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CELL DECOMPOSITION AND CLASSIFICATION OF DEFINABLE
SETS IN p-OPTIMAL FIELDS

LUCK DARNIÈRE AND IMMANUELHALPUCZOK

Abstract. We prove that for p-optimal fields (a very large subclass of p-minimal fields containing all
the known examples) a cell decomposition theorem follows from methods going back to Denef’s paper [7].
We derive from it the existence of definable Skolem functions and strong p-minimality. Then we turn to
strongly p-minimal fields satisfying the Extreme Value Property—a property which in particular holds in
fields which are elementarily equivalent to a p-adic one. For such fields K , we prove that every definable
subset of K × Kd whose fibers over K are inverse images by the valuation of subsets of the value group
is semialgebraic. Combining the two we get a preparation theorem for definable functions on p-optimal
fields satisfying the Extreme Value Property, from which it follows that infinite sets definable over such
fields are in definable bijection iff they have the same dimension.

§1. Introduction. This paper is an attempt to continue the roadopenedbyHaskell
and Macpherson in [10] toward a p-adic version of o-minimality, by isolating large
subclasses of p-minimal fields to which Denef’s methods of [7] apply with striking
efficiency.
Recall that a p-adically closed field is a field K elementarily equivalent in the
language of rings to a p-adic field, that is a finite extension of the fieldQp of p-adic
numbers. For every a in K , v(a) and |a| denote the p-valuation of a and its norm.
The norm is nothing but the valuation with a multiplicative notation so that |0| = 0,
|ab| = |a| · |b|, |a + b| ≤ max(|a|, |b|) and of course |a| ≤ |b| if and only if
v(a) ≥ v(b). The valuation ring of v is denoted by R, and we fix some � in R such
that �R is the maximal ideal ofR. We let v(K) or |K | denote the image ofK by the
valuation.
Throughout all this paper we consider a fixed expansion (K,L) of a p-adically
closed field K , that is an L-structure extending the ring structure of K for some
language L containing the language of rings. Except if otherwise specified, when
we say that a set or a function is definable we always mean “definable in L with
parameters in K”. For sets and functions definable in the language of rings (with
parameters inK as always), we use the term “semialgebraic” instead. Wherever it is
convenient wewill identify subsets ofKm×|K |d with their inverse image inKm+d by
the valuation, thus saying for example that the former are definable, semialgebraic,
and so on if the latter are so.
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CELL DECOMPOSITION AND CLASSIFICATION OF DEFINABLE SETS 121

(K,L) is p-minimal if every definable subset of K is definable in the language of
rings. It is stronglyp-minimal (orP-minimal for short, as in [10]) if every elementarily
equivalent L-structure is p-minimal. When the distinction between the L-structure
and the ring structure of K is clear from the context, K itself is called a strongly
p-minimal field.
Strong p-minimality was introduced by Haskell and Macpherson in [10]. Since
their proofs make extensive use of the model-theoretic Compactness Theorem, very
little is known on p-minimal fields without the “strong” assumption contrary to
the situation in o-minimal expansions of real closed fields, where o-minimality
already implies strong o-minimality. They also left open several questions, such as
the existence of a cell decomposition.
Mourgues proved in [13] that a cell decomposition similar to the one of Denef
in [7] holds for a strongly p-minimal field K if and only if it has definable Skolem
functions (“definable selection” in [13]), that is if for every positive integersm, n and
every definable subset S of Km+n the coordinate projection of S onto Km has a
definable section. It is not known at the moment whether strongly p-minimal fields
always have definable Skolem functions.
As Cluckers noted in [5], a preparation theorem for definable functions was
lacking in [12]. This remark applies as well to [13]. Cluckers filled this lacuna for
the classical analytic structure on K , and derived from his preparation theorem
several important applications, for parametric integrals and classification of sub-
analytic sets up to definable bijection. The former gives the rationality of the
Poincaré series of a restricted analytic function. It has been generalised recently
to strongly p-minimal fields in [2], by means of a slightly different preparation
theorem for definable functions. However this preparation theorem and the cell
decomposition that it uses, are weaker than the original ones studied by Denef,
Mourgues and Cluckers. In particular they do not imply the existence of definable
Skolem functions, and neither the classification of definable sets up to definable
bijection.
The aim of this paper is to address some of these questions by introducing
another notion of minimality for expansions of p-adically closed fields, called
“p-optimality” (see definition below) with the following properties:

1. It is intrinsic (that is its definition only involves the given structure, not those
which are elementarily equivalent to it) natural and general enough to include
all the known examples of p-minimal fields.

2. Nevertheless it implies strong p-minimality, the existence of definable Skolem
functions, cell decomposition and (under a mild assumption which we will
discuss in Remark 1.5) cell preparation, so that all the applications of [5]
generalize to this context.

This paper is based on [10] and [7],withwhich the reader is expected to be familiar.
We will also make extensive use of [4]. Moreover we borrowed ideas from papers of
other authors, especially Raf Cluckers in [5]. The concept of p-optimal field seems
to be new but appears implicitly in many papers on p-adic fields, especially [8] which
has been a source of inspiration for us.

Defining p-optimal fields. By a celebrated theorem ofMacintyre [11] (generalized
to p-adically closed fields in [14]) when K = Qp every semialgebraic subset of Km
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122 LUCK DARNIÈRE AND IMMANUELHALPUCZOK

is a (finite) boolean combination of sets of the form

S =
{
x ∈ Km :f(x) ∈ PN

}
(1)

with f a polynomial function, N ≥ 1 an integer and
PN =

{
x ∈ K : ∃y ∈ K, x = yN}.

We define d -basic functions as m-ary functions for some m which are polynomial
in the last d variables with as coefficients global definable functions in the m − d
first variables, and d -basic sets (of power N) as the sets of the same form as (1)
with d -basic functions instead of polynomial1 functions. When d = 1 we simply
talk about basic functions and sets. We say that (K,L) (or simply K for short) is
p-optimal if every definable subset ofKm is a (finite) boolean combination of basic
sets, for every m.

Remark 1.1. By the argument of Lemma 2.1 in [7], the following subsets of Km

are d -basic, for every d -basic m-ary functions f, g.{
x ∈ Km :f(x) = 0} and {

x ∈ Km : |g(x)| ≤ |f(x)|}.
Moreover, since P∗

N = PN \{0} is a subgroup of finite index inK∗, the complement
in Km of a d -basic set is a finite union of d -basic sets. Hence every (finite) boolean
combination of basic sets is the union of intersections of finitely many basic sets.
All of them can be taken of the same power, because P∗

N ′ is a subgroup of P∗
N of

finite index for every N ′ which is divisible by N .

