
Autom Softw Eng
DOI 10.1007/s10515-014-0168-9

Practical verification of decision-making in agent-based
autonomous systems

Louise A. Dennis · Michael Fisher ·
Nicholas K. Lincoln · Alexei Lisitsa ·
Sandor M. Veres

Received: 26 September 2013 / Accepted: 16 August 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract We present a verification methodology for analysing the decision-making
component in agent-based hybrid systems. Traditionally hybrid automata have been
used to both implement and verify such systems, but hybrid automata based modelling,
programming and verification techniques scale poorly as the complexity of discrete
decision-making increases making them unattractive in situations where complex log-
ical reasoning is required. In the programming of complex systems it has, therefore,
become common to separate out logical decision-making into a separate, discrete,
component. However, verification techniques have failed to keep pace with this devel-
opment. We are exploring agent-based logical components and have developed a model
checking technique for such components which can then be composed with a sepa-
rate analysis of the continuous part of the hybrid system. Among other things this
allows program model checkers to be used to verify the actual implementation of the
decision-making in hybrid autonomous systems.

Keywords Hybrid systems · Model checking · Agent architectures

1 Introduction

Autonomous systems are moving beyond industrial and military contexts, and are
now being deployed in the home, in health-care scenarios, and in automated vehicles.

L. A. Dennis (B) · M. Fisher · A. Lisitsa
Department of Computer Science, University of Liverpool, Liverpool, UK
e-mail: L.A.Dennis@liverpool.ac.uk

S. M. Veres
Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK

N. K. Lincoln
School of Engineering Sciences, University of Southampton, Southampton, UK

123

Autom Softw Eng

In many cases there may be a human operator who directs the autonomous system,
but increasingly the system must work on its own for long periods without such
interventions. These systems must essentially decide for themselves what to do and
when to do it. This might seem fraught with danger, but there is a clear need for such
systems, particularly:

– when deployed in remote or dangerous environments where direct and local human
control is infeasible; or

– when the complexity or speed of the environmental interactions is too high for a
human to handle.

Examples of the former include deep sea exploration, space probes, and contami-
nated area cleanup; examples of the latter include automated stock trading systems,
robot swarms, and unmanned air vehicle collision avoidance. In addition to the above
reasons, autonomous systems are becoming popular as they can sometimes be much
cheaper to develop and deploy than manned systems.

1.1 Hybrid autonomous systems

Autonomous systems, such as we are discussing, are constructed in a component-
based fashion with an agent-based decision maker and a continuous control system.
This means they have a natural decomposition at design time. In many cases the agent-
based decision maker is viewed as the replacement for a human pilot or operator who
would, otherwise, interact with the control system.

Systems that combine continuous control algorithms with any kind of discrete
behaviour that forms jumps between different continuous states are called hybrid
control systems. When the discrete component includes behaviour we would recognise
as autonomous we refer to the system as a hybrid autonomous system. Traditionally,
such hybrid autonomous systems have been engineered using the concept of a hybrid
automaton (in which continuous aspects are encapsulated within a single state of an
automaton while discrete jumps are represented as transitions between these states—
see Sect. 2.4 for a more detailed description). However, as these systems have become
more complex, combining discrete decision-making and continuous control within
a hybrid automaton has faced challenges. It is difficult to separate the two concerns
(decision-making and continuous control) when designing and implementing a system
in this fashion—this has an impact on the understandability and reuse of both design
and code. Furthermore many autonomous systems operate in environments where the
users wish to access some high level account for why a decision was taken by the system
(Fisher et al. 2013). Such an account can be difficult to extract from a hybrid automaton.

As a result, the practice developed of separating decision-making components from
the underlying control system, often using the popular agent paradigm (Wooldridge
2002). A drawback of this approach, however, is that it is generally non-trivial to
transform such a system back into a hybrid automaton based model and so well-
developed techniques for verifying hybrid automata by model checking (Henzinger
et al. 1997; Frehse 2005) become difficult to apply to these new systems. Moreover,
verification of hybrid automaton based systems tends to scale badly as the reasoning

123

Autom Softw Eng

processes become more complex. Since autonomous systems are frequently safety or
mission critical this verification gap is a significant concern.

1.2 A methodology for verifying autonomous choices

In Fisher et al. (2013) we proposed a methodology for the verification of decision-
making components in hybrid autonomous systems, where such a decision-making
component is implemented as a rational agent. In this paper, we give a more detailed
and technical explanation of the methodology and apply the approach to verify the
implementation of agent-based decision-making in a variety of complex autonomous
systems (see Sects. 3, 4, 5). We argue that one of the most crucial aspect of verifying
complex decision-making algorithms for autonomous systems, for example concern-
ing safety, is to identify that the controlling agent never deliberately makes a choice
it believes to be unsafe.1 In particular this is important in answering questions about
whether a decision-making agent will make the same decisions as a human operator
given the same information from its sensors.

How might we guarantee behaviour within such an autonomous system embedded
in the real world? Following a decompositional approach we need not (and, indeed
we argue that we can not) ensure that an autonomous system will certainly lead to a
change in the real world.

Thus, rather than verifying agent behaviour within a detailed model of the system’s
environment, we now verify the choices the agent makes given the beliefs it has. This
approach is clearly simpler than monolithic approaches as we can state properties
that only concern the agent’s internal decisions and beliefs, and so verification can be
carried out without modelling the “real world”. At a logical level, the verification of
safety properties changes from the checking of2

!¬bad

i.e., nothing bad can ever happen which involves verifying the state of the external
world, to checking3

!Bagent ¬bad

i.e., the agent never believes that something bad happens which involves only checking
the internal state of the agent. Similarly, liveness properties change from checking
♦good (eventually something good happens) to checking ♦Bagent good (eventually
the agent believes something good has happened). Thus, we verify the (finite) choices
the agent has, rather than all the (typically infinite) “real world” effects of those choices.

Specifically, we propose model checking (and the model checking of programs, if
possible) as an appropriate tool for demonstrating that the core rational agent always
endeavours to act in line with our requirements and never deliberately chooses options
that lead internally to bad states (e.g., ones where the agent believes something is

1 Further discussion of this aspect is provided in Fisher et al. (2013).
2 ‘!’ and ‘♦’ are temporal logic operators meaning “at all future moments” and “in some future moment”,
respectively, while ‘Bagent ’ is a logical operator describing the beliefs the agent has.
3 Alternatively: Bagent !¬bad if the agent can hold temporal beliefs.

123

Autom Softw Eng

unsafe). Since we are verifying only the core agent part we can use model checking
approaches that do not consider the continuous behaviour of the system. These are
easier to use in a modular/compositional fashion than approaches designed to cope
with the continuous and real world aspects. Thus, we do not verify all the “real world”
outcomes of the agent’s choices (but assume that analysis of the underlying control
system has provided us with theorems about the outcomes of actions etc.), but do verify
that it always tries to achieve its goals/targets to the best of its knowledge/beliefs/ability.
Thus, the agent believes it will achieve good situations and believes it will avoid bad
situations. Consequently, any guarantees here are about the autonomous system’s
decisions, not about its external effects.

Efforts to model the entire system and its interaction with the real world with any
degree of accuracy necessarily involve complex abstractions together with a num-
ber of assumptions. These abstractions and assumptions are embedded deep within an
executable model and may not be explicit to end users, or even to the modellers. There-
fore if we provide a guarantee, for example, that the autonomous system can definitely
achieve or avoid something, there will be a number of pre-conditions (that the real
world will behave in some particular way) to that guarantee that may be hard to extract.
One of the aims of our approach is that the assumptions embedded in the modelling of
the real world should be as explicit as possible to the end users of a verification attempt.

