α : i → j in Q then v must be
coloured with i and w must be coloured with j. We shall draw Q-coloured quivers in this
way. Thus each vertex v of Γ will be labelled with its image π(v) ∈ Q0, and each arrow a of
Γ will be labelled with its image π(a) in Q1. But note that if Q has no multiple arrows then
we can omit the arrow labels, since the label of an arrow in Γ is determined by the labels of
its endpoints.

We shall also omit the orientation of the arrows in Γ, adopting the convention that the
arrows always point down the page.

As in [25, Remark 4], a Q-coloured quiver (Γ, π) determines a representation V = V (Γ, π)
of Q over K (and hence a KQ-module) in the following way. For each i ∈ Q0, let Vi be the
vector space with basis given by Bi = π−1(i) ⊆ Γ0. Given an arrow α : i → j in Q and
b ∈ π−1(i), we define

(1.2) ϕα(b) =
∑

b
α
−→c in Γ

c,

extending linearly.
If A = KQ/I, where I is an admissible ideal, and V satisfies the relations coming from

the elements of I then it is an A-module. Note that, in general, not every A-module will
arise in this way (for example, over the Kronecker algebra). Also, a given module may be
definable using more than one Q-coloured quiver (by changing basis).

As an example of a coloured quiver, consider the quiver Q:

(1.3) 1 // ))
2 // 3 // 4.

Then we have the following Q-coloured quivers and corresponding representations:

(1.4) T2 =
1

4 , K //

id

))
0 // 0 // K.

(1.5) T3 = 2

1

4 , K
id

//

id

))
K // 0 // K.
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Figure 1. A quiver Q, a Q-coloured quiver, together with the redrawing
according to Remark 1.2 and the corresponding representation of Q.

Remark 1.2. We will sometimes label the vertices of a QΛ-coloured quiver (Γ, π) by writing

π−1(i) = {bik : k = 1, 2, . . .}

for i a vertex of Q. Then, if α is an arrow from i to j in Q, (1.2) becomes:

ϕα(bik) =
∑

l, bik

α
−→bjl in Γ

bjl.

To aid with calculations, we may also redraw Γ, placing all of the basis elements bij (for
fixed i) close together (according to a fixed embedding of Q in the plane). In this case,
we must include the arrowheads on the arrows so that this information is not lost. For an
example, see Figure 1.

Definition 1.3. If (Γ, π), (Γ′, π′) are Q-coloured quivers then we call a map ϕ : Γ → Γ′ a
morphism of Q-coloured quivers if it is a morphism of quivers and π = π′ϕ.

If Γ′′ is a full subquiver of Γ and π′′ is the restriction of π to Γ then Γ′′ is called a
Q-coloured subquiver of (Γ, π); note that it is again a Q-coloured quiver.

Remark 1.4. If (Γ′, π′) is a Q-coloured subquiver of (Γ, π) with the property that every
arrow between a vertex in Γ′ and a vertex in Γ not in Γ′ points towards the vertex in Γ′, then
it is easy to see that there is a corresponding embedding of modules V (Γ′, π′) →֒ V (Γ, π).
Similarly, if every such arrow points towards Γ′, there is a corresponding quotient map
V (Γ, π) ։ V (Γ′, π′).

Let (Γ(1), π(1)) and (Γ(2), π(2)) be Q-coloured quivers. Suppose that there is a Q-
coloured quiver (Γ, π) which is isomorphic to a Q-coloured subquiver of (Γ(1), π(1)) with
the second property above. Suppose in addition that it is isomorphic to a Q-coloured
subquiver of (Γ(2), π(2)) with the first property above. Then there is a KQ-module homo-
morphism V (Γ(1), π(1)) → V (Γ(2), π(2)) given by the composition of the quotient map and
the embedding given above.

We fix a quiver Q such that the path algebra KQ has tame representation type. For
example, we could take Q to be the quiver (1.3). We denote by KQ-mod the category of
finite-dimensional KQ-modules, with AR-translate τ .

We denote by Db(KQ) the bounded derived category of KQ-mod, with AR-translate also
denoted by τ . For objects X and Y in Db(KQ), we write Hom(X,Y ) for HomDb(KQ)(X,Y )
and Ext(X,Y ) for ExtDb(KQ)(X,Y ). Note that if X,Y are modules, these coincide with
HomKQ(X,Y ) and ExtKQ(X,Y ) respectively.



RIGID AND SCHURIAN MODULES OVER CLUSTER-TILTED ALGEBRAS OF TAME TYPE 5

The category Db(KQ) is triangulated. Let C = CQ denote the cluster category corre-
sponding to Q, i.e. the orbit category CQ = Db(KQ)/F , where F denotes the autoequiva-
lence τ−1[1] (see [10]). The category C is triangulated by [20, §4]. Note that an object in
Db(KQ)-mod can be regarded as an object in C; in particular this applies to KQ-modules,
which can be identified with complexes in Db(KQ) concentrated in degree zero.

If X,Y are KQ-modules regarded as objects in C, then

HomC(X,Y ) = Hom(X,Y ) ⊕ Hom(X,FY )

by [10, Prop. 1.5]. We write HomH
C (X,Y ) = Hom(X,Y ) and refer to elements of this space

as H-maps from X to Y , and we write Hom(X,FY ) = HomF
C (X,Y ) and refer to elements

of this space as F -maps from X to Y . So, we have:

HomC(X,Y ) = HomH
C (X,Y ) ⊕ HomF

C (X,Y ).

Note that

HomF
C (X,Y ) = Hom(X,FY ) = Hom(X, τ−1Y [1])

∼= Ext(X, τ−1Y ) ∼= D Hom(τ−1Y, τX) ∼= D Hom(Y, τ2X),
(1.6)

where D = Hom(−,K). If χ is an additive subcategory of C, we write:

HomH
C/χ(X,Y ), HomF

C/χ(X,Y )

for the quotients of HomH
C (X,Y ) and HomF

C (X,Y ) by the morphisms in C factoring through
χ.

A rigid object T in C is said to be cluster-tilting if, for any object X in C, we have
Ext1C(T,X) = 0 if and only if X lies in add(T ).

We fix a cluster-tilting object T in C. We make the following assumption. As explained
in the proof of Theorem 4.10, to find the rigid and Schurian modules for any cluster-tilted
algebra arising from C, it is enough to find the rigid and Schurian modules in this case.

Assumption 1.5. The cluster-tilting object T is induced by a KQ-module (which we also
denote by T ). Furthermore, T is of the form U ⊕ T ′, where U is preprojective and T ′ is
regular. Note that the module T is a tilting module by [10].

Example 1.6. For example, if Q is the quiver in (1.3), we could take T to be the tilting
module:

(1.7) T = P1 ⊕ T2 ⊕ T3 ⊕ P4,

where T2 and T3 are the KQ-modules defined in (1.4), (1.5). Note that T can be obtained
from P1 ⊕ P2 ⊕ P3 ⊕ P4 by mutating (in the sense of [18, 24]) first at P2 and then at P3.
The modules T2 and T3 lie in a tube of rank 3 in KQ-mod; see Figure 2.

We define Λ = ΛT = EndCQ
(T ) to be the corresponding cluster-tilted algebra. For

Example 1.6, Λ is given by the quiver with relations shown in Figure 3 (we indicate how to
compute such a quiver with relations explicitly for a similar example in Section 5). Note
that this quiver can be obtained from Q by mutating (in the sense of [15]) first at 2 and
then at 3.

There is a natural functor HomC(T,−) from C to Λ-mod. We have:

Theorem 1.7. [7, Thm. A] The functor HomC(T,−) induces an equivalence from the ad-
ditive quotient C/ add(τT ) to Λ-mod.

We denote the image of an object X in C under the functor HomC(T,−) by X̃. We note
the following:
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Figure 3. The endomorphism algebra EndC(T )opp for the tilting module in Example 1.6.

Proposition 1.8. Let X be an object in C and X̃ the corresponding Λ-module. Then

(a) X̃ is Schurian if and only if

HomC/ add(τT )(X,X) ∼= K.

(b) X̃ is rigid if and only if

HomC/ add(τT⊕τ2T )(X, τX) = 0.

Proof. Part (a) follows from the equivalence in Theorem 1.7. Part (b) follows from this
combined with the AR-formula (1.1), noting that the injective modules in Λ-mod are the
objects in the subcategory add HomC(T, τ2T ) (see [7], [21, §2]). ¤

The following statement follows from [1, Thm. 4.1].

Theorem 1.9. [1] The functor HomC(T,−) induces a bijection between isomorphism classes
of indecomposable rigid objects in C which are not summands of τT and isomorphism classes
of indecomposable τ -rigid Λ-modules.

Since a KQ-module is rigid if and only if the induced object of C is rigid (by [10, Prop.
1.7]), we have:

Corollary 1.10. If X is a KQ-module not in add(τT ) then X is rigid in KQ-mod if and

only if X̃ is τ -rigid in Λ-mod.

Since (for modules over any finite-dimensional algebra) every τ -rigid module is rigid, we

have that X̃ is a rigid Λ-module for any rigid KQ-module X.
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Remark 1.11. Suppose that X is an indecomposable object of Db(KQ) which is either
a preprojective KQ-module, a preinjective KQ-module or the shift of a projective KQ-
module. Assume also that X is not a direct summand of τT . Then X is rigid in Db(KQ),

hence (by [10, Prop. 1.7]) rigid in C. By Theorem 1.9, X̃ is τ -rigid in Λ-mod. Furthermore,

X is Schurian in Db(KQ). We also have HomF
C (X,X) ∼= D Hom(X, τ2X) = 0 by (1.6), so

X is a Schurian object of C. It follows that X̃ is a Schurian Λ-module by Proposition 1.8(a).
Thus we see that, for any indecomposable transjective object of C (not a summand of τT ),
the corresponding Λ-module is Schurian and τ -rigid, hence rigid. Thus the main work in
classifying indecomposable Schurian and (τ -)rigid Λ-modules concerns those which arise
from tubes in KQ-mod.

Finally, we include some lemmas which will be useful for checking whether a given Λ-
module is Schurian or rigid.

Lemma 1.12. Let X,Y, Z be KQ-modules, regarded as objects in C. Let f ∈ HomF
C (X,Y ) =

Hom(X,FY ). Then f factorizes in C through Z if and only if it factorizes in Db(KQ)
through Z or F (Z).

Proof. Since f is an F -map, it can only factorize through Z in C as an H-map followed by
an F -map or an F -map followed by an H-map. The former case corresponds to factoriz-
ing through Z in Db(KQ) and the latter case corresponds to factorizing through F (Z) in
Db(KQ). ¤

Proposition 1.13. Let A,B,C be objects in Db(KQ).

(a) Let α : A → C and

Hom(B, τα) : Hom(B, τA) → Hom(B, τC)

and

Hom(α,B[1]) : Hom(C,B[1]) → Hom(A,B[1])

Then Hom(B, τα) is nonzero (respectively, injective, surjective, or an isomorphism) if
and only if Hom(α,B[1]) is nonzero (respectively, surjective, injective or an isomor-
phism). We illustrate the maps Hom(B, τα) and Hom(α,B[1]) below for ease of refer-
ence.

B

γ
ÃÃB

BB
BB

BB
B

Hom(B,τα)(γ)
// τC

τA

τα

==zzzzzzzz

A

α
ÂÂ>

>>
>>

>>
>

Hom(α,B[1])(δ)
// B[1]

C

δ

=={{{{{{{{

(b) Let β : C → B and consider the induced maps:

Hom(β, τA) : Hom(B, τA) → Hom(C, τA)

and

Hom(A, β[1]) : Hom(A,C[1]) → Hom(A,B[1])
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Then Hom(β, τA) is nonzero (respectively, injective, surjective, or an isomorphism) if
and only if Hom(A, β[1]) is nonzero (respectively, surjective, injective or an isomor-
phism). We illustrate the maps Hom(β, τA) and Hom(A, β[1]) below for ease of refer-
ence.

C

β
ÂÂ@

@@
@@

@@

Hom(β,τA)(γ)
// τA

B

γ

>>||||||||

A

δ
ÃÃA

AA
AA

AA
A

Hom(A,β[1])(δ)
// B[1]

C[1]

β[1]

<<yyyyyyyy

Proof. Part (a) follows from the commutative diagram:

Hom(C,B[1]) ∼
//

Hom(α,B[1])

²²

Ext(C,B) ∼
// D Hom(B, τC)

D Hom(B,τα)

²²
Hom(A,B[1]) ∼

// Ext(A,B) ∼
// D Hom(B, τA).

