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Motivated by cold atom experiments on Chern insulators, we study the honeycomb lattice Haldane-Hubbard

Mott insulator of spin-1/2 fermions using exact diagonalization and density matrix renormalization group meth-

ods. We show that this model exhibits various chiral magnetic orders including a wide regime of triple-Q tetra-

hedral order. Incorporating third-neighbor hopping frustrates and ultimately melts this tetrahedral spin crystal.

From analyzing the low energy spectrum, many-body Chern numbers, entanglement spectra, and modular ma-

trices, we identify the molten state as a chiral spin liquid (CSL) with gapped semion excitations. We formulate

and study the Chern-Simons-Higgs field theory of the exotic CSL-to-tetrahedral spin crystallization transition.

Electronic bands in crystals can display nontrivial topol-

ogy, as exemplified by the recent discoveries of topologi-

cal insulators [1, 2], Weyl semimetals [3–5], and quantum

anomalous Hall insulators (QAHIs) [6, 7]. Interactions can

dramatically modify this single-particle physics, for instance

by rendering indistinguishable certain topologically distinct

free-fermion phases [8, 9]. An alternative outcome is the

emergence of topological order [10], manifested by nontrivial

ground state degeneracies depending on the lattice topology,

as discovered in numerical studies of partially filled Chern

bands which realize lattice fractional quantum Hall liquids

[11, 12]. Interactions may also lead to charge localization,

while the spin degrees of freedom display topological order.

Finding even quasi-realistic models of such topological Mott

insulators (TMIs) [13–16] is a crucial step towards identify-

ing experimental candidates and understanding exotic quan-

tum phase transitions out of TMIs.

In this Letter, we study interaction effects in the Haldane

model [17], a paradigmatic model of a QAHI on the two-

dimensional (2D) honeycomb lattice. The Haldane model

supports two bands with Chern numbers C=±1; it has been

realized in recent cold atom experiments [18, 19]. We study

the effect of strong Hubbard repulsion on spin-1/2 (i.e., two-

component) fermions in the Haldane model, at a filling of one

fermion per site, obtaining the following key results. (i) We

establish that the effective spin model for the Haldane-Mott

insulator exhibits a variety of chiral magnetic orders includ-

ing a wide regime of tetrahedral order with large scalar spin

chirality. Our results are obtained using exact diagonalization

(ED) on cluster of up to N=32 spins. (ii) Incorporating third-

neighbor hopping is shown to frustrate and ultimately melt

the tetrahedral order. Our ED results in the liquid phase find

a gapped, approximately two-fold degenerate ground state,

with total many-body Chern number C = 1, suggesting that

this state is a chiral spin liquid (CSL): the ν = 1/2 bosonic

quantum Hall state with gapped semion excitations [20–22].

We provide conclusive evidence for this using state-of-the-art

density matrix renormalization group (DMRG) [23, 24] com-

putations on infinitely long cylinders with circumference up

to 8 lattice unit cells, computing entanglement spectra, quan-

tum dimensions of all anyon types, and quasiparticle braiding

properties via topological S and T matrices. This frustration-

induced melting of tetrahedral order is a completely distinct

mechanism to realize CSLs compared with previous studies,

and allows us, for the first time, to identify the tetrahedral state

as a ‘parent’ state for the CSL. (iii) Our ED results suggest a

continuous phase transition between the tetrahedral state and

the CSL. We formulate a Chern-Simons-Higgs field theory to

describe this exotic spin crystallization transition out of the

topologically ordered CSL.

The study of CSLs was rejuvenated by the construction of

exact parent Hamiltonians [25, 26], and recent works have

found evidence for CSLs on the kagome [27–36] and square

lattices [37, 38], and in certain SU(N) Mott insulators [39]

and coupled wire models [40, 41]. Our work provides the

first example of a CSL on the honeycomb lattice in a real-

istic model starting from fermions with on-site interactions.

