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Summary

Macrophages are critical effectors of the early
innate response to bacteria in tissues. Phagocyto-
sis and killing of bacteria are interrelated functions
essential for bacterial clearance but the rate-
limiting step when macrophages are challenged
with large numbers of the major medical pathogen
Staphylococcus aureus is unknown. We show that
macrophages have a finite capacity for intracellular
killing and fail to match sustained phagocytosis
with sustained microbial killing when exposed to
large inocula of S. aureus (Newman, SH1000 and
USA300 strains). S. aureus ingestion by macro-
phages is associated with a rapid decline in
bacterial viability immediately after phagocytosis.
However, not all bacteria are killed in the
phagolysosome, and we demonstrate reduced
acidification of the phagolysosome, associated
with failure of phagolysosomal maturation and
reduced activation of cathepsin D. This results in
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accumulation of viable intracellular bacteria in
macrophages. We show macrophages fail to
engage apoptosis-associated bacterial killing.
Ultittop mately macrophages with viable bacteria
undergo cell lysis, and viable bacteria are released
and can be internalized by other macrophages. We
show that cycles of lysis and reuptake maintain a
pool of viable intracellular bacteria over time when
killing is overwhelmed and demonstrate intracellu-
lar persistence in alveolar macrophages in the
lungs in a murine model.
Introduction

Staphylococcus aureus is a major cause of infectious
disease contributing both to community-associated and
hospital-associated infection (Fluit et al., 2000;
Wisplinghoff et al., 2004). S. aureus is a frequent human
colonizer, and the burden of disease is enhanced by the
capacity of S. aureus to cause bacteraemia, which leads
to metastatic infection, with abscesses formed at sites
remote to the initial infection (Fowler et al., 2003).
Accordingly, S. aureus bacteraemia is associated with
substantial mortality. The emergence of high-level
antimicrobial resistance and in particular methicillin-
resistant S. aureus strains further challenges the clinical
approach. These infections involve all ages, and the
emergence of community-acquired methicillin-resistant
S. aureus has represented a particular medical challenge
(Herold et al., 1998). Despite the clinical importance of S.
aureus infection, optimal treatment strategies for common
S. aureus syndromes, such as bacteraemia, are still
debated (Thwaites et al., 2011). A more complete
understanding of how this pathogen avoids host immune
responses is clearly warranted if more effective treatment
approaches are to be developed to combat the evolution of
antimicrobial resistant strains.

Resident macrophages are the dominant mechanism
of bacterial clearance in tissues such as the lungs, while
populations such as marginal zone macrophages in the
spleen also play an important role in removing particles
from the blood (Green and Kass, 1964; Rehm et al.,
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S. aureus killing by macrophages 81
1980; Birjandi et al., 2011). S. aureus are rapidly
phagocytosed by macrophages, and ingestion does not
require extensive opsonization, unlike bacteria containing
an extensive polysaccharide capsule, instead it relies on
non-opsonic receptors such as the scavenger receptors
MARCO and CD36 (Goldstein et al., 1974; Jonsson
et al., 1985; Palecanda et al., 1999; Stuart et al., 2005).
Tissue macrophages are sufficient to clear bacteria from
sites such as the lungs because alveolar macrophages can
clear bacteria efficiently in mice rendered neutropenic (Rehm
et al., 1980) and competence in a key microbicidal
mechanism for S. aureus killing, nicotinamide adenine
dinucleotide phosphate-oxidase (NADPH) oxidase (NOX2),
is sufficient to protect against infection when expression is
restricted to mononuclear phagocytes (Pizzolla et al., 2012).
Despite these observations, S. aureus express multiple
genes, including catalase and superoxide dismutase, that
help protect against killing by reactive oxygen species (ROS)
inside macrophages (Das and Bishayi, 2010). Macrophages
must therefore activate a combination of microbicidal
strategies involving ROS, nitric oxide and proteases such
as matrix metalloprotease 12 (MMP-12) to effectively kill
ingested bacteria (Shay et al., 2003; Houghton et al., 2009;
Pizzolla et al., 2012).

Considerable uncertainty remains about the efficiency
of microbicidal mechanisms against S. aureus in macro-
phages and also concerning the ultimate fate of
macrophages that have ingested S. aureus. Some
reports suggest that S. aureus induces macrophage
apoptosis (Kubota, 2010; Wang et al., 2010), while
others have described intracellular persistence of S.
aureus in macrophages rendered resistant to apoptosis
by microbial factors (Kubica et al., 2008; Koziel et al.,
2013). We demonstrate that although intracellular micro-
bicidal mechanisms initially kill S. aureus rapidly after
ingestion, they become progressively exhausted despite
ongoing phagocytosis. Phagolysosomal maturation and
acidification are incomplete, and macrophages are
therefore left with a population of intracellular bacteria,
which can persist for prolonged periods within macro-
phages, escaping other potential mechanisms of bacte-
rial clearance.
Table 1. Macrophages have a finite capacity for intracellular bacterial killin

MOI Intracellular bacteria/cell Total intracellular bacteria Viable intrac

0.05 1.00 ± 0.13 200 000 ± 25 000 1200 ± 11
0.50 1.34 ± 0.18 268 000 ± 36 000 2570 ± 12
1.00 1.90 ± 0.42 380 000 ± 84 000 2700 ± 12
2.00 2.14 ± 0.30 428 000 ± 60 900 3700 ± 16
5.00 2.58 ± 1.26 516 000 ± 252 000 105 000 ± 62

The number of intracellular bacteria per macrophage, estimated by fluoresce
used to calculate the total intracellular burden, after 5 h of challenge. The num
was subtracted from this to give an estimate of the non-viable intracellular b
intracellular bacteria that were killed. All values are mean ± SD.

© 2015 The Authors. Cellular Microbiology Published by John Wiley & Son
Results

Macrophages have a finite capacity for intracellular killing
of Staphylococcus aureus Newman

To examine how efficiently macrophages kill S. aureus, we
exposed macrophages to a range of multiplicities of
infection (MOI) and measured the capacity of macro-
phages to phagocytose and kill bacteria. These experi-
ments were performed with THP-1 cells differentiated
using a protocol we have previously shown to produces a
cell type that replicates key characteristics of differentiated
tissue macrophages which can be appropriately activated
in the presence of bacteria to a classically activated
phenotype associated with host defence against extracel-
lular bacteria (Daigneault et al., 2010). In this model,
macrophages were able to contain extracellular growth of
bacteria for at least 9 h at anMOI of 0.05, for 4 h at anMOI of
0.5 but were unable to control extracellular replication at an
MOI of 5. As shown in Table 1, macrophages internalized
bacteria at all doses, and there was a modest increase in
total numbers of intracellular bacteria as theMOI increased,
even at the highest MOI, when they could not contain
extracellular replication. However, the number of non-
viable bacteria appeared to plateau at anMOI of 5, resulting
in accumulation of viable bacteria. At lower doses, less than
1% of internalized bacteria were viable, but by an MOI of 5,
the figure increased to approximately 20%. Accumulation
of viable bacteria at higher MOI was also demonstrated by
DRAQ7 staining of intracellular bacteria (Figure S1).
Macrophages capacity for early intracellular killing of
Staphylococcus aureus Newman is lost over time

These results suggest that the ‘bottle-neck’ in macro-
phages’ capacity to clear extracellular bacteria lies at the
level of intracellular bacterial killing. Little is known
concerning the kinetics of intracellular killing of S. aureus
in differentiated macrophages. To measure this, we
‘pulsed’ macrophages with viable bacteria for varying time
periods, then killed extracellular bacteria with a
lysostaphin ‘chase’ (Tuchscherr et al., 2010), allowing us
to measure the rate of decline in viable intracellular
g, which is overwhelmed by increasing numbers of bacteria.

