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Mathematical derivation of the model.  

 The model assumes exponential growth of an initial residual tumour volume, v and is 

described in its original form in (Gregory et al 19911) . Let the random variables V and G be 

normally distributed and represent the log of the resistant tumour burden, with mean ȝv and 

SD ıv, and the log of the tumour doubling time, with mean ȝg and SD ıg, Thus; 

 V ~ N(ȝv,ıv) and G ~ N(ȝg,ıg). 

Consider an individual tumour, i, reduced to a log volume v below the log relapse threshold, Vr, 

and having a log tumour-doubling time g (shown diagrammatically in supplementary figure 1). 

Then the probability, Pi of relapse before a given time t for this patient is given by integrating 

over all values of g which result in relapse before t;, 

 

௜ܲ ൌ  න ቆ ͳߪ௚ξʹɎቇ ݌ݔ݁ ൭െ ൫ߤ௚ െ ݃൯ଶʹߪ௚ଶ ൱  ݀݃                                    ሺͳሻ୪୭୥೐ቂ ௧௏ೝି௩ቃା୪୭୥೐ሾ୪୭୥೐ሺଶሻሿ
ିஶ  
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The upper limit of integration in the preceding equation is found by considering the growth of 

the log resistant tumour volume v, with a doubling time, say DT, such that relapse occurs at 

volume Vr at time t.  Thus ݐߙ ൌ ௥ܸ െ  ݒ

where Į is the exponential growth parameter; Į is thus related to the doubling time by the 

following equation: 

ߙ ൌ ܶܦ௘ሺʹሻ݃݋݈  

and therefore ܶܦ ൌ ቂ ௧ܸݎെݒቃ  ௘ሺʹሻǤ Thus݃݋݈

ሻܶܦ௘ሺ݃݋݈ ൌ log݁ ൤ ݎܸݐ െ ൨ݒ ൅ log݁ൣlog݁ሺʹሻ൧ ൌǡ ǡݕܽݏ  ݐܷ
The resistant tumour is log-normally distributed, and not all tumours necessarily achieve CR 

(v is not always less than Vr).  Let the probability of achieving CR be Pc. Then the 

probability, P, of relapse before a given time t for the whole population is: 

ܲ ൌ ׬ ቀ ଵఙೡξଶ஠ቁ ݌ݔ݁ ቀെሺఓೡି௩ሻమଶఙೡమ ቁ ׬ ൬ ଵఙ೒ξଶగ൰ ௎೟ିஶ݌ݔ݁ ൬െ൫ஜ೒ି௚൯మଶఙ೒మ ൰ ௏ೝ௏బݒ݀ ݃݀ ௖ܲ                      ሺʹሻ 

where 
 

௖ܲ ൌ න ቆ ͳɐ௩ξʹɎቇ ݌ݔ݁ ቆെ ሺɊ௩ െ ሻଶʹɐ௩ଶݒ ቇ ௏ೝିஶݒ݀                                                                              ሺ͵ሻ 

 
 
as described. 
 
Then the probability density function (pdf) 
 pሺtǡ Ɋ௩ǡ ɐ௩ǡ Ɋ௚ǡ ɐ௚ሻ  ൌ ݐ݀ܲ݀   
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which quantifies the relative likelihood of relapsing at any at given time, can be derived by 

differentiating under the double integral sign from equation (2).  The terms Pc and ቀ ଵ஢ೡξଶɎቁ ݌ݔ݁ ቀെ ሺஜೡି௩ሻమଶ஢ೡమ ቁ do not involve t, so it is merely necessary to differentiate 

න ቆ ͳɐ௚ξʹɎቇ ݌ݔ݁ ൭െ ൫Ɋ௚ െ ݃൯ଶʹɐ௚ଶ ൱ ݀݃௎೟ିஶ  

 

with respect to t.  This probability, Pi, as described, is the probability of relapse before a 

given time t for this particular patient, i.  Since ݃ ൌ log݁ ቂ ቃݒെݎܸݐ ൅ log݁ൣlog݁ሺʹሻ൧   
݀݃ ൌ ݐݐ݀  