Obviously, some parts of an agent’s reasoning are triggered by the arrival of infor-
mation from the real world and we must deal with this appropriately. So, we first
analyse the agent’s program to assess what these incoming perceptions can be, and
then explore, via the model checker, all possible combinations of these. This allows us
to be agnostic about how the real world might actually behave and simply verify how
the agent behaves no matter what information it receives. Furthermore, this allows us to
use hypotheses that explicitly describe how patterns of perceptions might occur. Taking
such an approach clearly gives rise to a large state space because we explore all possible
combinations of inputs to a particular agent. However it also allows us to investigate a
multi-agent system in a compositional way. Using standard assume-guarantee (or rely-
guarantee) approaches (Misra and Chandy 1981; Jones 1983, 1986; Manna and Pnueli
1992; Lamport 2003), we need only check the internal operation of a single agent at a
time and can then combine the results from the model checking using deductive meth-
ods to prove theorems about the system as a whole. Abstracting away from the contin-
uous parts of the system allows us to use model checking in a compositional fashion.

It should be noted that, in many ways, our approach is the complement of the typical
approach employed in the verification of hybrid automata and hybrid programs. We
are primarily concerned with the correctness of the discrete algorithms and are happy
to abstract away from the underlying continuous system, while the other approaches
are more concerned with the verification of the continuous control and are happy to
abstract away from the discrete decision-making algorithms.

1.3 Overview

In summary, we had two main aims in developing our verification methodology: to
maintain the natural decomposition of the system design in the verification, allowing
us to verify the symbolic (i.e., logical decision based) and non-symbolic (continuous)

123

Autom Softw Eng

aspects separately; and to make any assumptions about the continuous/real world
environment as explicit as possible. It is preferable to treat the verification and analysis
in a compositional fashion, if at all possible, for a variety of reasons. It simplifies the
verification task, encourages reuse, and allows appropriate domain specific analysis
tools to be used. Compositional verification has its roots in the use of lemmas in the
construction of proofs both by hand and, more recently, with mechanized theorem
proving tools. In model checking settings care sometimes has to be taken to use sound
composition rules, especially in cases where the reasoning contains circular elements
(e.g., sub-system A requires sub-system B to be correct as an assumption while sub-
system B requires sub-system A to be correct as a an assumption) (McMillan 1999;
Barringer and Giannakopoulou 2003).

In many of the situations we are interested in, the control system is trusted and the
primary concern is the extent to which the decision-making component conforms to
the expectations about the behaviour of a human operator. This provides an additional
motivation to verify the symbolic reasoning in detail and in isolation.

Thus, in summary, our overall approach (Fisher et al. 2013) involves:

1. modelling/implementing the agent behaviour and describing the interface (input/
output) to the agent;

2. model checking the decision-making agent within a coarse over-approximation of
the environment derived from the analysis of agent inputs (this will establish some
property, ϕ);

3. if available, utilizing environmental hypotheses/assumptions, in the form of logical
statements, to derive further properties of the system;

4. if the agent is refined, then modify (1) while if environmental properties are clarified,
modify (3); and

5. deducing properties of multi-agent systems by model checking the behaviour of
individual agents in a component-wise fashion and then combining the results
deductively to infer properties of the whole system.

We will later examine three very different scenarios in order to exemplify the key
features of the methodology.

Previous work (Fisher et al. 2013) presents a high level overview of the work described
here. It concentrates primarily on outlining the methodology without any discussion
of or comparison to alternative approaches. Two of the case studies (the Search and
Rescue scenario and the Satellite example) are also presented in brief but without
presentation of the actual code, any details on how the verification is set up, how the
environmental assumptions are obtained, nor discussion of performance issues. The
chief contributions of this paper are:

– Extended and more detailed versions of the first two case studies,
– Positioning our technique properly within the wider field of the verification of

hybrid systems,
– The new case study on adaptive cruise control.

These provide technical detail on how the methodology actually works, how it inte-
grates with other systems, and where it exists in the field of the verification of hybrid

123

Autom Softw Eng

systems. We believe this detail to be important to understanding the methodology and,
critically, to any attempt to implement it.

The satellite system presented in our second case study has also been presented
in Lincoln et al. (2013). This makes no reference to the verification at all and instead
focuses on the implementation issues with considerable attention paid to the continu-
ous control and the link between the agent and the control system.

2 Background and related work

The verification of decision-making in hybrid agent systems, where that decision-
making takes place as part of a separate agent-based component, draws upon back-
ground and research from a range of areas, namely hybrid control systems, agent-based
programming and verification approaches to hybrid systems and rational agents.

2.1 Hybrid control systems

A fundamental component of low-level control systems technology is the feedback
controller. This measures, or estimates, the current state of a system through a dynamic
model and produces subsequent feedback/feed-forward control signals. In many cases,
difference equations can be used to elegantly manage the process. These equations
of complex dynamics not only make changes to the input values of sub-systems and
monitor the outcomes on various sensors, but also allow deeper understanding of
system behaviour via analytical mathematical techniques.

As we move to autonomous systems, such controllers are increasingly required to
work in situations where there are areas of discontinuity, where a distinct change in
behaviour is required and where control needs to switch to the use of an alternative
model and alternative control equations. This kind of control system often requires
some decision-making system to be integrated with the feedback controller (Branicky
et al. 1998; Varaiya 1999; Goebel et al. 2009). It may also be necessary for a system
to take actions such as detecting that a fuel line has ruptured and switching valves to
bring an alternative online: this falls outside the scope of monitoring and adjusting
input and output values, and involves detecting that thresholds have been exceeded or
making large changes to the system.

It is possible to encode all these choices in, often hierarchical, hybrid automata but
this creates several problems from a software engineering perspective. Firstly, it does
not allow a natural separation of concerns between the algorithms and procedures
being designed or implemented for making decisions, and those which are being
designed and implemented for continuous control, this reduces the understandability
of the resulting code and therefore increases the risk of errors and bugs being present
in the code. It can often also make the underlying code, particularly that of decision-
making algorithms, harder to reuse since it becomes more difficult to identify the
generic aspects of any decision algorithm from those that are specific to the continuous
control. There is also evidence (Damm et al. 2007; Dennis et al. 2010b) that hybrid
automata based implementations scale poorly with the complexity of decision-making
when compared to agent-based control. This again impacts upon understandability.

123

Autom Softw Eng

Fig. 1 The typical structure of a hybrid autonomous system. Low level choices (e.g., tight sense-react
loops) are governed by the control system while high-level choices (e.g., managing long term goals) are
governed by a rational agent

In the autonomous systems we consider here, the control system usually fol-
lows fairly well defined functions, while the discrete decision-making process must
make appropriate choices, often without human intervention; see Fig. 1. Increasingly,
this discrete decision-making process will be a rational agent, able to make justi-
fiable decisions, to reason about those decisions, and dynamically modify its strat-
egy (Wooldridge and Rao 1999).

2.2 Agents and rational agents

At its most general, an agent is an abstract concept that represents an autonomous
computational entity that makes its own decisions (Wooldridge 2002). Since its intro-
duction in the 1980s, the agent abstraction has become very influential in practical
situations involving complex flexible, autonomous, and distributed components (Bond
and Gasser 1988; Bratman et al. 1988; Davis and Smith 1983; Cohen and Levesque
1990; Durfee et al. 1989; Shoham 1993).

A general agent is simply the encapsulation of some distributed computational
component within a larger system. However, in many settings, something more is
needed. Rather than just having a system which makes its own decisions in an opaque
way, it is increasingly important for the agent to have explicit reasons (that it could
explain, if necessary) for making one choice over another.

In the setting of autonomous systems, explicit reasoning assists acceptance. When
queried about its choices an autonomous system should be able to explain them,
thus allowing users to convince themselves over time that the system is reasoning
competently. More importantly, where an autonomous system is likely to be the subject
of certification, it may need to fulfill obligations to do with reporting, particularly in
instances where an accident or “near miss” has occurred. It is desirable for such
reporting to be presented at a high level which explains its choices in terms of what
information it had, and what it was trying to achieve.

