
 1

Ada User Journal Volume 22, Number 1, March 2001

The Use of Controlled Vocabularies and Structured
Expressions in the Assurance of CPS
Katrina Attwood1, Philippa Conmy2 and Tim Kelly1

1 Department of Computer Science, University of York, Deramore Lane, YORK YO10 5GH, United Kingdom; Tel
+44 1904 325460; email: {katrina.attwood/tim.kelly}@york.ac.uk
2 Rapita Systems Ltd, Atlas House, Osbaldwick Link Road, YORK YO10 3JB, United Kingdom; Tel +44 1904
413945; email: pconmy@rapitasystems.com

Abstract
To date, work on the development of assurance cases
has largely been concerned with the broad structure
and content of arguments to contextualise the data.
However, at a more detailed level, use of natural
language in an argument can lead to conflicting
terminology, to difficulties in understanding the
nature of the claims being made or to logical
inferences which are obscure to the readers of the
argument. This problem has become increasingly
complex as more and more suppliers are involved in
the development chain, making it more difficult to
evaluate the strengths and weaknesses of assurance
data or to re-use it. This paper explores the
development of controlled vocabulary and structured
expressions for CPS in the automotive domain, using
the Semantics of Business Vocabulary and Business
Rules (SBVR) to improve communication and to
provide presents some formal consistency checking of
content. We highlight the challenges this work has
exposed.

Keywords: safety, assurance, controlled language,
SBVR, automotive.

1 Introduction
The presentation of assurance cases is now standard
practice in a number of safety-critical domains and is
mandatory in several. Assurance cases typically comprise
both reasoned arguments justifying claims relating to the
safety, integrity and/or dependability of CPS and a variety
of supporting evidence – analysis and test data, design
information and process documentation. Although a
considerable body of literature regarding safety-case praxis
has been produced, the primary focus to date has been to
provide guidance on the structure and content of the
arguments, with relatively little attention paid to the
language used to convey them. Graphical notations
developed for the safety assurance domains (for example,
the Goal Structuring Notation (GSN) [1] and the Claims-
Argument-Evidence method [2]) inevitably foreground –
and simplify – issues of logical flow and the overall
readability of the argument, but provide limited guidance
on how assertions and supporting statements should be
phrased to ensure that the argument is correctly conveyed
to a reader or assessor. In the GSN Community Standard

[1], for example, less than 10% of the document is devoted
to language issues as opposed to the definition, graphical
representation, construction and review of argument
structures. In practice, many assurance cases are not
documented using graphical notations, but use either
natural language alone or a combination of natural
language and graphical notation for summary purposes.

Imprecise phrasing in assurance cases can lead to a number
of problems, including:

• Inconsistency – terms may be used with different
meanings at different points across an argument.
This may lead to uncertainties in interpretation,
particularly in the subjects of claims and
assertions and the scope within which they are
valid.

• Vagueness – without a precise definition of
terminology, the author’s intended meaning may
not be properly conveyed to the audience, whether
because there is no shared understanding of the
terms used or because there is a failure to ‘pin
things down’ adequately.

• Lack of focus in claims – in freeform text, it can
be difficult to ‘unravel’ sentence structure so as to
establish the scope of terms, i.e. how they
influence other terms beyond the single phrasal
structure in which they occur [3]. It can therefore
be difficult to identify the claims the argument is
making, since the relationships between the
elements under discussion may not be made clear.

CPS are increasingly assembled by integrator
organisations, using multiple components from a diffuse,
multinational supply-chain [4]. Compositional approaches
to certification mean that assurance data relating to discrete
components need to be collected and matched to form an
integrated system argument. There is a clear need for
consistent usage of domain- and system-specific
terminology throughout the supply-chain, and for a shared
understanding of the nature and limitations of the claims
and evidence being presented in the argument, and of the
assumptions made about the operational context in which
component behaviour is guaranteed.

We believe there is scope to use controlled language to
provide more rigorous rhetorical structure in assurance

2 Template for Ada User Journal

Volume 22, Number 1, March 2001 Ada User Journal

cases for CPS. We propose a dual approach to address the
problems of inconsistency and imprecision outlined above.
First, we address semantic aspects by developing a domain
dictionary, which provides unambiguous definitions of
relevant concepts in the domain over which the argument
ranges. Secondly, syntactic aspects are addressed by these
definitions to specify claim types in the form of structured
expressions to clarify the argument logic. The OMG’s
Semantics of Business Vocabulary and Business Rules
(SBVR) specification [5] offers one means to implement
this approach. SBVR provides for the formalized definition
of domain concepts, together with the rules and
assumptions which define the relationships between them.
It contains an explicit model of formal logic, and thus
provides a means for the capture of natural language
expressions in a formal structure, suitable for machine-
processing.