Part (b) follows from the commutative diagram:

Hom(A,C[1]) ∼
//

Hom(A,β[1])

²²

Ext(A,C) ∼
// D Hom(C, τA)

D Hom(β,τA)

²²
Hom(A,B[1]) ∼

// Ext(A,B) ∼
// D Hom(B, τA)

¤

Proposition 1.14. Let A,B and C be indecomposable KQ-modules and suppose that
Hom(A,B[1]) ∼= K. Let ε : A → B[1] be a nonzero map.

(a) The map ε factors through C if and only if there is a map α ∈ Hom(A,C) such that
Hom(B, τα) 6= 0.

(b) The map ε factors through C[1] if and only if there is a map β ∈ Hom(C,B) such
that Hom(β, τA) 6= 0.

Proof. Since Hom(A,B[1]) ∼= K, the map ε factors through C if and only if Hom(α,B[1]) 6= 0
for some α ∈ Hom(A,C). Part (a) then follows from Proposition 1.13(a). Similarly, ε factors
through C[1] if and only if Hom(A, β[1]) 6= 0 for some β ∈ Hom(C,B). Part (b) then follows
from Proposition 1.13(b). ¤

2. Tubes

In this section we recall some facts concerning tubes in KQ-mod. We fix such a tube T , of
rank r. Note that T is standard, i.e. the subcategory of T consisting of the indecomposable
objects is equivalent to the mesh category of the AR-quiver of T .

Let Qi, for i ∈ Zr be the quasisimple modules in T . Then, for each i ∈ Zr and l ∈ N,
there is an indecomposable module Mi,l in T with socle Qi and quasilength l; these modules
exhaust the indecomposable modules in T . For i ∈ Z and l ∈ N, we define Qi = Q[i]r and
Mi,l = M[i]r,l. Note that the socle of Mi,l is Mi,1. We denote the quasilength l of a module
M = Mi,l by ql(M). The AR-quiver of T is shown in Figure 4 (for the case r = 3).

Lemma 2.1. Let X be an object in T of quasilength ℓ. Then any path in the AR-quiver of
T with at least ℓ downward arrows must be zero in KQ-mod.
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M0,1 M1,1 M2,1 M0,1

M0,2 M1,2 M2,2

M2,3 M0,3 M1,3 M2,3

Figure 4. The AR-quiver of a tube of rank 3

Proof. By applying mesh relations if necessary, we can rewrite the path as a product of
ℓ − 1 downward arrows (the maximum number possible) followed by an upward arrow and
a downward arrow (followed, possibly, by more arrows). Hence the path is zero. ¤

The following is well-known.

Lemma 2.2. Let Mi,l, with 0 ≤ l ≤ r − 1, and Mj,m be objects in T . Then we have the
following: (see Figure 5 for an example).

(a)

Hom(Mi,l,Mj,m) ∼=





K,
if 1 ≤ m ≤ l − 1 and j is congruent to a member of
[i + l − m, i + l − 1] mod r;

K, if m ≥ l and j is congruent to a member of [i, i + l − 1] mod r;

0, otherwise.

(b)

Hom(Mj,m,Mi,l) ∼=





K,
if 1 ≤ m ≤ l − 1 and j is congruent to a member of [i − m + 1, i]
mod r;

K,
if m ≥ l and j is congruent to a member of [i − m + 1, i − m + l]
mod r;

0, otherwise.

Proof. We first consider part (a). Note that, since the quasilength of Mi,l is assumed to be
at most r, the rays starting at Mi+p,l−p for 0 ≤ p ≤ l − 1 do not intersect each other. It is
then easy to see that, up to mesh relations, there is exactly one path in the AR-quiver of
T from Mi,l to the objects in these rays and no path to any other object in T . The result
then follows from the fact that T is standard. A similar proof gives part (b). ¤

Let Mi,l be an indecomposable module in T . The wing WMi,l
of Mi,l is given by:

WMi,l
= {Mj,m : i ≤ j ≤ i + l − 1, 1 ≤ m ≤ l + i − j}.

Now fix Mi,l ∈ T with l ≤ r. It follows from Lemma 2.2 that if the quasisocle of X ∈ T
does not lie in WMi,l

then Hom(Mi,l, X) = 0. Similarly, if the quasitop of X does not lie in
WMi,l

then Hom(X,Mi,l) = 0. This implies the following, which we state here as we shall
use it often.

Corollary 2.3. Let M,N,X be indecomposable objects in T , and suppose that M has
quasilength at most r, and M ∈ WN .
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Mi−l+1,1

Figure 5. The left hand figure shows the modules X in T for which
Hom(Mi,l, X) 6= 0 (in the shaded region), for the case r = 5. The module
Mi,l is denoted by a filled-in circle. The right hand figure shows the modules
X with Hom(X,Mi,l) 6= 0.

(a) If the quasisocle of X does not lie in WN then Hom(M,X) = 0.
(b) If the quasitop of X does not lie in WN then Hom(X,M) = 0.

Lemma 2.4. Let Mi,l be an indecomposable module in T . Then we have:

dim End(Mi,l) =

{
1, 1 ≤ l ≤ r;

2, r + 1 ≤ l ≤ 2r;
dimHom(Mi,l, τMi,l) =

{
0, 1 ≤ l ≤ r − 1;

1, r ≤ l ≤ 2r − 1;

dim Hom(Mi,l, τ
2Mi,l) =

{
0, 1 ≤ l ≤ r − 2;

1, r − 1 ≤ l ≤ 2r − 2.

Proof. The formulas are easily checked using the fact that T is standard. ¤

The last lemma in this section also follows from the fact that T is standard (since the
mesh relations are homogeneous).

Lemma 2.5. Let X,Y be indecomposable objects in T , and let π1(X,Y ), . . . , πt(X,Y ) be
representatives for the paths in T from X to Y up to equivalence via the mesh relations.
Then the corresponding maps f1(X,Y ), . . . , ft(X,Y ) form a basis for Hom(X,Y ).

3. Properties of T with respect to a tube

In this section, we collect together some useful facts that we shall use in Section 4 to
determine the rigid and Schurian Λ-modules.

Recall that we have fixed a tube T in KQ-mod of rank r. Let TT be the direct sum
of the indecomposable summands of T lying in T (we include the case TT = 0). Let Tk,
k ∈ Zs be the indecomposable summands of TT which are not contained in the wing of
any other indecomposable summand of TT , numbered in order cyclically around T . The
indecomposable summands of TT are contained in ∪k∈Zs

WTk
, where WTk

denotes the wing
of Tk. Note that if TT = 0 then s = 0 and Zs is the empty set.
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A key role is played by the modules τTk. Let ik ∈ {0, 1, . . . , r− 1} and lk ∈ N be integers
such that

τTk
∼= Mik,lk .

Note that lk ≤ r − 1, since Tk is rigid. Then we have the wings

WTk
= {Mi,l : ik + 1 ≤ i ≤ ik + lk, 1 ≤ l ≤ lk + ik + 1 − i},(3.1)

WτTk
= {Mi,l : ik ≤ i ≤ ik + lk − 1, 1 ≤ l ≤ lk + ik − i},(3.2)

Wτ2Tk
= {Mi,l : ik − 1 ≤ i ≤ ik + lk − 2, 1 ≤ l ≤ lk + ik − 1 − i},(3.3)

For k ∈ Zs, the quasisimple objects in WτTk
are the Qi for ik ≤ i ≤ ik + lk − 1. Note

that, since Ext1(T, T ) = 0, we have [ik+1 − (ik + lk − 1)]r 6= 0, 1 (by Lemma 2.2 and the
AR-formula). In other words, two successive wings WτTk

and WτTk+1
are always separated

by at least one quasisimple module.
For k ∈ Zs, we define Topk to be the module Mik,r+lk . Note that Topk is the module of

smallest quasilength in the intersection of the ray through the injective objects in WτTk
and

the coray through the projective objects in WτTk
. Let Hk be the part of WTopk

consisting
of injective or projective objects in WTopk

of quasilength at least r. So

(3.4) Hk = {Mik,l : r ≤ l ≤ r + lk} ∪ {Mik+p,r+lk−p : 0 ≤ p ≤ lk}.

The unique object in both of these sets is Topk = Mik,r+lk , the unique projective-injective
object in WTopk

.
Let Rk (respectively, Sk) be the part of WTopk

consisting of non-projective, non-injective
objects in WTopk

of quasilength at least r (respectively, at least r − 1). Note that Rk ⊆ Sk.
We have:

Rk = {Mi,l : ik + 1 ≤ i ≤ ik + lk − 1, r ≤ l ≤ r + lk + ik − i − 1};(3.5)

Sk = {Mi,l : ik + 1 ≤ i ≤ ik + lk, r − 1 ≤ l ≤ r + lk + ik − i − 1}.(3.6)

An example is shown in Figure 6.

Lemma 3.1. The quasisocles of the indecomposable objects in Rk (respectively, Sk) are the
Qi where ik + 1 ≤ i ≤ ik + lk − 1 (respectively, ik + 1 ≤ i ≤ ik + lk) and the quasitops are
the Qi where ik ≤ i ≤ ik + lk − 2 (respectively, ik − 1 ≤ i ≤ ik + lk − 2). In particular,
the quasisocle of an indecomposable object in Rk lies in WTk

∩WτTk
(respectively, in WTk

).
The quasitop of an indecomposable object in Rk (respectively, Sk) lies in WτTk

∩ Wτ2Tk

(respectively, Wτ2Tk
).

Proof. The first statement follows from (3.5). The quasitop of Mi,l is Qi+l−1. Hence, the
quasitops of the indecomposable objects in Rk are the Qi with

(ik + 1) + r − 1 ≤ i ≤ (ik + lk − 1) + (r + lk + ik − (ik + lk − 1) − 1) − 1,

i.e.
ik + r ≤ i ≤ r + lk + ik − 2.

i.e. the Qi with ik ≤ i ≤ ik + lk − 2, since we are working mod r. Similarly, the quasitops
of the indecomposable objects in Sk are the Qi with

(ik + 1) + (r − 1) − 1 ≤ i ≤ (ik + lk) + (r + lk + ik − (ik + lk) − 1) − 1,

i.e.
ik + r − 1 ≤ i ≤ r + lk + ik − 2,

i.e. the Qi with ik − 1 ≤ i ≤ ik + lk − 2. The last statements follow from the descriptions of
the wings WTk

, WτTk
and Wτ2Tk

above (3.1). It is easy to observe the result in this lemma
in Figure 6, where the regions Rk and Sk are indicated. ¤
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Figure 6. The wings WτTk
shown as shaded regions in two copies of T

in the case r = 11. The elements in the Hk are drawn as filled dots. The
elements in the regions Rk and Sk are enclosed in triangles.

Recall that U denotes the maximal preprojective direct summand of T .

Lemma 3.2. Let k ∈ Zs and let X be an indecomposable object in WτTk
. Then Hom(U,X) =

0.

Proof. Since U is preprojective, Hom(U,−) is exact on short exact sequences of modules
in T , so dimHom(U,−) is additive on such sequences. This includes, in particular, almost
split sequences in T , and it follows that:

(3.7) dim Hom(U,X) =
∑

Y ∈WX ,Y quasisimple

dimHom(U, Y ).

Since Hom(U, τTk) = 0, we must have Hom(U, Y ) = 0 for all quasisimple modules in WτTk
,

and the result now follows from (3.7). ¤

Lemma 3.3. Suppose that Y ∈ ind(T ) satisfies HomC(TT , Y ) = 0 and Hom(U, Y ) = 0.
Then Y ∈ ∪k∈Zs

WτTk
.

Proof. Suppose Y satisfies the assumptions above. Then, if V is an indecomposable sum-
mand of T in a tube distinct from T , we have Hom(V, Y ) = 0 and Hom(Y, τ2V ) = 0,
so HomC(V, Y ) = 0. We also have that Hom(Y, τ2U) = 0, since τ2U is preprojective, so
HomC(U, Y ) = 0. Hence, we have HomC(T, Y ) = 0, so ExtC(Y, τT ) = 0. Since T (and
hence τT ) is a cluster-tilting object in C, this implies that Y lies in add τT and therefore in
∪k∈Zs

WτTk
as required. ¤

Proposition 3.4. Let X be an indecomposable object in T not lying in ∪k∈Zs
WτTk

. Then
Hom(U,X) 6= 0.