Rational agents (Bratman 1987; Rao and Georgeff 1992; Wooldridge and Rao 1999)
enable the representation of this kind of reasoning. Such an agent has explicit reasons

123

Autom Softw Eng

for making the choices it does. We often describe a rational agent’s beliefs and goals,
which in turn determine the agent’s intentions. Such agents make decisions about what
action to perform, given their current beliefs, goals and intentions.

The predominant view of rational agency is that encapsulated within the BDI
model (Rao and Georgeff 1991, 1992, 1995). Here, ‘BDI’ stands for Beliefs, Desires,
and Intentions. Beliefs represent the agent’s (possibly incomplete, possibly incorrect)
information about itself, other agents, and its environment, desires represent the agent’s
long-term goals while intentions represent the goals that the agent is actively pursuing.

There are many different agent programming languages and agent platforms based,
at least in part, on the BDI approach. Particular languages developed for programming
rational agents in a BDI-like way include AgentSpeak (Rao 1996), Jason (Bordini et
al. 2005, 2007), 3APL (Hindriks et al. 1999; Dastani et al. 2005), Jadex (Pokahr et
al. 2005), Brahms (Sierhuis 2001), GOAL (Hindriks et al. 2001; Boer et al. 2007),
and Gwendolen (Dennis and Farwer 2008). Agents programmed in these languages
commonly contain a set of beliefs, a set of goals, and a set of plans. Plans determine
how an agent acts based on its beliefs and goals and form the basis for practical
reasoning (i.e., reasoning about actions) in such agents. As a result of executing a
plan, the beliefs and goals of an agent may change as the agent performs actions in its
environment.

Agent based control of decision-making in hybrid systems has been an area of
research since at least the 1990s. Kohn and Nerode’s MAHCA system (Kohn and
Nerode 1992) uses multiple knowledge-based agents as planners which generate
the actions performed by the underlying control system. While these agents are not
based on the BDI paradigm, which was only in its infancy when MAHCA was orig-
inally developed, the approach is motivated by a desire to represent logical decision-
making in a high-level declarative fashion. More recently agent based approaches
have been explored in the control of spacecraft (Muscettola et al. 1998), Unmanned
Aircraft (Karim and Heinze 2005; Webster et al. 2011; Patchett and Ansell 2010), and
robotics (Wei and Hindriks 2013). Many of these approaches are explicitly BDI based
and are motivated by the desire to separate the symbolic and non-symbolic reasoning
and model the mission designer’s intent.

Generating appropriate abstractions to mediate between continuous and discrete
parts of a system is the key to any link between a control system and a reasoning
system. Abstractions allow concepts to be translated from the quantitative data derived
from sensors (and necessary to actually run the underlying system) to the qualitative
data needed for reasoning. For instance a control system may sense and store precise
location coordinates, represented as real numbers, while the reasoning system may
only be interested in whether a vehicle is within reasonable bounds of its desired
position.

We have been exploring an architecture (Dennis et al. 2010a) in which the rational
agents are partnered with an abstraction engine that discretizes the continuous infor-
mation in an explicit fashion which we are able to use in verification. Currently the
abstraction engine is implemented as a distinct rational agent, though we intend to
move to a stream processing model in future. We describe this technique further in
Sect. 4.

123

Autom Softw Eng

2.3 Formal verification and model checking

Formal verification is essentially the process of assessing whether a specification
given in formal logic is satisfied on a particular formal description of the system
in question. For a specific logical property, ϕ, there are many different approaches
to this (Fetzer 1988; DeMillo et al. 1979; Boyer and Moore 1981), ranging from
deductive verification against a logical description of the system ψS (i.e., ⊢ ψS ⇒ ϕ)
to the algorithmic verification of the property against a model of the system, M (i.e.,
M |# ϕ). The latter has been extremely successful in Computer Science and Artificial
Intelligence, primarily through the model checking approach (Clarke et al. 1999). This
takes an executable model of the system in question, defining all the model’s possible
executions, and then checks a logical property against this model (and, hence, against
all possible executions).

Whereas model checking involves assessing a logical specification against all exe-
cutions of a model of the system, an alternative approach is to check a logical property
directly against all actual executions of the system. This is termed the model checking
of programs (Visser et al. 2003) and crucially depends on being able to determine
all executions of the actual program. In the case of Java, this is feasible since a
modified virtual machine can be used to manipulate the program executions. The Java
Pathfinder (JPF) system (Visser et al. 2003) carries out formal verification of Java
programs in this way by analysing all the possible execution paths. This avoids the
need for an extra level of abstraction and ensures that verification truly occurs on the
real system.

All model-checking techniques have to deal with issues of scalability. In essence
they all involve exhaustive search over all executions of a system and so, as the
system increases in size, they run into combinatorial explosion. Many advanced
techniques have been developed to combat these issues including checking for
loops, limiting search branching in ways that do not compromise the result (par-
tial order reduction), and abstracting the system in systematic ways, again to limit
the number of states and branch points. Program model checking is typically much
slower even than standard model checking because actual programs tend to con-
tain more instructions, at a lower level (and hence involves either more branch
points or more computation to generate each state of the system), than models of
programs.

2.4 Verifying hybrid systems

Both theorem proving and model checking techniques have been applied to the verifi-
cation of hybrid systems and there are several mature tools available (e.g., KeYmaera
(theorem proving), HyTech and PHAVer (both model checking)).

As mentioned above, there are two major approaches to constructing hybrid sys-
tems. We have followed the methodology of providing two components, a decision
making system that interacts with an underlying control system. The other major
approach is that of hybrid automata and it is on that approach that most of the verifi-
cation efforts have been focused.

123

Autom Softw Eng

An automaton consists of a set of states with transitions between them. Traditionally
automata states are static but, in hybrid automata, the states are governed by differential
inclusions which control the behaviour of the overall system while the automata is in
that state. Each state therefore contains (state) variables whose value may evolve and
change in a continuous fashion while the automata is in that state. Key aspects of a
hybrid automaton state are the flow conditions; equations which express the evolution
of continuous variables while in that state, and invariant conditions; a predicate over
the state variables which must be satisfied in that state. If the invariant conditions are
violated then the state is forced to transition to another. When a transition occurs, jump
conditions determine the initial values of the state variables in the next state.

The model checking of hybrid automata involves first composing the implemented
system with a model of the real world, also expressed as a hybrid automaton. Then
the model checker explores trajectories within each automata state. Given (a set of)
starting values for the variables in the state the system attempts to determine a bounded
sub-region of Rn which contains all possible values of the variables that can be reached
within that state before it transitions to another. The possible values of the variables at
the point of transition, together with the jump conditions, will form the starting values
for the variables in the next state, and so on until all possible states of the system
have been explored. (See Henzinger 1996; Alur et al. 2000; Henzinger et al. 1997 for
detailed descriptions of the model checking of hybrid automata based systems.)

Since the real world can not be modelled in its full complexity, modelling it as a
hybrid automaton requires some kind of abstraction. Abstraction has a long history
in the formal modelling of “real world” phenomena for verification (Clarke et al.
1994) and abstractions for model checking hybrid systems have been extensively
studied (Alur et al. 1995; Henzinger et al. 1997; Tiwari 2008; Tabuada 2009). Since the
“real world” is inherently complex, often involving control systems, physical processes
and human interactions, even defining appropriate abstractions is difficult. Often we
either take a very coarse abstraction, which risks being very far away from a real
system, or a very detailed abstraction leading to complex structures such as stochastic,
hybrid automata (which are, themselves, often very hard to deal with (Bujorianu
2012)). We also face this problem in our agent-based approach which favours a coarse
abstraction.

From our perspective: the verification of decision making code in agent-based
hybrid control systems, with a particular interest in the verification of implementations
of decision-making algorithms, the hybrid automata approach has several drawbacks,
as follows.