ellular bacteria Estimated non-viable bacteria Percentage killing

40 199 000 ± 25 500 99.5 ± 0.61
60 266 000 ± 36 900 99.3 ± 0.71
00 377 000 ± 74 200 99.2 ± 0.41
50 422 000 ± 61 500 99.1 ± 0.46
20 410 000 ± 324 000 79.7 ± 9.38

nce microscopy, multiplied by the total number of macrophages, was
ber of viable intracellular bacteria, estimated by surface viable count,
acteria. This was then used to give an estimate of the percentage of
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82 J. Jubrail et al.
bacterial numbers (Fig. 1A). As shown in Fig. 1B and
consistent with prior data on the kinetics of activation of
the NADPH oxidase system in phagocytes (DeLeo et al.,
1999), the majority of killing occurred in the initial period
after ingestion. After this, there was a second more
delayed phase of killing during which bacterial viability
declined gradually. With increasing durations of exposure
to extracellular bacteria, the capacity of macrophages to
carry out early intracellular killing declined (Fig. 1B–D).
When we looked at the percentage of bacteria killed in the
first hour after ingestion, this progressively declined until
16 h after exposure to bacteria, when it became negligible
(Fig. 1E). When we looked at the absolute level of bacteria
killed, the level increased over the first 6 h but then
remained fairly constant at approximately 5 log of bacteria
for up to 14h of exposure to extracellular bacteria after
which the absolute number of bacteria killed declined
© 2015 The Authors. Cellular Microbiology P
(Fig. 1F). The net effect of incomplete killing is accumu-
lation of viable intracellular bacteria.

Microbicidal killing involves NADPH oxidase stimulation
and activation of proteases (Flannagan et al., 2009), as
well as nitric oxide (Sasaki et al., 1998), and these
macrophage microbicidal mechanisms are enhanced by
IFN-γ (Cassatella et al., 1985; Totemeyer et al., 2006). We
addressed whether the killing capacity of macrophages
could be enhanced by IFN-γ and whether this would
prevent intracellular bacterial persistence. As shown in
Fig. 1G, IFN-γ only modestly increased intracellular killing
and did not prevent intracellular persistence, suggesting
that failure to increase killing was not due to incomplete
priming by IFN-γ. The failure to clear all intracellular
bacteria was not just a function of exposure to large
numbers of bacteria because even at an MOI of 0.05 a
small number of viable intracellular bacteria were retained
Fig. 1. Macrophages challenged with
S. aureus Newman demonstrate
exhaustion of intracellular killing
following sustained challenge with
bacteria.
A. Protocol for challenge of
differentiated THP-1 macrophages.
Macrophages were challenged for
(B) 4, (C) 6 and (D) 16 h, and the
kinetics of intracellular (IC) killing
estimated, three individual
experiments. **p< 0.01;
***p< 0.001, Repeated measures
analysis of variance (ANOVA) with
Sidak’s multiple comparisons post-
test comparing the first two time
points.
(E) Percentage of and (F) absolute
numbers of bacteria removed by
intracellular killing in the first 1 h
following elimination of extracellular
bacteria and termination of
phagocytosis, three individual
experiments. *p< 0.05, ***p< 0.001,
One-way ANOVA with Dunnett’s
post-test versus 4 h.
G. Differentiated THP-1
macrophages were cultured with or
without IFN-γ stimulation before
challenge with S. aureus for 6 h, five
individual experiments. ***p< 0.001,
two-way ANOVA with Sidak’s
multiple comparisons post-test
comparing control with stimulated at
each time point.
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S. aureus killing by macrophages 83
and killing became negligible after 16 h of bacterial
exposure (Figure S2A-B). We were also able to confirm
that findings were not unique to the Newman strain or
THP-1macrophagesbecauseaphaseof initial killing followed
by bacterial persistence was also confirmed for SH1000
(Figure S2C–E), a USA300 strain JE2 (Figure S2F–H) and
also primary human macrophages (Figure S2I–K).
The steady initial increase in numbers of intracellular
Staphylococcus aureus Newman is the result of sustained
macrophage phagocytosis

Having established that the intracellular killing capacity
failed to match ongoing phagocytosis, we next investigated
whether phagocytosis was sustained after intracellular
killing was diminished. The experiments were performed
using a variation of the ‘pulse chase’ design where
macrophages received a second pulse with a kanamycin-
resistant bacterial strain (Fig. 2A). As shown in Fig. 2B–D,
macrophages were able to ingest the second resistant
strain at each time point, even at the 16 h time point when
intracellular killing was diminished, illustrating that phago-
cytosis was uncoupled from intracellular killing. Similar
results were produced with monocyte-derived macro-
phages (MDM) (data not shown).

To confirm that the steady increase in intracellular
numbers of viable bacteria was the result of ongoing
phagocytosis, not intracellular replication, we performed
further experiments using an F-actin polymerization
inhibitor, cytochalasin D, to block the ongoing phagocy-
tosis of S. aureus after an initial period of phagocytosis
(Brown and Spudich, 1979; DeLoid et al., 2009). We
performed experiments which illustrated that even at very
high MOI bacteria continued to accumulate intracellularly
in the absence of cytochalasin D (Figure S3A). Cytocha-
lasin D significantly blocked the accumulation of intracel-
lular bacteria, and over time intracellular numbers declined
© 2015 The Authors. Cellular Microbiology Published by John Wiley & Son
consistently with intracellular killing (Figure S3B). ROS are
thought to contribute to intracellular killing directly or
indirectly (Flannagan et al., 2009), and when we added a
non-specific antioxidant Trolox [which will inhibit ROS and
potentially other species including nitric oxide (Regoli and
Winston, 1999)] in the presence of cytochalasin D, we
reversed the decline in intracellular numbers but did not
see any increase in numbers, further arguing against
ongoing intracellular replication. In keeping with the
observation that intracellular killing capacity was stressed
in this model (as reflected by only a 0.5 log decline in
intracellular bacteria when phagocytosis was blocked), we
found the addition of Trolox alone had only a minimal
effect on the accumulation of viable intracellular bacteria.
Collectively, these results suggest that the intracellular
accumulation of viable bacteria over this initial period is
the result of continued phagocytosis, even when intracel-
lular killing mechanisms are becoming exhausted.
Staphylococcus aureus Newman containing
phagolysosomes demonstrate impaired acidification

Intracellular killing of bacteria in phagolysosomes involves
both the generation of antimicrobicidal molecules and
appropriate phagolysosomal maturation and acidification
(Flannagan et al., 2009). The NADPH oxidase system is a
key effector of S. aureus killing even if the specific role of
ROS in microbial killing is a matter of debate (Jackson
et al., 1995; Reeves et al., 2002). Differentiated macro-
phages, involved in host defence, lack myeloperoxidase
gene transcription, limiting production of the more potent
ROS (Tobler et al., 1988). However, they still generate
superoxide, which may contribute to ROS-dependent S.
aureus killing in neutrophils or which at least represents a
marker of NADPH oxidase activity and an indirect marker
of other NADPH oxidase-regulated killing mechanisms
(Hampton et al., 1996). As early phagocytosis-associated
Fig. 2. Macrophages continue to
internalize S. aureus Newman
despite failing to maintain
intracellular killing.
A. Experimental protocol of infection
of differentiated THP-1 macrophages
infected with wild type S. aureus
Newman with (KanR+ cultures) or
without (KanR� cultures) an
additional pulse of kanamycin-
resistant S. aureus (KanR). Initial
challenge of (B) 5, (C) 6 or (D) 10 h
WT (in the KanR+ cultures) = CFU
Total�CFU KanR, three individual
experiments. ***p< 0.001,
comparing first and last KanR point,
two-way analysis of variance with
with Dunnett’s multiple comparisons
test

