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Mathematical derivation of the model.

The model assumes exponential growth of an initial residual tumour volume, v and is
described in its original form in (Gregory et al 1991Let the random variables V and G be
normally distributed and represent the log of the resistant tumour burden, with mean py and
SDoy, and the log of the tumour doubling time, with mggand SDog, Thus;

V ~ N(u,0v) and G ~ Nig,og).
Consider an individual tumour, i, reduced to avoume v below the log relapse threshold, V
and having a log tumour-doubling time g (shown diagmatically in supplementary figure 1).
Then the probability, Pof relapse before a given time t for this patisngiven by integrating

over all values of g which result in relapse befgre

loge[;-—5] Hlogelloge@] /1 (4 — g)°
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The upper limit of integration in the preceding equation is found by considering the growth of
the log resistant tumour volume v, with a doubling time, say DT, such that relapse occurs at
volume Vt at time t. Thus

at=V. —v
Where o is the exponential growth parameter; o is thus related to the doubling time by the

following equation:

o= log.(2)
DT

and therefordT = [ﬁ] log.(2). Thus

log.(DT) = log, [ ] +log [log,(2)] =,say, U,

V,—v
The resistant tumour is log-normally distributed, and not all tumours necessarily achieve CR
(v is not always less than,)V Let the probability of achieving CR be. PThen the

probability, P, of relapse before a given time t for the whole population is:

Vr 1 _(up—v)? Ut 1 _(p —g)z)
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as described.
Then the probability density function (pdf)

dP
p(t, Wy, 0y, Ilg'o-g) = E



which guantifies the relative likelihood of relapsing at any at given time, can be derived by

differentiating under the double integral sign from equation (2). The teyarsdP

exp — W97 46 not involve t, so it is merely necessary to differentiate
2
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with respect to t. This probability;,Ras described, is the probability of relapse before a

(o

given time t for this particular patient, i. Singe= log, [ﬁ] + log, [loge(Z)]

Therefore
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and therefore
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The likelihood is the product of the pdf probdlak for each completed time to relapse,
and the probability of remaining in remission long&n the time under consideration for the
censored times (which includes the probability oihgetured, as well as the probability of

relapse occurring after this time), thus;.



m

L(uVa Gv, Ug, Gg) = H p(tian, Gv, Ug, Gg) H (l'P(ﬁauva Gv, Ug, Gg))

i=1 i=m+1
where {, i=1,....,m are the completed times to relapse, andnt+1,.....,n are the censored times
to relapse.

The maximum likelihoo@stimates for pv,ov,1q,69 Can then be derived using first, plus
preferably second, derivatives (see, for example|leB4888). Second derivatives make the
convergence routines much more rapid, and thimp®itant for this model since it is necessary
to derive a number of normal distribution integraidich involve numerical methods. The
mathematics for the first and second partial déviea can be derived by differentiating under
the integral given in (2) for all the parameters] are given in Gregory (1993)The analysis
involves a number of functions similar to (2), (3) and (4) walniproved quick to evaluate
numerically because for all the double integrals itieer integral is identical, namely,. P
Otherwise, the fitting procedure would have beemmatationally too slow to enable a
multivariate approach such as this to be feasibte (for example, Day et §1985%° to
appreciate the difficulties inherent in this tadkew such a solution is not availahle,

Extension to the multivariate case can be achieved by allowing prognostic factors to
influence the mean (log) resistant tumor volume and the mean (log) growth rate in a linear
fashion, enabling a set of regression coefficiémtse produced for these variables. This is a
key step in the extension of the original model. The log resistant tumor volume and log tumor
doubling time, pv and pg, are normally distributed, where pv, pig are now linear functions of n

prognostic variables, as follows:

u, = log(residuatumorvolume = S, +>_ X,
i=1

# = log(tumourdoublingtime) = 7, + >_ 7, %

i=1



with X,...,% being the values of the n prognostic variables for a given individual, Bu,...,n,
Y1,...,Yn being the sets of regression coefficients, and Bo, Yo being baseline log resistant tumor
and log tumor doubling time values (potentially for a patient having values of O for all the

prognostic factors).