Two of the elements defined in SBVR are of particular
significance for our approach: ‘concepts’ and ‘fact types’.
These form the basis for the development of the controlled
lexicon and claim typology described in the two following
sections.

2 Argument semantics: development of a
controlled lexicon for safety assurance
In SBVR, a ‘concept’ is defined as “a unit of knowledge
created by a unique combination of characteristics” [5].
Generally, this equates to a noun, or a noun-phrase (also
referred to as a ‘term’). In SBVR, concepts can be defined
formally or informally. In a formal definition, each of the
concepts referred to must be defined elsewhere in the
vocabulary, thus making for a closed lexicon. Reserved
terms to represent logical relationships between concepts
are defined in [5]. The “General Concept” and “Concept
Type” attributes can be used to specify hierarchical type-
relationships between concepts. This is especially useful in
the disambiguation of terminological mismatches in cross-
domain “translation” scenarios, such as the comparison of
concepts across different safety standards.

Our work in the OPENCOSS project [6] defined a
preliminary SBVR vocabulary of concepts for assurance
arguments. As in the SBVR specification [5], a graphical
summary of concept relationships is provided for ease of
reference (for human readers). The vocabulary provides a
controlled language definition of concepts, artefacts and
processes used in the domains of interest of OPENCOSS
(railway, avionics and automotive), and thus provides a
basis for comparison of usage between the domains. We do
not seek to develop a unified, universal lexicon for
assurance to be used across the target domains. Such an
enterprise is fraught with difficulty, since the certification
approaches differ fundamentally. As an illustration,
consider the difficulties for a manufacturer seeking to reuse
software developed according to IEC 61508 [7] in an
avionics context, where certification to DO-178B is
required [8]. An assurance argument in the original context
– here expressed using SBVR, for clarity – might assert
that “software module Y is developed to safety integrity

level SIL 4”. In the avionics context, the manufacturer may
wish to make a similar claim: “software component Y is
developed to design assurance level DAL A”. Since both
the safety integrity level and the design assurance level are
instantiations of the generic SBVR concept “Criticality
Level” defined by OPENCOSS, it might be assumed that a
direct ‘translation’ between the claims is possible.
Examination of the diagrams summarizing the concept
relationships for system and software architectures
extracted from the SBVR vocabulary we have developed
for the relevant standards, however, reveals that the
situation is more complicated.

Figure 1 IEC 61508 software concept relationships

Figure 2 DO-178B software concept relationships

In IEC 61508, a SIL is directly attached to a (software)
safety function which is modelled at system level. In DO-
178B, however, the DAL is associated with a software
system or component, and does not address the “function”
concept at all. This implies that direct ‘translation’ of the
claim cannot be made – it is not possible to convert a SIL
directly into a DAL without considering the extra process-
related concepts that arise because of the focus in DO-178B
on the design of the system, rather than merely its
functionality. Although a clear understanding of the
terminology can be helpful in addressing this difficulty,
what is required is not a definition of individual concepts in
isolation, but an appreciation of the interrelationships
between the concepts, since these provide constraints on
reuse of the claim – and associated assurance data – here.
Use of a closed SBVR vocabulary will ensure that these
interrelationships are correctly identified. We should

Safety-
Related
System

Software

Software
Safety

Function
*1

SIL

1

1
Software

Safety
Requirement

*1

Non Safety-
Related

Function

*

1

Software
Requirement

Subsystem
Attribute
Attribute

Component

Module

*1

System

System
Architecture

System
Functional

RequirementFunctionSoftware

Software
Component

Level

System
Safety

Assessment
Process

DAL

*

1

A N Author 3

Ada User Journal Volume 22, Number 1, March 2001

therefore consider there to be either a “partial map” or a
“no map” relation between the concepts, and a full
explanation of the discrepancies between the conceptual
structure of the standards is required in order for an
engineer to make informed decisions about the feasibility
of or limitations on reuse, and on what extra assurance data
may need to be provided in the DO-178B context.

A primary concern for the OPENCOSS project is to
support reasoning about whether certification artefacts,
such as analysis results, can be reused across domains and
from one development project to another. In order to
support this, the OPENCOSS vocabulary defines
terminology at three levels of abstraction: we define
vocabulary models to capture the generic vocabulary of
safety standards relevant to the domains, organisation-
specific terminology and project-specific terminology.
Mapping relationships between concepts are used to
capture traceability relationships between generic and
system-specific concepts (e.g. the fact that a project-
specific test plan is an instance of the test plan defined in
the organisational model) and also to indicate the degree of
“mapping” between concepts at the various levels (e.g. the
degree to which the organisational definition of a test plan
matches the characteristics of the generic artefact defined in
the standard model and relating to a requirement of the
standard).