s Ltd, Cellular Microbiology, 18, 80–96
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killing is linked to NADPH oxidase activation (DeLeo et al.,
1999), we measured oxidant production with 2′7′-
dichlorofluorescin diacetate (DCF-DA) and found that
there was a dose-dependent increase in oxidant produc-
tion following exposure to S. aureus at early time points
(Figure S4A–B). There was no difference in oxidant
production between low dose and high dose S. aureus at
16 h (Figure S4C–D), and at both time points, oxidant
production was similar to that produced in response to
Streptococcus pneumoniae, another Gram-positive bac-
terium, which is also subjected to intracellular killing in
phagocytes (Aberdein et al., 2013). Thus, failure to
effectively kill higher inocula at the early time point or to
maintain killing over time was not the result of reduced
oxidant generation or NADPH oxidase activation.
Phagolysosomal killing and degradation of bacteria in

phagocytes also involves the progressive acidification of the
phagosome,which is the result of activation of several pumps
that actively import H+ ions into the phagolysosomeaswell as
fusionwith endosomes that contain high concentrations of H+

ions (Flannagan et al., 2009). The net effect of these changes
is to maintain a low phagolysosome pH despite NADPH
oxidase activation, which buffers the acidification of the
phagolysosome (Segal et al., 1981; Hampton et al., 1998).
© 2015 The Authors. Cellular Microbiology P
Although most studies on the inter-relationship between
NADPH oxidase and phagolysosomal pH are based on
polymorphonuclear leukocytes and monocytes, phagoly-
sosomal acidification is an important feature ofmacrophages,
which aids the killing and digestion of intracellular bacteria
(Wolf et al., 2011). We next compared the acidification of
phagolysosomes containingS.aureususing pHrodo-labelled
bacteria (Zarember et al., 2012). Staining with pHrodo
resulted in fluorescence of bacteria once the pH was ≤6
(Figure S5). Although the majority of S.pneumoniae and
Escherichia coli localized to a phagolysosomewhose pHwas
≤6 (Fig. 3A–B and Figure S6A–B), a minority of intracellular
S. aureus localized to an acidified phagosome at early
time points, despite increasing levels of internalization
(Fig. 3C–D). More prolonged incubation failed to demon-
strate increased localization to an acidified endosome
(Figs 3E–F and S6C–D). Because initial ROS generation
was similar for S. aureus and S. pneumoniae (Figure S4),
differential acidification was not a result of differences in
buffering. Furthermore, when we performed ‘pulse chase’
experiments, we found that the reduced acidification of S.
aureus-containing phagosomes was sustained over time
(Figs 3E–F and S6C–D). To exclude the possibility that
higher numbers of ingested S. aureus might contribute to
Fig 3. Macrophages traffic S. aureus Newman
to phagolysosomes that are not appropriately
acidified.
A, B. Differentiated THP-1 macrophages were
challenged with pHrodo-labelled S. pneumoniae
MOI = 5 for 4 h. Cultures were then treated with
gentamicin and maintained for up to 24 h post-
infection. A. Number of intracellular (IC)
fluorescent (R+) or non-fluorescent (R�) S.
pneumoniae per cell. (B) Percentage of
intracellular R+/R� S. pneumoniae.
C–F. Differentiated THP-1 macrophages were
challenged with pHrodo-labelled S. aureus
Newman strain MOI = 5 for 1.5–6 h (C–D) or for
4 h followed by treatment with lysostaphin up to
48 h (E–F) and the number of intracellular (C.
and E.) or the percentage D and F of R+/R�
bacteria were estimated, three individual
experiments performed in duplicate.
***p< .001, two-way ANOVA with Sidak’s
multiple comparisons post-test comparing R+
versus R� bacteria at each time point.

ublished by John Wiley & Sons Ltd, Cellular Microbiology, 18, 80–96



S. aureus killing by macrophages 85
this result, we confirmed that only a minority of bacteria
were in a low pH compartment even at a low MOI of 0.05
(Figure S6E–F), when numbers of ingested bacteria were
more comparable with those for S. pneumoniae. Impaired
phagolysosomal acidification was also noted with a
USA300 strain at both early and later time points with a
lysostaphin ‘pulse chase’ (Figure S7). These experiments
also suggested that impaired phagolysosomal acidification
required live bacteria because heat-killed bacteria were
more likely to translocate to a phagolysosome at lower pH
(Figure S7G–H). When we tested the co-localization of
bacteria with Lysotracker, which also fluoresces at an
acidic pH, we also found that only approximately 30% of
S. aureus co-localized with the low pH phagolysosomes
(data not shown). Collectively, these results suggest that
S. aureus was contained within an endosome that failed to
acidify to the same extent as those for other bacteria and
that differential buffering effects in association with
NADPH oxidase activation did not appear to explain
these differences.
Staphylococcus aureus Newman containing phagosomes
fail to mature appropriately

We next addressed whether a defect in acidification was
associated with maturation failure of the phagosome.
Similar to internalization of other bacteria (Berger et al.,
2010), including S. pneumoniae in macrophages (Gordon
et al., 2000), the majority of S. aureus trafficked into a
phagosome that acquired lysosomal-associated mem-
brane protein (LAMP)-1 at all time points studied
(Fig. 4B–C). The majority were also in phagolysosomes
containing LAMP-2 (Fig. 4E). Because LAMP-1/2 are
acquired after fusion with early endosomes and are
required for fusion with late endosomes/lysosomes
(Huynh et al., 2007), this suggested the initial steps in
phagosomal maturation occurred normally. Next, we
addressed if phagosomes containing S. aureus showed
evidence of lysosomal fusion. The majority of S. aureus-
containing phagosomes failed to express the lysosomal
marker lysosomal integral membrane protein (LIMP-II
(LGP85)) (Fig. 4G) (Kuronita et al., 2002; Huynh et al.,
2007), in contrast to phagosomes containing S.
pneumoniae, the majority of which appeared to mature
into phagolysosomes as evidenced by acquisition of
LIMP-II (Fig. 4F). Impaired phagolysosomal maturation
was also observed following exposure to a USA300 strain
(Figure S8). A further feature of phagosomal maturation into a
phagolysosome is its acquisition and activation of cathepsins,
including cathepsinD (Flannagan et al., 2009). Recruitment of
cathepsin D into a phagolysosome containingS.pneumoniae
is associated with its activation (Bewley et al., 2011a), but in
contrast to S.pneumoniae, we found little evidence of
cathepsin D activation following phagocytosis of S. aureus
© 2015 The Authors. Cellular Microbiology Published by John Wiley & Son
(Newman or USA300 strains), which suggested it was not
being recruited to an S. aureus-containing phagolysosome
or activated to a similar extent (Fig. 4I–J). Similar results
were found with MDM (data not shown).
Intracellular persistence of Staphylococcus aureus
Newman involves ongoing cycles of macrophage lysis
and bacterial re-uptake

Engagement of macrophage apoptosis after an extended
period of intracellular phagolysosomal killing is a recog-
nized host defence strategy that prevents intracellular
persistence of micro-organisms such as S. pneumoniae
(Dockrell et al., 2001; Marriott et al., 2005). It is also
dependent on cathepsin D activation in the bacterial-
containing phagolysosome (Bewley et al., 2011a). We
measured cell viability for extended periods in macro-
phages cultured with S. aureus for up to 14days. We
found no evidence of early (in the first 24 h) loss of cell
viability or of apoptosis (Fig. 5A–B), a finding also
replicated with SH1000 (Figure S9A–B). In contrast, when
macrophages were challenged with USA300, we ob-
served increased loss of cell viability in the first 24 h and
increased markers of loss of cell permeability (Figure
S9C–E), in keeping with the propensity of this strain to
express cytotoxic virulence factors such as the phenol
soluble modulin PSMα3 at high levels and to cause
neutrophil cell death (Li et al., 2010), but once again
observed little apoptosis as demonstrated by caspase 3
activation or nuclear fragmentation (Figure S9F–G).