This is nontrivial since a symmetric spin-gapped phase on lat-

tices with even number of spin-1/2 per unit cell is not guar-

anteed to have topological order [42, 43]. Our work goes well

beyond previous work on this model [44–48], and studies of

Gutzwiller projected Chern-insulator wavefunctions [49, 50]

which did not consider microscopic models that support such

ground states. The tetrahedral state we find here also occurs in

certain triangular lattice Hubbard and Kondo models [51, 52],

suggesting that such frustration-induced CSLs may appear in

a wider class of models and materials.

Model. The Haldane-Hubbard model for spin-1/2 fermions

shown in Fig. 1(a) is defined by the Hamiltonian

HHH=− t1
∑

〈ij〉σ
(c†iσcjσ+h.c.)−t2

∑

〈〈ij〉〉σ
(eiνijφc†iσcjσ+h.c.)

+ U
∑

i

ni↑ni↓, (1)

where 〈.〉 and 〈〈.〉〉 denote, respectively, first and second near-

est neighbors, νij=±1 produces a flux pattern with a net zero

flux per unit cell, and U is the Hubbard repulsion. For U =0,

this model supports Chern bands for t2, φ 6=0. At half-filling,

this leads to a QAHI with σxy=±e2/h per spin for small |t2|.
At large |t2| and φ 6= π/2, the Chern bands strongly disperse,

leading to a metal with σxy 6= 0 but non-quantized [47].
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FIG. 1. (Color online) (a) Haldane-Hubbard model showing short

distance hopping amplitudes, plaquette fluxes, and Hubbard repul-

sion U . (b) Phase diagram of Hspin for t3 = 0, U = 10 from ED

on clusters with N =24 spins; color indicates the chirality 〈χ̂△〉 on

small triangles. Solid white lines indicate phase boundaries, broad-

ened to account for finite-size effects. In the hatched (blue) region

we cannot sharply identify the phase in ED as Triad-I or II.

For U ≫ |t1,2|, degenerate perturbation theory in the Mott

insulator [53] with one fermion per site leads to the spin model

Hspin=
4t21
U

∑

〈ij〉
Si · Sj +

4t22
U

∑

〈〈ij〉〉
Si · Sj

+
24t21t2
U2

∑

small−△
χ̂△ sinΦ△ +

24t32
U2

∑

big−△
χ̂△ sinΦ△, (2)

where χ̂△ ≡ Si · (Sj × Sk) is the scalar spin chirality oper-

ator. The sites {ijk} in χ̂△ are labelled going anticlockwise

around the small or big triangles of the honeycomb lattice. As

shown in Fig. 1(a), the fluxes in Hspin are Φ△ = −φ on small

(green) triangles, and Φ△ = −3φ (+3φ) on large triangles

which do (do not) enclose a lattice site. Classical magnetic

ground states of this model, valid for S=∞, have been stud-

ied in [47]; here, we resort to a numerical study for S=1/2,

retaining strong quantum fluctuations.

ED phase diagram. For φ = 0, Hspin reduces to the J1-J2
honeycomb lattice Heisenberg model, with J1,2 = 4t21,2/U .

Previous work indicates that J2 & 0.2J1 kills Néel order,

leading to incommensurate spirals [54] for S=∞, and com-

peting valence bond crystals for S = 1/2 [55–57]. Here,

we study the unexplored regime φ 6= 0, using Lanczos ED

on clusters up to N = 32 spins, varying t2 and φ for fixed

U/t1 = 10 which puts us in the Mott insulator [47]. We focus

on flux values π/4 ≤ φ ≤ π/2, which reveals commensurate

phases with large scalar spin chirality; restricting ourselves

to this window of flux avoids incommensurate spiral orders

[47, 54] expected at small φ, which have strong finite-size ef-

fects in ED. Below, we work in units where t1=1.