 

Therefore 

න ቆ ͳɐ௚ξʹɎቇ ݌ݔ݁ ൭െ ൫Ɋ௚ െ ݃൯ଶʹɐ௚ଶ ൱ ݀݃௎೟ିஶ ൌ ௜ܲ ൌ න ቆ ͳɐ௚ξʹɎቇ ݌ݔ݁ ൭െ ൫Ɋ௚ െ ݃൯ଶʹɐ௚ଶ ൱ ൬ͳݐ൰ ௧ݐ݀
଴  

 
 
So 
 ݀ ௜ܲ݀ݐ ൌ ቆ ͳɐ௚ξʹɎቇ ݌ݔ݁ ൭െ ൫Ɋ௚ െ ݃൯ଶʹɐ௚ଶ ൱ ൬ͳݐ൰ 

 
and therefore 
ݐ݀ܲ݀  ൌ ݌ ൌ ׬ ቀ ଵఙೡξଶ஠ቁ ݌ݔ݁ ቀെሺఓೡି௩ሻమଶఙೡమ ቁ ൬ ଵ஢೒ξଶ஠൰ ݌ݔ݁ ൬െ൫ஜ೒ି௚൯మଶఙ೒మ ൰ ቀͳݐቁ ௏ೝ௏బݒ݀ ௖ܲ                 ሺͶሻ 

 
 

 The likelihood is the product of the pdf probabilities for each completed time to relapse, 

and the probability of remaining in remission longer than the time under consideration for the 

censored times (which includes the probability of being cured, as well as the probability of 

relapse occurring after this time), thus;. 
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 L(ȝv, ıv, ȝg, ıg) = 


m

i 1

p(ti,ȝv, ıv, ȝg, ıg) 


n

mi 1

(1-P(ti,ȝv, ıv, ȝg, ıg)) 

where ti, i=1,....,m are the completed times to relapse, and  ti, i=m+1,.....,n are the censored times 

to relapse.  

 The maximum likelihood estimates for ȝv,ıv,ȝg,ıg can then be derived using first, plus 

preferably second, derivatives (see, for example, Beale, 1988).  Second derivatives make the 

convergence routines much more rapid, and this is important for this model since it is necessary 

to derive a number of normal distribution integrals, which involve numerical methods.  The 

mathematics for the first and second partial derivatives can be derived by differentiating under 

the integral given in (2) for all the parameters, and are given in Gregory (1993)5. The analysis, 

involves a number of functions similar to (2), (3) and (4) which proved quick to evaluate 

numerically because for all the double integrals the inner integral is identical, namely, Pi.  

Otherwise, the fitting procedure would have been computationally too slow to enable a 

multivariate approach such as this to be feasible (see for example, Day et al (1985)33 to 

appreciate the difficulties inherent in this task when such a solution is not available,). 

Extension to the multivariate case can be achieved by allowing prognostic factors to 

influence the mean (log) resistant tumor volume and the mean (log) growth rate in a linear 

fashion, enabling a set of regression coefficients to be produced for these variables. This is a 

key step in the extension of the original model. The log resistant tumor volume and log tumor 

doubling time, ȝv and ȝg, are normally distributed, where ȝv, ȝg are now linear functions of n 

prognostic variables, as follows: 

            i

n

i
iv xvolumetumorresidual 




1

0)log(   

 i

n

i
ig xtimedoublingtumour 




1

0)log(   



 5 

with x1,...,xn being the values of the n prognostic variables for a given individual, ȕ1,...,ȕn, 

Ȗ1,...,Ȗn being the sets of regression coefficients, and ȕ0, Ȗ0 being baseline log resistant tumor 

and log tumor doubling time values (potentially for a patient having values of 0 for all the 

prognostic factors).   