As shown in Fig. 5A, macrophage viability, however,
declined from 3 to 14 days after exposure to bacteria.
Consistent with some other reports (Jackson et al.,
1995), the late cell loss of macrophages in the presence
of extracellular bacteria was associated with only low
levels of apoptosis (Fig. 5B). These findings of low rates
of apoptosis were also replicated with SH1000 (Figure
S9B) and USA300 (data not shown), and similar results
were apparent with MDM (data not shown). The decline
in cell numbers required ongoing bacterial phagocytosis
and a pool of extracellular bacteria (Fig. 5C–D), while
apoptosis remained low under all conditions (Figure S10A–
B). Maintenance of a pool of viable intracellular bacteria also
required sustained phagocytosis and a pool of extracellular
bacteria (Fig. 5E–F). This suggested the intracellular pool of
viable bacteria was not solely the result of intracellular
replication in macrophages that had ingested bacteria in the
early stages of the culture and remained viable but that
ongoing bacterial uptake was required to support this late
expansion in intracellular bacteria.

Because treatment with lysostaphin and cytochalasin
D both depleted the intracellular reservoir, we hypothe-
sized that the intracellular pool of bacteria was main-
tained by cycles of release from macrophages
s Ltd, Cellular Microbiology, 18, 80–96



Fig. 4. Staphylococcus aureus
Newman traffic to endosomes
that demonstrate incomplete
maturation. Differentiated THP-
1 macrophages were
challenged with S. aureus,
MOI = 5.
A. Representative LAMP-1
staining by confocal
microscopy with enlarged
image of macrophage in insert.
Cultures were stained for
(A–C) LAMP-1 (D–E) LAMP-2
or (F–G) LIMP-II at the
indicated time points.
Representative A. LAMP-1, (D)
LAMP-2 and F. LIMP-II staining
by confocal microscopy with
enlarged image in insert.
Number of intracellular bacteria
per macrophage co-localizing
with (B–C) LAMP-1, (E) LAMP-2
and (G) LIMP-II, three to four
individual experiments
performed in duplicate.
*p< 0.05; **p< 0.01;
***p< 0.001, two-way analysis
of variance (ANOVA) with
Sidak’s post-test.
H. Differentiated THP-1
macrophages were challenged
with S. pneumoniae MOI = 5 for
6 h, treated with gentamicin,
maintained up to 24 h and the
number of intracellular bacteria
co-localizing with LIMP-II
estimated, three individual
experiments in duplicate.
**p< 0.01, two-way ANOVA
withSidak’s post-test. I.Western
blot of protein from mock
infected (MI) or S. pneumoniae
(Spn), S. aureus Newman
(NEW) and USA300 (JE2)
challenged differentiated THP-1
cells 8 h post-infection probed
with anti-cathepsin D (CatD) to
record pro-CatD (inactive) and
the active heavy chain of catD,
with actin used as loading
control.
J. The percentage expression of
activate CatD heavy chain by
densitometry relative to total
CatD, and the figure above the
active form represents the
percentage of activation, three
experiments, *p< 0.05,
**p< 0.01, two-way ANOVA
with Sidak’s post-test.
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undergoing non-apoptotic cytolytic cell death and further
phagocytic uptake by the remaining viable macrophages.
We tested this using video time lapse and found that
while prolonged culture in lysostaphin prevented re-
emergence of the extracellular bacterial pool that in the
presence of only a short pulse of lysostaphin, to kill
extracellular bacteria, without prolonged culture the
© 2015 The Authors. Cellular Microbiology P
extracellular pool re-emerged from an intracellular source
(Figures S11–12, Video S1). Analysis of critical time
points on a representative video between 52 and 63 h
revealed that clumps of intracellular bacteria, presumably
in an endosomal compartment, replicated and spread to
fill the whole cytoplasm and were then released into the
extracellular compartment where they further expanded.
ublished by John Wiley & Sons Ltd, Cellular Microbiology, 18, 80–96



Fig. 5. Macrophages maintain
sustained viability following
challenge with S. aureus Newman
and continued macrophage lysis and
re-uptake of intracellular bacteria are
required to maintain an intracellular
pool of bacteria. Differentiated THP-1
macrophages were mock infected
(MI) or challenged with S. aureus
Newman (I) MOI = 0.05 for up to 48 h.
A. Macrophage viability measured as
cells per field.
B. Percentage of macrophages
showing apoptotic nuclei indicative of
apoptosis. The data represents three
individual experiments performed in
duplicate. *p< 0.05, ***p< 0.001,
two-way analysis of variance
(ANOVA) with Sidak’s post-test
versus mock infected at each time
point.
C–F. Cultures challenged with
bacteria were incubated after 6 h in
the presence (+) or absence (�) of
low dose lysostaphin (L) or
cytochalsin D (CytD).
(C) Macrophage viability without
lysostaphin ± CytD or D. with
lysostaphin ± CytD. *p< 0.05 MI-L
+ CytD versus I-L + CytD,
***p< 0.001 MI-L versus I-L, I-L
versus MI-L + CytD, and I-L versus I-
L + CytD E. CFU of viable intracellular
(IC) bacteria or F. number of
intracellular bacteria per cell, three
individual experiments were
performed in duplicate.
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Analysis of the fluorescence intensity showed logarithmic
expansion after cell lysis, consistent with logarithmic
expansion of bacteria after release into the extracellular
compartment (Figure S11B). We also observed that from
24 to 72 h after exposure to bacteria, macrophages
appeared to lyse and release bacteria and that these
bacteria were then taken up by further macrophages,
explaining both the progressive loss of macrophages and
the maintenance of an intracellular population. The rate
of lyses suggested 3–5% of cells lysing/12 h period after
24 h. The video time lapse was also consistent with our
prior experiments, because they provided no evidence of
intracellular replication in the first 24 h after bacterial
challenge; however, they suggested that at later time
points from 24 to 72 h, when macrophages could no longer
kill bacteria, there was intracellular bacterial replication,
which proceeded macrophage lysis. Overall, these results
showed that the late consequence of exhaustion of
intracellular killing is intracellular replication, macrophage
© 2015 The Authors. Cellular Microbiology Published by John Wiley & Son
lysis and release of intracellular bacteria, which are then
taken up by surviving macrophages whose killing capacity
in turn becomes exhausted leading to further bouts of cells’
lysis and bacterial release.
In vivo persistence of intracellular Staphylococcus aureus

Our results demonstrated a finite capacity of macro-
phages to kill intracellular S. aureus and that if this
capacity was overwhelmed, intracellular bacteria could
persist via a cycle involving cell lysis and re-uptake. To
examine whether bacteria persisted in macrophages
in vivo in the lungs following low-dose challenge or
whether the macrophages had significant capacity to
clear bacteria, we instilled low numbers of bacteria into the
lungs of mice and lavaged alveolar macrophages at
varying periods after infection. These experiments initially
used low doses of bacteria, which were contained without
s Ltd, Cellular Microbiology, 18, 80–96



88 J. Jubrail et al.
any significant recruitment of neutrophils, because
cytospins contained >95% alveolar macrophages and
<3% neutrophils at all time points studied. Mice cleared
bacteria from the lungs from 24 to 72h after infection, but
although 60% of mice had viable bacteria in their alveolar
macrophages at 24h and 20% at 48h after infection, all mice
had cleared intracellular bacteria from the lungs by 72h
(Fig. 6A–B). In these experiments, alveolar macrophage
apoptosis remained lowat all timepoints,with<5%apoptosis
on cytospins,whichwasequivalent tomock-infected samples
(data not shown). This suggested intracellular bacteria could
survive for limited periods inmacrophages even following low
dose infections, although they could be ultimately cleared
from the lungs despite the limitations to macrophage-
mediated clearance. When we repeated experiments with
higher doses of bacteria, which resulted in neutrophil
recruitment to the lungs (Fig. 6C), we found that 78% of mice
failed to clear bacteria from the lungs over a 72h period
(Fig. 6D). In keepingwith this,we foundpersistent intracellular
bacteria in 44% of the mice alveolar macrophages Fig. 6E
(and also in their neutrophils; Fig. 6F), suggesting intracellular
© 2015 The Authors. Cellular Microbiology P
persistence in macrophages is an in vivo phenomenon
when the capacity to control infection is overwhelmed.