As shown in Fig.1(b), we find that the phase diagram con-

tains four magnetically ordered phases — Néel, tetrahedral

and triad-I/II orders — which are also observed in the classi-

cal phase diagram [47]. (i) The Néel order on the honeycomb

lattice is translationally invariant, with ferromagnetic order on

each sublattice and a single structure factor peak at the Γ point

of the hexagonal Brillouin zone. (ii) The tetrahedral order has

an 8-site magnetic unit cell, with spins pointing toward the

four corners of a tetrahedron and structure factor peaks at the

three M points. It is a so-called “regular magnetic order”, re-

specting all lattice symmetries modulo global spin rotations.

(iii)/(iv) Triad-I/II both have 6-site magnetic unit cells, with

three spins on each sublattice forming a cone and structure

factor peaks at the K and K ′ points. They can be thought of as

umbrella states on each triangular sublattice, with their com-

mon axis being parallel in the triad-I case and anti-parallel in

the triad-II. This yields a net ferromagnetic moment in triad-I

and a net staggered moment in triad-II.

We identify these magnetic orders within ED, on clusters

with up to N=32 spins, through a careful analysis of the low

energy spectrum, extracting quantum numbers of the quasi-

degenerate joint states, i.e., the ‘Anderson tower’, in each total

spin sector, whose energies collapse onto the ground state as

1/N leading to spontaneous symmetry breaking in the ther-

modynamic limit [58, 59] (see Supplemental Material [60]).

The phase boundaries in Fig.1(b) are determined [60] by dips

in the ground state fidelity 〈Ψ0(g)|Ψ0(g+δg)〉 which signal

quantum phase transitions [61], where g is a tuning parame-

ter (here, t2 or φ). We substantiate this by studying changes

in the finite-size singlet (Es) and triplet (Et) gaps, 〈χ̂△〉, and

reorganization of the low energy spectrum. Our results are in

contrast to slave-rotor mean field theory of the Haldane Mott

insulator [44, 45], in which the ground state is a CSL which

simply inherits the band topology of the underlying QAHI.

Melting tetrahedral order. The tetrahedral state is a “regu-

lar magnetic state” [62] which respects all lattice symmetries

in its SU(2)-invariant correlations. Given its large scalar spin

chirality, it is tempting to speculate that quantum disordering

this state might lead to a CSL. We thus modify the Haldane

model in order to frustrate the tetrahedral order. We notice

that the tetrahedral state has spins on opposite vertices of the

honeycomb hexagon aligned ferromagnetically. Thus incor-

porating third-neighbor hopping t3 will lead to an additional

exchange interactions in Hspin, i.e., the Heisenberg exchange

J3 = 4t23/U > 0 which will inevitably frustrate tetrahedral

order, as well as additional chiral interactions. Below, we

present extensive results retaining only J3 > 0 since keeping

all chiral terms induced by t3 significantly increases the com-

putational complexity; we have explicitly checked that these

additional terms induce very small quantitative differences in

the ED spectra, and only slightly shift the phase boundaries in

the phase diagram (see Supplemental Material [60]).

One key signature of a CSL is a nonzero spin gap and two-

fold ground state degeneracy on the torus. We thus look for

regimes where the lowest excited state is a spin-singlet whose

energy gap becomes smaller with system size, while the triplet

gap remains nonzero. Fig. 2(a) shows the ED phase diagram

as we vary (t2, t3), where we find a candidate CSL regime.

Here, we have fixed φ=π/3, at which the coefficient of χ̂△ on

the large-△ vanishes, enormously simplifying the numerics.

Fig. 2(c) shows a representative ED spectrum on an N=32



3

cD

-0.15

-0.1

-0.05

0

-10-50510

200

100

0

100

200

Ê

Ê

Ê

Ê

Ê

Ê

ÊÊ
‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡‡‡‡‡‡‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

