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Abstract 

Due to the inherent complexity, the common approach in analysing nonlinear response of 

structures with soil-structure interaction (SSI) in current seismic provisions is based on 

equivalent SDOF systems (E-SDOF). This paper aims to study the influence of higher modes on 

the seismic response of SSI systems by performing intensive parametric analyses on more than 

6400 linear and non-linear MDOF and E-SDOF systems subjected to 21 earthquake records. An 

established soil-shallow foundation-structure model with equivalent linear soil behaviour and 

nonlinear superstructure has been utilized using the concept of cone models. The lateral strength 

and ductility demands of MDOF soil-structure systems with different number of stories, 

structure-to-soil stiffness ratio, aspect ratio and level of inelasticity are compared to those of E-

SDOF systems. The results indicate that using the common E-SDOF soil-structure systems for 

estimating the strength and ductility demands of medium and slender MDOF structures can lead 

to very un-conservative results when SSI effect is significant. This implies the significance of 

higher mode effects for soil-structure systems in comparison with fixed-based structures, which 

is more pronounced for the cases of elastic and low level of inelasticity. 

 

Keywords: Soil-structure interaction, equivalent SDOF, MDOF systems, seismic strength 

demand, ductility demand; higher modes effect 
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1. Introduction  

Extensive damage to building structures during recent major earthquakes around the world (e.g. 

Kashmir, 2005; China, 2008; Indonesia, 2009; Haiti, 2010; Turkey, 2011) has emphasized the 

need for better understanding of the structural responses subjected to earthquake ground motions 

to reduce their vulnerability through better design and retrofitting. The seismic response of a 

building structure depends on many factors such as structural properties, ground motion 

characteristics, site conditions as well as soil-structure interaction (SSI). SSI is one of the 

important factors that can significantly affect the seismic performance of structures located on 

soft soils by changing the overall stiffness and energy dissipation mechanism of the systems. In 

fact, a soil-structure system behaves as a new system having longer period and generally higher 

damping ratio due to energy dissipation attributed to hysteretic behaviour and wave radiation in 

the soil. The general effects of SSI on elastic response of SDOF and MDOF systems were the 

subject of many studies in the 1970s (e.g. Sarrazin et al. [1972], Jennings and Bielak [1973], 

Chopra and Gutierrez [1974], Veletsos and Meek [1974], Veletsos and Nair [1975], and Veletsos 

[1977]). These works led to providing tentative provisions in ATC3-06 [1978], which is the 

foundation of more recent provisions on earthquake-resistant design of soil-structure systems 

such as BSSC [2000] and FEMA-440 [2005].   

Code-compliant seismic designs for SSI systems are, conventionally, based on the 

approximation, in which the predominant period and associated damping of the corresponding 

fixed-base system are modified based on the soil and structures characteristics [Jennings and 

Bielak, 1973; Veletsos and Meek, 1974]. Some of the current seismic provisions consider SSI, 

generally, as a beneficial effect on seismic response of structures since SSI usually results in a 

reduction of total shear strength of building structures [BSSC, 2000; ASCE, 2005].  However, the 

inelastic behaviour of the superstructure, inevitable during severe earthquakes, has not been well 

investigated. One of the early works on inelastic soil-structure systems were conducted by 

Veletsos and Verbic [1974], Bielak [1978] and Muller and Keintzel [1982]. The results of their 

study showed that the ductility demand of non-linear SDOF structures can be different from that 

of the equivalent SDOF systems without considering SSI effects. Rodriguez and Montes (2000) 

investigated the seismic response of buildings located on flexible soil and concluded that the 

inelastic displacement demands of soil-structure systems can be approximated by using 
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equivalent fixed-base systems having an elongated period. Aviles and Perez-Rocha [2003, 2005] 

first developed the concepts of equivalent elastic soil-structure system to predict the nonlinear 

behaviour of structures by using a nonlinear replacement SDOF oscillator defined by an effective 

ductility together with the effective period and damping of the system for the elastic condition. 