The demonstration of assurance is a much wider and more
complex concern than simply establishing conformance to
a standard; and an argument is much more than a
compliance checklist of processes and artefacts. Having
clear definitions of terminology in which concepts are
related both vertically by type and sub-type relations and
horizontally by being defined in terms of one another in a
closed lexicon can help in ensuring consistency of
reference across assurance case modules. In particular, the
terminology can be used to characterise the interfaces and
interdependencies between argument modules, and to
ensure that the terms of reference here are consistently
understood. The layered vocabulary defined for the
OPENCOSS project allows us to clarify the relationships
between standards, industrial praxis and development
projects, using the “mapping” relationships between
concepts at the various levels of abstraction to make any
gaps between standards’ requirements and projects’
actualities clear.

3 Argument semantics: structured claim
types
One important means of maintaining consistency in the
natural language used to convey the reasoning in an
assurance argument is to specify types of claims. A
taxonomy of claims can be superimposed on the general
concerns of an argument structure identified in the
literature (e.g. [9]) and can then be used to refine the
logical structures provided in the argument fragment
templates captured in GSN patterns such as those presented
in [10]. The claim types characterise the types of concepts
which are discussed in a particular part of the argument,

and the features which are asserted in claims. We have
identified several generic claim types for assurance
arguments, as summarised in Table 1:

Claim Type Definition

Activity-Artefact Claim

Claim relating to the production of
particular artefacts as a result of particular
safety analysis or development activities.

Artefact Compliance
Claim

Claim relating to the presentation of a
particular artefact necessary for

compliance.

Artefact Adequacy Claim

Claim relating to the adequacy and
appropriateness of a particular artefact, i.e.
moving beyond compliance to a
justification of the evidence artefacts
provided. E.g., the adequacy of a fault tree

Activity Compliance
Claim

Claim relating to the presence and features
of features of a safety analysis or

development activity necessary for
compliance

Activity Adequcy Claim
Claim relating to the adequacy and

appropriateness of a particular safety
analysis or development activity

Component Development
Claim

Claim relating to the adequacy and
acceptability of the process by which a

component has been developed
Fault Accommodation
Claim

Claim relating to the accommodation or
elimination of a fault

Hazard Mitigation Claim
Claim relating to the adequacy of hazard
mitigation achieved by safety measures in
the design

Table 1: Generic claim types for assurance

We can exploit the layered structure of the OPENCOSS
vocabulary – where concepts are defined and “mapped” at
the level of the standard, the industry model and the project
– by defining domain-specific versions of these claim types
in parameterised phrases used to populate the GSN
argument patterns. These phrases can then be instantiated
in component- or system-specific arguments using
vocabulary relevant to that component derived from the
project vocabulary model. The “Concept Type”
mechanism in SBVR allows for the presentation of a series
of potential instantiations of a given parameter from which
the user can choose. In some cases, the “fact Type”
mechanism in SBVR allows to generate the domain-
specific claim type directly from the standard or industry
vocabulary model.

The “Fact Type” in SBVR [5] is used to capture
relationships between concepts defined in the vocabulary.
A fact type is defined in [5] as “the meaning of a verb
phrase that involves one or more nouns, whose instances
are all actualities”. A fact type thus equates to a proposition
ranging over the concepts represented by the nouns or
noun-phrases, a statement of some relationship which can
be evaluated logically as having a truth value. As with
concepts, fact types can be defined formally – by means of
a closed expression in which every term is defined
elsewhere in the SBVR model – or informally, using
terminology which is not controlled.

In some cases, the “fact type” mechanism in SBVR allows
us to generate the domain-specific claim type, and the
mapping between the standard (or industry) vocabulary and
the project vocabulary provides possible terms with which

4 Template for Ada User Journal

Volume 22, Number 1, March 2001 Ada User Journal

the template phrase can be instantiated. For claims of the
Activity-Artefact type, for example, the SBVR vocabulary
derived from the terminology used in the safety standard
should identify the types of concept over which the claim
might range, by identifying relationships between particular
activities and the artefacts they generate. A generic fact
type of the sort artefact is generated by activity, for
example, can be instantiated by traversing the SBVR
“Concept Type” and “General Concept” fields in the
standard-level vocabulary to identify a series of individual
concepts of type “artefact” and type “activity”/ The list of
possible concepts might be further reduced by pre- and
post-conditions relating to the individual “artefact” and
“activity” concepts identified in the project-level model, to
present the argument developer with a list of candidate
terms with which to instantiate the fact types reflecting the
practice of the project. More complex fact types might be
devised – around the basic claim structures – to reflect
complex dependencies between activities.