1. As noted earlier, it is difficult to decompose a hybrid automaton with a complex
decision-making process into sub-systems (though approaches using concurrent
automata are possible). However, even after such a decomposition, the model
checking problem can not be easily decomposed to consider only some sub-set
of the states of the system (e.g., just those involved with control algorithms).
The calculation of a bounded region that limits the trajectories within a state is
dependent upon the possible values of the variables on entering the state and
these, in turn, depend upon the values of those variables in the previous state and
the jump conditions. Therefore the region of possible trajectories may vary each

123

Autom Softw Eng

time a state is visited. As a result, the algorithm needs to calculate all the potential
sets of starting values for each state. It is not, in general, possible to determine in
advance what the entry constraints will be for some sub-set of the automaton states
without exploring the whole automaton. As a result the whole system must often
be treated as a unit. This not only makes the model checking problem harder but
also limits the reuse of results when changes are made to the system. Section 2.4.1
surveys some recent work to overcome this problem.

2. The classes of hybrid automata that have decidable model checking problems
are limited. While there are several possible decidable fragments, linear hybrid
automata are most frequently used. The main restrictions on linear hybrid automata
are that the formulæ describing the evolution of dynamic variables, their con-
straints, and the evolution to new discrete states must be finite conjunctions of
linear inequalities, and the flow conditions may refer only to derivatives of state
variables and not to the variables themselves. From the perspective of complex
decision-making the restriction to conjunctions of inequalities, rather than more
expressive formulæ forces logical reasoning to be modelled using sequences of
discrete transitions where intuitively only one transition should take place.

3. This in turn means that tools such as HyTech (Henzinger et al. 1997), and
PHAVer (Frehse 2005) implemented for the model checking of linear hybrid
automata also do not scale well in the presence of large discrete state spaces (Damm
et al. 2007). Not only do complex logical computations have to be modelled as a set
of states with the same continuous dynamics, but also the process of determining
trajectories through individual discrete states tends to create multiple states in the
model checking algorithm for each state in the hybrid automata (i.e., a state for
each possible region of trajectories through the state).

4. As noted above, a hybrid automaton models the behaviour of an entire system;
both the computational and the real world parts. As a result, in general, hybrid
automata do not provide a suitable implementation language for a programmer
wishing to create the computational parts of some larger system. Consequently,
hybrid automata model checking operates much like standard model checking,
i.e., it verifies a model of the implemented system, rather than the system itself.

Particularly in certification contexts and especially when introducing a novel com-
ponent such as an autonomous decision-maker, there is a need to verify the actual
implemented system (or at least the implementation of the novel part). In these cases
it is necessary to somehow compile the implemented system, together with a model
of its environment, into an explicit hybrid automaton before analysis.

2.4.1 Solutions to compositionality and expressivity

In recent years there has been considerable work on overcoming the problems outlined
in the previous section. In particular the issue of compositionality and abstraction has
been tackled in a number of ways.

PHAVer (Frehse 2005) is a model-checking system for linear hybrid automata that
uses assume-guarantee style reasoning to allow the model checking to be approached
in a compositional fashion (Frehse et al. 2004). The approach takes a hybrid automaton
that has been constructed from the parallel composition of smaller sub-systems (e.g.,

123

Autom Softw Eng

a physical system with its continuous dynamics, and a software controller). During
model checking, these sub-systems can be replaced by abstractions which have certain
features that retain the soundness of the approach. So a physical system can be model
checked, composed with an abstraction of a software controller and vice versa. The
more abstract systems constitute an over-approximation of the original sub-system
and therefore it is possible for the verification process to return false negatives (i.e., it
may disprove a conjecture that is actually true). The underlying verification continues
to use hybrid automata based model checking and so remains constrained by many
of the considerations above (e.g., PHAVer is restricted to linear hybrid automata).
However the basic approach, abstracting away one sub-system, is substantially similar
to the one we adopt here.

Platzer has developed a theorem proving approach for verifying hybrid automata
which is implemented in the KeYmaera system (Platzer 2010). This benefits from many
of the advantages of theorem proving including a naturally compositional approach
to proof. Theorem proving also produces stronger, more general, results than model
checking but has its disadvantages. Producing such verifications is generally time-
consuming and requires highly skilled users although KeYmaera is linked to a number
of automated systems for solving sub-problems.

KeYmaera verifies hybrid systems which are represented as hybrid programs writ-
ten in a dedicated while-style programming language. There is a direct embedding of
hybrid automata into hybrid programs. However hybrid programs are more expres-
sive than, for instance, linear hybrid automata, and it is possible to represent com-
plex logical formulæ as invariants on states. Unfortunately, the language remains at
a low level, meaning that the implementation of complex decision-making is quite
cumbersome.

2.4.2 Solutions to the modeling problem

While it is theoretically possible to represent all hybrid systems as hybrid automata
or hybrid programs, it is time consuming to do so. In particular, as noted above, it is
difficult to represent complex computations occurring at the discrete decision-making
level in a compact fashion. As a result, where complex decision-making takes place
the hybrid automaton (or hybrid program) that models the system for verification
frequently abstracts away from the process and, instead, just represents all possible
outcomes of the decision-making as non-deterministic choices.

There have been several attempts to produce systems that will compile higher
level programming languages into hybrid automata for verification—thus allowing
the full complexity of decision-making to be represented. These systems can also,
potentially, employ abstraction techniques during the compilation process in order to
reduce the search space. Such approaches have focused on synchronous languages
such as Lustre (Briand and Jeannet 2009), and Quartz (Bauer 2012).

The agent paradigm, in particular, has been developed to address distributed asyn-
chronous situations which makes it attractive in situations where a synchronous model
of time is unhelpful. However, as yet, no system has been created to compile agent-
based control into hybrid automata.

123

Autom Softw Eng

2.5 Model checking agent programs

There are a number of approaches to model checking and verifying multi-agent sys-
tems (Alechina et al. 2010; Lomuscio et al. 2009; Gammie et al. 2004). Most of these
are not specifically geared towards BDI-style rational agents but provide more general
tools for the analysis of agents. In general these have not been applied to the prob-
lem of hybrid systems although MCMAS has been used in the verification of hybrid
automata (Ezekiel et al. 2011).

There are four systems that focus specifically on the model checking of BDI pro-
grams. Jongmans et al. (2010) describe a program model checker tailored specifically
towards the GOAL programming language. Both Hunter et al. (2013) and Stocker et
al. (2012) have investigated the model checking of Brahms (Sierhuis 2001) programs
using SPIN (Holzmann 2004). Both systems re-implement Brahms in Java and then
either export directly into SPIN (Stocker et al. 2012) or use Java Pathfinder (JPF) to
generate a model which is then exported to SPIN (Hunter et al. 2013). Bordini et al.
(2006) explores the model checking of AgentSpeak programs in both SPINand JPF
but, as far as we aware, the system is no longer maintained.

The MCAPL framework (Dennis et al. 2012) (described in more detail below)
provides access to model checking facilities to programs written in a wide range of
BDI-style agent programming languages so long as those languages have a Java-
based program interpreter. We chose to use the MCAPL framework in this work.

2.5.1 The MCAPL framework

In the examples discussed later in this paper we use the MCAPL framework which
includes a model checker built on top of JPF. We do not consider the framework
to be integral to our approach to the verification of agent-based decision-making in
autonomous systems, though some general background on the system will be use-
ful when reading the later examples. The framework is described in detail in Den-
nis et al. (2012), we therefore provide only a brief overview here. It has two main
sub-components: the AIL-toolkit for implementing interpreters for rational agent pro-
gramming languages and the AJPF model checker.

Interpreters for BDI languages are programmed by instantiating the Java-based
AIL toolkit (Dennis et al. 2008). An agent system can be programmed in the normal
way for a language but runs in the AIL interpreter which in turn runs on the Java
Pathfinder (JPF) virtual machine. This is a Java virtual machine specially designed
to maintain backtrack points and explore, for instance, all possible thread scheduling
options (that can affect the result of the verification) (Visser et al. 2003).

