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Prediction and Tracking of Moving Objects in Image with the properties
Sequences v
) = Uiz Xi(1) 1)
Adrian G. Borsand loannis Pitas X;(H)NXe(t) =0, Vj#k )

Abstract—Wi | dicti del f ing obiect velocity and A subsetX(t) is associated to a five-dimensional representative
stract—We employ a prediction model for moving object velocity an _ J o, : i
location estimation derived from Bayesian theory. The optical flow of a cer- vectorp: = [Sk. M|, describing the optical flowM. and segmen

tain moving object depends on the history of its previous values. A joint op- tation informations;. o_f a certain moving region [6]. The_ S_ti” image
tical flow estimation and moving object segmentation algorithm is used for feature vectosS;, contains the location and the characteristic graylevel

the initialization of the tracking algorithm. The segmentation of the moving  of the moving regionS;. is directly related to the segmentation label
objects is determined by appropriately classifying the unlabeled and the ¢ e moving regiork, while M, = [M; .., M,.,] is the velocity
occluding regions. Segmentation and optical flow tracking is used for pre- ! L T R .
dicting future frames. vector of the resp_ectlve moving region. The (_:Iassmcatlon o_f the image
sequence in moving objects is done according to the maximization of

Index Terms—Bayes procedures, image sequence analysis, tracking. thea posterioriprobability

Plu(t)t=1,....K —1|f(t),t=1,...,K)
>P(i;(tt=1,.... K —1]f(t)t=1,....K) (3)

|. INTRODUCTION

Tracking of moving objects is important for video surveillance while

future frame prediction is used in video coding. A Bayesian approagjhere each probability corresponds to the segmentation of a moving
shows that we can estimate the location of moving objects and their ggject and its optical flow in the entire image sequence. After repeat-
sociated velocity based on a set of initial estimates. Occluding and \fly applying the Bayes theorem and after expressing the probabilities
labeled regions are identified and classified in the context of a trackifgm one frame with respect to those corresponding to the previous
algorithm. A few approaches have been adopted for solving these preimes. we obtain

lems. In [1] an occlusion adaptive mesh is used for tracking moving

features over several frames. In other approaches, features are extractegt (i, (¢),t = 1,..., K — 1 [ft)t=1,...,K)

from a set of frames and afterwards they are tracked over the sequence. _ TE P4+ )| fie (i Noi=1 "

Kalman filters have been used for tracking in [2]-[4]. Objects are seg- t:f\,L (f(A +1) |AM‘ (.])’ f(,j)’.] oot

mented based on clustering in [3] and [5]. Simultaneous optical flow x M= [llj(ng(t) [k (G)s £(5). 7 = 1}7 st =1, f(1))]
estimation and moving object segmentation has been employed in [6]. o Plan()j=1.....p=1]f().j=1L....p) @)
In this approach, the moving scene is modeled based on the median ra- H{\:?P(f(t + D) f(),i=1,...,1)

dial basis function (MRBF) network [8]. Each output unit of the neural ) )
network corresponds to a moving object. The results provided by th@erek is the number of frames anpds a givenframe < K. Acom-
MRBF modeling are used for the initialization of a tracking algorithmPonent of the first probability product from the right side of this rela-
The unlabeled regions in each frame are identified and classified 4nship is associated to the reconstruction of a frame from the previous
propriately based on the MRBF model. When new objects enter in ti@mes using the moving object feature vectors. A component of the
scene or when some objects leave the scene, retraining is neces§&fPNd probability product corresponds to the feature vector tracking
In between two MRBF retraining stages, tracking is employed for foRver several frames. The third probability factor models the moving
lowing object movement. Using tracking we predict the moving obje&bject characteristics derived from the figsframes. The probabilities
optical flow and segmentation. A future frame is represented as tH@m the denominator denote the dependence of a frame on the pre-
union of its predicted moving objects. vious ones and it can be neglected in the following considerations.
The Bayesian model for motion and segmentation estimation overh the following, we show how to initialize the algorithm which esti-
the entire image sequence is provided in Section II. Tracking teates the probabilities from (4). The first two franjgs are sp!itin blocks
moving objects over a set of frames is described in Section Il afd afeature vector denotedws = [1. J. 1] containing the site loca-
frame reconstruction based on estimating the moving object locatib@ [, /1, the graylevel and the motion vector is associated with each
and optical flow is described in Section IV. Simulation results ardlock. Forp = 2, after using the Bayesian theorem, the third proba-
presented in Section V and the conclusions are drawn in Section VRIlity factor in (4), can be further described as