(Strong) p-minimality versus p-optimality. Note that p-optimal fields are not
assumed to be strongly p-minimal. They are p-minimal because basic subsets of
the affine line K are semialgebraic. Moreover it is difficult to imagine any proof
of p-minimality which does not involve in a way or another a quantifier elimina-
tion result similar to Macintyre’s Theorem. The condition defining p-optimality is
actually very close to such kind of elimination. So close that we can expect it to be
proved simultaneously in most cases, if not all, without additional effort. Although
not surprising, it is then quite remarkable that every p-optimal field is strongly
p-minimal. More precisely, recalling that (K,L) is an expansion of a p-adically
closed field we have (Theorem 3.2):
Theorem 1.2. The following are equivalent:
1. (K,L) is p-optimal.
2. Denef’s Cell Decomposition Theorem 2.6 holds in (K,L).
3. (K,L) is strongly p-minimal and has definable Skolem functions.
Of course (3)⇒(2) follows from [13] (not the other implications, because Mour-
gues considers only strongly p-minimal fields). Since every known example of
p-minimal field is stronglyp-minimal and has definable Skolem functions, Theorem
1.2 shows that all of them are p-optimal.

Main other results. Remember that, identifying any subset ofKm × |K |d with its
inverse image inKm+d by the valuation, we call the former definable, semialgebraic,
d -basic, or basic, if the latter is so. Similarly a function from X ⊆ Km to |K |d is
1Note that a global function inm variables ism-basic if and only if it is polynomial, henceMacintyre’s

theorem can be rephrased as: every semialgebraic subset of Km is m-basic.
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CELL DECOMPOSITION AND CLASSIFICATION OF DEFINABLE SETS 123

definable or semialgebraic if its graph is so, in this broader sense. In Section 4 we
will consider strongly p-minimal fields satisfying the following condition.

(∗) Every continuous definable function from a closed and bounded definable set
X ⊆ K to |K | \ {0} attains a minimum value.

We call it the Extreme Value Property. Note that it is not at all a restrictive assump-
tion: if (K,L) is elementarily equivalent to (K ′,L) for some p-adic field K ′ then
the Extreme Value Property trivially holds true in K ′ (because its p-valuation ring
is compact), and passes to K by elementary equivalence. It is proved in [3] (The-
orem 6) that if (K,L) is strongly p-minimal then the definable subsets of |Kd | are
semialgebraic. The following is a “relative” version of this result (Theorem 4.1 and
Corollary 4.4).

Theorem 1.3. If (K,L) is strongly p-minimal and satisfies the Extreme Value
Property, then every definable set S ⊆ K × |K |d is semialgebraic. If moreover K
is p-optimal then every definable subset of Km × |K |d is a boolean combination of
(d + 1)-basic sets.

In Section 5 we derive from it a preparation Theorem 5.3 for definable functions,
analogous to Theorem 2.8 in [5]. As an application we get (Theorem 5.6):

Theorem 1.4. Two infinite sets definable over a p-optimal field satisfying the
Extreme Value Property are isomorphic2 if and only if they have the same dimension.

Remark 1.5. As already mentioned the Extreme Value Property is not a strong
assumption. In particular it holds true for every semialgebraic function in a
p-adically closed field (by reduction to the p-adic case, with the same argument
as above). Moreover the Cell Preparation Theorem 5.3 applied to any unary defin-
able function f from a closed and bounded set S ⊆ K to K \ {0} gives that the
function |f| : S → |K | \ {0} is semialgebraic, hence has a minimum value. So the
Cell Preparation Theorem holds true in a p-optimal field if and only if it satisfies
the Extreme Value Property.

Other terminology and notation. For convenience we will sometimes add to K
one more element ∞, with the property that |x| < |∞| for every x in K . We also
denote by∞ any partial function with constant value∞.
Topological notions refer to the topology of the p-valuation, or its image in |K |.
For every subset X of K we let X ∗ = X \ {0}. Note the difference between
R∗ = R \ {0} and R× = the set of units in R.
Recall that K0 is a one-point set. When a tuple a = (x, t) is given in Km+1 it is
understood that x = (x1, . . . , xm) and t is the last coordinate. We let â = x denote
the projection of a onto Km. Similarly, the projection of a subset S of Km+1 onto
Km is denoted by Ŝ.
We extend |.| (or v) to Km coordinatewise. That is, for every x ∈ Km we let:∣∣(x1, . . . , xm)∣∣ = (|x1|, . . . , |xm|).
For everyA ⊆ Km we let |A| denote the image ofAby this extension of the valuation.
For every integer e ≥ 1 let Ue = {x ∈ K : xe = 1}. Analogously to Landau’s
notation O(xn) of calculus, we let Ue,n(x) denote any definable function in the
2Following [3] we call “isomorphism” the definable bijections.
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124 LUCK DARNIÈRE AND IMMANUELHALPUCZOK

multi-variable x with values in (1 + �nR)Ue . So, given a family of functions fi ,
gi on the same domain X , we write that fi = Ue,ngi for every i , when there are
definable functions �i : X → R and �i : X → Ue such that for every x in X ,
fi(x) =

(
1 + �n�i (x)

)
�i(x)gi (x). When e = 1, U1,n(x) is simply written Un(x).

If K◦ is a finite extension of Qp to which K is elementarily equivalent as a ring,
and R◦ is the p-valuation ring of K◦, then the following set is semialgebraic (see
Lemma 2.1, point 4, in [8])

Q◦
N,M = {0} ∪

⋃
k∈Z
�kN (1 + �MR◦).

We let QN,M denote the semialgebraic subset of K corresponding3 by elementary
equivalence to Q◦

N,M in K . If M > 2v(N), Hensel’s lemma implies that 1 + �
MR

is contained in P∗
N . Note that in this case, Q

∗
N,M is a clopen subgroup of P

∗
N with

finite index. The next property also follows from Hensel’s lemma (see for example
Lemma 1 and Corollary 1 in [3]).

Lemma 1.6. The function x �→ xe is a group endomorphism of Q∗
N0,M0

. If M0 >
v(e) this endomorphism is injective and its image is Q∗

eN0,v(e)+M0
.

In particular x �→ xN defines a continuous bijection fromQ1,v(N )+1 toQN,2v(N )+1.
We let x �→ x 1N denote the reverse bijection.