Discussion

As resident phagocytes, macrophages control the bacte-
rial clearance of S. aureus from tissues, but how effec-
tively macrophages perform this role is unclear. We
demonstrate that differentiated macrophages have a
limited capacity for intracellular killing of S. aureus and
that sustained phagocytosis overwhelms intracellular
killing. In contrast to several other extracellular bacteria,
S. aureus are less likely to traffic to acidified phagosomes,
and phagosomal maturation is incomplete. One conse-
quence of this is a failure to engage a delayed programme
of macrophage apoptosis-associated killing. Bacteria
persist as an intracellular pool, through extended waves
of cell lysis and re-uptake by macrophages.

Our understanding of the competence of tissue macro-
phages to affect bacterial clearance in comparison with
that of recruited phagocytes such as neutrophils is
Fig. 6. Mice demonstrate control of intracellular
bacteria at low dose.
(A–B) 105 CFU of S. aureus were instilled into
the lungs of mice. (A) CFU in the lungs and (B)
intracellular (IC) CFU in bronchial alveolar
macrophages 8, 24, 48 and 72 h post-infection,
n = 5.
(C–F) Mice were instilled with 107 CFU of S.
aureus (C) neutrophil numbers in
bronchoalveolar lavage (D) lungs CFU and IC
CFU in bronchial alveolar (E) macrophages
and (F) neutrophils 24 n = 8, 48 n = 8 and 72 h
n = 9 post-infection, *p< 0.05, **p< 0.01,
analysis of variance with Dunn’s multiple
comparisons test.
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incomplete. Tissue macrophages are adapted to their
homeostatic roles, and the mechanisms used by differen-
tiated macrophages to kill intracellular bacteria are
incompletely defined. Much of our knowledge is based
on inference, derived from observations involving the
neutrophils, monocytes and undifferentiated macrophage
cell lines. Our study provides an important advance by
specifically studying differentiated macrophages, using
both differentiated cell lines that effectively model innate
immune responses in tissue macrophages (Daigneault
et al., 2010) and also primary human macrophages. We
confirm that at low MOI macrophages can kill almost all
ingested S. aureus, but the capacity to up-regulate killing
is limited, and some intracellular bacteria have the
potential to survive inside macrophages. IFN- γ, an
effective stimulus for microbicidal strategies employed by
macrophages, provided only a modest increment to
intracellular killing and did not prevent intracellular
persistence, showing there was little capacity to increase
intracellular killing (Cassatella et al., 1985; Totemeyer
et al., 2006). Surprisingly, phagocytosis was dissociated
from intracellular killing capacity, and macrophages
continued to accumulate further viable intracellular bacte-
ria after the capacity for intracellular killing was
overwhelmed.

We used DCF-DA to estimate oxidant stress, recogniz-
ing results are also modified by nitrosative stress and
cytochrome c release in apoptotic cells (Wardman, 2007)
and therefore measuring production at an early time point
when these other confounders are low (Marriott et al.,
2004). Our results suggest that there are not major
deficiencies in production of ROS in response to S.
aureus, as compared with S. pneumoniae, and impaired
ROS production does not explain bacterial persistence.
Multiple microbicidal mechanisms combine to mediate
intracellular killing, but bacteria block their activity
(Flannagan et al., 2009). In S. aureus, the dehy-
drosqualene synthase, CrtM, facilitates oxidative stress
resistance; an arginine deaminase is expressed similar to
those that cause nitrosative stress resistance in other
Gram-positive bacteria, and extracellular adherence pro-
tein prevents neutrophil granule-associated serine
protease-mediated killing (Degnan et al., 1998; Diep
et al., 2006; Liu, 2009; Stapels et al., 2012). Thus, despite
the generation of ROS and other microbicidals, additional
antimicrobial mechanisms are required. Acidification of the
phagosome containing S. aureus and activation of alter-
native mechanisms of intracellular bacterial killing are
therefore critical. Microbial degradation in a mature
acidified phagosome releases pattern recognition receptor
ligands that mediate a second wave of TLR-mediated pro-
inflammatory signals that help activate the macrophage
response to S. aureus infection including generation of
microbicidal molecules (Wolf et al., 2011). Prior studies
© 2015 The Authors. Cellular Microbiology Published by John Wiley & Son
have shown that ROS buffer the early steps in
phagosomal acidification (Segal et al., 1981; Hampton
et al., 1998) and that caspase 1 activation attempts to
limit this buffering capacity in the early stages of the
development of the S. aureus-containing phagosome
(Sokolovska et al., 2013). We demonstrate, however,
that there is a sustained reduction in acidification of the
phagosome by S. aureus, as compared with E. coli or S.
pneumoniae. This reduction in acidification will compro-
mise the intracellular killing of S. aureus and ultimately
will lead to bacterial translocation from the phagoly-
sosome (Kubica et al., 2008; Koziel et al., 2013). Our
results suggest that before of any release there is a
failure of acidification and appropriate maturation of the
phagosome.

Failure to achieve optimal phagosomal acidification
could arise because of dysfunction of hydrogen ion pumps
such as the vacuolar ATPase or the Na+/H+ exchange
(NHE1) found in the phagosomal membrane (Hackam
et al., 1997). Impairment of phagosomal acidification also
contributes to a failure of the phagosome to mature
appropriately into a phagolysosome through disruption in
endosomal trafficking (Gordon et al., 1980; van Deurs
et al., 1996). Intracellular survival of bacteria is aided by
impairing phagosomal acidification. Mycobacterium tuber-
culosis produces a protein tyrosine phosphatase (PtpA)
that binds to a subunit of the vacuolar ATPase and blocks
its trafficking and phagosomal acidification (Wong et al.,
2011). Maturation of the phagosome follows a series of
orderly events; the small GTPase Rab5A regulates fusion
with early endosomes (Bucci et al., 1992), while Rab7A
regulates their interaction with late endosomes and
lysosomes (Harrison et al., 2003). LAMP-1 and LAMP-2
are recruited at a stage between the interaction with early
and late endosomes (Huynh et al., 2007) and were
recruited appropriately to S. aureus-containing phago-
somes. However, we observed that the phagosomes
containing S. aureus had reduced levels of LIMP-II, a
marker of fusion with lysosomes (Kuronita et al., 2002).
This suggested that a failure of acidification was associ-
ated with a failure of the later stages of phagolysosomal
maturation.