4 Example
In this section, we present a simple example to illustrate the
ways in which structured expressions using controlled
vocabulary can be exploited to instantiate claims in an
assurance argument. The example is based on a simplified,
fictitious automotive anti-lock braking system (ABS),
which is developed to ISO 26262 [11]. Correct operation of
the ABS allows the wheels to maintain contact with the
road surface during hard braking, preventing the wheels
from locking and avoiding an uncontrolled skid. The
system comprises a software controller, four wheel sensors
(one for each wheel) and two hydraulic valves (one for
each axel). The system has two basic operational scenarios.
The software constantly monitors the speed at which the
wheels rotate, measures via the wheel sensors. If it detects
that one wheel is rotating at a slower speed than the others,
the controller actuates the hydraulic valves to reduce
hydraulic pressure to the brake, thus reducing braking force
on that wheel and allowing it to turn faster. Alternatively, if
the software detects that one wheel is turning significantly
faster than the others, the valves are operated to increase
hydraulic pressure to that wheel, thus increasing braking
force to that wheel and slowing down its rotation. The
software controller contains a critical function to calculate
the hydraulic pressure demand value from the wheel speed
sensor inputs. Failure of this function results in the
incorrect braking force being applied to the wheel, which
could result in a skid.

The assurance argument for the ABS software controller
clearly needs to address the issue of potential faults in the
hydraulic pressure demand calculation function. In this
example, that issue will be addressed as part of a top-down
argument concerning the mitigation of the “uncontrolled
skid” hazard by the software. An argument of this type can
be structured using the approach suggested in the high-level
software safety argument pattern in [10], which is
presented in Figure 3, using the GSN [1]:

Figure 3 High-Level software safety argument pattern

(from [10])

In the diagram, the rectangular boxes represent claims made
about the software (these are called “Goals” in GSN). The
top-level goal (Goal: SWSystemSafe) contains an overall
claim that the software is acceptably safe to operate within
the system in which it is located ({system Z}). The rounded
rectangles attached by hollow arrows to this goal contain
contextual statements required to further explain and
validate the goal. Here, they refer to supporting
documentation which provides descriptions of relevant
aspects of the software design and the design and
operational environment of {system Z}. The triangles
underneath items indicate that textual information within
curly braces requires instantiation in an argument relating to
a real system. Goal:SWSystemSafe is refines into a lower-
level claim (captured in Goal: swContributionAcc), which
indicates that the argument will be made by considering the
possible contributions that {software Y} could make to
system-level hazards. The oval (Ass:hazards) represents an
assumption on which this argument relies: in this case, that
all of the system hazards have been identified correctly. The
parallelogram (Strat:swContributionAcc) represents the
strategy used to break down this general claim into more
detailed ones. Here, the argument is structured by taking
each of the system-level hazards to which the software may
contribute in turn, and arguing that the software contribution
to each has been managed. This strategy is realised in the
statement of Goal:Hazard, which makes the claim that the

