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ABSTRACT 

This paper uses techniques from computational algebraic geometry 
to perform blind image deconvolution, such that prior knowledge 
of the point spread function (PSF) is not required to compute a 
deblurred form of a given blurred image. In particular, it is shown 
that the Sylvester resultant matrix enables the PSF to be calculated 
by two approximate greatest common divisor computations. These 
computations, and not greatest common divisor computations, are 
required because of the noise that is present in the exact image and 
PSF. The computed PSF is then deconvolved from the blurred image 
in order to calculate the deblurred image. The experimental results 
show consistently good results for the deblurred image and PSF, 
and they are compared with the results from other methods for blind 
image deconvolution. 

 
Index Terms—  Image restoration, blind image deconvolution, 

Sylvester matrix, greatest common divisor 

 
1.  INTRODUCTION 

 
Blind image deconvolution (BID) is the process of obtaining a true 
image from a distorted version of it, possibly using prior knowledge 
of the true image or the function, called the point spread function 
(PSF), that causes the blur [1].   There are many sources of blur, 
including motion of the camera and/or object, imperfections in the 
lens, and variations in the air, for example, turbulence, and they re- 
sult in the intensity of a given image not being recorded exactly, such 
that the intensity of a given pixel in the recorded image is influenced 
by neighbouring pixels in the image [2]. Moreover, the recorded im- 
age is frequently corrupted by random noise that is generated from 
the optical device and leads to measurement errors [3]. The blurred 
image is formed by the convolution of the exact image and the PSF, 
and this explains the term blind image deconvolution because the re- 
constructed image is computed by deconvolving the PSF, which may 
only be known partially, from the blurred image [4, 6].  This blind 
deconvolution operation is required in several applications, includ- 
ing video-conferencing, and astronomical and medical imaging, but 
it may be difficult or impossible to calculate the PSF a priori, which 
makes BID a challenging problem. 

If G is the blurred image, F is the exact image, P is the PSF, E 
is the measurement error, N is the noise and ܘ denotes convolution, 
then the blurring model is 

G = F ܘ (P + E ) + N .                                 (1) 

This is the most general model for the formation of a blurred image 
because it contains two sources of uncertainty that contribute to the 
degradation of the exact image F . 

The objective of this paper is to solve the BID problem, such that 
prior knowledge of the exact image and the PSF are not required. It 
is shown that approximate greatest common divisor (AGCD) compu- 
tations allow the PSF to be computed. These calculations are carried 
out using the Sylvester resultant matrix [7], such that two AGCD 
computations are performed on the blurred image, and the deblurred 
image is then computed by deconvolving the PSF from the blurred 
image.  Although AGCD computations have been used previously 
for image deblurring [6, 8, 9], the work described in this paper dif- 
fers from the work in [6, 8, 9] and other works that use AGCD com- 
putations for image deblurring because (a) it is not assumed that the 
level of noise is known, and (b) it is not assumed that the PSF is 
known. 

This paper describes initial results from the application of a non- 
linear structure-preserving matrix method [18] to the Sylvester ma- 
trix, and the computation of the PSF from the decomposition of this 
matrix, for the solution of the BID problem. The signal-to-noise ra- 
tio (SNR) of the blurred images used in the examples in this paper is 
much lower than in other work, and since, as noted above, the noise 
level and PSF need not be known, the method proposed in this paper 
has practical advantages with respect to methods that assume one or 
both of these quantities are known. The results in Section 5 are ob- 
tained with images of size 128 × 128 pixels, and they are typical of 
the results obtained with larger, rectangular images.  These results 
are encouraging and work is currently focussed on the replacement 
of the singular value decomposition of the Sylvester matrix by its QR 
decomposition because this will reduce the complexity of the algo- 
rithm since use will be made of its update formula for the calculation 
of the horizontal and vertical extents of the PSF. 
 

 
2.  RELATED  WORK 

 
There are several algorithms for image restoration, and they can be 
classified according to whether the PSF is, or is not, known. If the 
PSF is known, image restoration can be performed using regularised 
filtering [2, 19] image denoising [10], Wiener filtering [11, 19], or 
the Lucy-Richardson algorithm [12, 19]. If, however, the PSF is not 
known, then Bayesian theory for iterative blind image deconvolu- 
tion [5, 13], Bussgang deconvolution [14], and methods of maximum 
likelihood [15], constant modulus [16] and the greatest common di- 
visor of two polynomials [6, 8, 9], can be used. 
 