A potential consequence of impaired phagolysosomal
maturation is reduced activation of phagosomal proteases
that contribute to microbial killing (Flannagan et al., 2009).
Activation of cathepsin D is an upstream event that primes
the macrophage to engage a programme of apoptosis-
associated bacterial killing, which is required to remove
intracellular bacteria that canonical phagolysosomal mi-
crobicidal mechanisms have failed to kill (Bewley et al.,
2011b; Bewley et al., 2011a; Aberdein et al., 2013).
Cathepsin D is delivered to the phagosome by lysosomes,
and a failure of phagolysosomal fusion results in
decreased delivery of cathepsin D to the phagosome
s Ltd, Cellular Microbiology, 18, 80–96
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containing S. aureus (Godbold et al., 1998). Moreover,
impaired phagolysosomal acidification reduces the range
of cathepsin D substrates, because its enzymatic range is
related to pH (Capony et al., 1987). Cathepsin D activation
plays a role in down-regulating the anti-apoptotic protein
Mcl-1, an essential regulator of apoptosis-associated
bacterial killing (Marriott et al., 2005; Bewley et al.,
2011a). It is noteworthy that we and others have
suggested that phagocytosis of S. aureus is associated
with a failure to activate cathepsin D and with sustained
up-regulation of Mcl-1, with the consequence that macro-
phage apoptosis does not occur (Bewley et al., 2011a;
Koziel et al., 2013). Therefore, an important host defence
strategy for persistent intracellular bacteria is not en-
gaged.
We suggest that macrophages can provide an environ-

mental niche in which S. aureus can survive, avoiding the
immune system and many antimicrobials. Intracellular
persistence of S. aureus has been described in macro-
phages and also non-professional phagocytes such as
epithelial cells, keratinocytes and endothelial cells (Vesga
et al., 1996; von Eiff et al., 2001; Clement et al., 2005;
Kubica et al., 2008). A variety of microbial factors have
been associated with intracellular persistence including
the alternative sigma factor B, the global regulator agr,
alpha toxin and the ability to form small colony variants
(Vesga et al., 1996; Kubica et al., 2008). Pore-forming
toxins such as alpha toxin could alter membrane integrity,
compromising endosomal acidification, while phenol
soluble modulin (PSM) α peptides are major factors
mediating phagocyte cytolysis and facilitating phagosomal
escape of bacteria in models where alpha toxin does not
appear to be a significant cause of bacterial translocation
into the cytoplasm (Grosz et al., 2014). We observed that
a USA300 strain, associated with enhanced expression of
PSM α peptides (Li et al., 2010), did not induce a greater
degree of impairment of endosomal acidification, even
though it did result in earlier cell cytotoxicity and a trend
towards greater accumulation of intracellular bacteria in
keeping with a greater disruption of macrophage function
and of S. aureus killing. While these findings suggested
strains expressing higher levels of PSM α peptides induce
greater macrophage cytotoxicity, they also suggested the
failure to acidify and appropriately mature phagoly-
sosomes was more widespread amongst S. aureus strain
and was not specifically associated with higher expression
of PSM α peptides. Our findings are in agreement with
those of Kubica who described intracellular survival of S.
aureus in macrophages that did not undergo apoptosis or
necrosis for several days but were ultimately lysed
(Kubica et al., 2008). We extend these observations by
showing that these persistent bacteria are the result of an
inability to kill all ingested bacteria and that persistence is
associated with a failure of phagosomal maturation. Our
© 2015 The Authors. Cellular Microbiology P
data suggest that viable intracellular S. aureus will
overwhelm host defence and, through cycles of uptake
and release, will be maintained for sustained periods of
time, as we show can happen in vivo when we push the
infecting dose of S. aureus in the lungs to high levels,
above the capacity of intrinsic innate host defence
mechanisms to mediate clearance.

In conclusion, we demonstrate that although macro-
phages readily phagocytose S. aureus, macrophages’
capacity for intracellular killing is rate-limiting for bacterial
clearance. A failure of phagosomal maturation and
acidification is associated with an absence of apoptosis-
associated bacterial killing in macrophages. Viable bacte-
ria accumulate because of ongoing phagocytosis and form
an intracellular pool that is maintained through cycles of
cell lysis and phagocytosis by other macrophages.
Targeting this population of bacteria should be a focus
of future studies in an effort to limit the relapsing and
metastatic capacity of S. aureus infections.
Experimental procedures

Cell culture and differentiation

The human monocytic leukaemia cell line THP-1 was obtained

from ATCC and maintained in RPMI 1640 medium (Lonza)

supplemented with 10% of low endotoxin heat inactivated foetal

calf serum (HIFCS, Hyclone) and 2mmol l�1 of L-glutamine

(Sigma). THP-1 cells were differentiated using 200 nM of

phorbol-12-myristate 13-acetate (PMA) (Sigma) for 3 days follow-

ed by 5 days rest as outlined previously (Daigneault et al., 2010).

Cells were seeded at 2 × 105 cells/ml (1ml/well), which results in

2 × 105 cells/well at the time of infection. MDMs were isolated from

peripheral blood mononuclear cells from healthy donors, as

previously described (Dockrell et al., 2001) with ethical approval

from theSouthSheffieldResearchEthicsCommittee (07/Q2305/7)

(Dockrell et al., 2001; Daigneault et al., 2010). Peripheral blood

mononuclear cells were isolated by Ficoll Plaque (GE healthcare)

density centrifugation seeded at 2 × 106 cells/ml in RPMI 1640

medium supplemented with 10% of newborn foetal calf serum

(Fischer) in 24 well plates (Corning) with 1 ml/well to give

approximately 2 × 105MDM/well. After 24h, non-adherent cellswere

removed, and adherent cells were cultured in RPMI 1640 medium

with 10% of low endotoxin HIFCS and 2mmol l�1 of L-glutamine

and used for 14 days. Representative wells were scraped at the

time of infection to confirm cell number for calculation of MOI.

Bacterial strains

All experiments were performed with S. aureus Newman strain

unless otherwise stated. All strains used, with the exception of S.

aureus Newman tagged with green fluorescent protein (GFP),

were sourced from Professor S. Foster at the University of

Sheffield. S. aureus Newman strains were grown in brain–heart

infusion (BHI) medium (Sigma) to OD600nm 0.6, and SH1000 and
ublished by John Wiley & Sons Ltd, Cellular Microbiology, 18, 80–96
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JE2 strains were grown to OD600nm 1.0. A kanamycin-resistant

Newman S. aureus strain (KanR) was grown in BHI medium

supplemented with 50 μgml�1 of kanamycin (Sigma). S. aureus

Newman GFP was prepared by phage transduction. Briefly, S.

aureus Newman was streaked onto a modified Luria–Bertani

plate containing 7 g l�1 of potassium chloride (KCl) (Sigma),

designated LK media, and left at 37 °C for 16 h then stored at 4 °

C. Ten colonies were inoculated into 50ml of LK broth and grown

for 16 h at 37 °C on a shaker then centrifuged at 5000 g for 10min

at room temperature (RT). The pellet was resuspended in 3ml of

LK broth and then 500 μl of S. aureus Newman recipient cells,

1 ml of LK broth, 10 μl of 1M of calcium chloride (Sigma) and

500 μl of phage lysate was combined and incubated at 37 °C for

25min and then for a further 15min on a shaker. One millilitre of

ice cold 0.02M sodium citrate (Sigma) was added and left for

5min at 4 °C and then centrifuged at 5000 g for 10min at 4 °C.

The pellet was resuspended in 1ml of ice cold 0.02M of sodium

citrate and incubated at 4 °C for 1 h. One hundred microlitres were

streaked onto selective plates (LK plus 5μgml�1 of tetracycline

(Sigma) and 5 μgml�1 of citrate (Sigma)), incubated at 37 °C for 16h

and then resubcultured the next day. E. coli strain C29, group 2

capsular serotype K54, was grown in BHI medium to mid-log phase

(Webster et al., 2010),S. pneumoniaeD39was grown as previously

described (Dockrell et al., 2003).S. aureus andS. pneumoniaewere

stored in frozen aliquots at �80 °C and thawed before infection.