Agent JPF (AJPF) is a customisation of JPF that is optimised for AIL-based lan-
guage interpreters. Agents programmed in languages that are implemented using the
AIL-toolkit can thus be model checked in AJPF. Furthermore if they run in an envi-
ronment programmed in Java, then the whole agent system can be model checked.
Common to all language interpreters implemented using the AIL are the AIL-agent
data structures for beliefs, intentions, goals, etc., which are subsequently accessed by
the model checker and on which the modalities of a property specification language
are defined. Since we will be using this AJPF property specification language (PSL)

123

Autom Softw Eng

extensively later in this paper, we here describe its syntax and semantics (from Dennis
et al. 2012).

2.5.2 Temporal and modal logics and the MCAPL property specification language

In standard model checking, the logical formulæ are typically from some variety of
temporal logic, such as PLTL (propositional linear temporal logic). Underlying this
particular logic is a model of time based upon the natural numbers. Non-temporal
formulæ are evaluated at a single moment in time. Thus, some proposition ‘raining’
might be true at the current moment in time but false in the next moment. Temporal
operators then allow us to move between moments in time within our formulæ. In
PLTL, such operators are typically of the form ‘!’ (at all future moments), ‘♦’ (at
some future moment), ‘ ❣’ (at the next moment), etc. Thus

♦raining ⇒ ❣get_umbrella

means that if, at some moment in the future it will be raining, then at the next moment
in time we should get our umbrella. Such a logical base provides well-understood
and unambiguous formalism for describing the basic system dynamics (Fisher 2011).
(Note that we do not define ♦, !, etc, directly but give the semantics of the more
expressive temporal operators U and R, and then derive other temporal operators
from these as needed.)

However, in order to describe the behaviour of, and requirements within, rational
agents, we often need additional logical dimensions (Kurucz 2006). Thus we combine
our basic temporal logic with logical modalities for describing beliefs (that represent
the agent’s knowledge about its situation) and motivations (that represent the agent’s
reasons for making choices).

As an example, consider the following formula, a variation of which we will use
later:

B found_human ⇒ ♦(B is_free ∨ I make_free)

meaning that if a robot believes it has found a trapped human then eventually either
it believes the human is free or it intends to make the human free. Notice how this
formula combines temporal operators with the belief operator, B, and the intention
operator, I.

The AJPF property specification language is thus formally defined as follows:

PSL syntax The syntax for property formulæ ϕ is as follows, where ag is an “agent
constant” referring to a specific agent in the system, and f is a ground first-order
atomic formula:

ϕ : : = Bag f | Gag f | Aag f | Iag f | P(f) | ϕ ∨ ϕ | ¬ϕ | ϕU ϕ | ϕR ϕ

Here, Bag f is true if ag believes f to be true, Gag f is true if ag has a goal to
make f true, and so on with A representing actions, I representing intentions, and P

123

Autom Softw Eng

representing percepts, i.e., properties that are true in the external environment (e.g., a
simulation of the real world) in which the agent operates.

PSL semantics We next examine the specific semantics of our property formulæ.
Consider a program, P , describing a multi-agent system and let MAS be the state of
the multi-agent system at one point in the run of P . MAS is a tuple consisting of the
local states of the individual agents and of the environment. Let ag ∈ MAS be the
state of an agent in the MAS tuple at this point in the program execution. Then

MAS |#MC Bag f iff ag |# f

where |# is logical consequence as implemented by the agent programming language.4

The interpretation of Gag f is given as:

MAS |#MC Gag f iff f ∈ agG

where agG is the set of agent goals (as implemented by the agent programming lan-
guage).5 The interpretation of Aag f is:

MAS |#MC Aag f

if, and only if, the last action changing the environment was action f taken by agent
ag. Similarly, the interpretation of Iag f is given as:

MAS |#MC Iag f

if, and only if, f ∈ agG and there is an intended means for f (in AIL this is interpreted
as having selected some plan that can achieve f). Finally, the interpretation of P(f)

is given as:

MAS |#MC P(f)

if, and only if, f is a percept that holds true in the environment.
The other operators in the AJPF property specification language have standard

PLTL semantics (Emerson 1990) and are implemented as Büchi Automata as described
in Gerth et al. (1996), Courcoubetis et al. (1992)). Thus, the classical logic operators
are defined by:

4 Some agent languages may draw on more than just the belief base when determining logical consequence.
Hence this is written as ag |# f not agB |# f . This does not mean that an agent can believe one of its
goals is true (when it is not true but is simply a goal), but does mean that the agent can believe that it has
some goal.
5 In some languages agents may deduce the existence of implicit goals they possess, based on the explicit
goals in the Goal Base. At present the PSL semantics do not support verification of the existence of implicit
goals, but it is an extension that we intend to consider. Our thanks go to the anonymous referee who raised
this issue.

123

Autom Softw Eng

MAS |#MC ϕ ∨ ψ iff MAS |#MC ϕ or MAS |#MC ψ

MAS |#MC ¬ϕ iff MAS ̸|#MC ϕ.

The temporal formulæ apply to runs of the programs in the JPF model checker. A run
consists of a (possibly infinite) sequence of program states MASi , i ≥ 0 where MAS0
is the initial state of the program (note, however, that for model checking the number
of different states in any run is assumed to be finite). Let P be a multi-agent program,
then

MAS |#MC ϕU ψ iff in all runs of P there exists a state MAS j
such that MASi |#MC ϕ for all 0 ≤ i < j and
MAS j |#MC ψ

MAS |#MC ϕR ψ iff either MASi |#MC ϕ for all i or there exists MAS j
such that MASi |#MC ϕ for all i ∈ {0, . . . , j} and

MAS j |#MC ϕ ∧ ψ

The common temporal operators ♦ (eventually) and ! (always) are, in turn, derivable
from U and R in the usual way (Emerson 1990).

For the future, we hope to incorporate modalities for knowledge (for describing
information evolution) and coalitions (for describing cooperative systems) (Black-
burn et al. 2006) as well as extending some or all of these modalities to a full logic.
Investigating alternative logics for model checking autonomous systems is also the
subject of further work.

In this section we have examined the history of agent-based control of hybrid sys-
tems and the separate strands of research into the verification in hybrid systems and
verification of agent programs. We next begin to tackle a series of example systems,
defining the controlling agent(s), describing the environmental assumptions and car-
rying out formal verification.

3 Scenario: urban search and rescue

Consider a (simplified) example based on the RoboCup Rescue, or “urban search and
rescue”, scenario (Kitano and Tadokoro 2001). This is a widely used test scenario for
autonomous mobile robots, providing not only a variety of environmental abstractions
but also the potential for both individual and cooperative behaviours. A natural dis-
aster (e.g., an earthquake) has caused buildings to collapse. Autonomous robots are
searching for survivors buried in the rubble. There may be many of these robots, each
with sensors for detecting buried humans. Let us model this scenario on a simple grid.
A robot can move around spaces on the grid and at most one human is placed randomly
on the grid. The robot’s sensors are such that a robot ‘detects’ a human if the human
is in the same grid square.6

6 Relevant code for all the examples in this paper can be found in the examples package of the MCAPL
Project, available at sourceforge: http://mcapl.sourceforge.net or can be supplied on request by the first
author.

123

Autom Softw Eng

3.1 Implementation

Listing 1 shows part of the agent code for a simple search robot written using the BDI-
style agent programming language, Gwendolen (Dennis and Farwer 2008). The robot
has the goal of reaching a state where it can leave the area. It can only achieve this goal
if either it believes it has found the human or believes that the area is actually empty.