Ï
Ï
Ï
Ï
Ï
Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

ÏÏÏÏ

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

ÚÚÚÚÚÚÚ

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

ÙÙÙÙÙÙÙ

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

ÁÁÁÁÁÁÁ

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·

·······Ì

Ì

Ì

Ì

Ì

Ì

Ì

Ì

Ì

Ì

Ì

Ì

ÌÌÌÌÌÌÌ

Ì

Ì

Ì

Ì

Ì

Ì

Ì

Ì

Ì

Ì

Ì

Ì

Ì

Ì

Ì

Ì

Ì

Û
Û
Û
Û
Û
Û

Û

Û

Û

Û

Û

Û

Û

Û

ÛÛÛÛı

ı

ı

ı

ı

ı

ı

ı

ı

ı

ı

ı

ııııııı

ı

ı

ı

ı

ı

ı

ı

ı

ı

ı

ı

ı

ı

ı

ı

ı

ı

Ê
Ê
Ê
Ê
Ê
Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

Ê

ÊÊÊÊ‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡‡‡‡‡‡‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

‡

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

Ï

ÏÏÏÏÏÏÏÚ

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

ÚÚÚÚÚÚÚ

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ú

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

Ù

ÙÙÙÙÙÙÙ
Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

ÁÁÁÁÁÁÁ

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

Á

-0.180

-0.185

-0.190

-0.195

-0.200

E
êN

STot=0 STot=1

f=pê3, t2=0.6, t3=-0.6, N=32

< C = 1

ÊÊ

‡‡

ÏÏ

ÚÚ

ÙÙ

ÁÁ

··

ÌÌ

ÛÛ

ıı

ÊÊ

‡‡

ÏÏ

ÚÚ

ÙÙ

ÁÁ

0.0 0.2 0.4 0.6 0.8 1.0

-0.205

-0.200

-0.195

-0.190

-0.185

qxêH2pL

E
êN

f=pê3, t2=0.6, t3=-0.6, N=24

(a) (b)

(c)

FIG. 2. (Color online) (a) Phase diagram of Hspin at φ= π/3 and

U = 10, keeping the additional J3 term induced by t3 6= 0. Back-

ground shows ground state chirality 〈χ̂△〉 on small-△. Using ED

and DMRG (at indicated points), we find a window of CSL with

topological order. (b) Topological robustness of the CSL ground

states upon threading flux through one hole of the torus. Energy

spectrum as a function of boundary phase θx is shown for N = 24
sites, t2 = 0.6, and t3 = −0.6. (c) Energy spectrum for N = 32
cluster, with states labelled by total spin Stot and Brillouin zone mo-

menta shown in the inset. We find approximate two-fold ground state

degeneracy with total Chern number C1 + C2=1.

torus at (t2,t3) = (0.6,−0.6). We find an approximate two-

fold ground state degeneracy, both states being spin singlets

with crystal momentum k = (0, 0) as expected for a hon-

eycomb lattice CSL, and a spin gap Et ≈ 0.3. Threading

flux through one hole of the torus (see Fig. 2(b)), we find the

two-fold ground state manifold does not with mix with higher

excited states, demonstrating that the ground state degener-

acy is of topological origin. We have computed the many-

body Chern numbers Ci = − 1
π

∫

dθ1dθ2Im 〈∂θ1Ψi | ∂θ2Ψi〉
using twisted boundary conditions on the two ground states

|Ψi=1,2〉, since two ground states have the same momentum

and thus do not cross. However, only the total Chern number

of this degenerate manifold is meaningful in the thermody-

namic limit; we find C1+C2=1. These results provide strong

evidence that t3 melts tetrahedral order, leading to a ν =1/2
bosonic Laughlin liquid. Our ED results delineate a regime at

φ=π/3, see Fig. 2(a), which we identify as a CSL candidate.