§2. Cell decomposition. This section gives an overview of the techniques used in
Denef’s cell decomposition.We emphasize that they donot only apply to polynomial
functions, as in [7], but also to basic functions. This allows us to extend Denef’s
cell decomposition of semialgebraic sets over p-adic fields to definable sets over
p-optimal fields (Theorem 2.6).
The cells which usually appear in the literature on p-adic fields are nonempty
subsets of Km+1 of the form:

{(x, t) ∈ X ×K : |�(x)|�1 |t − c(x)|�2 |�(x)| and t − c(x) ∈ �G} (2)

whereX ⊆ Km is a definable set, c, �, � are definable functions fromX toK ,�1,�2
are≤, < or no condition, � ∈ K andG is a semialgebraic subgroup ofK∗ with finite
index. In this paper we will only consider the cases when G is K∗ (Theorem 2.4),
P∗
N (Theorem 2.6) or Q

∗
N,M (Theorem 5.3).

In its simplest form, Denef’s Cell Decomposition Theorem asserts that every
semialgebraic subset of Km is the disjoint union of finitely many cells. It will be
convenient to fix a few more conditions on our cells, but most of all we want to pay
attention on how the functions defining the output cells depend on the input data.
So we define presented cells in Km+1 as tuples A = (cA, �A, �A, �A,GA) with cA a
definable function on a nonempty domain X ⊆ Km with values in K , �A and �A
either definable functions on X with values in K∗ or constant functions on X with
values 0 or ∞, �A an element of K and GA a semialgebraic subgroup of K∗ with
finite index, such that for every x ∈ X there is t ∈ K such that:

|�A(x)| ≤ |t − cA(x)| ≤ |�A(x)| and t − cA(x) ∈ �AGA. (3)

3For a more intrinsic definition of QN,M insideK , see [6].
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CELL DECOMPOSITION AND CLASSIFICATION OF DEFINABLE SETS 125

Of course the set of tuples (x, t) ∈ X ×K satisfying (3) is a cell ofKm+1 in the usual
sense of (2). We call it the underlying cellular set of A. Abusing the notation we will
most often also denote that set by A. The existence, for every x ∈ X , of t satisfying
(3) simply means that X is exactly Â. We call it the base of A. The function cA is
called its center, �A and �A its boundaries. We also speak of a presented cell mod G
when GA = G .
A presented cell A is said to be of type 0 if �A = 0, and of type 1 otherwise.
Contrary to its center, boundaries, and modulo, the type of A only depends on its
underlying set.
The word “cell” will usually refer to presented cells. However, for sake of simplicity,
we will freely talk of disjoint cells, bounded cells, families of cells partitioning some
set and so on, meaning that the underlying cellular sets of these (presented) cells
have the corresponding properties. For instance, it is clear that every cellular set as
in (2) is in that sense the disjoint union of finitely many (presented) cells mod G .
Lemma 2.1 (Denef). Let S be a definable subset ofKm+n . Assume that there is an
integer α ≥ 1 such that for every x in Km the fiber

Sx =
{
y ∈ Kn :(x, y) ∈ S}

has cardinality≤ α. Then the coordinate projection ofS onKm has a definable section.
Proof. Identical to the proof of Lemma 7.1 in [7]. 

Lemma 2.2 (Denef). Letf be an (m+1)-ary basic function with variables (x, t) =
(x1, . . . , xm, t). Let n ≥ 1 be a fixed integer. Then there exists a finite partition of
Km+1 into sets A of the form

A =
⋂
j∈S

⋂
l∈Sj

{
(x, t) ∈ Km+1 : x ∈ C and |t − cj(x)|�j,l |aj,l (x)|

}
where S and Sj are finite index sets, C is a definable subset of Km, and cj , aj,l are
definable functions from Km to K , such that for all (x, t) in A we have

f(x, t) = Un(x, t)h(x)
∏
j∈S

(
t − cj(x)

)ej
with h : Km → K a definable function and ej ∈ N.
It is sufficient to check it for every n large enough so we can assume that:

1 + �nR ⊆ PN ∩R× (4)

Thus Un(x, t) in the conclusion could be replaced by u(x, t)N with u a definable
function from A to R×. This is indeed how this result is stated in Lemma 7.2 of [7].
However it is the above equivalent (but slightly more precise) form which appears
in Denef’s proof, and which we retain in this paper.

Proof. The proof is exactly the same as the one of Lemma 7.2 of [7]. Of course,
Lemma 7.1 used in Denef’s proof has to be replaced with the analogous Lemma 2.1.
(Denef’s result assumes that f is a polynomial, but the proof only uses that it’s a
polynomial in the last variable, so it also applies to basic f.) 

Remark 2.3 (co-algebraic functions). A remarkable by-product ofDenef’s proof
is that the functions cj and aj,l in the conclusion of Lemma 2.2 belong to coalg(f),
which we define now.
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126 LUCK DARNIÈRE AND IMMANUELHALPUCZOK

Given a basic function f, we say that a function h : X ⊆ Km → K belongs to
coalg(f) if there exists a finite partition of X into definable pieces H , on each of
which the degree in t of f(x, t) is constant, say eH , and such that the following
holds. If eH ≤ 0 then h(x) is identically equal to 0 onH . Otherwise there is a family
(	1, . . . , 	rH ) ofK-linearly independent elements in an algebraic closure ofK and a
family of definable functions bi,j : H → K for 1 ≤ i ≤ eH and 1 ≤ j ≤ rH , and
aeH : H → K∗ such that for every x in H

f(x,T ) = aeH (x)
∏

1≤i≤eH

(
T −

∑
1≤j≤rH

bi,j(x)	j

)

and
h(x) =

∑
1≤i≤eH

∑
1≤j≤rH

αi,jbi,j(x)

with the αi,j ’s in K . If F is any family of basic functions we let coalg(F) denote the
set of linear combinations of functions in coalg(f) for f in F .
Theorem 2.4 (Denef). Let F be a finite family of (m+1)-ary basic functions. Let
n ≥ 1 be a fixed integer. Then there exists a finite partition of Km+1 into presented
cells H mod K∗ such that the center and boundaries ofH belong to coalg(F) ∪ {∞}
and for every (x, t) in H and every f in F

f(x, t) = Un(x, t)hf,H (x)
(
t − cH (x)

)αf,H (5)

with hf,H : Ĥ → K a definable function and αf,H ∈ N.
Proof. Follow the proof of Theorem 7.3 in [7], using once again basic functions
instead of polynomial functions. 

Given two familiesA, B of subsets ofKm, recall thatB refinesA if B is a partition
of

⋃A such that every A in A which meets some B in B contains it.
Corollary 2.5 (Denef). Let F be a finite family ofm-ary basic functions,N ≥ 1
an integer and A a family of boolean combinations of subsets of Km defined by
f(x) ∈ PN with f in F . Then there exists a finite family H of cells mod P∗

N with
center and boundaries in coalg(F) which refines A.
Proof. Theorem 2.4 applies toF with n > 2v(N), so that 1+�nR ⊆ PN . It gives
a partition of Km into presented cells B mod K∗. Every such cell B is the disjoint
union of finitely many presented cellsH mod P∗

N , whose centers and boundaries are
the restrictions to Ĥ of the center and boundaries of B (hence belong to coalg(F)),
on which hf,B(x)P∗

N and (t− cB(x))P∗
N are constant, simultaneously for every f in

F . Thus every A inA either containsH or is disjoint fromH by (5) and our choice
of n, which proves the result. 