P(M;, 81 £(2), (1) = P(f(2) | M}, 85, £(1)

. . P(M, |8, fD)PS; | £(1)) )
Let us consider that each frame of an image sequgiite t = P(f(2)] f(1))

1,..., K ismade up of aset of moving regiofi&;(¢),i = 1,..., N}

Il. MOTION AND SEGMENTATION ESTIMATION

whereP(S; | fa(l)) represents the priori probability of the segmen-
tation andP(M; | S;, f(1)) is the probability of the optical flow es-

timation depending on the segmentation map and image [7]. After ex-
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whereji; andX; are the center vector and covariance matrix estimatagere® ;. consists of the feature vectors from the lagtframes
andWDFD(M ) represents the weighted displaced frame difference

(a measure of confidence in the motion estimation algorithm) [6]. An Qe =[p(t—1) a(t-=2) - (t—M)]  (10)
unsupervised training algorithm provides the estimates of the MRBF

network parameters while modeling the probabilities from (5) [6], [SE"9 Y.« iS @ matrix of size>M/ x 5 whose entries represent the de-
pendency of a feature vector component at tinveith respect to all

feature entries in the previoud frames. The features that are tracked
over time correspond to object location, graylevel changes and optical
Let us neglect the dependence on all the frames excepting the glew. The components of the matr¥, can be found by using the
vious. In this case we can express each probability in the first prodi@ast mean squares (LMS) algorithm [10]. LMS is a fast on-line al-
of (4) as an energy function measuring the accuracy of reconstruct@@fithm which can ensure feature tracking over several frames based
the framef (¢ 4 1) from the displaced moving objects which had beean minimizing the prediction mean square error. Kalman filters can be

I1l. M OVING OBJECT TRACKING

segmented in the fram#(t) seen as an extension of the LMS algorithm which however requires a
much larger computational complexity. Changes in the moving object
P(fe+ 1) alt), F(1) representative vectors are reflected in the moving object segmentation.

1 ~ . In order to maximize the probability in (4), we should maximize its

=z eXP{_‘S [Ui (Xi(t) & Mi(1)), £t + 1)]} (") components from (5), (7), and (9). The relationship (5) provides the
initial estimate, while (9) gives an estimate of the moving object fea-

where Z is a normalizing constanty;(t) @ Mi(t) represents the ture vector from its previous values. This estimate must be consistent

translation of the moving regiof’;(¢) resulted from the segmenta-With an accurate frame reconstruction as given by (7).

tion of the framef (#) with its corresponding motion vectdv!; (¢) and

5[f(t), g(t)] represents a function which counts in how many locationslV. FRAME RECONSTRUCTION FROMMOVING OBJECT PREDICTION

f(t) andg(t) have a different segmentation level. The maximization of

this probability represents the minimization of the difference betwe%@gmentation and its corresponding optical flow in a future frame

the given frame_ and |_ts predlcthn based on the previous frame s dsed on the data extracted from the previous frames. Let us denote by
mentation and its estimated optical flow. It can be observed that by

displacing the set of pixelX’; (#) representing a moving region in the/”(Xk(t +1)) andm(A;lk(t + 1)) the prediction of the location for
frame f (£), certain pixels fro/mX'i(t) o M, () have uncertain assign- the moving regiork and the prediction of its optical flow respectively,

- ._from the framet into the framet + 1. The prediction function for the
ment. When regions from one frame do not have a correspondent |n\t}g + P

. . ?ocity uses the matrizW, , derived from the maximization of the
next frame (un_covered re_glons), (.1) IS not respected any more. W it bability from (9). The optical flow for a certain moving object is
two or more o_hfferen_t objects prOJect n the same region of the_ ne }edicted for each consecutive frame by using the dependency on its
frame (occluding regions), (2) is not valid. Both situations occur in rg- evious values
gions located at the margins of the moving objects and can be ea iTy
identified as providing a probability equal or smaller thap(—1)/Z T (Mia(t+1)) = Woo Mo + Wy My, (11)
in (7). If we have a one-to-one correspondence between the fréfhes ~ - A
andg(#) based on the given model then the probability from (7;ﬁi(s )eequal Te(Miy (4 1)) = Way Mo + Wy Moy (12)
to 1/Z. After detecting the unlabeled regions, we estimate their fedhere M/@,x, Mk.y represent the motion vector components on