Proof. Since dim Hom(U,−) is additive on T , we can assume that X is quasisimple. We
assume, for a contradiction, that Hom(U,X) = 0. If we can find a module Y ∈ T \
∪k∈Zs

WτTk
such that HomC(TT , Y ) = 0 and Hom(U, Y ) = 0 then, by Lemma 3.3, we have

a contradiction. We now construct such a module Y , considering various cases for X.
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Case 1: Assume that X 6∼= Qik−1 and X 6∼= Qik+lk for any k ∈ Zs, i.e. that X is not
immediately adjacent to any of the wings WτTk

, k ∈ Zs. There is a single module of this
kind in the example in Figure 6; this is denoted by X1 in Figure 7. In this case we take
Y = X.

If V is an indecomposable summand of TT , then V ∈ WTk
for some k ∈ Zs. Since the

quasisimple module X does not lie in ∪k∈Zs
WTk

, we have Hom(V,X) = 0 by Corollary 2.3.
Similarly, τ2V ∈ Wτ2Tk

for some k ∈ Zs. Since the quasitop of X (i.e. X) does not lie
in ∪k∈Zs

WTk
, we have Hom(X, τ2V ) = 0 by Corollary 2.3. Hence HomC(TT , X) = 0,

completing this case.
We next suppose that X ∼= Mik+lk,1 for some k ∈ Zs (the case X ∼= Mik−1,1 is similar).

Recall that there is always at least one quasisimple module between two wings WτTk
and

WτTk±1
.

Case 2: Assume first that there are at least two quasisimple modules between the wings
WτTk

and WτTk+1
, so that X is not adjacent to the wing WτTk+1

. In the example in Figure 7,
the object X2 is an example of this type (with k = 1). In this case, we take Y = Mik,lk+1

(indicated by Y2 in Figure 7).
By Lemma 3.2, Hom(U,Mik+lk−1,1) = 0. By assumption, Hom(U,X) = 0. Since

dimHom(U,−) is additive on T , we have Hom(U,Mik+lk−1,2) = 0. If lk = 1 then Y =
Mik+lk−1,2 and Hom(U, Y ) = 0. If lk > 1 then, since dim Hom(U,−) is additive on the short
exact sequence:

0 → τTk → T ′
k ⊕ Mik+lk−1,1 → Mik+lk−1,2 → 0,

it follows that Hom(U, Y ) = 0 in this case also.
Since the quasisocle Qik

of Y does not lie in ∪k′∈Zs
WTk′ , we have Hom(V, Y ) = 0 for

all indecomposable summands V of TT by Corollary 2.3. Since there are at least two
quasisimple modules between the wings WτTk

and WτTk+1
, the quasitop of Y does not lie

in ∪k′∈Zs
Wτ2Tk′

. Hence Hom(Y, τ2V ) = 0 for all summands V of TT , by Corollary 2.3. So
HomC(TT , Y ) = 0, completing this case.

Case 3: We finally consider the case where there is exactly one quasisimple module
between the wings WτTk

and WτTk+1
. In the example in Figure 7, the object X3 is an

example of this type. In this case, we take Y = Mik,lk+lk+1+1 (indicated by Y3 in Figure 7).
The quasisimples in WY are the quasisimples in WτTk

, the quasisimples in WτTk+1
and

X. For a quasisimple module Q in one of the first two sets, Hom(U,Q) = 0 by Lemma 3.2.
By assumption, Hom(U,X) = 0. Hence, arguing as in Lemma 3.2 and using the additivity
of dim Hom(U,−) on T , we have Hom(U, Y ) = 0.

Since the quasisocle of Y is Qik
, which does not lie in ∪k′∈Zs

WTk′ , we see that Hom(V, Y ) =
0 for any indecomposable summand of TT by Corollary 2.3. Similarly, the quasitop of Y
is Qik+1+lk+1−1, which does not lie in ∪k′∈Zs

Wτ2Tk′
. Hence Hom(Y, τ2V ) = 0 for any in-

decomposable summand of TT by Corollary 2.3. So HomC(TT , Y ) = 0, completing this
case. ¤

Lemma 3.5. Let P be an indecomposable projective KQ-module, and suppose that we
have Hom(P,X0) = 0 for some indecomposable module X0 on the border of T . Then
dimHom(P,X) ≤ 1 for all indecomposable modules X on the border of T . Furthermore, if
there is some indecomposable module X1 on the border of T such that Hom(P,X) = 0 for
all indecomposable modules X 6∼= X1 on the border of T , then dimHom(P,X1) = 1.

Proof. This can be checked using the tables in [26, XIII.2]. ¤
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Figure 7. Proof of Proposition 3.4. For the quasisimple module X1, we
take Y = X1; for the module X2, we take Y = Y2, and for the module X3,
we take Y = Y3.

Proposition 3.6. Suppose that TT 6= 0 and let X ∈ T \ ∪k∈Zs
WτTk

be an indecomposable
module on the border of T and V an indecomposable summand of U . Then dimHom(V,X) ≤
1. Furthermore, if k = 0 and T0 has quasilength r − 1, then dimHom(V,X) = 1.

Proof. By applying a power of τ if necessary, we can assume that V is projective. By
assumption, T contains a summand of T , so there is at least one quasisimple module X0

in ∪k∈Zs
WτTk

. By Lemma 3.2, we have that Hom(V,X0) = 0. The first part of the lemma
then follows from Lemma 3.5. If k = 0 and T0 has quasilength r − 1, then Hom(V,X0) = 0
for every quasisimple in WτT0

. Since X is the unique quasisimple in T not in WτT0
, the

second part now follows from Lemma 3.5 also. ¤

Abusing notation, we denote the down-arrows in T by x and the up-arrows by y. So, for
example, xr means the composition of r down-arrows from a given vertex.

Proposition 3.7. Let X = Mi,l be an indecomposable module in T .

(a) Suppose that r+1 ≤ l. Let uX = yrxr : X → X. Then uX factors through add(τTT )
if and only if X ∈ ∪k∈Zs

Hk ∪Rk.
(b) Suppose that r ≤ l. Let vX = yr−1xr−1 : X → τX be the unique nonzero map (up to

a scalar), as in Lemma 2.4. Then vX factors through add(τTT ⊕ τ2TT ) if and only
if X ∈ ∪k∈Zs

(Hk ∪ Rk \ {Topk}). Furthermore, vX factors through both add(τTT )
and add(τ2TT ) if and only if X ∈ ∪k∈Zs

Rk.
(c) Suppose that r ≤ l. Let wX = yr−2xr−2 : τ−1X → τX. Then wX factors through

add(τTT ) if and only if X ∈ ∪k∈Zs
Sk.

Proof. We start with part (a). Note that uX lies in the basis for Hom(X,X) given in
Lemma 2.5. Also, by the mesh relations, uX = xryr. Let DX be the diamond-shaped region
in T bounded by the paths xryr and yrxr starting at X. It is clear that uX factors through
any indecomposable module in DX . For an example, see Figure 8, where part of one copy
of DX has been drawn.

If Y lies outside DX , then any path from X to X in T via Y must contain more than r
downward arrows. By Lemma 2.5 it is a linear combination of basis elements distinct from
u. So u cannot factor through the direct sum of any collection of objects outside this region.

Hence uX factors through add(τTT ) if and only if some indecomposable summand of τTT

lies in DX . Since the indecomposable summands of τTT lie in ∪k∈Zs
WτTk

, we see that uX
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factors through τTT if and only if Mi+r,l−r (the module in DX with minimal quasilength)
lies in ∪k∈Zs

WτTk
.

The corners of the triangular region Hk ∪ Rk are Mik,r, Topk = Mik,r+lk and Mik+lk,r.
The part of Hk ∪ Rk consisting of modules with quasilength at least r + 1 is the triangle
with corners Mik,r+1, Mik,r+lk and Mik+lk−1,r+1. Hence, X = Mi,l lies in Hk ∪ Rk if and
only if Mi+r,l−r lies in the triangular region of T with corners Mik,1, Mik,lk and Mik+lk−1,1,
i.e. WτTk

. The result follows.
For part (b), we consider the diamond-shaped region EX bounded by the paths yr−1xr−1

and xr−1yr−1 starting at X. We have, using an argument similar to the above, that vX fac-
tors through add(τTT ⊕τ2TT ) if and only if some indecomposable direct summand of τTT ⊕
τ2TT lies in EX . Hence, vX factors through add(τTT ⊕ τ2TT ) if and only if Mi+r−1,l−r+1

lies in ∪k∈Zs
(WτTk

∪Wτ2Tk
). The corners of the trapezoidal region Hk ∪ Rk \ {Topk} are

Mik,r, Mik,r+lk−1, Mik+1,r+lk−1, Mik+lk,r. Hence X ∈ Hk ∪ Rk \ {Topk} if and only if
Mi+r−1,l−r+1 lies in the trapezoidal region with corners Mik+r−1,1, Mik+r−1,lk , Mik+r,lk ,
Mik+lk+r−1,1, i.e. Mik−1,1, Mik−1,lk , Mik,lk , Mik+lk−1,1 which is the union WτTk

∪Wτ2Tk
.

This gives the first part of (b).
We have that vX factors through add(τTT ) (respectively, add(τ2TT )) if and only if

Mi+r−1,l−r+1 lies in ∪k∈Zs
WτTk

(respectively, ∪k∈Zs
Wτ2Tk

). Hence vX factors through
both add(τTT ) and add(τ2TT ) if and only if Mi+r−1,l−r+1 lies in ∪k∈Zs

(WτTk
∩ Wτ2Tk

).
The corners of the triangular region Rk are Mik+1,r, Mik+1,r+lk−2 and Mik+lk−1,r. Hence
X ∈ Rk if and only if Mi+r−1,l−r+1 lies in the triangular region with corners Mik+r,1,
Mik+r,lk−1 and Mik+lk+r−2,1, i.e. Mik,1, Mik,lk−1 and Mik+lk−2,1, which is the intersection
WτTk

∩Wτ2Tk
. This gives the second part of (b).

For part (c), we consider the diamond-shaped region Fτ−1X bounded by the paths
yr−2xr−2 and xr−2yr−2 starting at τ−1X. We have, using an argument similar to the above,
that wX factors through add(τTT ) if and only if some indecomposable direct summand of
τTT lies in Fτ−1X . Hence, wX factors through add(τTT ) if and only if Mi+1+r−2,l−r+2 =
Mi+r−1,l−r+2 lies in ∪k∈Zs

WτTk
. The corners of the triangular region Sk are Mik+1,r−1,

Mik+1,r+lk−2 and Mik+lk,r−1. Hence X ∈ Sk if and only if Mi+r−1,l−r+2 lies in the the tri-
angular region with corners Mik+1+r−1,1, Mik+1+r−1,lk and Mik+lk+r−1,1, i.e. Mik,1, Mik,lk

and Mik+lk−1,1, which is the wing WτTk
. Part (c) follows. ¤

4. Rigid and Schurian Λ-modules

We determine which objects X in T give rise to Schurian and rigid Λ-modules X̃.

Lemma 4.1. Let X = Mi,l be an indecomposable module in T . Then:

(a) If r + 1 ≤ l and X 6∈ ∪k∈Zs
Hk ∪Rk then X̃ is not Schurian.

(b) If r ≤ l and X 6∈ ∪k∈Zs
Hk ∪Rk \ {Topk} then X̃ is not rigid.

Proof. Firstly note that in both (a) and (b), X cannot be a summand of τT . For part
(a), let uX = yrxr : X → X. Since U is preprojective, any composition of maps in C
from X to X factoring through U is zero. By Proposition 3.7(a) and Lemma 1.12, uX

does not factor through add(τTT ). It follows that uX does not factor through add(τT )

and hence HomH
C/ add(τT )(X,X) 6∼= K, so X̃ is not Schurian. A similar argument, using

Proposition 3.7(b), gives part (b). ¤

Lemma 4.2. Let X be an indecomposable object in T which is not a summand of τT . Then:

(a) X̃ is a τ -rigid Λ-module if and only if the quasilength of X is at most r − 1;
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Figure 8. Proof of Proposition 3.7: the shaded region indicates part of
(one copy of) the diamond-shaped region DX . In this case, uX does not
factor through add(τTT ).

(b) If the quasilength of X is at most r − 2, then X̃ is Schurian.