The following simpler statement, which follows directly from Corollary 2.5 by
p-optimality, is sufficient in most cases.

Theorem 2.6 (Denef’s cell decomposition). If (K,L) is p-optimal, then for every
finite family A of definable subsets of Km there is for some N a finite family of
presented cells mod P∗

N refiningA.
Remark 2.7. It has been proved in [1] that every definable function in a strongly
p-minimal field is piecewise continuous. We will show in the next section that
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CELL DECOMPOSITION AND CLASSIFICATION OF DEFINABLE SETS 127

p-optimal fields are strongly p-optimal. Thus the boundaries and centers of the cells
in the above cell decompositions can be chosen continuous by refining appropriately
a given cell decomposition.

§3. From p-optimality to strong p-minimality with Skolem functions.
Lemma 3.1. Assume that Denef’s Cell Decomposition Theorem 2.6 holds true for
(K,L). Then it has definable Skolem functions.
The proof is taken from the appendix of [9]. It is similar to proposition 4.1 in
[13] except that we do not assume strong p-minimality (nor any continuity in the
boundaries of the cells).

Proof. By a straightforward induction it suffices to prove that for every definable
subset A of Km+1 the coordinate projection of A onto Â has a definable section.
If A is a union of finitely many definable sets B and if a definable section 
B :
B̂ → B has been found for each projection of B onto B̂ we are done. Thus, by cell
decomposition, we can assume that A is a presented cell mod P∗

N for some N . We
deal with the case when A = (cA, �A, �A, �A) is of type 1 and �A �= 0 or �A �= ∞,
the other cases being trivial.
If �A �= 0, as P∗

N is a definable subgroup of K
× with finite index, there is a

partition of Â into finitely many definable pieces X on each of which �A/�A has
constant residue class moduloP∗

N . Again it suffices to prove the result for each piece
A∩ (X ×K) ofA. So we can assume thatX = Â, that is �A(x)/�A ∈ aP∗

N for some
constant a ∈ K× and every x ∈ Â. Moreover we can choose a so that v(a) is a
nonnegative integer k < N . Let � : x ∈ Â→ cA(x) + �A(x)/a. If (x, �(x)) ∈ A for
every x ∈ Â we are done, since 
 : x ∈ Â �→ (x, �(x)) is then a definable section of
the coordinate projection of A onto Â. So let us prove this.
Since �(x) − cA(x) = �A(�A(x)/(a�A)), it belongs to �AP×

N by construc-
tion. Obviously we also have |�A(x)| ≤ |�A(x)/a| because a ∈ R, and thus
|�A(x)| ≤ |�(x) − cA(x)|. It remains to check that |�(x) − cA(x)| ≤ |�A(x)|, that
is |�A(x)/a| ≤ |�A(x)|. Pick any t ∈ K× such that (x, t) ∈ A. We have |�A(x)| ≤
|t − cA(x)| ≤ |�A(x)|, so it suffices to check that |�A(x)/a| ≤ |t − cA(x)|, that is
v(�A(x)) − k ≥ v(t − cA(x)). Let � = (t − cA(x))/�A, since (x, t) ∈ A we have
v(�A(x)/�A) ≥ v(�) and v(�) ∈ v(P∗

N ) = NZ . By construction we also have
v(�A(x)/�A) ∈ v(aP∗

N ) = k +NZ . Altogether, since 0 ≤ k < N , this implies that
v(�A(x)/�A) ≥ v(�) + k. So v(�A(x)) − k ≥ v(�) + v(�A) = v(t − cA(x)), which
finishes the proof in this case. If �A = 0 and �A �= ∞ a similar argument on �A
gives the conclusion. 

Theorem 3.2. The following are equivalent:
1. (K,L) is p-optimal.
2. Denef’s cell decomposition Theorem 2.6 holds in (K,L).
3. (K,L) is strongly p-minimal and has definable Skolem function.
Proof. (1)⇒(2) is Theorem 2.6. Let us prove that (2)⇒(3). By Lemma 3.1 it only
remains to derive strong p-minimality from the Cell Decomposition Theorem 2.6.
Let Φ(	, 
) be a parameter-free formula with m + 1 variables. It defines a subset
S of Km+1 which splits into finitely many cells C mod P∗

N for some N . Let C be
the family of these cells, and X1, . . . , Xr a finite partition of Ŝ refining the Ĉ ’s for
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128 LUCK DARNIÈRE AND IMMANUELHALPUCZOK

C ∈ C. For each i ≤ r let 
i(αi , 	) be a parameter-free formula in ni +m variables
and ai ∈ Kni such that

Xi = {x ∈ Km :K |= 
i(ai , x)}.
LetΘ(α1, . . . , αr) be the parameter-free formula in n1+· · ·+nr variables saying that,
given any values a′i of the parameters αi , the formulas 
i(a

′
i , 	) define a partition of

Ŝ. In particular we have K |= Θ(a1, . . . , ar).
Let Ci be the family of all the cells C ∩ (Xi × K) for C ∈ C. This is a finite
partition of S ∩ (Xi × K) into cells mod P∗

N , which consists of k
i
0 cells of type 0,

ki1 cells D of type 1 with �D �= ∞, and ki∞ cells D of type 1 with �D = ∞. We
let ki = (ki0, k

i
1, k

i∞). For every x ∈ Xi , the fiber Sx = {t ∈ K :(x, t) ∈ S} is the
disjoint union of the fibers Cx for C ∈ Ci , each of which is of the same type as
C . Given a tuple k = (k0, k1, k∞) it is an easy exercise to write a parameter-free
formula Ψk,N (	) inm free variables saying that, given any value x′ of the parameter
	, the set of points t′ in K such that K |= Φ(x′, t′) is the disjoint union of k0 cells
mod P∗

N of type 0, k1 cells D
′ mod P∗

N of type 1 with �D′ �= ∞, and k∞ cells D′

mod P∗
N of type 1 with �D′ =∞. By construction we have
K |= ∃α1, . . . , αr Θ(α1, . . . , αr) ∧ ∧∧

i≤r
∀	 [
i(αi , 	)→ Ψki ,N (	)].