Viable counts were determined after thawing, using the surface

viable count method on blood agar (Miles et al., 1938).
Macrophage bacterial challenge

Differentiated macrophages were challenged with S. aureus at

various MOI. S. aureus was thawed, washed in phosphate

buffered saline (PBS), added to the macrophages in the presence

of fresh media, incubated on ice for 1 h and then at 37 °C, 5% of

CO2. In some experiments, macrophages were fixed in 2% of

paraformaldehyde (PFA) at 4 °C for 15min and washed with PBS

before challenge with bacteria. In experiments involving

prolonged culture of macrophages, extracellular bacteria were

killed at 6 h by the addition of 20 μg ml�1 of lysostaphin

(Biosynexus) for 30min (Schindler and Schuhardt, 1964) and

then cells cultured up to 48 h in media containing 2 μgml�1 of

lysostaphin. After this period, cultures were subsequently

incubated in the presence or absence of 2 μgml�1 of lysostaphin.

In certain experiments, 5 μM cytochalasin D (Sigma) was added

to inhibit phagocytosis (DeLoid et al., 2009), or 50μMTrolox (Sigma)

was added to inhibit ROS. Reagents were added 30min before

infection and following any media change. In other experiments,

macrophages were stimulated with 50 ngml�1 of IFN-γ (Sigma) for

18 h before challenge with S. aureus to enhance intracellular

killing. Challenge with E. coli or S. pneumoniae was similar to that

with S. aureus except that S. pneumoniae were first opsonized in

immune serum as previously described (Dockrell et al., 2001).

Extracellular colony forming units (CFU)were quantified by surface

viable count on blood agar (Miles et al., 1938).
© 2015 The Authors. Cellular Microbiology Published by John Wiley & Son
Quantification of viable intracellular bacteria

To estimate intracellular bacterial load, macrophages were

washed in PBS, fresh media containing 20 μgml�1 of lysostaphin

were added, and cultures were incubated at 37 °C, 5% of CO2 for

30min (Schindler and Schuhardt, 1964). Cells were washed in

PBS and incubated with 2% of saponin (Sigma) at 37 °C for

12min. PBS was added to the cells; they were lysed by vigorous

pipetting, and the number of viable intracellular bacteria was

determined by surface viable count (Dockrell et al., 2001). To

confirm complete killing of extracellular bacteria, some wells were

fixed in 2% of PFA before challenge with bacteria and then

exposed to lysostaphin and lysed as mentioned earlier, showing

absence of bacteria in lysates. To estimate the kinetics of

intracellular killing after the initial bacterial challenge (‘pulse’),

extracellular bacteria were killed with lysostaphin treatment as

mentioned earlier, and cells were cultured in fresh media with

2 μgml�1 of lysostaphin (‘chase’) for 0.5-4 h prior to lysis and

intracellular bacterial quantification. Key experiments were

repeated using gentamicin 20 μgml�1 to kill extracellular bacteria

and then culture in media-containing vancomycin (0.75 μgml�1;

Sigma) during the ‘chase’ phase, with similar results (data not

shown).

To test the contribution of ongoing ingestion to intracellular

bacterial accumulation, the initial ‘pulse’ was terminated by

incubation in the presence of 50 μgml�1 of kanamycin at 37 °C

for 30min, and some cells were lysed for quantification of

intracellular bacteria. The remaining macrophages were either

maintained in 2 μgml�1 of lysostaphin and subsequently lysed as

per the original ‘pulse-chase’ design, �KanR cultures (KanR�), or

were challenged with S. aureus KanR for 5–7 h; extracellular

bacteria killed with 20 μgml�1 of lysostaphin; and cells lysed as

mentioned earlier, designated KanR+ cultures (KanR+). Some

cells were treated with 2% of PFA before the second ‘pulse’ of

bacteria to confirm all bacteria in lysates were the result of

internalization. Total intracellular CFU bacteria were quantified by

culture in blood agar (Total CFU) and intracellular S. aureus KanR

quantified by growth in blood agar containing 50 μgml�1 of

kanamycin to determine the S. aureus KanR CFU. Levels of the

CFU of S. aureus KanS (wild-type; WT) were estimated in the

KanR+ cultures as Total�KanR CFU (i.e. the KanR CFU was

subtracted from total CFU), and the values of KanS showed good

agreement with the cultures treated without a second pulse of S.

aureus KanR (KanR� cultures).

Live and dead staining

Macrophages were challenged with live S. aureus, or S. aureus

that were heat killed at 80 °C for 15min (as a control), at an MOI

of 0.05 or 5 for 5 h. Extracellular bacteria were killed; cultures

were treated with 2% of saponin and lysed as mentioned earlier.

Supernatants were centrifuged at 3300 g for 30 s and then at

100 g for 8min. Supernatants were then either left unstained or

stained with 3 μM of DRAQ7 (Cell Signalling) for 10min at 4 °C,

and fluorescence was measured on the flow cytometer (LSRII,
s Ltd, Cellular Microbiology, 18, 80–96
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BD bioscience) using the red 660/20 nm laser, with at least 10 000

events captured and analysed using the BD Biosciences FACS

Diva Software (version 8.0). DRAQ7 low events were recorded as

non-viable bacteria.

Measurement of intracellular ROS

Macrophages were challenged with S. aureus, S. pneumoniae or

mock infected, and extracellular bacteriawere killedwith lysostaphin

(S. aureus) or gentamicin (S. pneumoniae). Macrophages were

incubated in fresh media with or without 20μM of DCF-DA for

30min at 37 °C, detached and analysed by flow cytometry.

Fluorescence microscopy

For fluorescence microscopy, macrophages were seeded as

mentioned earlier in 24 well plates (Corning) containing glass

coverslips (Mensel-Glazer). Macrophages were incubated with S.

aureus or other bacteria as indicated for varying time points and

then fixed in 2% of PFA for 15min at 4 °C. Macrophages were

washed with PBS, incubated with 3% of bovine serum albumin

(Biowhittaker) for 30min at RT, washed and incubated with an

anti-staphylococcal (rabbit) polyclonal IgG primary antibody

(Zytomed Systems, 619 0198) at 1 : 1000 dilution for 10min at

RT. Cells were then washed and incubated with 1 : 250 of goat

anti-rabbit Alexa Fluor 568 secondary antibody (Invitrogen) for

10min at RT, with cultures incubated with secondary alone

serving as a control. To stain bacteria in endosomes, cultures

were washed and incubated overnight with 0.01% of saponin to

permeabilize cells (Jamur and Oliver, 2010) in the presence of

antibodies against LAMP-1 (mouse IgG1 monoclonal, clone

H4A3 ab25630, Abcam), LAMP-2 (mouse IgG1 monoclonal,

clone H4B4 ab25631, LIMP-II/(LGP85) (rabbit IgG polyclonal,

Abcam, ab183856) all at 1 : 100 at 4 °C in the dark. Cells were

washed and incubated with goat anti-mouse Alexa Fluor 488

secondary antibody (Invitrogen) or in the case of LIMP-II with goat

anti-rabbit Alexa Fluor 568 secondary antibody (Invitrogen), all at

1 : 250 for 90min at RT in the dark. Cultures were washed and

mounted on slides using Vectashield mounting medium contain-

ing 4′,6-diamidino-2-phenylindole (DAPI) (Vector Laboratories)