Listing 1 Simple rescue robot

Syntax. Gwendolen uses many syntactic conventions from BDI agent languages:
+!g indicates the addition of the goal g; +b indicates the addition of the belief b; while
−b indicates the removal of the belief. Plans then consist of three parts, with the pattern

The ‘trigger’ is typically the addition of a goal or a belief (beliefs may be acquired
thanks to the operation of perception and as a result of internal deliberation); the
‘guard’ states conditions about the agent’s beliefs (and, potentially, goals) which must
be true before the plan can become active; and the ‘body’ is a stack of ‘deeds’ the
agent performs in order to execute the plan. These deeds typically involve the addition
and deletion of goals and beliefs as well as actions (e.g., move_to(X1,Y1)) which
refer to code that is delegated to non-rational parts of the systems (in this case, motor
systems). In the above, Prolog conventions are used, and so capitalised names inside
terms indicate free variables which are instantiated by unification (typically against
the agent’s beliefs). Programs may also perform deductive reasoning on their atomic
beliefs as described in their reasoning rules. For instance

indicates that the agent deduces that the whole area is empty if it is not the case
(i.e., ∼) that there is some square that is empty (the “closed world assumption” is used

123

Autom Softw Eng

to deduce that the agent does not believe something). When asked to check
B area_empty then the agent will use the reasoning rule to deduce new beliefs based
on predicates in its belief base. Reasoning rules can also be used to deduce new goals
but this feature is not used in the work described here.

In Listing 1, the goal, +!leave[achieve], represents an achievement goal (Riemsdijk
et al. 2009) meaning that the agent must continue attempting the plans associated with
the goal (if they are applicable) until it has acquired the belief ‘leave’ (i.e., it wishes
to achieve a state of the world in which it believes it can leave the area). Note that, in
the above program, the agent cannot directly deduce “B human”, i.e., there is a human
at the current position, as it requires its sensors to tell it if it can see a human. The
underlying language interpreter polls the sensors for belief changes associated with
perception once each reasoning cycle. The belief that the agent can see a human is
not parameterised by the robot’s location because the sensors are presumed to simply
register the presence or absence of a human in the robot’s immediate location, it then
subsequently deduces the location of the human from its own current location.

In Listing 1 the agent picks an unchecked square in the grid to explore. It continues
to do this until either its sensors tell it that it can see a human or until it believes the
area is empty.

In this example the agent handles information about its location internally, i.e., it
does not perceive its location by checking the environment but adds and removes beliefs
about its location based on where it is in the execution (lines 9, 15 and 16 in Listing 1).
This was adequate for the example here, and allowed us to minimize interaction with
the environment in order to simplify the explanations of our methodology. Obviously,
in practice, it would be dangerous to handle beliefs about location in this way and,
in particular, to update such beliefs before any move action had taken place. A more
complex example, which introduced more events for the agent to handle (which could
potentially occur during movement and which required accurate location information)
would have revealed the limitations of this implementation during verification (if not
before).

3.2 Verification

Now, we wish to verify the robot’s reasoning is correct, independent either of the
modelling of other parts of the system or any detail of its environment. So, we might
wish to verify that

if the searching robot, s, believes it can leave the area, then it either believes the
human is found or it believes the area is empty.

!(Bs leave ⇒ (Bs found ∨ Bs area_empty)) (1)

An abstract model for the incoming perceptions must be provided, otherwise we
would only be able to check the robot’s behaviour when it does not believe it can see
a human (since that belief arises from perception alone). Whenever the agent requests
some perceptions we supply, randomly, all relevant inputs to the robot. In this case it
either sees a human or does not see a human.

123

Autom Softw Eng

The choice of which perceptions to supply to the agent and the times at which these
perceptions may change obviously represent an abstract model of the real world.
However we believe that these are decisions that can be made explicit, avoiding the
need for someone to inspect the code of the model in order to determine precisely
what has been proved. Moreover it is a model that is extremely conservative in its
assumptions about the real world.

Using this model of the environment we were successfully able to verify (1) auto-
matically in AJPF. Similarly we also verified other parts of the agent reasoning for
instance,

if the searching robot, s, never believes it sees the human then that means that
eventually it will believe it has visited all squares in the grid.

!¬Bs human ⇒ ∀ square(X, Y) ∈ Grid. ♦Bs at(X, Y) (2)

NB. the AJPF property specification language is propositional and so the use of uni-
versal (∀) quantifiers in these examples is just a shorthand for an enumeration over all
possible values. In this case we used a 3 × 3 grid so the actual property checked was

!

⎛

⎝¬Bs human ⇒

⎛

⎝
♦Bs at(0, 0) ∧ ♦Bs at(0, 1) ∧ ♦Bs at(0, 2) ∧
♦Bs at(1, 0) ∧ ♦Bs at(1, 1) ∧ ♦Bs at(1, 2) ∧
♦Bs at(2, 0) ∧ ♦Bs at(2, 1) ∧ ♦Bs at(2, 2)

⎞

⎠

⎞

⎠

Use of quantifiers in other AJPF property specification language expressions through-
out the paper should be understood in a similar way.

3.2.1 Deduction using environmental assumptions

There is a great deal we can formally verify about an agent’s behaviour without refer-
ence to the agent’s environment. However there are still things we might reasonably
wish to prove given simple assumptions about the behaviour of the real world. Thus,
once we have shown System |# ϕ, for some relevant property ϕ, then we can use
the fact that the environment satisfies ψ to establish System |# (ψ ∧ ϕ) and hence (if
(ψ∧ϕ) ⇒ ξ) that System |# ξ . For instance, we might want to assume that the robot’s
sensors accurately detect the human,7 and that its motor control operates correctly. If
we know these facts then we can prove a stronger property that the agent will actually
find the human as well as believing it has found the human.

Let us define ‘found_human’ as the property that

7 It should be noted that this includes a wider assumption that the programming of the language interpreter
correctly adds information from sensors as beliefs at suitable times in the agent’s reasoning cycle. It would
be possible to use the P(φ) modality in the PSL to push these kinds of properties out to the java layer,
i.e., to model check that if the percept was available in the software system then the agent together with
the interpreter behaves appropriately and indeed we have used this technique in employing probabilistic
reasoning about unreliable sensors (Dennis et al. 2013b). A similar technique would also be needed to verify
that sensors were polled at appropriate points in languages which give the programmer control over such
things. This technique requires an analysis of the larger software system beyond just the agent program in
order to determine which percepts should be supplied at random.

123

Autom Softw Eng

the robot and the human are in the same grid square and the robot believes it can
see the human.

found_human ≡ Bs human ∧ (∃ square(X, Y) ∈ Grid. at(human, X, Y)

∧at(robot, X, Y)) (3)

We can characterise correct_sensors as:

the robot believes it can see a human if, and only if, it is in the same square as
the human.

correct_sensors ≡ (Bs human ⇐⇒ (∃ square(X, Y) ∈ Grid. at(human, X, Y)

∧at(robot, X, Y))) (4)

Similarly, we need to state, as an assumption, that the robot’s motors are working
correctly.

the robot believes it has reached a grid square if, and only if, it is actually in that
grid square.

correct_movement ≡ ∀ square(X, Y) ∈ Grid. !(Bs at(X, Y)

⇐⇒ at(robot, X, Y)) (5)

Given this framework we might want to show that

if the robot’s sensors and motors are working correctly and if a human is sta-
tionary on the grid then eventually the robot will find the human.

[
!correct_sensors ∧ !correct_movement ∧
∃ square(X, Y) ∈ Grid. !at(human, X, Y)

]
⇒ ♦found_human (6)

We have already verified the agent’s internal reasoning by model checking to give
us the property in (2) which tells us that either the robot believes it sees the human
or it visits every square. From this (6) can easily be proved. This can be done by
hand, or by using a suitable temporal/modal logic prover (Fisher 2011)—for instance
we were easily able to prove this theorem on a three by three grid automatically in
the online Logics Workbench (Heuerding et al. 1996) (see Appendix 3 for the input
commands).

A key aspect here is that this ‘proof’ that the robot will find the human only works
if the human does not move and, indeed, we have had to state that explicitly (via
!at(human, X, Y))! Without this assumption the proof fails since there will be no
way to prove that, eventually, the robot and human will be in the same square at the
same time.