{software Y} is acceptably
safe to operate within

{system Z}

Goal: SwSystem
Safe

{Description of
{software Y}}

Con: Sw {Description of
operating context of

{system Z}}

Con: OpCont

{Description of
{system Z}}

Con: system

The contribution made by
{software Y} to {system Z}

hazards is acceptable

Goal:
swContributionAcc

All system hazards
have been correctly

identified

Ass: hazards

A

Argument over each
hazards to which
{software Y} may

contribute

Strat: swContribution Acc
{Description of hazards
to which {software Y}

may contribute}

Con: hazards

Software contribution(s)
to {hazard} is acceptably

managed

Goal: Hazard

{Description of the ways
in which {software Y}

may contribute to
{Hazard}

Con: contributions

Number of hazards
to which the software

may contribute

Argument over each
identified software

contribution to {hazard}

Strat: contMit
The ways in which {software Y}
may contribute to {Hazard} are

completely and correctly
identified

Goal: contident_contident

contident

{software contribution} to
{Hazard} is acceptably

managed

Goal: sw contribution

number of identified
software

contributions
to {Hazard}

n

A N Author 5

Ada User Journal Volume 22, Number 1, March 2001

software’s contribution to a particular hazard ({Hazard}) is
acceptably mitigated. An enumeration of the relevant
hazards is provided as context to this argument, and is
referred to in the GSN Context (Con:hazards). The solid
circle on the decomposition arrow between
Strat:swContributionAcc and Goal:Hazard indicates that
Goal:Hazard and the subsequent argument is iterated for
each of the hazards to which the software might contribute.
Where a safety requirement exists which relates to the
software’s role in {Hazard}, this is explicitly stated, and
referred to in the context Con:safetyRqt. Since software
might contribute to the occurrence and effects of hazards in
a number of different ways (depending on the nature of the
hazard, the software and the system context), a further
strategy (Strat:contMit) is applied, by which the claim
concerning the safe management of these software
contributions (captured in Goal:swContribution) is made
and argued through for each potential contribution. This
line of argument is made in the context of an enumeration of
the potential contributions the software could make to the
hazard (referred to in Con:contributions). Further
confidence in the adequacy of the argument at this point is
provided in a backing argument, which supports a claim that
the list of potential software contributions to the hazard is
complete and correct. This argument is made in a separate
GSN module (contident), the structure of which is not
outlined in full here. Goal:contident_contident provides a
reference to the topmost claim in that backing argument,
and serves to direct the reader’s attention to the argument
and evidence provided in the contident module.

Our discussion of the use of the SBVR vocabulary and
claim types to develop and instantiate an argument draws on
the lower part of the pattern in Figure 3, the claim in
Goal:Hazard that the software’s contribution to a particular
Hazard is adequately managed and the subsequent argument
addressing each potential way in which the software could
contribute to the hazard.

The example requires two distinct SBVR vocabularies.
Firstly, the ABS system is represented in a vocabulary,
terms in which are drawn from the organisational
vocabulary for the system as a whole. Concepts in this
vocabulary serve to define concepts in the deployment
context of the ABS software. The ABS software is also
represented by a dedicated, project-level, vocabulary.

Figure 4 contains a restatement of the argument
structure, which represents a partial instantiation of the
template pattern presented in Figure 3, as an assurance
argument for the ABS software. Here, Goal G1 represents
an instantiation of Goal:Hazard in Fig. 3. Contexts C1 and
C2 and G:backing_top are also instantiations of the parallel
elements in the GSN pattern. The underlined terms here
(“ABS software”, “uncontrolled skid hazard”, “safety
requirement 123”, “fault tree analysis”) are instances of the
more generic concept types used in Fig. 3, and are taken
from the SBVR vocabulary for the ABS system (populated
from project documents at the system level, such as system
descriptions, requirements documents, system safety
analysis).

Figure 4 Restatement of lower portion of software safety

argument pattern, indicating claim types

The claims captured in the statements in Goals G2, G3 and
G4 represent standard-level representations of the generic
claim types “Fault Accommodation Claim” and “Hazard
Mitigation Claim” identified in Table 1 above. Here, they
are parameterized with generic noun types drawn from the
SBVR vocabulary for ISO 26262. These claims have an
underlying conceptual model, which derives from ISO
26262, and relates a typology of faults to fault mitigation
measures and characterises the relationship between faults
and hazards1. This model, and the SBVR definitions for the
concepts it identifies, are presented in Figure 5:

SBVR Concept Definitions
fault
Definition: abnormal condition that can cause failure of an
element or an item
Dictionary Basis: ISO 26262 Part 1,§1.42 (adapted)
Possibility: fault causes at least one failure

1 Note that ISO 26262 [11] identifies an additional subtype of fault, the
concept “permanent fault”. This concept requires a claim of a different
type from those used to handle the other fault types, and it will be more
difficult to make those claims generic. In order to simplify the discussion
here and focus on the use of SBVR to populate generic claims, we have
excluded “permanent fault” from the illustrative example here.

Software contributions to
the uncontrolled skid

hazard are appropriately
addressed

G:1
ABS software safety
requirement 123: s/w

contribution to
uncontrolled skid

C1:

Argument over each
identified software

contribution to
uncontrolled skid

hazard

S1:

ABS software fault tree analysis
relating to software contribution

to uncontrolled skid hazard

C2:
The ABS software fault tree

analysis relating the software's
contribution to uncontrolled skid

is complete and correct

G:backing_top

backing

{fault of type systematic fault} is
adequately mitigated by {fault

mitigation measure}, which
partially addresses uncontrolled

skid hazard

G2
{fault of type transient fault} is
adequately mitigated by {fault

mitigation measure}, which
partially addresses uncontrolled

skid hazard

G4
{fault of type intermittent fault} is

adequately mitigated by {fault
mitigation measure}, which

partially addresses uncontrolled
skid hazard

G3

fault

permanent
fault

intermittent
fault

systematic
fault transient fault

failure behaviourcomponent

systematic failure

random
hardware failure

hazard

may cause

exhibits

may lead
to

safety measure
mitigates

6 Template for Ada User Journal

Volume 22, Number 1, March 2001 Ada User Journal

permanent fault
Definition: fault which occurs and then stays until removed or
repaired
Dictionary Basis: ISO 26262 Part 1,§1.88
General Concept: fault