 
3.  PROBLEM FORMULATION 

An image of size M × N can be represented as a matrix F , 

 
f (0, 0)              f (0, 1)         · · ·        f (0, N − 1)        
f (1, 0)              f (1, 1)         · · ·        f (1, N − 1)
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whose entries f (i, j) are the pixel values and coefficients of a bivari- 
ate polynomial F (x, y), 

 

M −1  N −1 

F (x, y) = 
X X 

f (i, j)xi yj . 

 
This equation shows that the contribution of the row component of 
the PSF to each row of G can be calculated by the multiplication of 
the polynomial forms of the exact image F and this component of 
the PSF, that is, Gr,i (y) = Fr,i (y)Pr (y), where Gr,i (y) is the poly- 
nomial form of the ith row of the blurred image due to the row com-

i=0 j=0 ponent Pr (y) of the PSF, and Fr,i (y) is the polynomial form of the

Similarly, the matrix P  ܀ RC ×D  is the PSF array whose entries 
p(k, l) are the coefficients of a bivariate polynomial P (x, y), 

 

C −1  D−1 

P (x, y) = 
X X 

p(k, l)xk yl ,                           (2) 
k=0 l=0 

 

and it is not assumed that the supports of the PSF in the x and y 
directions are equal. The blurred image is represented as a bivariate 
polynomial G(x, y) = F (x, y)P (x, y), which is equal to 

ith row of the exact image. It therefore follows from (7) that if rows 
i and j are considered, then Gr,i (y) = Fr,i (y)Pr (y) and Gr,j (y) = 
Fr,j (y)Pr (y), and thus if the polynomials Fr,i (y) and Fr,j (y) are 
coprime, then the row component of the PSF is equal to the great- 
est common divisor (GCD) of the polynomial forms of the ith and 
jth rows of the given blurred image, Pr (y) = GCD (Gr,i , Gr,j ). It 
is clear that this operation can be repeated for columns k and l of 
the blurred image, that is, Pc (x)  = GCD (Gc,k , Gc,l ), where the 
polynomial P (x, y), which is defined in (2), is given by P (x, y) = 
Pc (x)Pr (y). 

The discussion above assumes that noise is absent from theX 
f (i, j)p(s − i, t − j)xs yt ,                           (3) 

 

blurred image G, but this condition is not satisfied in practical ex-
i,j,s,t 

 
where s  = i + k and t = j + l.  This equation shows that the 
pixel values of the blurred image G are equal to the two-dimensional 
convolution of the pixel values of the exact image F and PSF. The 
coefficient of xs yt  in the bivariate polynomial G(x, y) of G is given 
by 

X 
f (i, j)p(s − i, t − j),                          (4) 

i,j 

and this is the value of the pixel at (s, t) in G. 
The product (3) shows that the blurred image G is represented 

by a bivariate polynomial of degrees (M + C − 2) and (N + D − 2) 
in x and y respectively, and thus its coefficients are stored in a matrix 
of order (M  + C − 1) × (N  + D − 1). This matrix is larger than 
the matrix representation of the exact image F because of the extra 
rows at the top and bottom, and the extra columns on the left and 
right, of G. These extra rows and columns in G define the boundary 
conditions, and the blurred nature of G is most easily seen by its 
representation by a bivariate polynomial of higher degrees than the 
degrees of the bivariate polynomial representation of F . 

It is assumed the PSF is separable, 

p(s − i, t − j) = pc (s − i)pr (t − j), 
 

where the subscripts c and r denote column and row respectively. 
The two-dimensional convolution (4) is therefore equal to the prod- 
uct of two one-dimensional convolutions, 

amples. In particular, the presence of uncertainty E in the PSF and 
noise N , as shown in (1), implies that the GCD of two polynomials 
cannot be considered, and that it is necessary to consider an AGCD 
because the blurred image is defined by inexact (noisy) polynomials. 
The equations that define Pc (x) and Pr (y) are therefore given by 
 

Pc (x) = AGCD (Gc,k , Gc,l ), 
 
and 
 

Pr (y) = AGCD (Gr,i , Gr,j ), 
 
and thus a separable PSF can be computed by performing two AGCD 
computations. The exact image can then be recovered by deconvolv- 
ing the PSF from the blurred image G after computations have been 
performed on G.  The next section considers the application of the 
Sylvester resultant matrix to AGCD computations. 