Proof. It is well-known (and follows from the fact that T is standard) that X is a rigid KQ-
module if and only if its quasilength is at most r−1, so part (a) follows from Corollary 1.10.
If the quasilength of X is at most r − 2, then Hom(X,X) ∼= K and Hom(X, τ2X) = 0 by
Lemma 2.4, so

HomC(X,X) ∼= Hom(X,X) ⊕ D Hom(X, τ2X) ∼= K,

giving part (b). ¤

We need the following.

Lemma 4.3. Let A,B be indecomposable KQ-modules, and assume that Hom(A,B[1]) ∼= K.
Let ε ∈ Hom(A,B[1]) be nonzero.

(a) If there is a map ϕ ∈ Hom(B, τA) such that im(ϕ) has an indecomposable direct
summand which does not lie in ∪k∈Zs

WτTk
then ε factors in Db(KQ) through U [1].

(b) If there is a map ϕ ∈ Hom(B, τA) such that im(ϕ) has an indecomposable direct
summand which does not lie in ∪k∈Zs

Wτ2Tk
then ε factors in Db(KQ) through

τU [1].

Proof. We write ϕ as ϕ2ϕ1 where ϕ1 : B → im(ϕ) and ϕ2 : im(ϕ) → τA. We have the short
exact sequence:

(4.1) 0 // ker(ϕ) // B
ϕ1 // im(ϕ) // 0

For part (a), we apply Hom(U,−) to this sequence (noting that, since U is preprojective, it
is exact on T ), to obtain the exact sequence:

0 // Hom(U, ker(ϕ)) // Hom(U,B)
Hom(U,ϕ1) // Hom(U, im(ϕ)) // 0

Since im ϕ has an indecomposable direct summand which does not lie in ∪k∈Zs
WτTk

, it
follows from Proposition 3.4 that Hom(U, im ϕ) 6= 0. Hence, the epimorphism Hom(U,ϕ1)
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is nonzero. Since ϕ2 is a monomorphism, Hom(U,ϕ) 6= 0, so there is a map β ∈ Hom(U,B)
such that Hom(U,ϕ)(β) = ϕβ 6= 0. Hence Hom(β, τA)(ϕ) = ϕβ 6= 0, so Hom(β, τA) 6= 0.
Part (a) now follows from Proposition 1.14(b), taking C = U .

For part (b), we apply Hom(τU,−) to the sequence (4.1). Note that Hom(τU, im(ϕ)) ∼=
Hom(U, τ−1 im(ϕ)) 6= 0 by Proposition 3.4, and the argument goes through as in part
(a). ¤

Lemma 4.4. Fix k ∈ Zs and let X ∈ Hk \ {Topk}. Then X̃ is rigid.

Proof. Firstly note that X cannot be a direct summand of τT . By the assumption, the
quasilength of X lies in the interval [r, 2r − 1], so, by Lemma 2.4, Hom(X, τX) ∼= K. Let
u = yr−1xr−1 be a nonzero element of Hom(X, τX). Then by Proposition 3.7(b), u factors

through add(τTT ⊕ τ2TT ), so HomH
C/ add(τT⊕τ2T )(X, τX) = 0.

Suppose that X ∼= Mik,l where r ≤ l ≤ r + lk − 1. We have

HomF
C (X, τX) = Hom(X,X[1]) ∼= D Hom(X, τX) ∼= K.

We apply Lemma 4.3(a) in the case A = X, B = X. We take ϕ = u and ε to be a nonzero
element of Hom(X,X[1]). Then im(ϕ) ∼= Mik−1,l−r+1 6∈ ∪k∈Zs

WτTk
. By Lemma 4.3(a), we

have that ε factors through U [1]. Hence, regarded as an F -map in C, ε factors through τU .
It follows that

HomF
C/ add(τT⊕τ2T )(X, τX) = 0.

Suppose that X ∼= Mik+p,r+lk−p where 1 ≤ p ≤ lk. We have

HomF
C (X, τX) = Hom(X,X[1]) ∼= D Hom(X, τX) ∼= K.

We apply Lemma 4.3(b) in the case A = X, B = X. We take ϕ = u and ε to be a nonzero
element of Hom(X,X[1]). Then im(ϕ) = Mik+p−1,lk−p−1 6∈ ∪k∈Zs

WτTk
. By Lemma 4.3(b),

ε factors through τU [1]. Hence, regarded as an F -map in C, ε factors through τ2U . It
follows that

HomF
C/ add(τT⊕τ2T )(X, τX) = 0.

In either case, we have shown that HomC/ add(τT⊕τ2T )(X, τX) = 0, and it follows that X̃
is rigid by Proposition 1.8(b). ¤

If TT contains an indecomposable direct summand of quasilength r − 1 then s = 1,
l0 = r − 1 and, by (3.4),

(4.2) H0 = {Mi0,l : r ≤ l ≤ 2r − 1} ∪ {Mi0+p,2r−1−p :, 0 ≤ p ≤ r − 1}.

In particular, Topk = Mi0,2r−1 has quasilength 2r − 1. In all other cases, Topk has smaller
quasilength.

Lemma 4.5. Fix k ∈ Zs. Suppose that X is an indecomposable object of T which is not a
summand of τT and satisfies either

(a) X ∈ Hk and ql(X) ≤ 2r − 2, or
(b) ql(X) ∈ {r − 1, r} and X 6∈ ∪k∈Zs

Hk ∪ Sk.

Then X̃ is Schurian.

Proof. In case (a), r ≤ ql(X) ≤ 2r−2, and in case (b), r−1 ≤ ql(X) ≤ r. If ql(X) ≤ r then
Hom(X,X) ∼= K by Lemma 2.4. If ql(X) > r then Hom(X,X) ∼= K2. A basis is given by
the identity map and the map uX in Proposition 3.7(a). By Proposition 3.7(a), uX factors

through add(τT ). Hence, in either case, HomH
C/ add(τT )(X,X) ∼= K.
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Since the quasilength of X lies in [r − 1, 2r − 2], we have, by Lemma 2.4, that

HomF
C (X,X) = Hom(X, τ−1X[1]) ∼= Ext(X, τ−1X) ∼= D Hom(τ−1X, τX) ∼= K.

We apply Lemma 4.3(a) in the case A = X, B = τ−1X. We take ϕ to be the map wτ−1X

in Proposition 3.7(c), the unique nonzero element of Hom(τ−1X, τX) up to a scalar, and ε
to be a nonzero element of Hom(X, τ−1X[1]).

In case (a), there are two possibilities. If X ∼= Mik,l where r ≤ l ≤ r + lk − 1, then
im(ϕ) ∼= Mik+r−1,l−r+2 6∈ ∪k∈Zs

WτTk
. If X ∼= Mik+p,r+lk−p where 1 ≤ p ≤ lk, then

im(ϕ) ∼= Mik+p+r−1,2+lk−p 6∈ ∪k∈Zs
WτTk

. In case (b), there are also two possibilities. If
ql(X) = r − 1, then X ∼= Mi,r−1 where i 6∈ ∪k∈Zs

[ik + 1, ik + lk]. Then

im(ϕ) ∼= Mi+1+(r−2),r−1−(r−2) = Mi−1,1 6∈ ∪k∈Zs
WτTk

.

If ql(X) = r, then X ∼= Mi,r where i 6∈ ∪k∈Zs
[ik, ik + lk]. Then

im(ϕ) ∼= Mi+1+(r−2),r−(r−2) = Mi−1,2 6∈ ∪k∈Zs
WτTk

.

Applying Lemma 4.3(a), we see that ε factors through U [1]. Hence, regarded as an F -map
in C, ε factors through τU . It follows that

HomF
C/ add τT (X,X) = 0.

We have shown that HomC/ add(τT )(X,X) ∼= K, and it follows that X̃ is Schurian by Propo-
sition 1.8(a). ¤

Lemma 4.6. Fix k ∈ Zs, and let X ∈ Rk. Then X̃ is not rigid.

Proof. Since X ∈ Rk, we have r ≤ ql(X) ≤ r + lk − 2 ≤ 2r − 3. In particular, this implies
that X is not a direct summand of τT . By Lemma 2.4, we have Hom(X, τX) ∼= K. Let u
be a nonzero map in Hom(X, τX), unique up to a nonzero scalar. We have

HomF
C (X, τX) = Hom(X,X[1]) ∼= D Hom(X, τX) ∼= K.

Let v ∈ Hom(X,X[1]) be a nonzero map, unique up to a nonzero scalar.
We show first that v cannot factor through V for any indecomposable summand V of

τT or τ2T . If Hom(X,V ) = 0 then we are done, so we may assume that Hom(X,V ) 6= 0.
Hence, V lies in T and ql(V ) ≤ r − 1.

By Lemma 2.2, we have that Hom(X,V ) ∼= K. Let f ∈ Hom(X,V ) be any nonzero
map. Then the number of downward arrows in a path for f (and hence for τf) is at least
ql(X) − ql(V ) ≥ ql(X) − r + 1. The number of downward arrows in a path for u is r − 1,
so the number of downward arrows in a path for τf ◦ u is at least ql(X), so τf ◦ u = 0
by Lemma 2.1. Since {u} is a basis for Hom(X, τX), it follows that Hom(X, τf) = 0.
Therefore, by Proposition 1.14(a), v cannot factor through V .

We next show that v cannot factor through τ−1V [1] for any indecomposable summand
V of τT . If Hom(τ−1V,X) = 0 then Hom(τ−1V [1], X[1]) = 0 and we are done. Therefore,
we may assume that Hom(τ−1V,X) 6= 0.

Suppose first that V ∈ T , so ql(V ) ≤ r−1. By Lemma 2.2, we have that Hom(τ−1V,X) ∼=
K. Let g ∈ Hom(τ−1V,X) be any nonzero map. The number of downward arrows in a path
for u is r − 1, hence the number of downward arrows in a path for ug is at least r − 1.
As ql(τ−1V ) ≤ r − 1, it follows from Lemma 2.1 that ug = 0. Since {u} is a basis for
Hom(X, τX), it follows that Hom(g, τX) = 0.

Secondly, suppose that V is an indecomposable direct summand of τU or τ2U . Let
h ∈ Hom(τ−1V,X). By Proposition 3.7(b), we have that u factors through both add(τTT )
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and add(τ2TT ), so uh = 0 as τ−1V is a direct summand of T ⊕ τT . Since {u} is a basis for
Hom(X, τX), it follows that Hom(h, τX) = 0.

Applying Proposition 1.14(b) to the triple A = B = X, C = τ−1V and β = g or h, we
obtain that v does not factor through τ−1V [1].

We have shown that v does not factor in Db(KQ) through V or τ−1V [1] for any inde-
composable summand V of τT ⊕ τ2T . Since Hom(X,X[1]) ∼= K, it follows that v does
not factor in Db(KQ) through add(τT ⊕ τ2T ) or add(τ−1(τT ⊕ τ2T )[1]). By Lemma 1.12,
the morphism v, regarded as a morphism in HomC(X, τX), does not factor in C through
add(τT ⊕ τ2T ). Hence:

HomC/ add(τT⊕τ2T )(X, τX) 6= 0.

Therefore X̃ is not rigid by Proposition 1.8. ¤

Note that the objects in Sk (see (3.5)) have quasilength at least r − 1, so if T has
no indecomposable direct summand in T of quasilength r − 1, the objects in Sk are not
summands of τT . It is easy to check directly that this holds in the case where T has an
indecomposable direct summand T0 in T of quasilength r − 1, since all the indecomposable
direct summands of τT in T lie in WτT0

(see Figure 22).

Lemma 4.7. Fix k ∈ Zs, and let X ∈ Sk. Then X̃ is not Schurian.

Proof. Firstly note that, by the above, X is not an indecomposable direct summand of τT .
Since X ∈ Sk, we have r − 1 ≤ ql(X) ≤ r + lk − 2 ≤ 2r − 3, so by Lemma 2.4, we have
Hom(τ−1X, τX) ∼= K. Let u be a nonzero map in Hom(τ−1X, τX), unique up to a nonzero
scalar. We have

HomF
C (X,X) = Hom(X, τ−1X[1]) ∼= D Hom(τ−1X, τX) ∼= K.

Let v ∈ Hom(X, τ−1X[1]) be a nonzero map, unique up to a nonzero scalar.
We will first show that v cannot factor through V for any indecomposable summand

V of τT . If Hom(X,V ) = 0 then we are done, so we may assume that Hom(X,V ) 6= 0.
In particular, we may assume that V lies in T . By Lemma 2.2, Hom(X,V ) ∼= K. Let
f ∈ Hom(X,V ) be a nonzero map, unique up to a nonzero scalar.