and visualized using the triple filter on the Leica DMRB

fluorescent microscope using the ×100 objective. In certain

experiments, images were obtained using a multiphoton confocal

laser scanning microscope at ×63 oil immersion lens (Zeiss

LSM510 NLO Inverted). One hundred macrophages were

counted per sample and scored for adherent bacteria (DAPI

positive and Alexa Fluor 568 positive in the presence of anti-

staphylococcal antibody), intracellular bacteria (DAPI positive,

Alexa Fluor 568 negative) and intracellular bacteria colocalizing

with LAMP-1 or LAMP-2 (DAPI positive and Alexa Fluor 488

positive, Alexa Fluor 568 negative if anti-staphylococcal antibody

added) and LIMP-II (DAPI positive, Alexa Fluor 568 positive in the

presence of anti-LIMP-II antibody). In select experiments, as

indicated in individual figure legends, sequential staining of

extracellular bacteria and LAMP-1 was performed as mentioned
© 2015 The Authors. Cellular Microbiology P
earlier. To analyse cell number and nuclear morphological

changes consistent with apoptosis, macrophages were stained

with DAPI and analysed as described previously (Dockrell et al.,

2001).
Staining of bacteria with pHrodo

Staphylococcus aureus, S. pneumoniae or E. coli were incubated

with 10.2 μM of pHrodo (Invitrogen) at 37 °C, with shaking in the

dark for 30min. The bacteria were centrifuged at 9300 g for 2min

(1min in the case of S. aureus), and the bacterial pellet was

washed and resuspended in PBS. S. pneumoniae was opsonized

in RPMI with 10% v/v of anti-pneumococcal immune serum prior

to staining. Macrophages were challenged with bacteria as

mentioned earlier and fixed in 0.2% of PFA for 30min at RT.

One hundred macrophages were counted, and the number of

pHrodo positive/negative bacteria per macrophage was counted.

pHrodo positive bacteria were taken to be in a compartment of

pH 4–6, whereas pHrodo negative bacteria were taken to be in a

compartment of pH> 6 in keeping with the fluorescence

spectrum of the dye. To confirm the pH at which pHrodo was

fluorescing, S. aureus was incubated with the dye and then fixed

in 2% of PFA at RT for 15min. The bacteria were then placed in

PBS of different pH (4, 5, 6, 7 and 8) and images were taken

using the ×63 lens of the Zeiss LSM 510 NLO Inverted

Microscope. Fluorescence intensity was quantified using ImageJ

and normalized against DAPI fluorescence (Figure S5). The

pHrodo fluorescence intensity was also measured by adding

labelled bacteria to a 96 well plate and measuring fluorescent

intensity in a fluorescent plate reader normalizing to the OD600 of

each well.
Video time lapse microscopy

Macrophages were challenged with S. aureus Newman-GFP

strain at an MOI of 5 for 6 h or mock infected, and extracellular

bacteria were killed with lysostaphin. Macrophages were then

incubated in fresh media without sodium hydrogen carbonate with

or without lysostaphin for up to 72 h. Imaging was started at 52 h

post infection, imaging every 10min until 72 h. Images were taken

using the ×30 DIC/GFP laser on the Nikon Ti inverted

fluorescence microscope with a 20 × 0.75 NA lambda objective

lens. Images were captured with Neo camera (Andor) using NIS

Elements (Nikon). The microscope was enclosed in temperature-

controlled and humidity-controlled cabinet (OKO Labs) main-

tained at 37 °C. Images were taken from four fields of view from

three random wells and analysed using the NIS Elements Viewer

software version 4.20 (Nikon).
Lactate dehydrogenase assay

The release of lactate dehydrogenase was measured using the

Cytotox 96 cell viability kit (Promega), used according to the

manufacturer’s instructions (Bewley et al., 2014).
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Apoptosis and necrosis in live cells

Caspase activity in live cells was measured using the CellEvent

caspase 3/7 green flow kit (Life Technologies), according to the

manufacturer’s instructions. Cells were co-stained with TOPRO-3

as a marker of necrosis, and cells were analysed by flow

cytometry.
Measurement of active cathepsin D

Differentiated THP-1 cells grown in T25 flasks (2 × 106 cells/flask)

were challenged with S. aureus (MOI = 5), S. pneumoniae

(MOI = 10) or mock infected as mentioned earlier and lysed for

total protein 8 h post-challenge as described previously (Dockrell

et al., 2001; Marriott et al., 2005). Proteins were subject to SDS-

PAGE and Western immunoblotting, and membranes were

probed with antibodies against cathepsin D (R and D systems,

goat polyclonal, 1 : 1000), detecting pro-cathepsin D/processing

intermediates at approximately 46–51 kDa, and the heavy chain

of active cathepsin D at approximately 34 kDa (Abcam), Mouse

monoclononal (CTD-19, 1 : 1000)], with the active cathepsin D

band at 34 kDa, and actin as loading control (Sigma-Aldrich rabbit

polyclonal, 1 : 2000) as previously described (Bewley et al.,

2011a).

In vivo model

Female C57/Bl6 mice were instilled with 105 or 107 CFU of S.

aureus Newman strain by intratracheal instillation as described

previously (Dockrell et al., 2003). The 24, 48 and 72 h post-

infection mice were killed by overdose of pentabarbitone, lungs

lavagedwith 4 × 1ml aliquots of saline for bronchial alveolar lavage

(BAL) and lungs collected. BAL frommice instilled with 105 CFU of

S. aureus was centrifuged at 1000 g for 5min; the cell pellet was

incubated with 2% of saponin for 12min and counts of viable

bacteria were performed on lysates asmentioned earlier. BAL from

mice instilled with 107 CFU of S. aureus was centrifuged at 1000 g

for 5min; the cell pellet was resuspended in 1ml of DMEM+ 10%of

HIFCS and 100U/ml of penicillin; 200 μl was used for cytospins for

differential cell count, and the rest was cultured in 24 well plates to

allow adhesion of macrophages. The tissue culture medium

containing non-adherent cells (neutrophil fraction) was removed

after 2 h and the cells were pelleted and lysed, and counts of viable

bacteria were performed on the cell pellet and adherent macro-

phages as mentioned earlier. Lungs were homogenized, and

viable bacteria were measured (Dockrell et al., 2003). All animal

experiments were performed in accordance with the UK Animals

(scientific procedures) Act 1986, authorized under a UK Home

Office License and approved by the animal Ethical Review

Committee of the University of Sheffield.

Statistics

All graphs are represented as mean ± SEM unless
otherwise stated. Statistical analysis was performed using
Graphpad Prism® version 6.02. Statistical significance
© 2015 The Authors. Cellular Microbiology Published by John Wiley & Son
was determined as p< 0.05. All statistical tests used are
listed in the figure legends.
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Fig. S1. Macrophages demonstrate accumulation of viable

bacteria with increasing MOI.
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Fig. S2. Macrophage exhaustion of initial killing following

phagocytosis is not inoculum, macrophage type or strain

dependent.

Fig. S3. Macrophage accumulation of intracellular bacteria is not

the result of intracellular replication.

Fig. S4. Reactive oxygen species generation following macro-

phage challenge with bacteria.

Fig. S5. pHrodo labelled S. aureus fluoresces at low pH.

Fig. S6. Failure of intracellular S. aureus to traffic to an acidified

endosome is not time or dose dependent.

Fig. S7. Failure of intracellular S. aureus USA300 to traffic to an

acidified endosome is not time or dose dependent.

Fig. S8. S. aureus USA300 JE2 traffic to endosomes which

demonstrate incomplete maturation.

Fig. S9. Macrophage apoptosis is not engaged with S. aureus.

Fig. S10. Low macrophage apoptosis is not affected by blocking

phagocytosis and killing extracellular bacteria.

Fig. S11. With prolonged culture viable intracellular bacteria

replicate and induce macrophage lysis.

Fig. S12. Intracellular replication occurs before lysis.
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