 For this multivariate model the same equations apply with i

n

i i x 


10  replacing ȝv 

and i

n

i i x 


10  replacing ȝg. The maximum likelihood routine needs to include the ȕ's and 

Ȗ's, and thus maximise on βn+4 parameters, rather than just 4. Therefore the first and second 

partial derivatives involving the ȕs and Ȗs must be derived. For ȕ0 and Ȗ0 these are identical to 

the values derived for ȝv and ȝg and given in Gregory (1993)5. The first partial derivatives for 

the ȕs and Ȗs can be derived from differentiating under the integrals given in equations (2) and 

(4).  For the ȕs, as an example: 

߲߲ܲȾ௜ ൌ ቎׬ ௜ݔ ቐሺ୴Ǧሾ i

n

i i x 


10  ሿሻ஢ೡమ ቑ ቆ ͳݒߪξʹɎቇ ݌ݔ݁ ൭െ ൫ݒߤ െ ʹݒߪʹʹ൯ݒ ൱ ௏ೝ௏బݒ݀݅ܲ ቏
௖ܲ  

 

െ  ߲ ௖߲ܲȾ௜ ൥׬ ቆ ͳݒߪξʹɎቇ ݌ݔ݁ ൭െ ൫ݒߤ െ ʹݒߪʹʹ൯ݒ ൱ ௏ೝ௏బݒ݀݅ܲ ൩
௖ܲଶ            ሺͷሻ 

 

and where, Pi is as in equation (1) but with i

n

i i x 


10  replacing ȝg, and again differentiating 

under the integral, 

߲ ௖߲ܲߚ௜ ൌ න ௜ݔ ൞ሺvǦሾ i

n

i i x 


10  ሿሻɐ௩ଶ ൢ ቆ ͳݒߪξʹɎቇ ݌ݔ݁ ቌെ ൫ݒߤ െ ʹݒߪʹʹ൯ݒ ቍ ௏ೝିஶݒ݀                            ሺ͸ሻ 

 The xi can be taken outside the integral in equations (5) and (6) and the first derivative 

ultimately reduces to: 
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௜ߚ߲߲ܲ ൌ ௜ݔ ௩ߤ߲߲ܲ                         ሺ͹ሻ 

        

The form of all the first and second partial derivatives of the ȕ's and Ȗ's is identical to that of ȝv 

and ȝg respectively but with the additional multiplication by xi, xj, xixj , xi
2, or xj

2, and these xi's 

etc. can be taken outside the integrals as in equation (7).  Thus Newton’s method can be used to 

fit the model, and derive the maximum likelihood estimates for the ȕs and Ȗs. 

 

Confidence intervals for the 4 + n model parameters are obtained from the variance for 

each of these parameters, which is found from the diagonal elements of the inverted information 

matrix of second partial derivatives, I(ș^), where 

I(ș^) =  (-2log L(ș^)/ș^i ș^j ) (4+n)x(4+n) 

where ș = și, i=1,…4+n are the model parameters, i.e. ș1=ȕ0, ș2=ıv, ș3=Ȗ0, ș4=ıg, and (și=Și-4, 

i=η,…n) where Și is whichever ȕ or Ȗ is entered at step i. 

Although the mathematics involved in these kinds of models can be very complex30 

this analytically tractable solution has enabled this model to be fitted on large numbers of 

patients, in a few seconds. 

Note that, in a model having a full analytic solution, such as this one, model sensitivities 

to parameters can in principle be determined from the closed form solutions, without the 

necessity for computational simulation.  For instance, model outputs include variance estimates 

for all the parameters, which can be used to provide confidence intervals for these estimates. 

Likelihood contour plots can also be used to examine the uniqueness of the maxima in the 

maximum likelihood estimates.  As with other multivariate models, we have observed that 

model fits tend to improve with the addition of more clinical covariates, and for this model it can 

be observed that the standard deviations of both resistant disease and tumour doubling times 

gradually reduce as more clinical covariates are included. 
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Stepwise approach to fitting the model 

A forward stepwise approach is used. Each treatment/prognostic factor is considered 

for inclusion both for its effect on resistant disease and growth rates at each step. Thus, 

initially the model is applied with just the four baseline parameters (the means and standard 

deviations of the logs of resistant disease and of growth rates) giving a baseline likelihood. 