This was followed by more studies to investigate the SSI effects on inelastic behaviour of SDOF 

systems (e.g. Takewaki and Fujimoto [2004], Ghannad and Ahmadnia [2006], Kishida and 

Takewaki [2006], Ghannad and Jahankhah [2007], Mahsuli and Ghannad [2009], Aviles and 

Perez-Rocha [2007 and 2011], Aydemir [2013], and Khoshnoudian et. al. [2015]). They 

concluded that, in general, seismic design regulations using simplified SDOF systems (e.g. 

ATC3-06 [1978]) lead to higher ductility demands, especially for short period buildings located 

on soft soils.  

While most studies on nonlinear soil-structure systems are focused on SDOF systems, 

equivalent SDOF systems may not be able to correctly reflect the realistic SSI behaviour of 

multi-storey structures when subjected to strong ground motions. This can be due to ignoring the 

effects of higher modes and also height-wise distribution of lateral strength and stiffness on 

inelastic response of MDOF soil-structure systems. A few studies on the effects of SSI on 

seismic behaviour of MDOF systems are those conducted by Dutta et al. [2004], Barcena and 

Esteva [2007], Galal and Naimi [2009], Tang and Zhang [2011], Ganjavi and Hao [2012 and 

2013], and more recently Abedi-Nik and Khoshnoudian [2014]. However, the lack of clarity in 

SSI effects on seismic demands of MDOF systems requires more attention.  

In this paper, an intensive parametric study is performed to investigate the seismic response of 

more than 6400 soil-structure systems with different number of storeys, structure-to-soil stiffness 

ratio, aspect ratio and level of inelasticity subjected to 21 real earthquake records.  The results are 

then used to assess the adequacy of equivalent SDOF (E-SDOF) systems in estimating the 

strength and ductility demands of MDOF soil-structure systems under design earthquakes, with 

the emphasis on the effects of higher modes. 
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2. Soil-Shallow Foundation-Structure Models and Key Design Parameters  

2.1. Specifications of superstructure models 

Shear buildings are one of the most frequently used models that facilitate performing a 

comprehensive parametric study [Diaz et al., 1994; Mohammadi et al., 2004; Moghaddam and 

Hajirasouliha, 2008; Hajirasouliha and Moghaddam, 2009; Abedi-Nik and Khoshnoudian 2014].  

In the MDOF shear-building models utilized in the present study, storey heights are 3 m and total 

structural mass is considered as uniformly distributed along the height of the structure. A bilinear 

elasto-plastic model with 2% strain hardening in the force-displacement relationship is used to 

simulate the hysteretic response of each storey. This model is selected to represent the behaviour 

of non-deteriorating steel-framed structures. In all MDOF models, lateral storey stiffness is 

assumed as proportional to storey shear strength distributed over the height of the structure in 

accordance with the ASCE/SEI 7-10 [2010] design load pattern [Hajirasouliha and Pilakoutas, 

2012]. Five percent Rayleigh damping was assigned to the first mode and the mode in which the 

cumulative mass participation was at least 95%. In this study, for each MDOF building an 

equivalent SDOF system is also introduced. The mass of the E-SDOF system is the same as the 

total mass of the MDOF building. The period of vibration, damping ratio and effective height of 

the E-SDOF system are obtained based on the fundamental mode properties of the corresponding 

MDOF building.  

2.2. Soil-foundation-structure model and key parameters in interacting systems 

The widely-used sub-structure method is adopted to model soil-structure systems. Using this 

method, soil material is modelled separately and then combined with superstructure model to 

establish the whole soil-structure system. The soil-foundation element is modelled by an 

equivalent linear discrete model based on the concept of cone model with frequency-dependent 

coefficients (Wolf, 1994). The cone model represents a circular rigid foundation with mass m f  

and area moment of inertia fI resting on a homogeneous half-space. In lieu of the rigorous 

elasto-dynamical approach, it is shown that the simplified cone model can be used with sufficient 

accuracy in engineering practice [Wolf, 1994].  

Figure 1 shows the typical MDOF and E-SDOF soil-structure systems in this study. The sway 

and rocking DOFs are defined as representatives of translational and rotational motions of the 
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shallow foundation, respectively, disregarding the slight effect of vertical and torsional motions. 