DMRG results. To further confirm the existence of CSL,

we investigate the model Hspin with additional terms gener-

ated by non-zero t3, using DMRG [24], on a cylinder of in-

finite length with circumference up to L = 8 unit cells. The

characterization of a topologically ordered phase is achieved

by: (i) identifying the conformal field theory (CFT) that de-

scribes gapless edge excitations via the “entanglement spec-

trum” [63], and (ii) computing topological S and T matri-

ces that contain information about bulk anyon excitations

[22, 50, 64–67]. Simulations were performed for φ = π/3,

FIG. 3. (Color online) Entanglement spectrum (rescaled and shifted)

of the reduced density matrix ρi for half an infinite cylinder (with cir-

cumference L = 8 unit cells) computed for the ground states |Ψcyl
1 〉

(left panel) and |Ψcyl
2 〉 (right panel) of the effective spin model at

(t2, t3, φ) = (0.6,−0.6, π/3). Vertical axes show entanglement en-

ergies defined as Ei,α = − log λi,α, where λi,α are the eigenvalues

of ρi. The transverse momenta of the corresponding eigenvectors of

ρi are shown on horizontal axes, separately for every tower labeled

by Sz quantum number. The number of close lying states with the

same momenta in a given Sz sector is shown in red.

and four different values of (t2, t3) marked by red dots on the

phase diagram in Fig.2(a), keeping only the additional J3 ex-

change term. We present detailed results below for one point

(t2, t3) = (0.6,−0.6); we obtain similar results at the other

three points. We also performed simulations on smaller width

cylinders (upto L = 6) keeping J3 and all additional chiral

terms from having t3 6=0 in HHH, obtaining similar results.

Randomly initialized DMRG finds two ground states,

|Ψcyl
i=1,2〉, with well-defined anyon flux threading inside the

cylinder [65]. Fig. 3 shows the entanglement spectrum Ei of

the reduced density matrix for half an infinite cylinder com-

puted for both ground states. Studying these spectra, we can

extract universal information about possible gapless bound-

ary excitations, as if the system had an actual, physical edge

[63, 68–71]. The spectra Ei are seen to be consistent with cor-

responding sectors of the chiral SU(2)1 Wess-Zumino-Witten

CFT [72]. E1 is associated with the identity primary operator

and its Kac-Moody descendants. The computed degeneracy

pattern in every tower (labeled by Sz) is seen to follow the ex-

pected partition numbers (1–1–2–3–5–7–...) [73]. E2 corre-

sponds to the chiral boson vertex operator and its descendants.

The ground states |Ψcyl
i=1,2〉 on an infinite cylinder ∞ × L

may be used to mimic grounds states on a L×L torus |Ψtor
i=1,2〉

by means of cutting and reconnecting matrix-product states of

|Ψcyl
i 〉 [65, 66]. Every such ground state |Ψtor

i 〉 has a well-

defined anyon flux threading inside the torus. The topological

S and T matrices of the emergent anyons can be extracted
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[74] from the overlaps 〈Ψtor
i |Rπ/3|Ψtor

j 〉, where Rπ/3 denotes

clockwise π/3 rotation of a L× L torus. For L = 6, we find

S =
1√
2

(

0.99 0.97
0.96 −0.97 · eiπ·0.01

)

, (3)

T = ei
2π
24

·0.96
(

1 0
0 −i · eiπ·0.01

)

, (4)

in excellent agreement with the exact S and T matrices of a

chiral semion anyon model, 1√
2

(

1 1
1 −1

)

and ei
2π
24

(

1 0
0 −i

)

.

The combined DMRG results thus provide an unambiguous

identification of the phase as a CSL.

Spin crystallization transition. Our ED results show that the

chirality and ground state fidelity vary smoothly going from

the tetrahedral state into the CSL. This suggests that the two

phases might be separated by an exotic critical point since the

tetrahedral state is topologically trivial but breaks SU(2) spin

symmetry while the CSL has topological order and no bro-

ken symmetries. A powerful route to accessing such exotic

transitions is via fractionalizing the spins [75]. We formu-

late our theory in terms of spin-1/2 bosonic spinons mini-

mally coupled to an Abelian level k = 2 Chern-Simons (CS)

gauge field. In the CSL, integrating out gapped spinons re-

sults in a CS topological field theory. The lowest energy exci-

tations are gapped spinons, which carry unit gauge charge and

bind π-flux, converting them into semions. On the tetrahedral

side, spinon condensation produces magnetic order, destroy-

ing topological order via the Higgs mechanism.