intermittent fault
Definition: a fault which occurs repeatedly and then disappears
Source: ISO 26262 Part 1,§1.42
Dictionary Basis: ISO 26262 Part 1,§1.42 note 2
General Concept: fault

systematic fault
Definition: fault which causes a failure which is manifested in a
deterministic way and which can only be prevented by applying
process or design measures
Source : ISO 26262 Part 1,§1.42 (adapted)
Dictionary Basis: : ISO 26262 Part 1,§1.131 (adapted)
General Concept: fault

safety measure
Definition: activity or technical solution put in place to avoid or
control systematic failures and to detect or control random
hardware failures or to mitigate effects of such failures which
may lead to harm
Dictionary Basis: ISO 26262 Part 1 §1.110
Necessity: safety measure includes safety mechanism

safety measure is specified in functional safety
requirement

Example: definition of software without the use of global
variables
Synonym: means; control

failure behaviour
Definition: termination of an element’s ability to perform a
function as required or intended
Dictionary Basis: ISO 26262 Part 1,§1.39 (adapted)

systematic failure
Definition: failure which can be attributed deterministically to a
certain cause, and which can be eliminated only by a change to
the design or manufacturing process, to operational procedures,
to documentation or to organisational factors
Dictionary Basis: ISO 26262 Part 1,§1.130 (adapted)
General Concept: failure
Necessity: systematic failure is caused by systematic fault

random hardware failure
Definition: failure that may occur unpredictably during the
lifetime of a hardware element, according to some probability
distribution
Dictionary Basis: ISO 26262 Part 1,§1.92
General Concept: failure
Necessity: random hardware failure has probability

component

Definition: element defined at an abstraction level below that
of “the system”, that is logically and technically separable and
is comprised of more than one hardware part or of one or more
software units
Source: ISO 26262 Part 3, §1
Dictionary Basis: ISO 26262 Part 1,§1.15
General Concept: element
Necessity: a component must contain at least one hardware
part or a component must contain at least one software unit

hazard
Definition: potential source of harm caused by malfunctioning
behaviour
 of an item
Dictionary Basis: ISO 26262 Part 1,§1.56

Fact Types

fault causes at least one failure behaviour

failure behaviour may lead to hazard

systematic fault may cause systematic failure

safety measure mitigates fault

systematic failure is caused by systematic fault

random hardware failure has probability

component exhibits failure behaviour

hazard has cause

hazard may be caused by failure behaviour which is exhibited
by component

hazard has effect

Figure 5: Conceptual model and SBVR definitions
underlying the claim types defined in Figure 4

It will be clear that the first part of the claims in Goals
G2, G3 and G4 have been derived straightforwardly from
the conceptual model – they assert the relationship which is
modelled between the “fault” and “safety measure”
concepts, captured in the fact type safety measure mitigates
fault. Note, however, that the claim generation is not
automatic – understanding of the concepts of assurance and
argumentation are required to lead to the concept of
adequacy in association with fault mitigation, and thus to
make the claim subjective (as the argument requires). The
second part of the claim is not generated directly from a
fact type or relationship, since there is no direct link in the
conceptual model between the concepts of fault mitigation
and the hazard. Instead, the relationship is obtained by
traversing the contextual relationships between “fault”,
“failure behaviour” and “hazard”. In order to produce an
argument for a specific ABS system, the claim types
captured in goals G2, G3 and G4 are instantiated by
populating the parameterized noun phrases with concepts
of appropriate types from the SBVR vocabulary defined for
the specific ABS system – the project-level model. Figure
6 presents a partial instantiation of Goal G2:

Figure 6 Partial instantiation of claim type, using project-

specific vocabulary

 Here, Goal G2 from Figure 4 has been instantiated
twice, populated using instances of the “systematic fault”
and “fault mitigation measures’ (a synonym for “safety
measure”) from the SBVR vocabulary for the actual ABS
system (the project-level model). Note that the intention
here is to show the population of the generic claim type

ABS processor calculation bug is
adequately mitigated by range

detection, which partially
addresses uncontrolled skid

hazard

G5

ABS processor calculation bug is
adequately mitigated by trend

analysis, which partially
addresses uncontrolled skid

hazard

G6

Software contributions to
the uncontrolled skid

hazard are appropriately
addressed

G:1

A N Author 7

Ada User Journal Volume 22, Number 1, March 2001

using concrete instances from the vocabulary, rather than to
present a complete argument. As it stands, the GSN
fragment presented in Figure 6 suggests that the two goals
G5 and G6, taken together, provide a sufficient argument
that G1 holds in the context. Given the richness of the
argument structure provided in Figure 4, this is clearly
untrue: further instantiation of Goals G2, G3 and G4 are
required to ensure adequate coverage of Goal G1. For
simplicity, these additional goals (which can be instantiated
from the SBVR vocabulary for the ABS system as G2 has
been here) are not shown.