The stiffness and energy dissipation of the supporting soil are represented by springs and 

dashpot, respectively. Since all analyses are carried out in the time domain, the soil spring and 

dashpot values at any time instant are assumed to be compatible with the current natural 

frequency of the system and are determined by using an iterative process [Ganjavi and Hao, 

2013]. While being inherently hysteretic, soil material damping is treated as viscous damping so 

that more intricacies in time-domain analysis are avoided. The properties of the soil-shallow 

foundation elements in Figure 1 are summarized in Table 1.   

Table 1: Properties of soil–foundation elements based on the cone model concept 
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The parameters hk , hc , k   and c  in Table 1 represent sway stiffness, sway viscous 

damping, rocking stiffness, and rocking viscous damping, respectively. Equivalent radius and 

area of cylindrical foundation are denoted by r  and fA . Besides,  ,  , pv  and sv are 

respectively the specific mass density, Poisson’s ratio, dilatational and shear wave velocity of 

soil. The relationship between pv  and sv  is defined as 2(1 ) (1 2 )    1/ 3,p sv v if       and 

2    1/3 1 / 2p sv v if    . In this study,   is considered to be 0.4 and 0.45 for alluvium soil and 

soft soil, respectively. 
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To consider the soil material damping, 0 , each spring and dashpot used in the soil-

foundation model is respectively augmented with an additional parallel connected dashpot and 

mass [Ganjavi and Hao, 2013]. Also, to modify the effect of soil incompressibility, an additional 

mass moment of inertia M  equal to 50.3 ( 1/ 3) r    is added to the foundation for   greater 

than 1/3 [Wolf, 1994]. Incorporating soil nonlinearity to the soil-foundation element is 

approximated through conventional equivalent linear approach, in which a degraded shear wave 

velocity, compatible with the estimated strain level in soil, is utilized for the soil medium 

[FEMA-440, 2005]. It has been shown that the effect of these factors can be best described by 

using the following dimensionless parameters [Veletsos, 1977; Wolf and Deeks, 2004]:  

(1) A dimensionless frequency as an index for the structure-to-soil stiffness ratio defined as: 

0  fix sa H v , where fix  is the natural frequency of the fixed-base structure. The practical 

range of 0a  for conventional building structures is from zero for the fixed-base structure to about 

3 for the case with severe SSI effect [Ghannad and Ahmadnia, 2006]. H is the effective height 

of the structure corresponding to the fundamental mode properties and can be obtained from

1 1
1 1 1

 
jn n

j j i j j
j i j

H m h m 
  

  
   

  
   ,where jm is the mass of the jth storey; ih is the height from 

the base level to level j; and  1j  is the amplitude at jth storey of the first mode.  

(2) Aspect ratio of the building defined as H r , where r is equivalent foundation radius.  

(3) Inter-storey displacement ductility demand defined as m=   y   , where m and y  are 

the maximum inter-storey displacement and the yield inter-storey displacement, respectively. For 

MDOF buildings,   is the greatest value among all storey ductility ratios.  

(4) Structure-to-soil mass ratio defined as 2=   totm m r H , where mtot and H are the total 

weight and height of the structure, respectively.  

(5) Foundation-to-structure mass ratio f totm m , where m f is the mass of the rigid 

foundation. In the present study, the foundation mass ratio is assumed to be 0.1 of the total mass 

of the MDOF buildings. 
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3. Procedure for Parametric SSI Analysis 

The adopted soil-foundation structure model explained in previous section is used to assess the 

effects of SSI on the seismic response of both MDOF and E-SDOF systems. To perform non-

linear dynamic analysis on soil-structure systems, a comprehensive computer program that was 

developed and validated by Ganjavi and Hao [2012 and 2013] is utilised. A series of 5, 10, and 

15-storey shear buildings are used to obtain the strength and ductility demands of both MDOF 

and E-SDOF systems. In this investigation, an ensemble of 21 earthquake ground motions 

recorded on alluvium and soft soil deposits (soil type C and D based on USGS site classification) 

are used in the nonlinear dynamic time history analyses. All selected ground motions are 

obtained from earthquakes with magnitude greater than 6, having closest distance to fault rupture 

more than 15 km without pulse type characteristics. The characteristics of the selected ground 

motions can be found in Ganjavi and Hao [2012].  