123

Autom Softw Eng

3.2.2 Multi-agent systems

In more sophisticated scenarios we not only want to check properties of single agents
but of groups of agents working together. Thus, imagine that we now have another
robot, capable of ‘lifting’ rubble. The aim is for the two robots to work as a team: the
‘searching’ robot, ‘s’, will find the human, then the ‘lifting’ robot, ‘l’, will come and
remove the rubble. We will refer to the beliefs of the lifting robot as Bl . Ideally, if
these two work together as expected then we would like to show that eventually the
lifter believes the human is free:

♦Bl free(human) (7)

However, this depends on several things, for example that any communication between
the robots will actually succeed. We can adopt our previous approach and analyse each
robot independently based on random perceptions and, in this case, messages being
received from the environment. So we can establish that (we have slightly simplified
the properties for presentational purposes):

the searcher will send a message to the lifter if it finds a human.

!(Bs found ⇒ ♦Bssent(lifter, human(SomeX, SomeY))) (8)

and

the lifter will free the human if it receives such a message

!(Bl rec(searcher, human(X, Y))) ⇒ ♦Bl free(human)) (9)

We can also express the assumption that messages sent by the searcher will always
be received by the lifter and then use the model checker to prove properties of the
combined system, e.g:

if messages sent by the searcher are always received by the lifter then if the
searcher believes it has found a human, eventually the lifter will believe the
human is free.

!(Bs sent(lifter, human(X, Y)) ⇒ ♦Bl rec(searcher, human(X, Y)))

⇒ !(Bs found ⇒ ♦Bl free(human))
(10)

Potentially, using reasoning such as this, two autonomous robots could believe that
they will together achieve a required situation given some joint beliefs about the envi-
ronment. However if we reason about each agent separately to deduce properties (8)
and (9) we reduce both the size of the automaton to be checked and the size of the
search space. We can then combine these component properties with an appropriate
statement about communication, i.e.

!(Bssent(lifter, human(X, Y)) ⇒ ♦Bl rec(searcher, human(X, Y)))

123

Autom Softw Eng

in order to reach the conclusion of (10) deductively.8 This demonstrates one of the
advantages of a compositional approach—namely that the complexity of model check-
ing tasks can be kept to a minimum.

3.2.3 Goals and intentions

We have been verifying the beliefs agents acquire about their environment in lieu
of verifying actual facts about the environment. However, we are also interested in
verifying the choices that agents make. Suppose that our lifting agent does not deduce
that the human is free (because it has moved some rubble), but continues to lift rubble
out of the way until its sensors tell it the area is clear (see Listing 2). We cannot verify
that the robot will eventually believe the human is free since we can not be sure that it
will ever believe that the human is actually clear of rubble. However, we can establish
(and have verified) that

if the lifting agent believes the human to be at position (X, Y) then eventually it
will form an intention to free the human.

Blhuman(X, Y) ⇒ ♦(Il free(human) ∨ Bl free(human)) (11)

As above, we can derive further properties under assumptions about the way perception
behaves:

assuming that, whenever the lifter forms an intention to free the human it will
eventually believe the rubble is clear, then receipt of a message from the searcher
will eventually result in the lifter believing the human is free.

!(Il free(human) ⇒ ♦Blclear) ⇒ (Bl rec(searcher, found)

⇒ ♦Bl free(human)) (12)

3.2.4 Performance

In this section we briefly outline performance results for the Robot Rescue Scenario.
Performance issues will be discussed more fully in our next example. The verifica-

8 Logics Workbench Commands, again in Appendix 3.

123

Autom Softw Eng

Table 1 Performance results
for the verification of Theorem 1
as the size of the grid increases

Grid size States Time (min:s)

3 × 3 52 0:31

4 × 4 87 1:38

5 × 5 132 4:48

6 × 6 187 14:06

Table 2 Performance results of
the verification of
Theorems 2, 8, 9, 10, 11 and 12
on a 3 × 3 grid

Theorems States Time (min:s)

2 13 0:14

8 52 0:18

9 28 0:7

10 254 1:18

11 41 0:23

12 41 0:23

tion was performed on a dual core 2.8 GHz Macbook with 8 GB of memory running
MacOS × 10.9.2.

Table 1 shows the time taken and number of states generated when verifying the-
orem 1. In this instance we show performance for a 3 × 3, 4 × 4, 5 × 5 and 6 × 6
grid. While the number of states explored increases roughly linearly with the number
of squares in the grid the time increase is much more severe. This is because of the
time taken to execute the Prolog-style rules for area_empty and unchecked. This is
indicative of inefficiency in the implementation of Gwendolen therefore, rather than
in AJPF itself.

Table 2 shows the number of verification states and time taken for the other theorems
discussed in this section on the 3 × 3 grid.

While much simplification has occurred here, it is clear how we can carry out
compositional verification, mixing agent model checking and temporal/modal proof,
and how the environmental abstractions we use can be refined in many ways to provide
increasingly refined abstractions of the “real world”. Crucially, however, we can assess
the choices the agent makes based on its beliefs about its environment and not what
actually happens in its environment.

4 Scenario: rational hybrid agents for autonomous satellites

The previous example involved simple code developed to illustrate our methodology.
We now turn to look at code developed as part of a project to investigate agent based
control of satellite systems (Lincoln et al. 2013). The code was not initially developed
with verification in mind.

Traditionally, a satellite is a large and very expensive piece of equipment, tightly
controlled by a ground team with little scope for autonomy. Recently, however, the
space industry has sought to abandon large monolithic platforms in favour of multiple,

123

Autom Softw Eng

smaller, more autonomous, satellites working in teams to accomplish the task of a
larger vehicle through distributed methods.

The nature of these satellite systems, having a genuine need for co-operation and
autonomy, mission critical aspects and interaction with the real world in an environ-
ment that is, in many respects, simpler than a terrestrial one, makes them a good
test-bed for our approach to analysing autonomous systems.

4.1 System architecture

We have built a hybrid system embedding existing technology for generating feedback
controllers and configuring satellite systems within a decision-making part based upon
a high-level agent program. The decision-making relies on discrete information (e.g.,
“a thruster is broken”) while system control tends to rely on continuous information
(e.g., “thruster fuel pressure is 65.3”). Thus, it is vital to be able to abstract from
the dynamic system properties and provide discrete abstractions for use by the agent
program. It is for this reason that, as mentioned earlier, we have an explicit abstraction
layer within our architecture that translates between the two information styles as data
flows around the system.

Figure 2 shows the full architecture for our system (Dennis et al. 2010). R is a
traditional BDI system dealing with discrete information, Π and Ω are traditional
control systems, typically generated by MatLab/Simulink, while A provides the
vital “glue” between all these parts. We will not discuss the implementation ofΠ and
Ω in any detail; our concern is primarily with R and its interaction with A.

The agent programming language used to implement R (again, Gwendolen)
encourages an engineer to express decisions in terms of the beliefs an agent has,
what it wants to achieve, and how it will cope with any unusual events. This reduces
code size so an engineer need not explicitly describe how the satellite should behave
in each possible configuration of the system, but can instead focus on describing the
factors relevant to particular decisions (Dennis et al. 2010b). The key aspect of delib-
eration within agent programs allows the decision-making part to adapt intelligently
to changing dynamic situations, changing priorities, and uncertain sensors.

4.1.1 Semantics of interaction

We developed a semantics for interaction between the components of the architec-
ture (Dennis et al. 2010a) which operates via shared sets of which, for our purposes,
the most interesting is the set of shared beliefs,', used by both A and R to describe their
shared, discrete, understanding of the world. R may also make specific requests for
calculations to be performed byΩ or actions to be performed byΠ . These requests are
sent via A. Among other things, A takes any (potentially continuous) results returned
byΩ and discretizes these as a shared belief for R. Overall, the role of A is to interface
between R and the other engines. This helps avoid data overload by replacing large
‘chunks’ of incoming data with key discrete predicates (Dennis et al. 2010a).