 
4.  THE SYLVESTER MATRIX AND IMAGE DEBLURRING 
 

The GCD d̂(y) of two exact polynomials p̂(y) and q̂(y), of degrees 
m and n respectively, can be computed from their Sylvester resul- 
tant matrix S(p̂, q̂), which is a square matrix of order m + n [20]. In 
particular, the degree t̂ of d̂(y) is equal to the rank loss of S(p̂, q̂), 

and the coefficients of d̂(y) are contained in the last non-zero row of 
the upper triangular matrices R and U of, respectively, the QR and 
LU decompositions of S(p̂, q̂).  If inexact forms p(y) and q(y) of, 
respectively, p̂(y) and q̂(y) are given, then it can be assumed, with-

M −1 N −1 out loss of generality, that p(y) and q(y) are coprime and S(p, q)X 
pc (s − i) 

X 
f (i, j)pr (t − j),                   (5) is therefore of full rank [17]. This is the situation that corresponds

i=0 
 

which is equal to 
 

N −1 

j=0 

 
 
M −1 

to a blurred image, and it may therefore be necessary to specify a 
threshold, which is a function of the SNR, that can be applied to the 
singular values of S(p, q) [8]. 

The specification of a threshold necessarily implies that the SNR
X 

pr (t − j) 
X 

f (i, j)pc (s − i).                    (6) is known, but the satisfaction of this condition cannot be guaran- 
teed in practical problems because the SNR may not be known, orj=0 i=0 
it may only be known approximately. In these circumstances, it is

Since the expressions (5) and (6) are equal, it is adequate to consider 
one of them because the analysis for the other form follows identi- 
cally. Consider the form in (5), which shows that the contribution of 
the row component pr (t − j) of the PSF to the blurred image G is 

N −1 X 
f (i, j)pr (t − j),   i = 0, . . . , M − 1.                  (7) 

j=0 

difficult or impossible to specify a threshold. It has, however, been 
shown that if the given inexact polynomials p(y) and q(y) are pro- 
cessed before S(p, q) is constructed, then t, the degree of an AGCD 
of p(y) and q(y), can be computed without knowledge of the SNR 
[17]. These preprocessing operations are: 

1.  The normalisation of each polynomial by the geometric mean 
of its coefficients.



786  

PM −1  PN −1 

PM −1  PN −1 

M N 

M N 

2.  The replacement of g(y) by Įg(y),  where Į  is a non-zero 
constant. 

3.  The substitution of the independent variable y by the inde- 
pendent variable w, 

 
y = șw,                                         (8) 

 
where ș is a parameter. 

The first preprocessing operation is necessary because S(p, q) has a 
partitioned structure, that is, 

 
S(p, q) = 

  
C (p)    D(q)  

   
,                             (9) 

 
where the entries of C (p) ܀ R(m+n)×n  are the coefficients of p(y), 
the entries of D(q)  ܀ R(m+n)×m  are the coefficients of q(y), and 
C (p) and D(q)  are Tœplitz matrices.  It follows that if the coeffi- 
cients of p(y) are much smaller or larger (in magnitude) than the co- 
efficients of q(y), then incorrect results are obtained because S(p, q) 
is unbalanced. It is therefore desirable to balance the matrix, and this 
is achieved by normalising the coefficients of p(y) and q(y).  It is 
shown in [17] that normalisation of p(y) and q(y) by the geometric 
means of their coefficients has advantages with respect to normali- 
sation by the 2-norms of their coefficients. 