ture vectorsa, ; considering only the likely correlations given by the,, ;4 y directions associated with theth moving object for the

motion vectors of the neighboring moving objects. The trained MRB]ES'[ M frames andW.,.,, W,.., W,., W, are their corresponding
4 Ty Ty yxs vy

network, can be applied in a multiresolution approach where the nWéighting vectors found by the LMS algorithm [10] as in (9). This
work parameters obtained from the initial block-based segmentatigh.diction function can easily model complex movements such as

are used for image segmentation at pixel resolution [6]. We apply thgation and acceleration. The number of framidsto be taken into
already trained MRBF network only in the regions decided as uncefzcount for the prediction system must be larger when the motion

tain according to (7). , is smooth and smaller when the motion is fast changing. Similarly
The components of the second product from the expression (4) 1§p111) or (12), we can derive a prediction system for the luminance

resenting the dependency of a feature vector on the values of the S%R/”?racking the change in the average graylevel of a certain moving
feature vector in the previous frames, can be expressed as in Mé¥ect

imum-likelihood regression estimation [9]

A prediction function provides an estimate of the moving object

The location of a moving object in a future frame is given by the

R o o , segmentation in the actual frame and the prediction of its associated
P(:u/k'(t) | uk'(.]): f(.]):.] = 1& et — ]-v f(t)) Optical flow

M
= %exp [— f(t) — ;Wwi(ﬂk)
where we consider the displacement for all the pixels composing the
wherey (jix ) are a set of functions modeling the variation of #ta  moving objectk, and wherer; (M (¢ + 1)) components are derived
object feature vector in timdV; are their associated weight/ is i (11) and (12). Given a prediction function for the optical flow asso-
the number of previous frames used for feature estimationZaisce  cjated with the moving objedt, we can predict the framee+ 1 con-
normalizing constant. However, in most of the cases, moving objefglering the segmentation of the individual objects
have slow changing motion, which can be modeled by a linear system.
Under this assumption, the model (8) can be simplified ft4+1) = Upym(Xp(t + 1)) (14)

} (8) T (Xp(t+1)) = Xp(t) B m(Mi(t +1)) (13)

PGie®) | iie()s FG)aj = 1wt — 1, f(1)) wheref(¢+ 1) is the predicted image. As it was shown in the previous
1 . section, certain regions do not have a clear assignment. Such regions are
= 7 exp [— ‘Hk(t) -W,®; H (9) classified based on an overlapping priority assumption. For example,
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Fig. 1. First frame of the “Hamburg taxi” image sequence. Fig. 2. Twentieth frame of the “Hamburg taxi” image sequence.

if the background is known, it will get the lowest priority and it will be
covered in the case of moving objects pointing to the same region,
it will fill in the regions which remained uncovered. The values to b
used in the unlabeled regions of the predicted frame are taken from ¢
of the previous frames by considering the optical flow.
The PSNR between the predicted fraffpét + 1) and the real one

f(t+1),whenitis available, is considered for checking the validatio
of the assumed model

255R x S

VIR S Fult+ 1) = fis(t+ 1)
(15)

PSNR = 201log,,

whereR x S is the size of the image. If the PSNR between the tw
images is below a certain threshold, then the model is not valid at t
respective frame. Usually, this is caused because a moving object enters

or leaves the scene. In such a case, the MRBF network is retrained in Fig. 3. Moving object segmentation.
order to obtain the appropriate moving object segmentation and optical

flow (5) [6]. The new model is tracked over the following frames as:
described in the previous section.

V. SIMULATION RESULTS

We provide simulation results when the proposed algorithm is aj :
plied in the “Hamburg taxi” image sequence. The first and the 20t :
frames are displayed in Figs. 1 and 2. In the center of a frame from tt
image sequence a white taxi turns around the corner, a black car mo
from left to right while a van moves from right to left. The moving
object segmentation as provided by the MRBF network for the firs ::
frame is shown in Fig. 3. Its corresponding optical flow is providec ::*
in Fig. 4. The segmentation and optical flow parameters are used 1 :::
the initialization of the tracking algorithm.The occluding and unlabele:
regions for the first frame are shown in Fig. 5. They are located at tt
moving object boundaries according to a small local frame reconstru :
tion probability in (7). The pixels of these regions are classified usin -2:1i:i00:
the MRBF network parameters. The moving object segmentation re-
sulted after this classification is displayed in Fig. 6. After tracking theig. 4. The optical flow of the first frame from the “Hamburg taxi” image
moving objects as described in Section lIl, we obtain the segmentatit§iue"ce:
of the 20th frame, as provided in Fig. 7. Six past fraines = 6) have
been used for tracking. It can be observed that the segmentation ofutiéle turning around the corner. The optical flow corresponding to the
white taxi in the center of the frame is quite good despite the fact thatacked objects in the 20th frame is represented in Fig. 8. The predicted
due to the three-dimensional perspective view, its projection changd#ih frame, reconstructed from the predicted segmentation and moving
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Fig. 5. Occluding and unlabeled regions. Fig. 8. Estimated optical flow of the 20th frame.