For each given earthquake ground motion, a set of 6400 different soil-structure models were 

developed using a wide range of key parameters discussed in the previous section. This includes 

MDOF and E-SDOF models with 30 fixed-base fundamental periods, ranging from 0.1 to 3 sec 

with intervals of 0.1, three values of aspect ratio ( H r =1, 3, 5), four values of structure-to-soil 

stiffness ratio ( 0a = 0, 1, 2, 3), and three values of target inter-storey drift ductility ( t = 1, 2, 6). 

It should be noted that the range of the fundamental period and aspect ratio considered in the 

present study are wider than those of the most practical structures to cover all possible 

conditions.  

 

4. Effect of SSI on Strength Demand of MDOF and E-SDOF Systems 

4.1 Strength Demand of MDOF and E-SDOF Soil-Structure Systems 

In this section, the effect of SSI on total strength demand of both MDOF and E-SDOF soil-

structure systems is studied. Figure 2 compares the elastic strength demand spectra of E-SDOF 

systems with 5 and 15-storey buildings, which are respectively representative of relatively low- 

and high-rise buildings. The vertical axis is the total normalized shear strength that is defined as 

the total shear strength demands divided by the total structural mass and normalized to the peak 

ground acceleration (PGA). The presented results are the average of 21 selected earthquakes and 
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are provided for systems with two aspect ratios H r = 1 and 5, as representative of squat and 

slender buildings, and two structure-to-soil stiffness ratios 0a  = 1 and 3, to represent low and 

high SSI effects, respectively.  

The results in Figure 2 show a very similar trend for both MDOF and E-SDOF systems in 

elastic state, where the strength demands of soil-structure systems are generally lower than those 

of corresponding fixed-base structures. This conclusion is consistent with the results of the study 

carried out for SDOF systems by Ghannad and Jahankha [2007]. However, a significant 

difference can be found between the strength demands of MDOF structures and those of E-SDOF 

systems when SSI effect is predominant (i.e. 0a = 3).  

It is shown in Figure 2 that for fixed-base systems, the difference between the results of 

SDOF and MDOF systems are significantly lower than those of the SSI systems.  By increasing 

the SSI effect (i.e. larger 0a values), the elastic strength demand of MDOF systems can be 

significantly larger than that of E-SDOF systems especially for the longer periods. This 

phenomenon is intensified for slender structures with H r = 5, as well as by increasing the 

number of stories. As an instance, for a soil-structure system with 0a = 3 and fixT = 2, the strength 

demands of 5 and 15-storey buildings are, respectively, 1.78 and 2.57 times the corresponding E-

SDOF systems for squat structure with H r = 1; 5.5 and 8.16 times for very slender systems with 

H r = 5; and 1.2 and 1.55 times for the fixed-base systems. Hence, it can be concluded that in 

elastic domain, using the base shear obtained from E-SDOF may lead to significant 

underestimation of strength demand the MDOF soil-structure systems, especially when SSI effect 

is predominant. This will be more discussed in next sections. 

The same calculations were carried out for ESDOF and MDOF soil-structure systems with 

target ductility ratios t = 2 and 6, which can be representatives of low and high inelastic 

behaviours. The mean values for all 21 selected earthquake ground motions are calculated for 

each fundamental fixed-base period (Tfix) as shown in Figures 3 and 4 for the cases of t = 2 and 

6, respectively. The results for near elastic systems in Figure 3, in general, follow the same trend 

as the elastic systems. The exception is for very short period structures with high aspect ratios 

(i.e. slender buildings), that soil-structure systems exhibit larger strength demands in comparison 
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to the fixed-base systems. The difference between elastic and inelastic systems is intensified by 

increasing the target ductility ratio as shown in Figure 4 for t = 6. The results indicate that the 

strength demands of both MDOF and E-SDOF soil-structure systems, irrespective of the number 

of stories, are only greater than those of the corresponding fixed-base systems for the slender 

structures having very short periods. However, considering the fact that typical slender MDOF 

buildings usually do not have such short periods, it may be concluded that SSI effects can 

generally reduce the lateral structural strength demands of typical building structures. Similar 

conclusions are made by Ghannad and Jahankhah [2007] for SDOF soil-structure systems.  