The second preprocessing operation follows from the scale in- 
variance property of the GCD of p̂(y) and q̂(y).  Specifically, the 
GCD of two polynomials is defined to within an arbitrary non-zero 

Algorithm 1 BID using the Sylvester matrix 

BEGIN 
1- Read in a distorted image G . 
2- Choose two rows (r1 , r2 ) and two columns (c1 , c2 ) of G, and 
calculate their AGCDs Pc (x) and Pr (y). 
3- Calculate the PSF P (x, y) = Pc (x)Pr (y). 
4- Deconvolve P (x, y) from the blurred image. 
END   
 
 

The method of SNLTN allows an improved (reduced noise) form 
of each row and each column of the given blurred image to be com- 
puted, such that when the computed PSF is deconvolved from the 
improved form of the blurred image, the computation is equivalent 
to polynomial division in which the denominator polynomial (the 
PSF) is an exact divisor of the numerator polynomial (the improved 
form of the deblurred image). It therefore follows that the error be- 
tween the exact image and the deblurred image is small. 

 
5.  EXPERIMENTAL RESULTS 

 
This section presents the results from the method described in this 
paper.  The first experiment is performed on two images, each of 
which is 128 × 128 pixels.  Each exact image is convolved with a 
separable PSF of size 7 × 7 pixels.  The relative errors due to the

scale factor Į, that is, PSF and additive noise are, respectively, 10−3
 and 10−7

 for the first
 

GCD (p̂, q̂) ∼ GCD (p̂, Įq̂),                             (10) 
image (Map), and 10−4  and 10−7 , respectively, for the second image 
(Grass). The SNR is defined as

where ∼ denotes equivalence to within the scale factor Į. It follows, 
however, from (9) that S(p̂, Įq̂) = ĮS(p̂, q̂), and thus scaling q̂(y) 

 
SNR = 10 log10 

Psignal 

Pnoise 

 
dB,

by Į does not scale S(p̂, q̂) by Į.  If exact polynomials are consid- 
ered and all computations are performed symbolically, then Į can 
set equal to one, but if inexact polynomials p(y) and q(y) are con- 
sidered, then the examples in [17] show that the computed value of t 
is a function of Į. This is an unsatisfactory result because an AGCD 
of p(y) and q(y) also satisfies (10), that is, it is a function of the 
roots of p(y) and q(y), and it is independent of Į. 

The third preprocessing operation follows because computations 
on polynomials whose coefficients vary widely in magnitude may 
be unstable, and it is therefore desirable to minimise this ratio [21]. 
The substitution (8) introduces the parameter ș, and it is shown in 
[7, 17] that the optimal values of Į and ș minimise the ratio of the 
maximum entry (in magnitude) to the minimum entry (in magnitude) 
of S(p̃, Įq̃), where p̃(w) = p(șw) and q̃(w) = q(șw), and that this 
minimisation leads to a linear programming problem. 

After these preprocessing operations have been implemented, 
the value of t, that is, the degree of the polynomial representation 
of the PSF, can be computed by using properties of the subresultant 
matrices of S(p̃, Įq̃).   Two methods for the computation of t that 
yield the desired result t = t̂  are discussed in [17], and this compu- 
tation enables the coefficients of an AGCD of p̃(w) and Įq̃(w), that 
is, the coefficients of the polynomial form of the PSF, to be deter- 
mined. In particular, it is shown in [7] that the method of non-linear 
structured total least norm (SNLTN) [18] enables an AGCD of p̃(w) 
and Įq̃(w) to be computed to high accuracy, such that the error be- 
tween the GCD of the exact polynomials p̂(șw) and q̂(șw), and an 
AGCD of p(șw) and Įq(șw),  is small. It is noted that the method 
of SNLTN yields a much better estimate of an AGCD of two inexact 
polynomials p(y) and q(y) than do the QR and LU decompositions 
of S(p, q). 

The method described above for BID is shown in Algorithm 1. 

where Psignal , the signal power of an image F of size M  × N , is 

given by 
 

剷                剷               i=0       j=0  f (i, j) 
Psignal  = kF − F kF  ,    F  =                                  , 

and Pnoise , the noise power of a blurred image G of the exact image 
F , is given by 

Pnoise  = k(G − F ) − (G − F )剷
kF  , 

 

where 

(           )剷               i=0       j=0  (g(i, j) − f (i, j)) 
G − F   =                                                  . 