This formula is satisfied in every K̃ ≡ K . So there are ãi in K̃ni for i ≤ r such
that the sets

X̃i = {x̃ ∈ K̃m : K̃ |= 
i(ãi , x̃)}
form a partition of {x̃ ∈ K̃m :∃t̃ ∈ K̃, K̃ |= Φ(x̃, t̃)}, and for every x̃ ∈ X̃i the set
of t̃ ∈ K̃ such that K̃ |= 
i(x̃, t̃) is the disjoint union of ki0 + ki1 + ki∞ cells of K̃ . In
particular the formula Φ(x̃, �) defines a semialgebraic subset of K̃ , whatever is the
value of the parameter x̃ in K̃m. This being true for every formula Φ, it follows that
K̃ is p-minimal hence thatK is strongly p-minimal.
Finally let us prove that (3)⇒(1). Let S be a definable subset of Km+1, and S′
the corresponding definable set in an elementary extensionK ′ ofK . For every x′ in
K ′m let S′x′ denote the fiber of Ŝ′ over x

′:

S′x′ =
{
t′ ∈ K ′ :(x′, t′) ∈ S′}.

For every x′ in Ŝ′ thep-minimality ofK ′ andMacintyre’s Theorem (see Footnote 1)
give a tuple z′x′ of coefficients of a description of S

′
x′ as a boolean combination of

basic sets. The model-theoretic Compactness Theorem then gives definable subsets
X1, . . . , Xq partitioning Km and for every i ≤ q an L–formula ϕi(x, t, z) with
m + 1 + ni free variables which is a boolean combination of formulas of the form
f(x, t, z) ∈ PN with f ∈ Z[x, t, z], such that for every x in Xi there is a list of
coefficients zx such that

Sx =
{
t ∈ K :K |= ϕ(x, t, zx )

}
.

In other words, for every x in Xi

K |= ∃z ∀t ((x, t) ∈ S ↔ ϕi(x, t, z)
)
.

Our assumption (3) then gives for each i ≤ q a definable function �i : Xi → Kni
such that for every x ∈ Xi

K |= ∀t [(x, t) ∈ S ↔ ϕi
(
x, t, �i (x)

)]
.
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CELL DECOMPOSITION AND CLASSIFICATION OF DEFINABLE SETS 129

Let Bi = {(x, t) ∈ Km+1 :K |= ϕi (x, t, �i (x))}. By construction this is a boolean
combination of basic subsets ofKm+1, hence so isCi = Bi∩(Xi×K). The conclusion
follows, since S is the union of these Ci ’s. 


§4. Relative p-minimality. The aim of this section is to prove the following result.
It may be called “relative p-minimality”.

Theorem 4.1. Assume that (K,L) is strongly p-minimal and satisfies the Extreme
Value Property. Then every definable set S ⊆ K × |K |d is semialgebraic, for every d .
We need to state a few preliminary results and to introduce some notation. For
every a ∈ K and r ∈ |K∗| we let

B(a, r) =
{
y ∈ K : |x − y| < r}

denote the ball of center a and radius r.

Fact 4.2. For every definable set S ⊆ Km × |K |d , if A ⊆ Km is the image of the
coordinate projection of S onto Km, there is a definable function 
 : A → |K |d such
that (x, 
(x)) ∈ S for every x ∈ A.
Proof. By p-minimality, the value group v(K∗) is simply a Z-group. Every
nonempty definable subset of a Z-group which is bounded above (resp. below)
has a largest (resp. smallest) element. The conclusion easily follows if d = 1, and
for d ≥ 1, it is a straightforward induction. 

Beware that 
 in Fact 4.2 is not a Skolem function over K , because its codomain
is in |K |. The next Lemma shows that this can be fixed, in a strong sense.
Lemma 4.3. Assume that (K,L) is strongly p-minimal and satisfies the Extreme
Value Property. Then every definable function f : X ⊆ K → |K |d is semialgebraic.
In particular there is a semialgebraic function f̃ : X → Kd such that f = |f̃|.
For every r ∈ |K∗| we let r+ denote the element of |K∗| immediately greater
than r.

Proof. If f = (f1, . . . , fd ) it suffices to prove the result separately for each fi ,
hence we can assume that d = 1. Given a finite partition of X into definable pieces
Y it suffices to prove the result for the restriction of f to each Y separately. Thus
by splitting X into f−1({0}) and X \ f−1({0}) we can assume that f(X ) ⊆ |K∗|.
By Theorem 3.3 and Remark 3.4 in [10] there is a definable open set U contained
in X such that X \U is finite and f is continuous on U . By throwing away a finite
set if necessary, we can therefore assume that f is continuous and X is open in K .
Finally we can assume that f is not constant on X , otherwise the result is trivial.
For every a ∈ X the set of r ∈ |K∗| such that B(a, r) ⊆ X and f is constant
on this ball is definable, nonempty and bounded above (otherwise X = K and f
is constant, which we have excluded) hence by Fact 4.2 it has a maximum element
�(a). We are claiming that the following set

S =
{
a ∈ X :∀b ∈ B(a, �(a)+) ∩ X, f(a) ≤ f(b)}

has the property that for every ball B ⊆ X on which f is nonconstant, B intersects
bothS andX \S. Indeed letB = B(c, r) be any suchball. The function� is definable,
so the Extreme Value Property gives a0 ∈ B such that �(a0) = minb∈B �(b). Sincef
is nonconstant onB, necessarily �(a0) < r henceB(b, �(a0)+) ⊆ B for every b ∈ B.

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2015.79
Downloaded from https:/www.cambridge.org/core. University of Leeds, on 29 Mar 2017 at 15:12:26, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2015.79
https:/www.cambridge.org/core


130 LUCK DARNIÈRE AND IMMANUELHALPUCZOK

By construction f is nonconstant on B(a0, �(a0)+). The latter is the disjoint union
of B(a0, �(a0)) and finitely many balls B(ai , �(a0)) for 1 ≤ i ≤ n (where n + 1 ≥ 2
is the cardinality of the residue field). By minimality of �(a0), f is constant on each
B(ai , �(a0)) hence there are i �= j between 0 and n such that

∀b ∈ B(a0, �(a0)+), f(ai) ≤ f(b) ≤ f(aj). (6)

Moreover f is nonconstant on the union of B(ak, �(a0)) for 0 ≤ k ≤ n hence
f(ai) < f(aj). It follows that �(ai) = �(aj) = �(a0) and hence ai ∈ S and aj /∈ S
by (6), which proves our claim.
X and S are definable subsets of K , hence semialgebraic by p-minimality. Thus
there exists a partition A of X into finitely many cells mod Q∗

N,M for some N,M
such that S is also the union of the cells in A that it contains. Every cell A ∈ A can
be presented as the set of elements t ∈ K such that

|�A| ≤ |t − cA| ≤ |�A| and t − cA ∈ �AQ∗
N,M .