Then each factor is considered in turn both for its resistant disease effect and growth rate 

effect, giving a series of new likelihoods and AICs. A Ȥ2 difference test/statistic can then be 

calculated on the resulting AICs (see, for example, Hatcher, 1994) to yield a Ȥ2 statistic and 

associated p-value for inclusion of the factor in the model. The factor giving the largest Ȥ2 is 

then included, giving a new, baseline likelihood and the process repeated (see table 1) until 

no factors have significance levels < 0.05. 

 

Comparison with the Cox model, and comparisons of goodness of fit, for the AZURE data 

 Firstly, note that Histological grade was included as two variables, namely grade 3 

versus grades 1 and 2, and grade 2 versus grades 1 and 3 since the differences between the 

grades are not uniform. T3 and T4 tumors were combined, having nearly identical IDFS 

curves. 

 As each factor is included in the model the fit improves, and the measure of how 

much it improves is the improvement in AIC (ǻAIC), with an associated Ȥ2 difference 

test/statistic.  Improvements in the Cox model fit can be similarly evaluated through 

improvements in the partial likelihood6. The fits of the two models cannot be compared 

directly because the Cox model approach is based on a partial likelihood, but the difference 

between these two AICs, which incorporate allowance for the 4 extra parameters in the 

mathematical model as compared to the Cox model, provides some indication of the difference 
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in model fit.  AIC differences > 10 are considered large (see Hilbe, 2011) and differences in this 

paper are considerably greater than this suggesting that such differences are robust. 

Overall, the ǻAIC for the biologically-based model (505.2) is vastly better than for the Cox 

model (γθ1.4) suggesting greatly improved model fits (ǻAIC (difference) = 126.8 >>10). 

Similarly, the significance of ER status was considerably greater with the biologically-based 

model than when derived from the Cox model. The univariate ǻAICs for inclusion for the 

biologically-based and Cox models were 197.4 and 10β.1 respectively, with multivariate ǻAICs 

of 109.0 and 40.9 respectively (ǻAIC (differences) = 95.3 and 68.1 respectively, again 

suggesting greatly improved fits in both cases).  Finally, when considering whether the 

difference in the ER status DFS curves was more likely to result from a difference in doubling 

times or a difference in residual disease, the improvement in AIC (ǻAIC) for the biologically-

based model was 111.4 for attributing this difference to a difference in doubling times 

compared to only 58.4 for attributing this to a difference in residual disease (such an analysis 

is obviously not possible for the Cox model). Note that for ER status higher relapse rates are 

seen in ER-negative women in early years, whereas in later years this is reversed so that ER-

positive women have higher relapse rates. 

Neither model accounts for missing data, which can also significantly impact 

DFS/survival curves, but which is a complicated topic in its own right, and is not covered in 

this manuscript. 

 

Computer programs for fitting the model 

A related interactive computer program for fitting the model is available on request.  We are 

also working on a web-based version of this program which will be directly available on the 

flexsurv platform (see, for example: 

http://cran.r-project.org/web/packages/flexsurv/index.html).   

http://cran.r-project.org/web/packages/flexsurv/index.html
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Supplementary Table 1    Stepwise results for the multivariate model application in the 

AZURE trial. 

                Step 0†                            Step 1                             Step 2                  
           Ȥ2   p-value     coeff.       Ȥ2   p-value     coeff.       Ȥ2    p-value    coeff. 
 