To construct the field theory for the matter sector, we

imagine bosonic spinons with spins polarized along the lo-

cal Zeeman axes of the underlying tetrahedral order. Adia-

batic spinon transport around closed loops on the honeycomb

lattice then produces nontrivial Berry phases; we find π-flux

around hexagonal loops and π/2-flux around triangular pla-

quettes. Even if long wavelength quantum fluctuations dis-

order the tetrahedral state, so these Zeeman fields average to

zero, we expect the local spin chirality and hence the local

fluxes to persist. Diagonalizing this spinon Hofstadter Hamil-

tonian on the honeycomb lattice, we find 4 equivalent disper-

sion minima located, for our gauge choice, at Q0 ≡ Γ and

Qi ≡ Mi (i=1, 2, 3; the three M points of the BZ). We thus

study the action S=
∫

d2xdτ(LCS,φ + Lint), where

LCS,φ=
1

2π
ǫµνλaµ∂νaλ + φ∗

iα(∂τ−ia0)φiα + r|φiα|2

+ |(
→
∇−ia→)φiα|2 (5)

describes bosonic spinons minimally coupled to the CS gauge

field, while Lint = L(1)
int + L(2)

int captures spinon interactions,

L(1)
int =u1(

∑

i

ρi)
2+u2

∑

i 6=j

ρiρj+u3

∑

i 6=j

S
→

i · S
→

j

+ u4

∑

[ijkℓ]

φ∗
iαφ

∗
jβφkαφℓβ+u5

∑

i 6=j

φ∗
iαφ

∗
iβφjαφjβ

L(2)
int = w1(

∑

i

ρi)
3 + w2

∑

i,j,k

ǫijkS
→

i · (S
→

j × S
→

k) + . . .(6)

Latin indices label the 4 modes at Qi (i = 0, 1, 2, 3), the no-

tation [ijkℓ] implies all 4 modes are different, and there is

an implicit sum on Greek indices which label spin or space-

time. We defined ρi ≡ φ∗
iαφiα and S

→
i ≡ φ∗

iασ
→

αβφiβ . L(1)
int

and L(2)
int respectively list all quartic interactions and impor-

tant sixth order terms, consistent with momentum conserva-

tion, global SU(2) symmetry, and local gauge invariance.

u1,2 are forward-scattering interactions, u3,4 are backscatter-

ing terms, and u5 is an Umklapp process. w2 encodes broken

time-reversal symmetry. At mean field level, with dominant

u1, w1>0, we find r>0 leads to the CSL, while tuning r<0
leads to a confining Higgs phase with 〈φiα〉 6=0. For u2 < 0,

we get simultaneous condensation at all Qi. The tetrahe-

dral state emerges via a continuous transition for subdominant

terms u4, u5 <u3, w2 (see Supplemental Material [60]). Our

construction of the field theory for the CSL-tetrahedral transi-

tion relies on a nontrivial flux pattern for the spinons, hinting

at ‘crystal symmetry fractionalization’ [76] in the CSL.

Summary. Using ED and DMRG, we have shown that the

Haldane-Hubbard Mott insulator supports unusual chiral mag-

netic orders, while third-neighbor hopping induces a CSL

with topological order. We have argued that this CSL de-

scends from a ‘parent’ tetrahedral state and constructed a CS-

Higgs theory for this exotic spin-crystallization transition. Re-

cent work has shown that the kagome lattice admits only a sin-

gle SU(2) invariant symmetry enriched CSL [77, 78]. How-

ever, the honeycomb lattice may admit multiple CSLs with

distinct crystal symmetry fractionalization patterns. Future

research directions include nailing down the precise nature of

this CSL [77–81], and relating this CSL to Gutzwiller pro-

jected wavefunctions [49, 50]. Another outstanding issue is

fluctuation effects on the CS-Higgs transition proposed here,

and in related U(1) symmetric bosonic quantum Hall to charge

density-wave insulator transitions [82].
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