We are claiming that f(t) only depends on |t − cA| as t ranges over A. If �A = 0
then A is reduced to a point, hence f is constant on A. Otherwise �A �= 0 and for
every a ∈ K×, we have to prove that f is constant on the set Ba of t ∈ A such
that |t − cA| = |a|. We can assume that Ba is nonempty, hence |a| = |ta − cA| for
some ta ∈ A. Then |�A| ≤ |a| ≤ |�A|, hence t ∈ Ba if and only if |t − cA| = |a| and
t − cA ∈ �AQ∗

N,M , that is Ba = aR
× ∩ �AQ∗

N,M . Pick any b ∈ Ba , then bR× = aR×

and bQ∗
N,M = �AQ

∗
N,M hence

Ba = aR× ∩ aQ∗
N,M = a(R

× ∩Q∗
N,M ) = a(1 + �

MR).

In particular Ba is a ball. So by construction of A, A is either contained in S or in
X \S hence so is B. But then, by construction of S, f is constant onB. This proves
our claim.
Now pick any A ∈ A and translate it by cA. The result is a cell A′ mod Q∗

N,M

centered at 0 on which f(t) only depends on |t|. Thus the graph of the restriction
f|A of f to A is the intersection with �AQ∗

N,M of the pre-image by the valuation
of a definable function 
 : |A′| → |K |. By Theorem 6 in [4] it follows that f|A is
semialgebraic, hence so is f. The last point immediately follows from the existence
of definable Skolem functions for semialgebraic sets (see for example [15]). 

As already mentioned in the introduction, Theorem 4.1 is a “relative” version of
Theorem 6 in [4]. Since our proof heavily depends on the main results of [4] it is
more convenient here to use additive notation for the value group, so letG = v(K∗).
Theorem 6 in [4] actually says that for every definable set S ⊆ (K∗)d , with (K,L) a
strongly p-minimal expansion of a p-adically closed field, the image of S in Gd by
the valuation is definable in Presburger language

LPres = {0, 1,+,≤, (≡n)n>0}
where≡n is interpreted inG as the binary congruence relationmodulo the integer n.
It follows fromTheorem 1 in [4] andRemark (iii) just above it that every subset of
Gd definable in the language LPres is the union of finitely many disjoint sets defined
by the conjunction for 1 ≤ i ≤ d of conditions (Ei) of the form

�i +
∑
1≤j<i

ai,j
Xj − cj
nj

�i,1 Xi �i,2 � ′i +
∑
1≤j<i

a′i,j
Xj − cj
nj

and Xi ≡ ci [ni ]
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CELL DECOMPOSITION AND CLASSIFICATION OF DEFINABLE SETS 131

with every �i , � ′i ∈ G , ai,j , a′i,j , ci , ni ∈ Z, 0 ≤ ci < ni and �i,1,�i,2 being either ≤
or no condition. Let � be the list of all these integers and symbols. Let Λd denote
the set of lists � of this sort. The conjunction of the above conditions (Ei ) for
1 ≤ i ≤ d is expressed by a formula ϕ�(X, �) with free variables X = (X1, . . . , Xd )
and parameters � = (�1, . . . , �d , � ′1, . . . , �

′
d ). We let ϕ�(X,Z) be the corresponding

parameter-free formula in LPres with d + 2d free variables.
With these results in mind we can turn to the proof of Theorem 4.1.

Proof. Let S be a definable4 subset of K × Gd . For every x ∈ K the fiber
Sx = {� ∈ Gd :(x, �) ∈ S} is definable in LPres by Theorem 6 in [4]. Hence there
is a finite set of elements �1, . . . , �r ∈ Λd and parameters �k ∈ G2d such that the
sets C�k (�k), defined as the set of elements � ∈ Gd such thatG |= ϕ�k (�, �k), form a
partition ofSx . These formulasϕ�k (T,Z) easily translate into formulas��k (T,Z) in
the language of rings such that for every t ∈ Kd and every z ∈ K2d , K |= ��k (t, z)
if and only if G |= ϕ�k (v(t), v(z)).
By strong p-minimality the same holds true in every (K ′,L) ≡ (K,L). Hence
by the model-theoretic Compactness Theorem there is a partition of K into
finitely many definable sets A1, . . . , As and for each l ≤ s a finite set of indexes
�1,l , . . . , �rl ,l ∈ Λd such that for every x ∈ Al there are parameters �x,k,l ∈ G2d such
that Sx is partitioned by the sets C�k,l (�x,k,l ) for k ≤ rl . By Fact 4.2 there are defin-
able functions �k,l from Al to G2d such that for every x ∈ Al the sets C�k,l (�k,l (x))
for k ≤ rl form a partition of Sx . By Lemma 4.3 and the Extreme Value Property
there are semialgebraic functions z̃k,l from Ak to K2d such that �k,l = |z̃k,l | (that is
�k,l = v ◦ z̃k,l with additive notation).
By the above construction v−1(S) is the disjoint union for l ≤ s and k ≤ rl
of the sets Bk,l of tuples (x, t) ∈ Ak × Kd such that K |= ��k,l (t, z̃k,l (x)). These
sets are semialgebraic because ��k,l (T,Z) is a formula in the language of rings and
z̃k,l a semialgebraic function. Thus v−1(S) itself is semialgebraic, hence so is S by
definition. 

Corollary 4.4. Assume that K is p-optimal and satisfies the Extreme Value
Property. Then every definable subset of Km × |K |d is a boolean combination of
(d + 1)-basic sets.

Proof. If m = 1 the conclusion follows from Theorem 4.1 and Macintyre’s
Theorem (see Footnote 1). Assume that it has been proved for m ≥ 1 and let S be
a definable subset of Km+1+d which is the pre-image by the valuation of a subset of
Km+1×|K |d . LetS′ be the corresponding definable set over an elementary extension
K ′ of K . For every x′ in K ′m let S′x′ denote the fiber of S

′ over x′:

S′x′ =
{
(t′, z′) ∈ K ′ ×K ′d :(x′, t′, z′) ∈ S′}.

This set S′x′ is obviously the inverse image in K
′ ×K ′d by the valuation of a subset

of K ′ × |K ′|d . Note that K ′ is strongly p-minimal and satisfies the Extreme Value
Property, because these two properties are preserved by elementary equivalence.
ThusTheorem4.1 applies inK ′ and gives a tuplea′x′ of coefficients of a description of
S′x′ as a boolean combination of (d+1)-basic subsets ofK

′d+1. Themodel-theoretic

4Recall that in this context, “definable” means that the inverse image of S by the valuation is definable
in K ×Kd .
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Compactness Theorem then gives definable subsets A1, . . . , Aq partitioning Km,
and for every i ≤ q an L–formula ϕi(α, �, �) with ni +1+d free variables which is a
boolean combination of formulas of the form f(α, �, �) ∈ PN with f ∈ Z[α, �, �],
such that for every x in Ai there is a list of coefficients ax such that

Sx =
{
(t, z) ∈ K ×Kd :K |= ϕ(ax, t, z)

}
.