For ths multivariate model the same equations apply vﬁthrZi”:l,Bm replacing pv

and y, + Zin:l;/i X replacing pg. The maximum likelihood routine needs to include the B's and

Y's, and thus maximise on 2n+4 parameters, rather than just 4. Therefore the first and second
partial derivatives involving the Bs and ys must be derived. For fo andyo these are identical to
the values derived for py and pg and given in Gregory (1993)The first partial derivatives for
the Bs and ys can be derived from differentiating under the ingdgygiven in equations (2) and
(4). For the Bs, as an example:

n 2
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and where, Pi is as in equation (1) but with Zin:l?/i X; replacing pg, and again differentiating

under the integral,

o, (% | LB+ LAXD| 1 (u, — v)*
5= 5.7 (a m)exp " 207 |V ©

The % can be taken outside the integral in equationsiff) (6) and the first derivative

ultimately reduces to:
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The form of all the first and second partial derivatives of the B's and y's is identical to that of
and g respectively but with the additional multiplicatibg x, X, xix; , %2, or 2, and thesei%s
etc. can be taken outside the integrals as in iequ@). Thus Newton’s method can be used to

fit the model, and derive the maximum likelihood estimates for the Bs and ys.

Confidence intervals for the 4 + n model parametegsobtained from the variance for
each of these parameters, which is found from thedalglements of the inverted information
matrix of second partial derivatives, I(6), where

1(6) = (0%og L(6)/06i 06} ) (a+nyx(a+n)
where 6 = 0;, i=1,...4+n are the model parameters, i.e. 61=Bo, 02=6v, 83=y0, 04=0g, and (Bi=n)i-4,
i=5,...n) where nji is whichever f or vy is entered at step i.

Although the mathematics involved in these kinds of models can be very céfnplex
this analytically tractable solution has enabled this model to be fitted on large numbers of
patients, in a few seconds.

Note that, in a model having a full analytic solatisuch as this one, model sensitivities
to parameters can in principle be determined floerctosed form solutions, without the
necessity for computational simulation. For insemodel outputs include variance estimates
for all the parameters, which can be used to peos@hfidence intervals for these estimates.
Likelihood contour plots can also be used to exarthieainiqgueness of the maxima in the
maximum likelihood estimates. As with other multigagée models, we have observed that
model fits tend to improve with the addition of malinical covariates, and for this model it can
be observed that the standard deviations of betktamt disease and tumour doubling times

gradually reduce as more clinical covariates atedac.
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Stepwise approach to fitting the model

A forward stepwise approach is used. Each treatment/prognostic factor is considered
for inclusion both for its effect on resistant disease and growth rates at each step. Thus,
initially the model is applied with just the four baseline parameters (the means and standard
deviations of the logs of resistant disease and of growth rates) giving a baseline likelihood.
Then each factor is considered in turn both for its resistant disease effect and growth rate
effect, giving a series of newkiilihoods and AICs. A y? difference test/statistic can then be
calculated on the resulting AICs (see, for example, Hatcher, 1994) to yield a y? statistic and
associated palue for inclusion of the factor in the model. The factor giving the largest % is
then included, giving a new, baseline likelihood and the process repeated (see table 1) until

no factors have significance levels < 0.05.

Comparison with the Cox model, and comparisons of goodness of fit, for the AZURE data

Firstly, note that Histological grade was included as two variables, namely grade 3
versus grades 1 and 2, and grade 2 versus grades 1 and 3 since the differences between the
grades are not uniform. T3 and T4 tumors were combined, having nearly identical IDFS
curves.

As each factor is included in the model the fit improves, and the measure of how
much it improves is the improvement in AIQAIC), with an associateg? difference
test/statistic. Improvements in the Cox model fit can be similarly evaluated through
improvements in the partial likeliho&dThe fits of the two models cannot be compared
directly because the Cox model approach is based on a partial likelihood, but the difference
between these two AICs, which incorporate allowance for trextda parameters in the

mathematical model as compared to the Cox moda¥jges some indication of the difference



in model fit. AIC differences > 10 are considereddafsee Hilbe, 2011) and differences in this
paper are considerably greater than this suggestguch differences are robust.
Overall, the AAIC for the biologically-based model (505.2) is vastly better than for te C
model (361.4) suggesting greatly improved model fits (AAIC (difference) = 126.8 >>10).
Similarly, the significance of ER status was consillly greater with the biologically-based
model than when derived from the Cox model. The univariate AAICs for inclusion for the
biologically-based and Cox models were 197.4 and 102.1 respectively, with multivariate AAICs
of 109.0 and 40.9 respectively (AAIC (differences) = 95.3 and 68.1 respectively, again
suggesting greatly improved fits in both cases).naly, when considering whether the
difference in the ER status DFS curves was mosdiito result from a difference in doubling
times or a difference in residual diseake,improvement in AIC (AAIC) for the biologically-
based model was 111.4 for attributing this difference to a difference in doubling times
compared to only 58.4 for attributing this to a difference in residual disease (such an analysis
is obviously not possible for the Cox model). Note that for ER status highpseelates are
seen in ER-negative women in early years, whereéatan years this is reversed so that ER-
positive women have higher relapse rates.