Comparison between Figures 1, 2 and 3 shows that, for the practical range of periods for 

multi-storey buildings (i.e. Tfix > 0.1 sec), the SSI effect decreases as target ductility demands 

increases, which is more prominent for E-SDOF and low-rise MDOF systems (i.e. N=1 and 5). 

The results for t = 6 in Figure 4 show a considerable reduction in the lateral strength demands of 

15-storey soil-structure systems with 0a = 3 compared to their corresponding fixed-base 

structures. This implies that although the SSI effects may become less prominent as the structure 

experiences higher inelastic deformations, they can be still significant for tall buildings on soft 

soil deposits (high structure-to-soil stiffness ratio).           

The presented results indicate that by increasing the SSI effect, i.e. larger 0a , strength 

demands of MDOF systems can be considerably larger than those of E-SDOF systems for both 

elastic and inelastic structures, especially in the long period range. To get a better understanding 

of this observation, Figure 5 illustrates the difference between the strength demands of 5, 10 and 

15-storey MDOF and associated E-SDOF models for both fixed-base and soil-structure systems. 

This figure can explain better the effect of number of storeys on the strength demands of both 

fixed-base and soil-structure systems when undergoing different levels of ductility. It is shown 

that in the elastic state (i.e. t = 1), except for very short periods, the strength demands increase 

by increasing the number of stories. This trend is intensified by increasing the value of 0a , such 

that for the severe SSI effects (i.e. 0a =3) the strength demands of E-SDOF systems can be up to 

6 times less than those of the corresponding 15-storey buildings. In the inelastic domain, for a 

specific fixed-base period, strength demand increases as the number of storeys increases, but the 

rate of increment becomes smaller with the increase of the number of stories. By increasing the 
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level of inelasticity, the difference between the strength demand values of MDOF systems and 

those of the corresponding E-SDOF systems reduces, especially for the systems with high 

structure-to-soil stiffness ratio (i.e. higher SSI effects).  

4.2. Effect of Higher Modes in Strength Demands of Soil-Structure Systems  

To better investigate the adequacy of using common E-SDOF systems in estimating the strength 

demands of MDOF systems for both fixed-base and soil-structure systems, Figure 6 presents the 

mean ratio of strength demands of 10-storey buildings to those of associated E-SDOF systems. 

The results are provided for fixed-base structures and soil-structure systems with three levels of 

ductility demands (µ =1, 2, 6), three aspect ratios ( H r = 1, 3, 5), and three structure-to-soil 

stiffness ratios ( 0a = 1, 2, 3). It is shown that for fixed-base structures in elastic range (i.e. µ =1), 

there is no significant difference between the strength demands of MDOF and corresponding E-

SDOF systems. However, for soil-structure systems with elastic behaviour or low ductility 

demands (i.e. µ =1, 2), the ratio of strength demands of MDOF systems to their corresponding E-

SDOF systems can be significant. This phenomenon is more pronounced for the structures with 

high aspect ratio (slender structures). As an instance, it is shown in Figure 6 that for a MDOF 

structure with fundamental period of 2.5 sec, the strength demand ratio is 1.6 for the fixed-base 

system, while it increases to 2.5, 5.6 and 9.3 for squat, medium and slender soil-structure 

systems, respectively. This implies that, opposed to fixed-base structures, using E-SDOF soil-

structure systems for estimating the strength demands of MDOF structures when SSI effect is 

significant can lead to very un-conservative results.  

 The results presented in Figure 6 also indicate that, by increasing the level of inelasticity, the 

strength demand ratio of MDOF structures to their corresponding E-SDOF systems increases for 

fixed-base systems, while it decreases for soil-structure systems. Nevertheless, for medium and 

slender soil-structures systems, the strength demand ratios are still greater than those of the fixed-

base systems. For instance, the strength demand of a MDOF system with fixT = 2 is 2.1 and 2.4 

times the strength demand of its corresponding E-SDOF system for target ductility demands of 1 

and 2, respectively. This ratio can increase to 5.5 and 3.6 times for slender soil-structure systems 

with severe SSI effect (i.e. H r = 5, and 0a = 3).  
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It can be also seen from Figure 5 that for MDOF systems the strength demands usually 

increase with increasing the number of stories. This phenomenon may be justified by studying 

the distribution pattern of storey ductility demands along the height of MDOF structures. The 

ductility demand for MDOF systems is conventionally referred to as the greatest value among all 

storey ductility ratios; which implies that the ductility ratios in all other stories are lower than the 

target ductility. This may result in a greater strength demand when compared to the same MDOF 

building, in which all stories have identical ductility ratio equal to the target value. For example, 