In other words, for every x in Ai

K |= ∃a ∀t, z ((x, t, z) ∈ S ↔ ϕi(a, t, z)
)
.

By Theorem 3.2, K has definable Skolem functions, hence for each i ≤ q there is a
definable function 
i : Ai → Kni such that for every x ∈ Ai

K |= ∀t, z [(x, t, z) ∈ S ↔ ϕi
(

i(x), t, z

)]
.

Let Bi = {(x, t, z) ∈ Km+1+d :K |= ϕi(
i(x), t, z)}. By construction, this is a
boolean combination of (d + 1)-basic subsets of Km+1+d . On the other hand,
Ai × Kd+1 is obviously a (d + 1)-basic subset of Km+1+d . Indeed, if ci(x) denotes
the indicator function ofAi , then hi(x, t, z) = ci(x)−1 is (d +1)-basic and we have

Ai ×Kd+1 =
{
(x, t, z) ∈ Km+1+d : hi(x, t, z) = 0

}
which is a (d + 1)-basic set by Remark 1.1. The conclusion follows, since S is the
union of the sets Bi ∩ (Ai ×Kd+1). 


§5. Cell preparation. Themain result of this section is the Cell PreparationTheo-
rem 5.3 for definable functions. We derive from it our last main result, Theorem 5.6,
which classifies up to definable bijections the definable sets over any p-optimal field
satisfying the Extreme Value Property.

Lemma 5.1 (Denef). Assume that K is p-optimal and satisfies the Extreme Value
Property. Then for every definable function f : X ⊆ Km → K there is an integer
e ≥ 1 and a partitionA of X into definable sets A such that for every x in A

∣∣f(x)∣∣e = ∣∣∣∣pA(x)qA(x)

∣∣∣∣
with pA, qA a pair of basic functions such that qA(x) �= 0 for every x in A.
Proof. ByCorollary 4.4, the setS = {(x, t) ∈ Km×K : |t| = |f(x)|} is a boolean
combination of 2-basic subsets of Km+1. The proof of Denef’s Theorem 6.3 in [7]
then applies word-for-word, with basic functions instead of polynomial functions.
It gives a partition of X into finitely many definable pieces A, on each of which
|f|e = |pA/qA| for some 1-basic functions such that qA(x) �= 0 for every x in A. 

Note that, in the above proof, if S is a boolean combination of (d +1)-basic sets
then Denef’s proof of Theorem 6.3 also goes through and the resulting functions
pA, qA are d -basic. In particular, it is not sufficient to know that S is a boolean
combination of basic sets (as it would follow directly from p-optimality), because
Denef’s argument then would yield functions pA, qA which are only 0-basic, that is
just definable, without providing any gain. So, contrary to what happened in Sec-
tion 2 with the Cell Decomposition, the generalization of Denef’s Cell Preparation
to p-optimal fields is not at all straightforward: all the results of the previous section
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CELL DECOMPOSITION AND CLASSIFICATION OF DEFINABLE SETS 133

leading to Corollary 4.4 seem to be mandatory here, in order to ensure that S is a
boolean combination of 2-basic sets.

Remark 5.2. Given an integer n0 ≥ 1, the set 1+�n0R is a definable subgroup of
R× with finite index. Thus in Lemma 5.1 we can always assume, refining if necessary
the partition of X (but keeping the same integer e independently of n0), that for
every x in A

f(x)e = Un0 (x)
pA(x)
qA(x)

.

Theorem 5.3 (Cell preparation). Assume that K is p-optimal and satisfies the
Extreme Value Property. Let (
i : Ai ⊆ Km+1 → K)i∈I be a finite family of definable
functions. Then there exists an integer e ≥ 1 and, for every n ∈ N∗, a pair of integers
M , N and a finite family H of presented cells mod Q∗

N,M such that M > 2v(e), e
divides N , H refines (Ai)i∈I , and for every (x, t) ∈ H ,


i(x, t) = Ue,n(x, t)h(x)
[
�−1H

(
t − cH (x)

)] α
e (7)

for every i ∈ I and every H ∈ H contained in Ai , with h : Ĥ → K a continuous
definable function and α ∈ Z (both depending on i andH )5.
Remark 5.4. Remark 2.7 applies to the above theorem as well, so the center and
boundaries of every cell in H can be chosen to be continuous.
Proof. For each i let ei be an integer, Ai a partition of Ai and Fi a family of
basic functions, all given by Lemma 5.1 applied to 
i . By replacing each ei with a
common multiple6 we can assume that all of them are equal to some integer e ≥ 1.
Given an integer n ≥ 1 from the theorem, we set n0 = n + v(e) and we refine the
partition Ai as in Remark 5.2.
Let A be a finite family of definable sets refining ⋃i∈I Ai . We can assume that
each of them is a boolean combination of basic sets of the same powerN , withN a
multiple of e. For every A inA, every i ∈ I such thatAi containsA and every (x, t)
in A we have


i(x, t)e = Un0 (x, t)
pi,A(x, t)
qi,A(x, t)

(8)

with pi,A and qi,A a pair of basic functions such that qi,A(x, t) �= 0 on A.
For each A in A let FA be the set of basic functions involved in a description of
A as a boolean combination of basic sets of power N . Theorem 2.4 applies to the
family F of all the basic functions pi,A, qi,A and the functions in FA, for all A’s and
i ’s. It gives a partition of Km+1 into finitely many presented cells B mod K∗ such
that for every f in F and every (x, t) in B

f(x, t) = UM (x, t)hf,B(x)
(
t − cB(x)

)�f,B (9)

with M = n0 + 2v(N), hf,B : B̂ → K a definable function and �f,B a positive
integer.