Neither model accounts for missing data, which can also significantly impact
DFS/survival curves, but which scomplicated topic in its own right, and is not covered in

this manuscript.

Computer programs for fitting the model

A related interactive computer program for fitting the model is available on request. We are
also working on a web-based version of this program which will be directly available on the

flexsurv platform (see, for example:

http://cran.r-project.org/web/packages/flexsurv/index.html
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Supplementary Table1l Stepwise results for the multivariate modelliagpon in the

AZURE trial.
Step© Step 1 Step 2
v? p-value coeff. y* pwalue coeff. y* p-value coeff.
RD:T Stage 140.5<.0001 124.0<.0001 69.5<.0001
RD:ER status 121.9<.0001 0.00 .97 0.2 .89
RD:Lymph nodes 165.9<.0001 150.7<.0001 *150.7 <.0001 2.81
RD:Grade 1&2v3 86.2<.0001 33.5<.0001 27.7<.0001
RD:Grade 1v2&3 29.2<.0001 6.4 .01 6.5 .01
DT:T Stage 142.6<.0001 121.3<.0001 75.9<.0001
DT:ER status 197.4<.0001 *197.5<.0001 .48*182.2<.0001 .46
DT:Lymph nodes 166.6<.0001 130.8<.0001 4.7 .03
DT:Grade 1&2v3 140.2<.0001 56.1<.0001 48.8<.0001
DT:Grade 1v2&3 60.8<.0001 42.9<.0001 31.7<.0001
Step 3 HAep Step 5
v’ p-value coeff. y*> p-value coeff. y*> p-value coeff.
RD:T Stage 6.6 .01 7.2 .007 6.4 .01
RD:ER status 3.4 .07 1.9 .16 2.3 13
RD:Lymph nodes  *105.3<.0001 2.41*103.0<.0001 2.34 *99.9 <.0001 2.35
RD:Grade 1&2v3 20.1<.0001 3.9 .05 59 .02
RD:Grade 1v2&3 52 .02 13.9 .0002 16.5<.0001
DT:T Stage *75.9<.0001 -.15 *69.7 <.0001 -.14 *65.7 <.0001 -.13
DT:ER status *174.9<.0001  .44*111.1<.0001 .36*109.8<.0001 .35
DT:Lymph nodes 15 .22 22 14 1.8 .18
DT:Grade 1&2v3 42.6<.0001 *42.6 <.0001 -.19 *32.0<.0001 -.16
DT:Grade 1v2&3 25.8<.0001 15.2 .0001 *15.2 .0001 -.23
Step 6 Step
v? p-value coeff. y* p-value coeff.
RD:T Stage 6.8 .01 *6.8 .009 .20
RD:ER status 1.4 .23 02 .67
RD:Lymph nodes  *103.5<.0001 2.20 *92.6 <.0001 2.12
RD:Grade 1&2v3 3.2 .07 25 11
RD:Grade 1v2&3 *16.5<.0001 124 *16.9 <.0001 12.4
DT:T Stage *66.5<.0001 -.13 *15.9 .0001 -.09
DT:ER status *111.4<.0001 .35 *110.7 <.0001 .34
DT:Lymph nodes 15 21 2.9 .09

DT:Grade 1&2v3 *32.8<.0001 -16 *33.9 <0001 -.17
DT:Grade 1v2&3 ¥22.6<.0001 -1.3 *21.9<.0001 -1.3

RD: residual disease; DT: doubling time.

¥?s and p-values are for inclusion of this variabléhim model at this step, unless preceded with *,
which indicates ¥?s and p-values are for removal of a variable whiak previously included.

+ Step 0 (no variables in the model) gives the univariate model y°s & p-values for each factor.
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Supplementary methods figur e caption

Supplementary figure 1. IDFS by ER-status with mathematical model fits and Cox model

fits for the AZURE trial.
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Supplementary figure 1
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