Figure 7 compares the Coefficient of Variation (COV) of storey ductility ratios for 5, 10 and 15-

storey MDOF systems with aspect ratio of 3, target ductility ratio of 6 and structure-to-soil 

stiffness ratios of 1 and 3.  The results are the average values of 21 earthquake ground motions 

used in this study. As seen, except for structures with very short periods, COV of ductility ratios 

increases by increasing the number of storeys. For better comparison, Figure 8 shows the height-

wise distribution of averaged ductility demands for the same MDOF soil-structure systems with 

fixT = 1.5. It can be seen that, in general, by increasing the number of stories, more stories have 

the ductility demands lower than the target value, which supports the above discussion. It should 

be noted that the averaged maximum ductility ratios are not exactly equal to the target ductility, 

since the maximum ductility ratio depends on a given earthquake ground motion and, therefore, it 

may happen in different stories.    

 

5. Effect of SSI on Ductility Demand of MDOF and E-SDOF Systems 

To investigate the effect of SSI on maximum ductility demands of MDOF and E-SDOF 

structures with different values of 0a and H r , the following procedure is adopted in this study. 

First, by using an iterative process the elastic and inelastic strength demands of MDOF and E-

SDOF fixed-base systems (i.e. without considering SSI effects) are calculated to reach a 

predefined target ductility ratio, t , when subjected to the design earthquake ground motion. 

Subsequently, the soil-shallow foundation elements (see Figure 1) are added to the designed 

structures and the ductility demands are calculate for the soil-structure systems. The effect of SSI 

can then be examined by comparing the results of the fixed-base models and the corresponding 

soil–structure systems.  
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As an example, Figure 9 compares the average ductility demand spectra of MDOF and E-

SDOF soil-structure systems with structure-to-soil stiffness ratios 0a = 1, 2 and 3. The vertical 

axis in all plots is the ratio of ductility demand in flexible-base structure to that of the fixed-based 

structure. For the E-SDOF systems, irrespective of the structure-to-soil stiffness ratio or the level 

of inelasticity, there is a threshold period before which the ductility demand of the structure with 

SSI is always larger than that of the corresponding fixed-base system. However, SSI effects 

reduce the ductility demand of the soil-structure systems with fixed-based periods above the 

threshold value. It is shown that the difference between the ductility demands of the fixed-base 

and flexible-base systems increases by increasing structure-to-soil stiffness ratio (i.e. higher SSI 

effects).  

It is shown in Figure 9 that the effect of SSI on the ductility demand of MDOF systems can be 

completely different from that of the E-SDOF systems, depending on the structure-to-soil 

stiffness ratio and the level of inelasticity. For MDOF systems with low SSI effects ( 0a = 1), the 

ductility demand ratios for almost all fixed-based periods are greater than unity. This trend is 

intensified as the number of storeys increases and, hence, is more obvious for the case of 15-

storey building. For more significant SSI effects ( 0a = 2 and 3), it can be seen that there is a 

threshold period before which the ductility demand ratios are always less than one. However, 

unlike E-SDOF systems, there is not a clear trend beyond this limit and after reaching to a 

minimum level, ductility demand ratios again rises as period increases.  