5IfH is of type 0 then it is understood that α = 0 and we use the conventions that in this case �−1H = 0
and 00 = 1.
6Note that we can require e to be divisible as well by any given integer N0 if needed.
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Partitioning B̂ if necessary, we can assume that the cosets hf,B(x)Q∗
N,M are con-

stant on B̂ . Since UM (x, t) ∈ 1 + �MR ⊆ Q∗
N,M , by (9) f(x, t)Q

∗
N,M only depends

on (t − cB(x))Q∗
N,M . Hence B can be partitioned into cells H mod Q

∗
N,M such that

Ĥ = B̂ , cH = cB and f(x, t)Q∗
N,M is constant on H , for every f in F . A fortiori7

f(x, t)P∗
N is constant on H for every f in F , hence each A in A either containsH

or is disjoint fromH . So the familyH of all those cellsH that are contained in⋃A
refines A, hence refines {Ai : i ∈ I } as well.
For every cell H in H there is a unique cell B as above containing H . For every
i ∈ I such that H is contained in Ai , the unique A in A containing B is also
contained in Ai . By (9) applied to f = pi,A and to f = qi,A, and by (8) we have for
every (x, t) ∈ H


i(x, t)e = Un0 (x, t)
UM (x, t)hpi,A ,B(x)

(
t − cB(x)

)�pi,A ,B
UM (x, t)hqi,A,B(x)

(
t − cB(x)

)�qi,A,B . (10)

The Un0 and UM factors simplify to a single Un0 since M ≥ n0. By construction
cH = cB and Ĥ = B̂ . So, for every (x, t) in H we get


i(x, t)e = Un0 (x, t)g(x)
[
�−1H

(
t − cH (x)

)]α
(11)

with g : Ĥ → K a definable function and α ∈ Z (both depending on i and H ).
Since n0 > 2v(e), (Un0 (x, t))

1
e is well defined and takes values in 1 + �n0−v(e) by

Lemma 1.6, that is Un0 = U e
n0−v(e). We have n0 − v(e) = n + v(e) ≥ n, hence a

fortiori Un0 = U en . So (11) becomes

i(x, t)e = Un(x, t)eg(x)

([
�−1H

(
t − cB(x)

)] α
e

)e
. (12)

This implies that g takes values in Pe , hence g = he for some definable function
h : Ĥ → K , from which (7) follows. 

Corollary 5.5. Suppose that K is p-optimal and satisfies the Extreme Value
Property. Let (
i : A ⊆ Km → K)i∈I be a finite family of definable functions with the
same domain. Then for every integer n ≥ 1, there exists an integer e, a semialgebraic
set Ã ⊆ Km and a definable bijection ϕ : Ã→ A such that for every i ∈ I and every
x in Ã


i ◦ ϕ(x) = Ue,n(x)
̃i(x)
with 
̃i : Ã ⊆ Km → K semialgebraic functions.
Proof. The proof goes by induction onm. Let us assume that it has been proved
for some m ≥ 0 (it is trivial for m = 0) and that a finite family (
i)i∈I of definable
functions is given with domain A ⊆ Km+1. If A is a disjoint union of sets B, it
suffices to prove the result for the restrictions of the 
i ’s to B. So, for any given
integer n ≥ 1, by Theorem 5.3 we are reduced to the case whenA is a presented cell
mod Q∗

N,M for some N ,M such that for some e0 ≥ 1 dividing N ,M > 2v(e0) and
for every i ∈ I and every (x, t) in A


i(x, t) = Ue0,n(x, t)hi (x)
[
�−1A

(
t − cA(x)

)] αi
e0 (13)

with hi : Â→ K a definable function and αi ∈ Z.
7Recall thatM = n0 + 2v(M ) > 2v(M ) hence QN,M ⊆ PN by Hensel’s Lemma.
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Let e1 ≥ 1 be an integer, Y ⊆ Km a semialgebraic set, � : Y → Â a definable
bijection, f̃ : Y → K a semialgebraic function for each f in F , all of this given
by the induction hypothesis applied to F = {�A, �A} ∪ {hi}i∈I . Let Ã be the set of
(y, s) ∈ Y ×K such that

|�̃A(y)| ≤ |s | ≤ |�̃A(x)| and s ∈ �AQ∗
N,M .

Then ϕ : (y, s) �→ (�(y), cA(�(y)) + s) defines a bijection from Ã to A. For every
i ∈ I and every (y, s) ∈ Ã we have


i ◦ ϕ(y, s) = Ue0,n(y, s)Ue1 ,n(y, s)h̃i (y)(�−1A s)
αi
e0 .

The first two factors can be replaced by Ue,n with e any common multiple of e0 and
e1. Since 
̃ : (y, s) �→ h̃i(y)(�−1A s)

αi
e0 is a semialgebraic function on Ã the conclusion

follows. 

Theorem 5.3 and Corollary 5.5 are exactly analogous to Theorems 2.8 and 3.1
in [5], except that we obtain a slightly more precise equality of functions mod
(1 + �nR)Ue instead of equality of their norm (which is the same as equality of
functions mod R×). Thus all the applications that are derived from these theorems
in [5] for the classical analytic structure remain valid in every p-optimal field which
satisfies the Extreme Value Property, with exactly the same proofs as in [5]. As
alreadymentioned in the introduction some of these applications, which concern the
constructibility of functions defined by parametric integrals and give the rationality
of Poincaré series attached to definable functions, have already been generalised
to strongly p-minimal fields in [2]. The other main application of Theorems 2.8
and 3.1 in [5] is the classification of subanalytic sets up to subanalytic bijections
(Theorem 3.2 in [5]). It is not known at the moment if it holds true for strongly
p-minimal fields.

Theorem 5.6. Assume that K is p-optimal and satisfies the Extreme Value Prop-
erty. Then there exists a definable bijection between two infinite definable setsA ⊆ Km
and B ⊆ Kn if and only if they have the same dimension.
Proof. If there is a definable bijection (an “isomorphism”) between A and B
they have the same dimension by Corollary 6.4 in [10]. Conversely, if A and B have
the same dimension d , then by Corollary 5.5 they are isomorphic to infinite semial-
gebraic sets Ã and B̃ respectively, both of which have dimension d , by Corollary 6.4
in [10] again. Then Ã and B̃ are semialgebraically isomorphic by the main result of
[3], hence A and B are isomorphic. 


§6. Acknowledgements. Wewould like to thankRafCluckers andPabloCubides-
Kovacsiks for helpful discussions.

REFERENCES

[1] P. Cubides-Kovacsics, L. Darnière, and E. Leenknegt, Topological Cell Decomposition and
Dimension Theory in p-minimal Fields, preprint, 2015.
[2] P. Cubides-Kovacsics and E. Leenknegt, Integration and cell decomposition in P-minimal

structures, this Journal, to appear.
[3] R. Cluckers,Classification of semi-algebraic p-adic sets up to semi-algebraic bijection. Journal für

die Reine und Angewandte Mathematik, vol. 540 (2001), pp. 105–114.

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2015.79
Downloaded from https:/www.cambridge.org/core. University of Leeds, on 29 Mar 2017 at 15:12:26, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2015.79
https:/www.cambridge.org/core
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