5 Related Work
There is only a limited amount of research which directly
addresses the integration of controlled language approaches
in the field of assurance argumentation. A methodology for
argument development is presented in [12], which exploits
the structural patterns presented in [10]. Generic patterns to
help form software assurance arguments are also provided
in, for example, [13], [14], [15] and [16]. Such patterns
focus on the structure of the arguments and the issues they
should address, rather than their phraseology or rhetoric
and since they are by definition generic, it can be difficult
to achieve consistency and completeness in the resulting
argument instantiations. In none of these cases is explicit
attention paid to the possible application of controlled
natural language to enforce the patterns and assist the
argument developer in making the reasoning clearer. The
standard industry guidance on the development of GSN
arguments [1] contains some general advice about sentence
structure and a discussion of common language-based
errors. These errors are identified at the level of the whole
claim, rather than individual terms or phrases.

The OMG’s Structured Assurance Case Metamodel [17]
provides a metamodel of argumentation, including
language aspects, and a discussion of the use of SBVR to
realise assurance arguments. The technique described is,
however, overly simplistic and is not fully realised in [17]:
the present paper should be seen as part of an ongoing
debate as to the utility of SBVR in the assurance
argumentation field.

The authors of [18] define a restricted language to describe
rely-guarantee conditions between software applications
and computer hardware. Although this language can be
used in the automated generation of a limited set of
arguments concerning compositional behaviour of software
elements, including failure behaviour, it is very limited in
scope, and does not capture additional required information
such as data concerning evidence supporting rely-guarantee
claims or the degree of confidence which can be placed in
them.

The OPENCOSS project [19] aims to develop technologies
to support the cost-effective reuse of assurance information
within and between safety-critical domains. Assurance
arguments are used as the basis for communication of this
information, and to support certification. This approach
relies on the ability to communicate and compare relevant
concepts across and within organisations and domains.

However, there is no consistent conceptualisation and
terminology to describe and manage assurance, let alone a
“common certification approach” recognised by system
integrators, the supply chain and assessors. OPENCOSS
seeks to provide a basis for communication by developing a
pragmatic approach, which identifies commonality and
differences between the ways in which safety, assurance
and certification are conceived, and provides means to
compare them. The project has developed models of
assurance assets, information, processes and concepts in
safety standards, organisational practices and individual
projects, using a generic metamodel of relevant concepts
for safety assurance [6]. These models are supported by
domain- and company-specific vocabularies which provide
clear, controlled definitions of concepts which need to be
addressed in safety arguments. A mapping technique is
used to define relationships between concepts in both the
models and the vocabulary at varying degrees of exactness,
and tool support is provided to support engineers in making
explicit the significant differences which need to be
discussed in a justification of reuse.

Structured approaches to language are widely used in the
requirements engineering domain. For example, the
Attempto Controlled English (ACE) defines a structured
natural language to support engineers in writing precise
specifications which can be translated into semi-formal
representations suitable for machine-checking [20].
Similarly, Denger et al [21] have identified natural
language patterns to specify functional requirements for
embedded systems. The CIRCE project [22] adopted
model-based techniques to support the validation of natural
language requirements, based on a lightweight formal
model. In the safety-critical domain, the CLEAR
methodology developed by the Dependability Research
group at the University of Virginia uses insights from
linguistics and cognitive psychology concerning the nature
of linguistic error and presents a pattern-based technique to
minimise miscommunication in requirements [23]. None of
these methods explicitly address the issues relating to
structured argumentation for assurance – for example,
inherent subjectivity in claims -, although the relationship
between requirements and argument claims appears to
provide an interesting avenue for future research.

6 Conclusion
This paper has demonstrated the potential use of SBVR
concept definitions and fact types to add rigour to the
language used to convey assurance arguments for safety-
critical CPS. We have described the use of a layered
vocabulary and “mapping” to capture traceability
relationships between concepts defined in safety standards,
in organisation-specific practices and conventions and in
individual projects, and have indicated how the mapping
notion can be used to provide informed guidance on the
transferability of concepts and the reusability of assurance
assets between projects and across domains. Furthermore,
we have provided an initial taxonomy of structured claim
types, partially derivable from SBVR fact types, and have
demonstrated how they can be used to constrain the

8 Template for Ada User Journal

Volume 22, Number 1, March 2001 Ada User Journal

language and focus of assurance arguments. Work to
develop this method and to provide tooling is currently at
an early stage. Theoretical work remains to be done to
expand the taxonomy of claim types and refine their
phrasing. There is also a need to explore the relationship
between declarative fact types, requirements and argument
claims more fully, in particular to find ways to address the
subjective elements of claims in a formal or semi-formal
lexicon for argumentation.