If ql(V ) ≤ r − 2 then the number of downward arrows in a path for f (and hence for τf)
is at least ql(X) − ql(V ) ≥ ql(X) − r + 2. If ql(V ) = r − 1 then s = k = 1 and V = τT1.
Then, since no object in S1 is in the coray through τT1, the number of downward arrows in
a path for f (and hence for τf) is at least ql(X) − ql(V ) + 1 ≥ ql(X) − r + 2. The number
of downward arrows in a path for u is r − 2. Hence in either case the number of downward
arrows in a path for τf ◦ u is at least ql(X), so τf ◦ u = 0 by Lemma 2.1.

Since {u} is a basis for Hom(X, τX), it follows that Hom(X, τf) = 0. Therefore, by
Proposition 1.14(a), v cannot factor through V .

We next show that v cannot factor through τ−1V [1] for any indecomposable summand
V of τT . If Hom(τ−1V, τ−1X) = 0 then Hom(τ−1V [1], τ−1X[1]) = 0 and we are done, so
we may assume that Hom(τ−1V, τ−1X) 6= 0.

Suppose first that V ∈ T . By Lemma 2.2, Hom(τ−1V, τ−1X) ∼= K. Let g be a non-zero
map in Hom(τ−1V, τ−1X), unique up to a nonzero scalar.

If ql(V ) ≤ r − 2, then the number of downward arrows in a path for g is at least ql(X)−
ql(V ) ≥ ql(X) − r + 2. Since the number of downward arrows in a path for u is r − 2, the
number of downward arrows in a path for ug is at least ql(X) ≥ r−1 > ql(τ−1V ), so ug = 0
by Lemma 2.1.

If ql(V ) = r − 1 then s = k = 1 and V = τT1. Since no element of τ−1S1 lies in the ray
through τ−1V ∼= T1, a path for g has at least one downward arrow. It follows that a path
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for ug has at least r − 1 = ql(τ−1V ) downward arrows, so ug = 0 in this case also. Since
{u} is a basis for Hom(X, τX), it follows that, in either case, Hom(g, τX) = 0.

Secondly, suppose that V is an indecomposable direct summand of τU , and let h ∈
Hom(τ−1V, τ−1X). By Proposition 3.7(c), u factors through τTk, since X ∈ Sk. Hence,
uh = 0 as τ−1V is a direct summand of T . Since {u} is a basis for Hom(X, τX), it follows
that Hom(h, τX) = 0.

Applying Proposition 1.14(b) to the triple A = B = X, C = τ−1V , we obtain that v does
not factor through τ−1V [1].

We have shown that v does not factor in Db(KQ) through V or τ−1V [1] for any indecom-
posable summand V of τT . Since Hom(X, τ−1X[1]) ∼= K, it follows that v does not factor in
Db(KQ) through add(τT ) or add(T [1]). By Lemma 1.12, the morphism v, regarded as a mor-

phism in HomF
C (X,X), does not factor through add(τT ). Hence HomC/ add(τT )(X,X) 6∼= K.

Therefore X̃ is not Schurian by Proposition 1.8. ¤

Recall (equation 4.2) that if TT contains an indecomposable direct summand of quasilength
r − 1 then

H0 = {Mi0,l : r ≤ l ≤ 2r − 1} ∪ {Mi0+p,2r−1−p :, 0 ≤ p ≤ r − 1}.

and Topk = Mi0,2r−1. The following lemma shows, in particular, that T̃opk is Schurian.

Lemma 4.8. Suppose that TT contains an indecomposable direct summand T0 of quasilength

r − 1. Let X ∈ H0. Then X̃ is a strongly Schurian, and hence Schurian, Λ-module.

Proof. Firstly note that ql(X) ≥ r, so X is not a summand of τT . Let V be an indecompos-

able direct summand of T . Note that the entry in the dimension vector of X̃ corresponding
to V is equal to dimHomC(V,X).

Suppose first that V is an indecomposable summand of U . Then by Lemma 3.2, we have
that Hom(V, Y ) = 0 for all objects Y in WτT0

. By Proposition 3.6, dim Hom(V, Y ) ≤ 1
if Y = Mi0−1,1 is the unique object on the border of T not in WτT0

. Using the addi-
tivity of dimHom(V,−) on T , we see that dim Hom(V,X) ≤ 1. Since V is preprojective,
dimHom(X, τ2V ) = 0, so, since

HomC(V,X) ∼= Hom(V,X) ⊕ D Hom(X, τ2V ),

we have dim HomC(V,X) ≤ 1. If V lies in a tube other than T then HomC(V,X) = 0. So
we are left with the case where V lies in T .

If X ∼= Mi0,l for some l with r ≤ l ≤ 2r − 1 then the quasisocle of X is Qi0 , which does
not lie in WT . So, by Corollary 2.3, Hom(V,X) = 0. Since ql(V ) ≤ r − 1, it follows from
Lemma 2.2 that dimHom(X, τ2V ) ≤ 1. Hence dim HomC(V,X) ≤ 1.

If X ∼= Mi0+p,2r−1−p for some p with 0 ≤ p ≤ r − 1 then the quasitop of X is
Qi0+p+2r−1−p−1 = Qi0−2, which does not lie in Wτ2T . So, by Corollary 2.3, we have that
Hom(X, τ2V ) = 0. Since ql(V ) ≤ r−1, it follows from Lemma 2.2 that dimHom(V,X) ≤ 1.
Hence dimHomC(V,X) ≤ 1.

We have shown that X̃ is strongly Schurian as required. Since any strongly Schurian
module is Schurian, we are done. ¤

Corollary 4.9. Let X ∈ ∪k∈Zs
Hk. Then X̃ is Schurian.

Proof. Firstly note that, since ql(X) ≥ r, X is not a direct summand of τT . Suppose k ∈ Zs

and X ∈ Hk. If ql(X) ≤ 2r−2 then this follows from Lemma 4.5. The maximal quasilength
of an object in Hk is ql(Topk) = ql(Mik,r+lk) = r+ lk. This is only greater than 2r−2 when
lk is maximal, i.e. equal to r − 1. Then s = 1 (i.e. there is only one indecomposable direct
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summand of TT not contained in the wing of another indecomposable direct summand of
TT ). We must have k = 0 and the result follows from Lemma 4.8. ¤

We have now determined whether X̃ is rigid or Schurian for all indecomposable modules
X in T which are not direct summands of τT . We summarize this with the following

theorem. Note that, by Theorem 1.7, every indecomposable Λ-module is of the form X̃ for
X an indecomposable object in C which is not a direct summand of τT . Note also that part
(a) of the following is a consequence of Lemma 4.2(a), which was shown using [1].

Theorem 4.10. Let Q be a quiver of tame representation type, and C the corresponding
cluster category. Let T be an arbitrary cluster-tilting object in C. Let X be an indecomposable

object of C which is not a summand of τT and let X̃ the corresponding Λ-module.

(a) The Λ-module X̃ is τ -rigid if and only if X is transjective or X is regular and
ql(X) ≤ r − 1.

(b) The Λ-module X̃ is rigid if and only if either
(i) X is transjective, or
(ii) X is regular and ql(X) ≤ r − 1 or
(iii) X is regular and X ∈ ∪k∈Zs

Hk \ {Topk}.

(c) The Λ-module X̃ is Schurian if and only if either
(i) X is transjective, or
(ii) X is regular and ql(X) ≤ r − 2, or
(iii) X is regular, ql(X) ∈ {r − 1, r} and X 6∈ ∪k∈Zs

Sk, or
(iv) X is regular, ql(X) ≥ r + 1 and X ∈ ∪k∈Zs

Hk.

Proof. If X is transjective, the result follows from Remark 1.11, so we may assume that
X lies in a tube T . Let r be the rank of T . Replacing T with τmrT for some m ∈ Z if
necessary, we may assume that T is of the form U ⊕ T ′ where U is a preprojective module
and T ′ is regular, i.e. that Assumption 1.5 holds (note that τ is an autoequivalence of C).

For part (b), note that if ql(X) ≤ r − 1, then X̃ is τ -rigid by (a), hence rigid. If ql(X) ≥ r

and X 6∈ ∪k∈Zs
Hk ∪ Rk \ {Topk} then X̃ is not rigid by Lemma 4.1. If ql(X) ≥ r and

X ∈ Rk then X̃ is not rigid by Lemma 4.6. And if ql(X) ≥ r and X ∈ ∪k∈Zs
Hk \ {Topk}

then X̃ is rigid by Lemma 4.4.

For part (c), note that if ql(X) ≤ r−2 then X̃ is Schurian by Lemma 4.2. If ql(X) ≥ r+1

and X 6∈ ∪k∈Zs
Hk ∪Rk then X̃ is not Schurian by Lemma 4.1. If ql(X) ≥ r+1 and X ∈ Rk

then X ∈ Sk so X̃ is not Schurian by Lemma 4.7. If ql(X) ≥ r + 1 and X ∈ Hk then X̃ is
Schurian by Corollary 4.9.

If ql(X) ∈ {r − 1, r} and X 6∈ ∪k∈Zs
Hk ∪ Sk then X̃ is Schurian by Lemma 4.5. If

ql(X) ∈ {r − 1, r} and X ∈ Hk then X̃ is Schurian by Corollary 4.9. If ql(X) ∈ {r − 1, r}

and X ∈ Sk then X̃ is not Schurian by Lemma 4.7. ¤

Corollary 4.11. Let Q be a quiver of finite or tame representation type and Λ a cluster-
tilted algebra arising from the cluster category of Q. Then every indecomposable Λ-module
which is rigid, but not τ -rigid, is Schurian.

Proof. If Q is of finite representation type, then it is known that every indecomposable
object in Db(KQ) is rigid. Hence, by Theorem 1.10, every indecomposable Λ-module is
τ -rigid and the statement is vacuous in this case.

Suppose that Q is of tame representation type. Let Λ = EndC(T )opp, where T is a
cluster-tilting object in the cluster category C of Q. Let X be an indecomposable object
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Figure 9. The left hand diagram shows part of the AR-quiver of Λ-mod.
The right hand diagram shows the same objects. The symbol for a module
is circular if it is Schurian, filled-in with gray if it is rigid but not τ -rigid,
and filled-in with black if it is τ -rigid. The symbol × represents a gap in
the AR-quiver (corresponding to an indecomposable direct summand of τT )

.

in C which is not a summand of τT . If X̃ is rigid, but not τ -rigid, then by Theorem 4.10,

we have that X is regular and X ∈ ∪k∈Zs
Hk \ {Topk}. If ql(X) = r, then X̃ is Schurian

by Theorem 4.10(c)(iii), since ∪k∈Zs
Hk ∩ ∪k∈Zs

Sk is empty. If ql(X) ≥ r + 1, then X̃ is
Schurian by Theorem 4.10(c)(iv). ¤

In Figure 9, we show part of the AR-quiver of Λ-mod for Example 1.6. The part shown
consists of modules coming from the tube in KQ-mod shown in Figure 2. We give a QΛ-
coloured quiver for each module, where QΛ is the quiver of Λ. Note that we need to
distinguish between the two arrows between vertices 1 and 4. We do this by decorating
the arrow which is involved in the relations with an asterisk. Recall that this then has the
following interpretation (see the text after Definition 1.1). Suppose that ϕ is the linear map
corresponding to the decorated (respectively, undecorated) arrow in QΛ. Then the image of
a basis element b ∈ B1 (the basis of the vector space at the vertex 1) under ϕ is the sum
of the basis elements c ∈ B4 which are at the end of an arrow starting at b labelled with
(respectively, without) an asterisk. The diagram on the right shows which of these modules
are τ -rigid, rigid and Schurian.

In Figure 10, we illustrate the τ -rigid, rigid and Schurian Λ-modules given by Theo-
rem 4.10 for the example in Figure 6 (choosing specific indecomposable summands of T in
the wings of the Ti).
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Figure 10. Schurian and rigid Λ-modules for a particular choice of tilting
module T . The notation is as in Figure 9.

5. Wild case

In this section we determine whether some modules are rigid or Schurian for a specific
quiver of wild representation type. We will see that there are some similarities with the
tame case.

Let Q be the quiver:

0 // 1 // ((
2 // 3 // 4

and KQ the corresponding path algebra, of wild representation type. Let P0, . . . , P4 be the
indecomposable projective KQ-modules (with Q-coloured quivers as in (5.1)), and S0, . . . , S4

their simple tops. The simple module S2 is a quasisimple object in a regular component R
of type ZA∞ in the AR-quiver of KQ-mod. Figure 11 depicts part of this component.