Fig. 6. Segmentation of the moving objects after appropriately classifying the Fig. 9. Predicted 20th frame.
occluding regions.

Fig. 10. Difference between the predicted and the real 20th frame from the
Fig. 7. Moving object segmentation after tracking them 20 frames.  “Hamburg taxi” image sequence.

object velocities, is provided in Fig. 9. The difference between the prehanges in illumination. In Fig. 11, the PSNR of the predicted image
dicted and the real 20th frame is shown in Fig. 10. We can see from thiken tracking the moving objects is ploted for a set of frames. The
Figure that many errors in the prediction of the 20th frame are due MRBF network training took 33.3 s when using a Silicon Graphics
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Tomographic Reconstruction Using Nonseparable Wavelets
Fig. 11. PSNR of the predicted frame in the “Hamburg taxi” image sequence, 4 : . : : <
“~" denotes the PSNR of the proposed tracking algorithm. “- -” represents tﬁtephane Bonnet, Frangoise Peyrin, Francis Turjman, and Rémy Prost
PSNR prediction considering the initial MRBF model #rx 4 pixel blocks.
“-.” denotes the PSNR between the actual frame and that used for prediction. )

Abstract—In this paper, the use of nonseparable wavelets for tomo-
graphic reconstruction is investigated. Local tomography is also presented.

. . The algorithm computes both the quincunx approximation and detail
Indy Workstation. The trained network, can be used for those sucCggatficients of a function from its projections. Simulation results showed

sive frames which match the model according to a criterion [6]. In thisat nonseparable wavelets provide a reconstruction improvement versus
case, 95 s are required for segmenting the moving objects and the ggparable wavelets.

tical flow for 20 frames when usingx 4 pixel blocks. When employing  ndex Terms—tocal tomography, McClellan transformation, nonsepa-
tracking as described in this study, only 68 s are necessary for the saante wavelets.

frames using pixel resolution segmentation. In the first case only 3040

vectors had been processed while in the second case their number was

48640. The segmentation provided by the tracking algorithm is quite |. INTRODUCTION

good as it can be observed from the experimental results and provideSomputerized tomography (CT) consists of recovering a function
a good basis for prediction-based frame reconstruction. The predictigsim a set of its projections and relies on the inversion of the Radon
PSNR of the tracking algorithm is better than when considering theinsform. According to the nature of the data set, this problem may
initial MRBF model for segmenting all the frames and assuming jupk ill-posed. The use of wavelets for inverse problems in general, and
the previous moving object features for reconstruction, as it can be @ in particular, presents several interesting features to stabilize the
served from Fig. 11. inversion process [1]. As a matter of fact, wavelets may bring valuable
solutions to the problem of local tomography [2]-[4].
VI. CONCLUSION The relationships between the continuous wavelet transform and the

) ) ) ) . Radon transform have first been established in several independent
We propose a moving object tracking algorithm derived from thg s (5] [6]. Olson was the first to devise a reconstruction scheme

Bayesian theory. The optical flow and the segmentation features gig, 4 customized sampling of the Radon transform [2]. Delaney [3]

jointly modeled by the MRBF network in the initial stage. The 03y Rashid-Farrokhi [4] proposed a multiresolution tomographic re-
cluding and unlabeled regions are detected and classified appropriatgly,siruction algorithm to recover the two-dimensional (2-D) separable
The proposed algorithm provides good moving object tracking cap@izcrete wavelet transform (2-D DWT) of the image from its projec-

bilitigs. Sugh capabillities are used for.seg'menting and estimating ms, and applied it to local tomography. Both algorithms are based on
moving object velocity and segmentation in a future frame. The pro:p \yayelets, constructed by tensor products of one-dimensional (1-D)
posed algorithm is employed for frame prediction. wavelets. The 2-D separable wavelets impose a rectangular tiling of the
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