To study the effect of aspect ratio on the ductility demands of MDOF and E-SDOF soil-

structure systems, Figures 10 and 11 present the results for three aspect ratios ( H r = 1, 3, 5) at 

two different ductility levels ( t = 2 and 6). For E-SDOF systems, it can be observed that by 

increasing the aspect ratio, the difference between ductility demands of fixed-base and flexible-

base systems increases. This conclusion is consistent with the studies carried out on SDOF SSI 

systems by Ghannad and Ahmadnia [2006] and Mahsuli and Ghannad [2009]. For MDOF 

systems, the difference between ductility demands of the structures with or without considering 

SSI is less significant. It should be noted that, in contrary to the E-SDOF systems, the flexible-

base to fixed-base ductility demand ratios for MDOF systems with low structure-to-soil stiffness 

ratio ( 0a = 1) are in general greater than unity, which is especially evident for structures with 
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higher number of storeys and aspect ratio. This implies that the E-SDOF soil-structure systems 

generally underestimate the effects of SSI on ductility demands of this type of structural systems.  

 

6. Conclusions  

An intensive parametric study was performed to investigate the effect of SSI on strength and 

ductility demands of MDOF structures with different number of stories, structure-to-soil stiffness 

ratio, aspect ratio and level of inelasticity compared to their equivalent SDOF systems (E-SDOF). 

Based on the results presented in this paper, the following conclusions can be drawn: 

1. The elastic strength demands of E-SDOF and MDOF soil-structure systems are considerably 

lower than those of the fixed-base structures for both squat and slender structures. This is 

especially evident for the systems with high structure-to-soil stiffness ratios (i.e. soft soil 

profiles). 

2. For the same ductility level, flexible-base E-SDOF and MDOF soil-structure systems require 

lower strength demands compared to their fixed-base counterparts. The only exception is for 

the slender soil-structure systems with very short periods. Considering the fact that typical 

slender MDOF buildings usually do not have such short periods, it can be concluded that SSI 

effects can generally reduce the lateral structural strength demands of typical building 

structures. By increasing the level of inelasticity, however, the difference between the 

flexible-base and fixed-base strength demands becomes less significant. 

3.  Opposed to the fixed-base condition, using E-SDOF soil-structure systems for estimating the 

strength demands of medium and slender MDOF systems can lead to very un-conservative 

results when SSI effect is significant (i.e. high structure-to-soil stiffness ratio). This 

phenomenon, which is more pronounced for elastic and low ductility levels, demonstrates the 

significance of higher mode effects for soil-structure systems in comparison with fixed-based 

structures. This is especially important, since current seismic regulations for considering SSI 

effects are mainly based on E-SDOF systems. 

4.  For both E-SDOF and MDOF systems, irrespective of the structure-to-soil stiffness ratio or 

the level of inelasticity, there is a threshold period before which the ductility demand of the 

SSI system is larger than that of the corresponding fixed-base structure. However, it is shown 
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that E-SDOF soil-structure systems generally underestimate the effects of SSI on ductility 

demands of high-rise and slender MDOF buildings with low structure-to-soil stiffness ratios. 
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Figure 1: Soil-shallow foundation-structure models for sway and rocking motions (a) E-

SDOF system (b) Typical MDOF system 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Figure 2: Comparison of the average elastic strength demand for ESDOF and 5 and 15-

storey MDOF soil-structure systems, µ =1  
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Figure 3: Comparison of the average inelastic strength demand for ESDOF and 5 and 15-

storey MDOF soil-structure systems, µ =2 

 
 
 

 
 

  

 

 

 

 

 

 

 

 

Figure 4: Comparison of the average inelastic strength demand for ESDOF and 5 and 15-

storey MDOF soil-structure systems, µ =6 
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Figure 5:  Effect of number of stories on the average elastic and inelastic strength demand of 

fixed-base and soil-structure systems for H r = 3 
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Figure 6:  The ratio of elastic and inelastic strength demands in 10-storey building to those in 

the corresponding E-SDOF system 

 
 
 
 
 

  

 

 

 

 

 

Figure 7: COV of storey ductility demands for 5, 10 and 15-storey MDOF soil-structure 
systems 
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Figure 8: Height-wise distribution of average ductility demands for systems with fixT = 1.5 
and μ= 6 
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Figure 9: Average ductility demands for different E-SDOF and MDOF soil-structure systems 

for H r = 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Average ductility demand for different E-SDOF and MDOF soil-structure 

systems, µ=2 
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Figure 11: Average ductility demand for different E-SDOF and MDOF soil-structure 

systems, µ= 6 
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