 

It was noted in Section 3 that G is larger than F because of the 
convolution operation. The expression for Pnoise  assumes, therefore, 
that the border pixels of G that are introduced as a consequence of 
the convolution operation are removed, such that F and G are the 
same size. 

Exact, blurred and restored images are shown in Figures 1 and 2, 
where the methods M1, M2, M3, M4 and M5 are defined in Table 1. 
It is seen that the method presented in this paper yields significantly 
improved deblurred images with respect to the deblurred images ob- 
tained from the Lucy-Richardson algorithm, regularised filtering and 
the method of maximum likelihood. The work in this paper does not 
require prior knowledge of the PSF and noise level, and it therefore 
has advantages with respect to the other methods used to obtain the 
images in Figures 1 and 2 because these methods require thresholds 
for the computation of the horizontal and vertical extents of the PSF, 
and the noise level.
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Image Methods SNR RMSE NAE 

Map M1 
M2 
M3 
M4 
M5 

40.22 
3.19 
9.42 

38.10 
3.21 

1.92913e − 05 
8.45883e − 04 
5.11916e − 04 
2.57312e − 05 
8.43858e − 04 

3.45823e − 03 
1.28538e − 01 
8.60910e − 02 
4.65718e − 03 
1.28191e − 01 

Grass M1 
M2 
M3 
M4 
M5 

56.21 
0.48 
5.80 

47.36 
0.48 

2.75215e − 06 
1.05311e − 03 
5.66495e − 04 
4.81265e − 06 
1.05503e − 03 

4.54241e − 04 
1.56465e − 01 
8.85092e − 02 
7.63011e − 04 
1.56816e − 01 

 

e(i, j) 

Table 1 shows two error measures for the images in Figures 1 
and 2, and it is seen that they are smaller for the method discussed 
in this paper than for the other methods. The root mean square error 
(RMSE) and the normalised absolute error (NAE) between F , whose 
pixel values are f (i, j), and G, whose pixel values are g(i, j), are 

 
qPM −1  PN −1

 

 

 
(a) exact                        (b) blurred             (c) restored using M1

 
RMSE = 

i=0 j=0  e
2 (i, j) 

, 
M N

and  
 

PM −1  PN −1 

NAE = 
    i=0       j=0  |           | 

, 
PM −1  PN −1 

 
(d) restored using M2     (e) restored using M4     (f) restored using M5 
 

Fig. 2: Results for the restoration of an image of grass.

i=0 

 
where e(i, j) = g(i, j) − f (i, j). 

j=0  |f (i, j)|

Table 1: Comparison of 5 deblurring methods. M1: The method de- 
scribed in this paper, M2: Lucy-Richardson, M3: Regularised filter, 
M4: Wiener filter, M5: Maximum likelihood. 

 

 
 

(a) exact               (b)    blurred    image, 
SNR = 2.21 dB 

 

 
 
(c)   restored   image, 
SNR = 47.66 dB

 
Fig. 3: The exact, blurred and restored images for the second exam- 
ple. 

 
 
 
 
 
 
 
 
 

The results of the second experiment are shown in Figure 3, 
which contains an exact image, a blurred form of this image and 
a restored (deblurred) form of the blurred image, obtained using the 
method described in this paper.  The SNRs of the blurred and de- 
blurred images are 2.21 dB and 47.66 dB respectively, and this sig- 
nificant improvement is readily apparent from visual inspection of 
the images. 

 

 
 

 
(a) exact                        (b) blurred             (c) restored using M1 

 

 
(d) restored using M2     (e) restored using M3     (f) restored using M5 

 
Fig. 1: Results for the restoration of an aerial map. 

6.  CONCLUSION 
 
This paper has presented a method to perform BID using robust 
AGCD computations, such that neither the noise level nor the PSF 
need be known. It has been shown that excellent results are obtained 
when the rows and columns of the blurred image are preprocessed, 
and the PSF is computed using a structure-preserving matrix method. 
These computations enable the PSF to be computed, such that the de- 
convolution of the PSF from the blurred image corresponds to poly- 
nomial division with a very small error, that is, the error between the 
exact and restored images is also small. 
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