Acknowledgement
The work presented here was carried out as part of the
OPENCOSS Project, No: 289011, funded by the European
Commission under the FP7-ICR Framework. For further
details, see the Project website: http://www.opencoss-
project.eu

References
[1] Goal Structuring Notation Community Standard, Issue

1 (November 2011), Available for download from
http://www.goalstructuringnotation.info

[2] http://www.adelard.com/asce/choosing-asce/cae.html

[3] E. Lapore (2009), Meaning and Argument: an
introduction to logic through language, Second
Edition (First Edition 2000), John Wiley and Sons.

[4] K. Attwood and P. Conmy (2013), Nuanced term-
matching to assist in compositional safety assurance,
First International Workshop on Assurance Cases for
Software-Intensive Systems (ASSURE 2013)

[5] Object Modelling Group (2008), Semantics of Business
Vocabulary and Business Rules, Version 1. Available
for download at http://www.omg.org/spec/SBVR/1.0/

[6] OPENCOSS Consortium (2013), Common
Certification Language: Conceptual Model (Version
1), Project deliverable D4.4. Available for download at
http://www.opencoss-project.eu

[7] IEC (2009), IEC 61508: International Standard –
Functional safety of electrical/ electronic/
programmable electronic safety-related systems

[8] RTCA (1992), RTCA/DO-178B: Software
considerations in airborne systems and equipment
certification

[9] R. Hawkins, T. Kelly, J. Knight and P. Graydon
(2011), A new approach for creating clear safety
arguments, in C. Dale and T. Anderson (eds) Advances
in Systems Safety: Safety-Critical Systems Symposium
(SSS 11), Springer-Verlag, pp 3-24

[10] R. Hawkins and T. Kelly (2013), A Software Safety
Argument Pattern Catalogue, University of York
Department of Computer Science Report YCS-2013-
482. Available for download at
ftp://ftp.cs.york.ac.uk/reports/2013/YCS/482/YCS-
2013-482.pdf

[11] ISO/FDIS (2011), ISO/FDIS 26262 International
Standard – Road Vehicles, Functional Safety

[12] R. Hawkins and T. Kelly (2010), A systematic
approach to developing software safety cases, Journal
of System Safety, vol 46 no. 4, pp 25-33

[13] T. P. Kelly (1998), Arguing safety – a systematic
approach to managing safety cases, D.Phil Thesis,
University of York

[14] R. A. Weaver (2003), The safety of software –
constructing and assuring arguments, PhD Thesis,
University of York

[15] W. Wu (2007), Architectural reasoning for safety-
critical software applications, PhD Thesis, University
of York

[16] Industrial Avionics Working Group (2012), Modular
Software Safety Case Process Description. Available
for download at https://www.amsderisc.com/p-
content/uploads/2013/01/MSSC_201_Issue_01_PD_20
12_11_17.pdf

[17] Object Modelling Group (2013), Structured Assurance
Case metamodel (SACM), Version 1. Available for
download at http://www.ormg.org/spec/SACM/

[18] B. Zimmer, S. Bürklen, M. Knoop, J. Höfflinger and
M. Trapp (2001), Vertical safety interfaces –
improving the efficiency of modular certification, in U.
Voges (ed), Computer Safety, Reliability and Security
SAFECOMP 2001, LNCS 2187, Springer-Verlag, pp
29-42

[19] http://www.opencoss-project.eu

[20] N. E. Fuchs, U. Schwertel and R. Schwitter (1999),
Attempto Controlled English – not just another logic
specification language in P. Flener (ed) (1999), 8th
International Workshop on Logic-Based Program
Synthesis and Transformation 1999, LNCS 1559,
Springer-Verlag, pp 1-20

[21] C. Denger, D. Berry and E. Kamsties (2003), Higher-
quality requirements specifications through natural
language patterns, IEEE Conference on Software:
Science, Technology and Engineering, pp 80-90

[22] V. Abriola and V. Gervasi (2006), On the systematic
analysis of natural language requirements with
CIRCE, Automated Software Engineering, vol 13 no 1,
pp 107-167

[23] K. S. Hanks, J. C. Knight, E. A. Strunk and S. R.
Travis (2003), Tools supporting the clear
communication of critical application domain
knowledge in high-consequence systems development,
in S. Anderson, M. Felici, B. Littlewood (eds),
Computer Safety, Reliability and Security SAFECOMP
2003, LNCS 2788, Springer-Verlag, pp 317-330