(5.1) P0 =

4

3

2

1

0

4

, P1 =

4

3

2

1

4

, P2 =
4

3

2

, P3 =
4

3
, P4 = 4 .

Lemma 5.1. Let X be an indecomposable module in R. Then X is rigid if and only if it
has quasilength less than or equal to 2.

Proof. By [19, Thm. 2.6], every rigid module in a regular AR-component of a hereditary
algebra has quasilength at most n − 2, where n is the number of simple modules. In this
case, there are 5 simple modules, so no indecomposable module in R with quasilength at
least 4 is rigid.

Since KQ is hereditary and no module in R is projective, we have

Ext(M,N) ∼= Ext(τM, τN)
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Figure 11. Part of the AR-quiver of KQ-mod.
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f

1 3
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∗

Figure 12. Maps between indecomposable projective KQ-modules and
the quiver with relations of EndC(T )opp.

for all M,N ∈ R. Hence an indecomposable module in R is rigid if and only if every module
in its τ -orbit is rigid.

It is easy to check using the AR-formula that the modules S2, of quasilength 1, and
3

2
, of

quasilength 2, are rigid, while the module
3

2

1

4
, of quasilength 3, is not rigid. Hence every

module in R of quasilength 1 or 2 is rigid, and no module in R of quasilength 3 is rigid, and
we are done. ¤

We mutate (in the sense of [18, 24]) the tilting module KQ at P2, via the short exact
sequence:

0 → P2 → P1 → T2 → 0,

where T2 =
1

4 . We obtain the tilting module

P0 ⊕ P1 ⊕ T2 ⊕ P3 ⊕ P4.

We mutate this tilting module at P3, via the short exact sequence

0 → P3 → P1 → T3 → 0,

where T3 = 2

1

4 . This gives the tilting module

T = P0 ⊕ P1 ⊕ T2 ⊕ T3 ⊕ P4,

which induces a cluster-tilting object in C.
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We define maps a, b, c, d, e, f in C as follows (see Figure 12). Let a be the embedding of
P1 into P0, b a surjection of P1 onto T3. We have Hom(T3, P4) = 0, while

HomF
C (T3, P4) ∼= D Hom(P4, τ

2T3) ∼= K,

since τ2T3 =
4

31

0

(see Figure 11). We take c to be a non-zero element of HomF
C (T3, P4).

There are two embeddings of the simple module P4 = S4 into P1 (see (5.1)). We choose d
to be the map whose image is the lower 4 in the Q-coloured quiver for P1 in (5.2), and e to
be the map whose image is the upper 4. We take f to be the map from T3 to T2 factoring
out the simple S2 in the socle of T3.

Let g : P4 → P1 be equal to d or e. Applying Proposition 1.13(b) with A = T3,
B = τ−1P1, C = τ−1P4, and β = τ−1g we see that Hom(T3, τ

−1g[1]) = 0 if and only
if Hom(τ−1g, τT3) = 0, which holds if and only if the map

Hom(g, τ2T3) : Hom(P1, τ
2T3) → Hom(P4, τ

2T3)

is zero. We have dimHom(P1, τ
2T3) = 1 (see Figure 11), so let h : P1 → τ2T3 be a nonzero

map.
From the explicit definition of the maps d and e, we see that hd = 0, while he 6= 0.

Hence Hom(d, τ2T3) = 0 and Hom(e, τ2T3) 6= 0. Therefore, Hom(T3, τ
−1d[1]) = 0 and

Hom(T3, τ
−1e[1]) 6= 0. Hence, Hom(T3, τ

−1d[1])(c) = (τ−1d[1])◦c = 0, so dc = 0 in C. Since

the domain of Hom(T3, τ
−1e[1]) is HomF

C (T3, P4) = Hom(T3, τ
−1P4[1]), which is spanned by

c, we have Hom(T3, τ
−1e[1])(c) 6= 0, so ec 6= 0 in C. Similarly, we can show that cb = 0 and

dc = 0 and that the maps fb, ad, ae, be,bec, fbec and aec are all nonzero in C.
It follows that Λ = EndC(T )opp is given by the quiver QΛ with the relations shown

in Figure 12 (where we have labelled the arrows with the corresponding maps between
indecomposable projectives in KQ-mod — note that these go in the opposite direction).

As in the tame case (see Figure 9), we shall draw modules for Λ as QΛ-coloured quivers,
decorating the arrow between vertices 1 and 4 which is involved in the relations (correspond-
ing to the map d) with an asterisk.

Note that the AR-quiver of Λ-mod is the image of the AR-quiver of C under HomC(T,−)
by [7, Prop. 3.2], with the indecomposable summands of τT deleted; we will denote them
by filled-in vertices.

Let PΛ
0 , . . . , PΛ

4 denote the indecomposable projective modules over Λ, SΛ
0 , . . . , SΛ

4 their
simple tops and IΛ

0 , . . . , IΛ
4 the corresponding indecomposable injective modules. We have:

(5.2) PΛ
0 =

3

4

∗
1

4

0

, PΛ
1 =

3

4

∗
1

4 , PΛ
2 =

3

4

1

3

2

, PΛ
3 =

3

4

1

3

, PΛ
4 =

3

4

.

(5.3) IΛ
0 = 0 , IΛ

1 =
1

03

2

, IΛ
2 = 2 , IΛ

3 =

3

4

1

3

2

2

0

, IΛ
4 =

4

∗
1

3 0

2

1

0

.
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PΛ
0

b01

b11

b41

b42

b31

∗

PΛ
1

b12

b43

b44

b32

∗

PΛ
2

b13

b45

b33

b34

b21

X6

c01

c11

c12

c41

c42

c31

c32

c21

∗

ϕ
⊕ ⊕

Figure 13. The projective cover of E

Lemma 5.2. Figure 16 illustrates part of the AR-quiver of Λ-mod, including the image of
the part of the AR-quiver of C shown in Figure 11.

Proof. Firstly, note that HomC(T, Ti) ∼= PΛ
i and HomC(T, τ2Ti) ∼= IΛ

i , so applying the
functor HomC(T,−) to the first two rows in Figure 11 gives the first two rows in Figure 16
except for X1.

If α : P → P ′ is a map between projective Λ-modules, we denote by α∗ the correspond-
ing map between injective modules, α∗ : D HomΛ(P,Λ) → D HomΛ(P ′,Λ). A projective
presentation of SΛ

2 is:

PΛ
3

α // PΛ
2

// SΛ
2

// 0,

where α is the embedding. So τSΛ
2 is the kernel of α∗ : IΛ

3 → IΛ
2 . Let β be the nonzero

map from PΛ
1 to PΛ

3 . Since αβ 6= 0, we have α∗β∗ 6= 0, so α∗ must be the map factoring
out the lower 2. It follows that τSΛ

2 = X1, completing the verification of the first two rows
in Figure 16.

The irreducible maps from IΛ
3 have targets given by the indecomposable direct summands

of IΛ
3 /SΛ

3 , i.e. IΛ
2 and X3. The irreducible map with target PΛ

3 must be the inclusion of its
(indecomposable) radical X3. We have:

Ext(X3, τX3) ∼= D Hom(τX3, τX3) ∼= K,

so there is a unique non-split short exact sequence ending in X3, which must be as shown.
Next, we compute τX6. From its QΛ-coloured quiver, we see that the projective cover

of X6 is given by ϕ : PΛ
0 ⊕ PΛ

1 ⊕ PΛ
2 → X6. We need to compute the kernel L of ϕ. Let

B = ∪i∈{0,1,2,3,4}Bi be the basis of PΛ
0 ⊕ PΛ

1 ⊕ PΛ
2 coming from the QΛ-coloured quiver

given by the disjoint union of the QΛ-coloured quivers of PΛ
1 , PΛ

2 and PΛ
3 in (5.2). As in

Remark 1.2, we will write the basis elements in Bi as bi1, bi2, . . . (in an order taking first the
basis elements for PΛ

0 , then PΛ
1 and PΛ

2 ). We shall also redraw each connected component
of this QΛ-coloured quiver as in Remark 1.2. We do the same for X6, using the notation
cij . The result is shown in Figure 13.

Let L = ker ϕ, regarded as a representation with the vector space Li at vertex i of QΛ.
We describe a basis for each Li in the table in Figure 14. This basis is carefully chosen to
allow us to give an explicit description of L as a direct sum of indecomposable modules.

Using Figure 13, we can compute the restriction of the linear maps defining P to the
submodule L to get the description of L in Figure 15. We obtain a QΛ-coloured quiver for
this module, and we obtain that L = kerϕ ∼= PΛ

1 ⊕ PΛ
4 .
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Vertex i Action of ϕ basis for Li

0 b01 7→ c01 empty
b11 7→ c11

1 b12 7→ c12 b11 − b13

b13 7→ c11

2 b21 7→ c21 empty
b31 7→ 0

3 b32 7→ c32 b31 − b34, b34

b33 7→ c31

b34 7→ 0
b41 7→ c41

b42 7→ 0
5 b43 7→ c42 b41 − b45, b42, b44 − b45

b44 7→ c41

b45 7→ c41

Figure 14. Computation of a basis for Li, i a vertex of QΛ.

b11−b13

b41−b45

b42

b31−b34

∗ b44−b45

b34

↔
3

4

∗
1

4 ⊕
3

4

.

Figure 15. The kernel of the projective cover of X6

Let ψ : PΛ
1 ⊕ PΛ

4 → PΛ
0 ⊕ PΛ

1 ⊕ PΛ
2 be the embedding of kerϕ into PΛ

0 ⊕ PΛ
1 ⊕ PΛ

2 . We
can write ψ as a 3 × 2 matrix ψ = (ψij), and the components ψij can be read off from the
above explicit description of kerϕ. We have ψ∗ = (ψ∗

ij) : IΛ
1 ⊕ IΛ

4 → IΛ
0 ⊕ IΛ

1 ⊕ IΛ
2 . Since

ψ11 : PΛ
1 → PΛ

0 is nonzero, ψ∗
11 is a surjection onto IΛ

0
∼= SΛ

0 . Since ψ21 : PΛ
1 → PΛ

1 is the
zero map, so is ψ∗

21. Since ψ31 : PΛ
1 → PΛ

2 is nonzero, ψ∗
31 is a surjection onto IΛ

2
∼= SΛ

2 .
Since ψ12 : PΛ

4 → PΛ
0 is the zero map, so is ψ∗

12.
Let γ : PΛ

1 → PΛ
2 be a nonzero map (unique up to a scalar). Then γψ22 = 0, so γ∗ψ∗

22 = 0.

Hence ψ∗
22 is the map from IΛ

4 to IΛ
1 whose image is the submodule

1

0
. Since ψ32 6= 0, so is

ψ∗
32 : IΛ

4 → IΛ
2 , so it must be a surjection onto IΛ

2
∼= SΛ

2 . We thus have an explicit description
of the map

ψ∗ : IΛ
1 ⊕ IΛ

4 → IΛ
0 ⊕ IΛ

1 ⊕ IΛ
2 .

Using a technique similar to the above, we can compute the kernel τX6 of ψ∗ and verify
that it is X5.

A similar technique can be used to show that τ−1X3
∼= X4. We have

Ext(X4, X3) ∼= DHom(X3, τX4) ∼= DHom(X3, X3) ∼= K.

Let ϕ be the embedding of X3 into X7, mapping it to the submodule of this form appearing
on the right hand side of the displayed QΛ-coloured quiver of this module. Then a com-

putation similar to the above can be done to show that coker

(
ϕ
i

)
∼= X4, where i is the
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Figure 16. Part of the AR-quiver of Λ-mod

embedding of X3 into PΛ
3 . This gives a non-split short exact sequence

0 → X3 → X7 ⊕ PΛ
3 → X4 → 0

which must be almost split. This completes the proof. ¤

Note that the modules in the τ±1-orbits of IΛ
2 , IΛ

3 , PΛ
2 , PΛ

3 are all τ -rigid (and hence rigid)
by Lemma 5.1 and Corollary 1.10.

Proposition 5.3. The Λ-modules X2, X3, X5 and X7 are all rigid, while X6 is not rigid.

Proof. We will use Remark 1.4 throughout. We have

Ext(X2, X2) ∼= DHom(τ−1X2, X2) ∼= DHom(X3, X2).