RD:T Stage 
RD:ER status 
RD:Lymph nodes 
RD:Grade 1&2v3 
RD:Grade 1v2&3 
DT:T Stage 
DT:ER status 
DT:Lymph nodes 
DT:Grade 1&2v3 
DT:Grade 1v2&3 
 

140.5 
 121.9 
 165.9 
  86.2 
  29.2 
 142.6 
 197.4 
 166.6 
 140.2 
  60.8 

<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
 

 124.0 
   0.00 
 150.7 
  33.5 
   6.4 

 121.3 
*197.5 
 130.8 
  56.1 
  42.9 

<.0001 
.97 

<.0001 
<.0001 

.01 
<.0001 
<.0001 
<.0001 
<.0001 
<.0001 
 

 
 
 
 
 
 

.48 

69.5 
   0.2 

*150.7 
  27.7 
   6.5 
  75.9 

*182.2 
   4.7 
  48.8 
  31.7 

 

<.0001 
.89 

<.0001 
<.0001 

.01 
<.0001 
<.0001 

.03 
<.0001 
<.0001 

 

 
 

2.81 
 
 
 

.46 
 
 
 

                 Step 3                             Step 4                             Step 5                  
          Ȥ2   p-value     coeff.       Ȥ2   p-value     coeff.       Ȥ2    p-value    coeff. 
 
RD:T Stage 
RD:ER status 
RD:Lymph nodes 
RD:Grade 1&2v3 
RD:Grade 1v2&3 
DT:T Stage 
DT:ER status 
DT:Lymph nodes 
DT:Grade 1&2v3 
DT:Grade 1v2&3 

   6.6 
   3.4 

*105.3 
  20.1 
   5.2 
*75.9 

*174.9 
   1.5 
  42.6 
  25.8 

.01 

.07 
<.0001 
<.0001 

.02 
<.0001 
<.0001 

.22 
<.0001 
<.0001 

 
 

2.41 
 
 

-.15 
.44 

 

   7.2 
   1.9 

*103.0 
   3.9 
  13.9 
*69.7 

*111.1 
   2.2 
*42.6 
  15.2 

.007 
.16 

<.0001 
.05 

.0002 
<.0001 
<.0001 

.14 
<.0001 

.0001 

 
 

2.34 
 
 

-.14 
.36 

 
-.19 

   6.4 
   2.3 
*99.9 
   5.9 

   16.5 
*65.7 

*109.8 
   1.8 
*32.0 
*15.2 

.01 

.13 
<.0001 

.02 
<.0001 
<.0001 
<.0001 

.18 
<.0001 

.0001 

 
 

2.35 
 
 

-.13 
.35 

 
-.16 
-.23

 
                 Step 6                             Step 7ĴĴĴĴĴĴĴĴ                    
          Ȥ2   p-value     coeff.       Ȥ2   p-value     coeff.        
 
RD:T Stage 
RD:ER status 
RD:Lymph nodes 
RD:Grade 1&2v3 
RD:Grade 1v2&3 
DT:T Stage 
DT:ER status 
DT:Lymph nodes 
DT:Grade 1&2v3 
DT:Grade 1v2&3 

   6.8 
   1.4 

*103.5 
  3.2 

   *16.5 
*66.5 

*111.4 
   1.5 

  *32.8 
  *22.6 

.01 

.23 
<.0001 

.07 
<.0001 
<.0001 
<.0001 

.21 
<.0001 
<.0001 

 
 

2.20 
 

12.4 
-.13 
.35 

 
-.16 
-1.3 

*6.8 
0.2 

*92.6 
2.5 

*16.9 
*15.9 

*110.7 
2.9 

*33.9 
*21.9 

.009 
.67 

<.0001 
.11 

<.0001 
.0001 

<.0001 
.09 

<.0001 
<.0001 

.20 
 

2.12 
 

12.4 
-.09 
.34 

 
-.17 
-1.3 

 
 

 
 

 
RD: residual disease; DT: doubling time. 
Ȥ2s and p-values are for inclusion of this variable in the model at this step, unless preceded with *, 

which indicates Ȥ2s and p-values are for removal of a variable which was previously included. 
† Step 0 (no variables in the model) gives the univariate model Ȥ2s & p-values for each factor.
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Supplementary methods figure caption 

 

Supplementary figure 1.  IDFS by ER-status with mathematical model fits and Cox model 

fits for the AZURE trial. 
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Supplementary figure 1 

 

 