We have Hom(X3, X2) ∼= K, and any nonzero map from X3 to X2 has image
4

1
and so

factors through the embedding of X3 into PΛ
2 . See Figure 17, where we highlight in bold

the images of the map from X3 to X2 and the map from X3 to PΛ
2 . It follows that X2 is

rigid.
We have

Ext(X3, X3) ∼= DHom(X3, τX3) ∼= DHom(X3, X2).

In this case, any nonzero map from X3 to X2 factors through the embedding of X3 into IΛ
3

(see Figure 17). It follows that X3 is rigid.
We have:

Ext(X5, X5) ∼= DHom(τ−1X5, X5) ∼= DHom(X6, X5).

From the QΛ-coloured quivers of X5 and X6 in Figure 16, we see that SΛ
1 is a quotient of

X6 and is embedded into X5. Let f1 : X6 → X5 be the composition of these two maps.

From the QΛ-coloured quiver of X6, we see that the module
4

1
is a quotient of X6, and is
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Figure 17. Rigidity of X2 and X3.
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Figure 18. Rigidity of X5.

embedded into X5; let f2 be the composition of the two maps. Then it is easy to check that
{f1, f2} is a basis of Hom(X6, X5).

Furthermore, f1 factors through PΛ
3 : we take the composition of the map from X6 to PΛ

3

with image isomorphic to X3 and the map from PΛ
3 to X5 whose image is the submodule

1

3
; see Figure 18.

Note that the image of the map f1 + f2 has basis given by the sum of the basis elements
of X5 corresponding to the two copies of 1 in the QΛ-coloured quiver of X5 and the basis
element corresponding to the 4; we indicate the basis elements involved in the right hand
diagram in Figure 18. The map f1 + f2 factors through PΛ

2 : we take the composition of the
map from X6 to PΛ

2 with image isomorphic to X3 and the map from PΛ
2 to X5 taking the

basis element corresponding to the 2 in PΛ
2 to the basis element corresponding to the 2 in

X5. See Figure 18. Since {f1, f1 +f2} is a basis for Hom(X6, X5), it follows that X5 is rigid.
We have:

Ext(X7, X7) ∼= DHom(X7, τX7) ∼= DHom(X7, X6).

From the QΛ-coloured quivers of X6 and X7 in Figure 16, we see that each of the modules

4

1
and

4

1

0

is a quotient of X7 and a submodule of X6; we set g1, g2 to be the maps from
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Figure 19. Rigidity of X6.

X7 to X6 given by the composition of the quotient map and the embedding in the first and
second case respectively. Then it is easy to check that {g1, g2} is a basis of Hom(X7, X6).

Furthermore, g1 factors through IΛ
3 : we take the composition of the map from X7 to IΛ

3

with image
3

4

1

2 and the map from IΛ
3 to X6 with image isomorphic to X2 (the composition

of the irreducible maps from IΛ
3 to X2 and from X2 to X6); see Figure 19.

The map g2 also factors through IΛ
3 : we take the composition of the map from X7 to

IΛ
3 with image

3

4

1

2

0

and the map from IΛ
3 to X6 with image isomorphic to X2 considered

above. See Figure 19. Since {g1, g2} is a basis for Hom(X6, X5), it follows that X6 is rigid.
Finally, we have:

Ext(X6, X6) ∼= DHom(τ−1X6, X6) ∼= DHom(X7, X6).

Consider the nonzero map g1 : X7 → X6. The projective cover of X6 is P (X6) ∼= PΛ
0 ⊕

PΛ
1 ⊕ PΛ

2 , so if g1 factors through a projective, it must factor through P (X6). It is easy
to check directly that Hom(X7, P

Λ
0 ) = 0, Hom(X7, P

Λ
1 ) = 0 and Hom(X7, P

Λ
2 ) = 0, so

Hom(X7, P (X6)) = 0. Hence g1 does not factor through a projective and Hom(X7, X6) 6= 0.
It follows that X6 is not rigid. ¤

It is easy to check that Xi is Schurian for i ∈ {1, 2, 3, 5, 7} and not Schurian for i ∈ {4, 6},
and that IΛ

2 and PΛ
2 are Schurian, while IΛ

3 and PΛ
3 are not. This gives the picture of Schurian

and rigid modules shown on the left hand side of Figure 20 (using the same notation as in
Figure 10), corresponding to the modules in Figure 16 (with X4 omitted, as we have not
checked if it is rigid).

In a tube of rank 3, a module is rigid if and only if it has quasilength at most 2, which is
also the case in the regular component R. On the right hand side of Figure 20, we show the
pattern of τ -rigid, rigid and Schurian modules corresponding to the indecomposable objects
in a tube of rank 3. This is from the tame case in Example 1.6, which was shown in Figure 9.

It is interesting to note the similarity of the pattern of τ -rigid, rigid and Schurian Λ-
modules in these two cases, and to ask what the pattern is for the whole of R.
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• •
• ¤ •

Wild case Tame case

• • × •
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• •
• ¤ •
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◦

¤

◦

Figure 20. τ -rigid, rigid and Schurian Λ-modules in part of a wild example
(left hand diagram). In the right hand diagram we recall the τ -rigid, rigid
and Schurian modules from the tame case in Example 1.6 shown in Figure 9.

6. A counter-example

In this section, we give the counter-example promised in the introduction. This concerns
the relationship with cluster algebras. For background on cluster algebras, we refer to [15,
16]. We fix a finite quiver Q with no loops or 2-cycles and label its vertices 1, 2, . . . , n. Let
F = Q(x1, . . . , xn) be the field of rational functions in n indeterminates over Q. Then the
associated cluster algebra A(Q) is a subalgebra of F. Here, cluster variables and clusters
play a key role. The initial cluster variables are x1, . . . , xn. The non-initial cluster variables
can be written in reduced form f/m, where m is a monomial in the variables x1, . . . , xn,

f ∈ Q[x1, . . . , xn] and xi ∤ f for all i. Writing m = xd1

1 · · ·xdn
n , where di ≥ 0, we obtain a

vector (d1, . . . , dn), which is called the d-vector associated with the cluster variable f/m.
On the other hand, let M be an indecomposable finite dimensional KQ-module, and let

S1, . . . , Sn be the nonisomorphic simple KQ-modules. Then we have an associated dimen-
sion vector (d′1, . . . , d

′
n), where d′i denotes the multiplicity of the simple module Si as a

composition factor of M .
It was then of interest to investigate a possible relationship between the denominator

vectors and the dimension vectors of the indecomposable rigid KQ-modules. In the case
where Q is acyclic, the two sets coincide (see [11, 12, 13]). When Q is not acyclic, we do not
have such a nice correspondence in general, but there are results in this direction in [2, 6, 9].
We have found the following example of a d-vector which is not the dimension vector of an
indecomposable KQ-module.

Example 6.1. Let Q be the acyclic quiver from Example 1.6:

(6.1) 1 // ))
2 // 3 // 4.

and let Λ be the cluster-tilted algebra from this example. The quiver QΛ of Λ is shown
in Figure 3, and can be obtained from Q by mutating at 2 and then at 3. Recall that
the AR-quiver for the largest tube in KQ-mod (which has rank 3) is shown in Figure 2
and the corresponding part of the AR-quiver for Λ-mod is shown in Figure 9. Let M be

the KQ-module
4

1 3
, which is of quasilength 2 = 3 − 1 in the tube in Figure 2. The

corresponding Λ-module, M̃ = IΛ
3 =

3

4

1

3

2

2
, has dimension vector (1, 2, 2, 1). Then we know

from [6, Thm. A] that the denominator vector of the corresponding cluster variable in the
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cluster algebra A(QΛ) is (1, 2, 1, 1) = (1, 2, 2, 1) − (0, 0, 1, 0). It is then easy to see that
(1, 2, 1, 1) cannot occur as the dimension vector of any indecomposable KQΛ-module, by
looking at an arbitrary representation with this dimension vector:

K K

K
2

K

Here, a nonzero summand of K2 has to split off, so that M cannot be indecomposable.
Hence we have found a d-vector which is not the dimension vector of any indecomposable
KQΛ-module. Note that it cannot be the dimension vector of any indecomposable Λ-module
either, by the same argument.

There is another interesting class of vectors occurring in the theory of cluster algebras,
known as the c-vectors. They were introduced in [16] (see [16] for the definition). In the
case of an acyclic quiver Q it is known that the set of (positive) c-vectors coincides with the
set of real Schur roots (see [14, 27]), that is, the dimension vectors of the indecomposable
rigid KQ-modules.

But the relationship between c-vectors and d-vectors is not so nice in the general case. It
is known for any finite quiver Q without loops or two-cycles that each positive c-vector of
Q is the dimension vector of a finite dimensional Schurian rigid module over an appropriate
Jacobian algebra with quiver Q ([22]; see [14, Thm. 14]). As pointed out in [23], this implies
that every positive c-vector of Q is a Schur root of Q, hence a root of Q. Then we get the
following:

Proposition 6.2. There is a finite quiver Q without loops or 2-cycles for which the set of
d-vectors associated to A(Q) is not contained in the set of positive c-vectors of A(Q).

Proof. We consider the quiver QΛ in Example 6.1. In this case, the set of d-vectors is not
contained in the set of dimension vectors of the indecomposable KQΛ-modules. If the set of
d-vectors of QΛ was contained in the set of positive c-vectors of QΛ, then we would have a
contradiction, since, as we mentioned above, every positive c-vector of QΛ is the dimension
vector of an indecomposable KQΛ-module. ¤

7. Three dimension vectors

We have seen in Section 6 that there is a cluster-tilted algebra Λ associated to a quiver
of tame representation type with the property that not every d-vector of A(QΛ) is the
dimension vector of an indecomposable Λ-module. So we can ask if it is possible to express
each such d-vector as a sum of a small number of such dimension vectors. Our final result
shows that, for a cluster-tilted algebra Λ associated to a quiver of tame representation type,
it is always possible to write a d-vector for A(QΛ) as the sum of at most three dimension
vectors of indecomposable rigid Λ-modules.

We do not know whether it is possible to write every d-vector for A(QΛ) as a sum of at
most two dimension vectors of indecomposable rigid Λ-modules. It would also be interesting
to know whether analogous results hold in the wild case.

As before, we fix a quiver Q of tame representation type. We fix an arbitrary cluster-
tilting object T in the corresponding cluster category, C. Suppose M is an object in C, with
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τM M

MU

τM M

MU

ML

Figure 21. The mesh ending at an indecomposable object in T . The
diagram on the left indicates the case where M is on the border of T .

corresponding Λ-module M̃ . The vertices of the quiver of Λ = EndC(T ) are indexed by the

indecomposable direct summands ind(T ) of T . The dimension vector of M̃ is given by the
tuple (d′V (M))V , where V varies over the indecomposable direct summands of T . We have:

d′V (M) = dimHomC(V,M) = dimHom(V,M) + dimHom(M, τ2V ).

We shall also write d′V (M̃) for d′V (M). Note that if M lies in add(τT ) then M̃ = 0 and
d′V (M) = 0 for all V ∈ ind(T ).

If M is (induced by) an indecomposable module in T , then there is a mesh MM in
the AR-quiver of T corresponding to the almost split sequence with last term M . This is
displayed in Figure 21, with the diagram on the left indicating the case when M is on the
border of T . We denote the middle term whose quasilength is greater (respectively, smaller)
than that of M by MU (respectively, ML). Note that if M is on the border of T then ML

does not exist.
For objects X,Y of C we shall write

δX,Y =

{
1, if X ∼= Y ;

0, otherwise.

Lemma 7.1. Let M be an indecomposable object in T with mesh MM as above. Then:

d′V (M̃) = d′V (M̃U ) + d′V (M̃L) − d′V (τM̃) + δV,M ,

where the terms involving ML do not appear if M is on the border of T .

Proof. If V 6∼= M then the mesh ending at M̃ in Λ-mod is the image under HomC(T,−) of
the mesh ending at M in C (deleting zero modules corresponding to summands of τT ). If

V ∼= M then M̃ is an indecomposable projective module, so rad(M̃) ∼= M̃L ⊕ M̃U . ¤

We assume for the rest of this section that there is an indecomposable direct summand
T0 of TT with the property that every indecomposable direct summand of TT lies in the
wing WT0

. (In the notation at the beginning of Section 2, we have s = 1).
We assume further that the quasilength of T0 (i.e. l0) is equal to r − 1. We arrange the

labelling, for simplicity, so that the quasisimple modules in WτT are the Qi with i ∈ [0, r−2],
so in the notation from Section 2, i0 = 0. Let

(7.1) D = {Mi,l : 1 ≤ i ≤ r − 1, r − i ≤ l ≤ 2r − 2 − i}.

Note that D can be formed from S0 and its reflection in the line L through the modules
of quasilength r − 1. It is a diamond-shaped region, with leftmost corner T0

∼= M1,r−1

and rightmost corner τ2T0
∼= Mr−1,r−1. The lowest point is the unique quasisimple module

Qr−1 not in WτT0
and the highest point is the same as the highest point M1,2r−3 of S0,

immediately below Top0; see Figure 22.
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Figure 22. Here the rank of the tube is 11. The region D is indicated
by the shaded area. The filled-in circles indicate the indecomposable direct
summands of T , and the double circles indicate the elements of H0. The
line L divides the region D into two and S0 consists of the vertices in D on
and above the line. The upper boxed region is IM (see (7.2)) and the lower
boxed region is I ′

M (see (7.8)).

Given an indecomposable module M = Mi,l ∈ D, we define:

(7.2) IM = {Mj,r−j : 1 ≤ j ≤ i},

i.e. the set of indecomposable modules which are injective in WT0
and lie above or on the

(lowest) intersection point, Mi,r−i, between the ray through M and the coray through T0.
We also set

XM = Mi,r−i−1, YM = M0,i+l.

Note that XM is the object in the part of the ray through M below M which is of maximal
quasilength subject to not lying in D. Similarly, YM is the nearest object to M in the part
of the coray through M above M , which is of minimal quasilength subject to not lying in
D. See Figure 22.

Lemma 7.2. Let M ∈ D and let V be an indecomposable summand of T . Then we have

d′V (M) =

{
d′V (XM ) + d′V (YM ) + 1, V ∈ IM ;

d′V (XM ) + d′V (YM ), V 6∈ IM .

Proof. Suppose first that V is preprojective, i.e. V is an indecomposable direct summand of
U . Since XM ∈ WτT0

we have HomC(V,XM ) = 0. Note that by Lemmas 3.2 and 3.5,

dim HomC(V,Qi) =

{
0, 0 ≤ i ≤ r − 2;

1, i = r − 1.
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It follows from Lemma 3.2 that d′V (X) = 0 for any module X ∈ WτTk
. By Proposition 3.6,

d′V (Qr−1) = 1, noting that Qr−1 is the unique quasisimple in T not in WτTk
. Using

additivity as in the proof of Lemma 3.2, we see that d′V (X) = 1 if X ∈ D ∪ H0. Since
XM ∈ WτT0

, YM ∈ H0 and M ∈ D, we have d′V (M) = 1, d′V (XM ) = 0 and d′V (YM ) = 1,
giving the result in this case.

So we may assume that V is an indecomposable direct summand of TT . We prove the
result in this case by induction on the minimal length of a path in T from T0 to M . The
base case is M ∼= T0. Then IM = {T0}. Since d′V (τM) = 0, the result in this case follows
directly from Lemma 7.1.

We assume that M 6∼= T0 and that the result is proved in the case where the minimal
length of a path in T from T0 to M is smaller. In particular, the result is assumed to be
true for all modules in MM ∩ D other than M .
Case I: If M = Mi,r−i, with 1 ≤ i ≤ r − 1 lies on the lower left boundary of D then
MM∩D = {MU ,M}. Applying the inductive hypothesis to MU and noting that YMU

= YM ,
we have:

(7.3) d′V (MU ) =

{
d′V (XMU

) + d′V (YM ) + 1, V ∈ IMU
;

d′V (XMU
) + d′V (YM ), V 6∈ IMU

;

Note that ML = XM , τM = XMU
, YMU

= YM and IM = IMU
∪ {M} (see Figure 23). By

Lemma 7.1 and (7.3), we have:

d′V (M) = d′V (MU ) + d′V (ML) − d′V (τM) + δV,M

= d′V (MU ) + d′V (XM ) − d′V (XMU
) + δV,M

=

{
d′V (XMU

) + d′V (YM ) + d′V (XM ) − d′V (XMU
) + δV,M + 1, V ∈ IMU

;

d′V (XMU
) + d′V (YM ) + d′V (XM ) − d′V (XMU

) + δV,M , V 6∈ IMU
;

=

{
d′V (XM ) + d′V (YM ) + 1, V ∈ IM ;

d′V (XM ) + d′V (YM ), V 6∈ IM .

Case II: If M = M1,l where r ≤ l ≤ 2r − 3 lies on the upper left boundary of D then
MM∩D = {ML,M}. Applying the inductive hypothesis to ML and noting that XML

= XM

(see Figure 23), we have:

(7.4) d′V (ML) =

{
d′V (XM ) + d′V (YML

) + 1, V ∈ IML
;

d′V (XM ) + d′V (YML
), V 6∈ IML

.

Note that MU = YM , τM = YML
, IM = IML

= {T0} and δV,M = 0 (see Figure 23). By
Lemma 7.1 and (7.4), we have:

d′V (M) = d′V (MU ) + d′V (ML) − d′V (τM) + δV,M

= d′V (YM ) + d′V (ML) − d′V (YML
) + δV,M

=

{
d′V (YM ) + d′V (XM ) + d′V (YML

) − d′V (YML
) + 1, V ∈ IML

;

d′V (YM ) + d′V (XM ) + d′V (YML
) − d′V (YML

), V 6∈ IML
;

=

{
d′V (XM ) + d′V (YM ) + 1, V ∈ IM ;

d′V (XM ) + d′V (YM ), V 6∈ IM .

Case III: If M = Mi,l with 1 ≤ i ≤ r − 1, r − i ≤ l ≤ 2r − 2 − i}, but is not in one of
the cases above, then MM ∩ D = {ML,MU , τM,M}. Note that XMU

= XτM , YMU
= YM ,
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•
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Figure 23. Proof of Lemma 7.2. The shaded region is the region D.

XML
= XM , YML

= YτM and δV,M = 0. We also have that IMU
= IτM and IML

= IM .
Applying the inductive hypothesis to ML, MU and τM , we have:

d′V (MU ) =

{
d′V (XτM ) + d′V (YM ) + 1, V ∈ IτM ;

d′V (XτM ) + d′V (YM ), V 6∈ IτM ;
(7.5)

d′V (ML) =

{
d′V (XM ) + d′V (YτM ) + 1, V ∈ IM ;

d′V (XM ) + d′V (YτM ), V 6∈ IM ;
(7.6)

d′V (τM) =

{
d′V (XτM ) + d′V (YτM ) + 1, V ∈ IτM ;

d′V (XτM ) + d′V (YτM ), V 6∈ IτM .
(7.7)

By Lemma 7.1 and (7.5)–(7.7), we obtain:

d′V (M) = d′V (MU ) + d′V (ML) − d′V (τM)

=

{
d′V (XM ) + d′V (YM ) + 1, V ∈ IM ;

d′V (XM ) + d′V (YM ), V 6∈ IM .

The result now follows by induction. ¤

Let I denote the set of all injective objects in WT0
and set

(7.8) I ′
M = I \ IM ,

i.e. the set of objects in the coray through T0 which are on or below the lowest intersection
point with the ray through M . Suppose that there is an indecomposable direct summand
of T in I ′

M . Let X ′
M

∼= Mj,r−j be such a summand with maximal quasilength and set
ZM = M0,j−2. Otherwise, we set ZM = M0,r−2.

Remark 7.3. In the first case above, the object ZM can be constructed geometrically as
follows. Let Z ′

M = Mj,r−2 be the unique object in the ray through X ′
M of quasilength r− 2.

Then ZM = M0,j−2 is the unique object in the coray through Z ′
M which is a projective in

WτT0
. See Figure 22.

Lemma 7.4. Let V be an indecomposable direct summand of T . Then

d′V (ZM ) =

{
1, V ∈ IM \ T0;

0, otherwise.
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Proof. If V is preprojective (i.e. an indecomposable direct summand of U) then, since ZM ∈
WτT0

, we have d′V (ZM ) = 0 by Lemma 3.2.
Suppose that V is an indecomposable direct summand of TT . The quasisocle of ZM

is Q0, which does not lie in WT0
. Since V ∈ WT0

, it follows from Corollary 2.3 that
Hom(V,ZM ) = 0. Hence (using (1.6)), we have:

d′V (ZM ) = dim HomF
C (V,ZM ) = dimHom(ZM , τ2V ).

Consider first the case where there is an indecomposable direct summand of T in I ′
M ,

so X ′
M is defined. We have Hom(ZM , τ2V ) 6= 0 if and only if Hom(τ−2ZM , V ) 6= 0. By

Lemma 2.2 and the fact that V ∈ WT0
, this holds if and only if V lies in the rectangle with

corners τ−2ZM = M2,j−2, M2,r−2, Mj−1,1 and Mj−1,r−j+1 In this case, dim Hom(ZM , τ2V ) =
1.

As V and X ′
M are indecomposable direct summands of T , we have that Hom(V, τX ′

M ) = 0.
So, again using Lemma 2.2, V cannot lie in the rectangle with corners M1,j−1, Mj−1,1,
Mj−1,r−j and M1,r−2. Combining this fact with the statement in the previous paragraph,
we see that Hom(ZM , τ2V ) 6= 0 if and only if V ∈ I, V 6∼= T0 and V has quasilength greater
than ql(X ′

M ) = r − j.
However, by the definition of X ′

M , there are no indecomposable direct summands of V
in I ′

M with quasilength greater than ql(X ′
M ). Hence Hom(ZM , τ2V ) 6= 0 if and only if

V ∈ IM \ {T0}.
If there is no indecomposable direct summand of T in I ′

M , then ZM = M0,r−2. By
Lemma 2.2 and the fact that V ∈ WT0

, we have that

dimHom(ZM , τ2V ) = dimHom(τ−2ZM , V )

is 1 if and only if V lies in the coray through τ−2ZM = M2,r−2, i.e. if and only if V ∈ I\{T0}.
Since there is no indecomposable summand of T in I ′

M , this holds if and only if V ∈ IM\{T0},
and the proof is complete. ¤

Proposition 7.5. Let M ∈ D and let V be an indecomposable summand of T . Then we
have:

d′V (M) = d′V (XM ) + d′V (YM ) + d′V (ZM ) + δV,T0
.

Proof. This follows from Lemmas 7.2 and 7.4. ¤

Theorem 7.6. Let Q be a quiver of tame representation type and let C be the corresponding
cluster category. Let T be a cluster-tilting object in C and Λ = EndC(T )opp the corresponding
cluster-tilted algebra. Let QΛ be the quiver of Λ and A(QΛ) the corresponding cluster algebra.
Then any d-vector of A(QΛ) can be written as a sum of at most three dimension vectors of
indecomposable rigid Λ-modules.

Proof. Let M be a rigid indecomposable object in C which is not an indecomposable direct
summand of τT and xM the corresponding non-initial cluster variable of A(QΛ). By [6,
Thm. A], if M is transjective or in a tube of rank r containing no indecomposable direct
summand of T of quasilength r − 1 then the d-vector of xM coincides with the dimension

vector of the Λ-module M̃ .
Suppose that M lies in a tube which contains an indecomposable direct summand T0 of

T of quasilength r − 1. If M is contained in the wing WτT0
then the d-vector of xM again

coincides with the dimension vector of M̃ . If not, then M must lie in the region D defined
in (7.1) (after Lemma 7.1) (note that in addition it must have quasilength at most r − 1,
but we don’t need that here). By construction, the quasilengths of XM and ZM are both
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Figure 24. Part of the proof of Lemma 7.4 in the case r = 11, j =
7. The dotted rectangles show IM and I ′

M . Since V ∈ WT0
, we have

Hom(τ−2ZM , V ) 6= 0 if and only if V lies in the shaded rectangle. Since
Ext(V,X ′

M ) = 0, V cannot lie in the dashed rectangle. By the definition of
X ′

M , V cannot lie in the part of I ′
M above X ′

M . Hence Hom(ZM , τ2V ) 6= 0
if and only if V ∈ IM \ {T0}.

less than or equal to r − 1, so they are τ -rigid Λ-modules by Lemma 4.2. Since YM lies in
H0, it follows from Theorem 4.10 that YM is a rigid Λ-module. By [6, Thm. A], the d-vector
(dV )V ∈ind(T ) of xM satisfies

dV (xM ) = d′V (M) − δV,T0
.

The result now follows from Proposition 7.5. ¤
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