In this semantics all perceptions that arrive via sensors from the real world are
filtered through A, which converts them into discrete shared beliefs, '. Therefore,

123

Autom Softw Eng

Fig. 2 Hybrid agent architecture. Real time control of the satellite is governed by a traditional feedback
controller drawing its sensory input from the environment. This forms a Physical Engine (Π). This engine
communicates with an agent architecture consisting of an Abstraction Engine (A) that filters and discretizes
information. To do this A may use a Continuous Engine (Ω) to make calculations. Finally, the Reasoning
Engine (R) contains a “Sense-Reason-Act” loop captured as a rational agent. Actions involve either calls
to the Continuous Engine, Ω , to calculate new controllers (for instance) or instructions to the Physical
Engine, Π , to change these controllers. These instructions are passed through the Abstraction Engine, A,
for reification

from a model checking perspective, if we are interested in how the external world can
affect the internal beliefs of the Reasoning Engine, R, then we are primarily interested
in the possible compositions of '.

4.1.2 System implementation

This architecture and interaction semantics have been implemented within a simulation
environment, where the Physical and Continuous engines (Π andΩ) are implemented

123

Autom Softw Eng

in MatLab, while A and R are written in a customised variant of the Gwendolen
programming language. This extended language includes constructs for explicitly
calling Π and Ω and a Java environment interface that supports such calls. This
Java environment handles the shared data sets, in particular the shared beliefs which
are used by A and R and also controls communication with MatLab via sockets.

The architecture has been deployed on multiple satellites within a satellite hard-
ware test facility as well as within a number of simulated environments. A range of
satellite scenarios have been devised and tested, involving assuming and maintaining
various formations, fault monitoring and recovery and collaborative surveying work
in environments such as geostationary and low Earth orbits and among semi-charted
asteroid fields. The system and scenarios are described more fully in Lincoln et al.
(2013).

The focus of this example is upon the verification that took place after this initial
implementation and testing. Given the verification was of the rational engine alone, it
was obviously important that the behaviour of the whole system be tested separately
but this paper does not examine these aspects.

4.2 Adapting the system for model checking

Our principal interest here is in the verification of the discrete reasoning parts of the
system. These are represented by R and so we want to abstract away A,Ω andΠ , yet
do so in a coherent fashion. Since all communication with Π and Ω to and from R
occurs via A, we can ignore Ω and Π entirely and just focus on A and R.

The architecture proved particularly conducive to the verification methodology
proposed. Since programmers had to explicitly program up the abstractions to be
used with the Abstraction Engine, A, it became possible to “read off” from the code
for an abstraction engine all the shared beliefs that could possibly be asserted in
response to changing perceptions. This in turn allows us to pre-determine the possible
configurations of ', the set of shared beliefs. Similarly we were able to analyse the
messages that agents sent to determine which messages might be received by other
agents in the system. Since the only external inputs to the reasoning engine come from
shared beliefs and messages it was easy to clearly define the set of inputs needed for
verification.

We implemented specific verification environments that observed the Reasoning
Engine’s interface requirements for the hybrid system. This consisted entirely of assert-
ing and retracting these shared beliefs and messages. Each time an agent took an action
in the environment a new set of shared beliefs and a new set of messages were gen-
erated at random. Each time the agent requested the shared beliefs a random shared
belief set was sent to it (similarly with messages). During model checking the calls
to random number generation caused the model checker to branch and to explore
all possible outcomes that could be generated. In order to limit the search space we
take the (simplifying) view that reasoning happens instantaneously, while action has
a duration. Therefore the only times at which the system randomly changes the per-
ceptions/shared beliefs and messages available to the reasoning engine are when the
reasoning engine takes some form of action (i.e., a request for a calculation fromΩ).

123

Autom Softw Eng

The model checker will then explore all possible combinations of shared beliefs and
messages that might be available at that point, modelling essentially both the times an
action results in the expected outcome and those when it does not.
It is important to again emphasize that those aspects of the system relating to the
Abstraction, Continuous and Physical engines were not required for model checking
the system.

4.3 Example: autonomous satellites in low Earth orbit

A low Earth orbit (LEO) is an orbit with an altitude ranging between that of the
Earth’s upper atmosphere, at approximately 250 km, and an upper bound of 2,000 km;
the orbit may be inclined to the equator and may or may not be elliptical. LEOs
are used predominantly by Earth observation missions that require high resolution
imaging, including weather, Earth resource and military satellites.

Low Earth orbit based satellites travel at high speed, completing an orbit within
approximately 90 min. Orbiting at such great speeds presents a secondary issue con-
cerning the control and monitoring of LEO satellites: ground station visibility is
restricted to between 5 and 15 min per overhead passage of a ground station. Whilst
multiple ground stations, or space based relay satellites orbiting at higher altitudes,
may be switched between to enable greater communication periods, the growth in
infrastructure is a clear disadvantage. As a result there is a need to increase the
autonomous control of such systems.

4.3.1 Scenario

We developed a model of satellite formations in low Earth orbit. The Continuous
Engine, Ω , was programmed to supply plans for moving to particular locations in a
formation. The algorithm used to generate such plans was based on that in Lincoln and
Veres (2006). Controls were made available in the Physical Engine, Π , which could
send a particular named activation plan (i.e., one calculated by Ω) to the feedback
controller.

The satellite was provided with thrusters in three body axes (X, Y and Z) each of
which contained two fuel lines. The agent was also able to control which fuel line was
in use which enabled it to switch in the event of a rupture (detectable by a drop in fuel
pressure).

In the simple case examined here, the satellites were expected to move to pre-
generated locations in a formation, correcting for a single fuel line breakage, if it
occurred.

4.3.2 Implementation and testing

The code for the abstraction and rational engines for these examples can be found in
Appendix 1 together with a detailed description of its functionality.

The software was developed and tested both in simulation, using a Simulink imple-
mentation of Π and Ω , and on a physical satellite simulation environment devel-
oped initially at the University of Southampton and then moved to the University of

123

Autom Softw Eng

Fig. 3 The satellite test facility used for demonstrations of autonomous agent implementations

Sheffield (Fig. 3). In simulation a “gremlin” agent was introduced that could, at speci-
fied points, insert hardware failures into the satellite system. In physical testing it was
possible to simulate failures in “path following” by physically moving the satellites
from their chosen course. Having produced a working system the task was then to
formally analyse it.

4.3.3 Analysis of a single satellite agent

We wish to verify the satellite’s Reasoning Engine is correct, independent of the
modelling of other parts of the system and any detail of its environment.

We inspected the Abstraction engine code to determine the shared beliefs. A frag-
ment of this code is shown in Listing 3 and the full listing can be found in Listing 6.
+'b and −'b are used to indicate when the Abstraction engine asserts or removes a
shared belief.

Listing 3 Low earth orbit: abstraction engine (fragment)

Simply reading off the uses of these constructs in the fragment tell us that the shared
beliefs that can be asserted are, close_to(Pos) (meaning that the satellite is close to
position, Pos), and broken(X) (meaning thruster X is broken). thruster_bank_line
(X, B, L) (meaning thruster X, is currently in bank B and using fuel line L) and
get_close_to(Pos, P) (meaning that P is a plan for moving to position, P) also appear

123

Autom Softw Eng

Table 3 Results for analysis of a single agent with no thruster failure

Inputs
Property close_to broken thruster_bank_line get_close_to

(15) middle × × (middle, plan)

(16) middle × × (middle, plan)

Results

Property States Time (s)

(15) 33 12

(16) 33 12

in the full code shown in Listing 6. All of these have parameters. We knew from the
physical satellite set-up that the thruster “name”, X, could be x, y or z and its bank, B
(not used in these examples), and line, L, could be 1 or 2 respectively, depending upon
the formation under consideration, Pos, could be none, right, middle, left, topright,
topleft, bottomright or bottomleft. get_close_to also had the name of a plan, P , as
a parameter. This name was generated and supplied by the Continuous Engine. This
was more of a challenge since the name of the plan would be derived algorithmically
inside the Continuous Engine. However the code, itself, never analysed this name
simply passing it on to the Physical Engine and so a place-holder name, plan, was
used.

Unfortunately, even with relatively few perceptions the combinatorial explosion
associated with exploring all possibilities gets very large. For most experiments it
is necessary therefore to limit the number of possibilities (we discuss this further in
Sect. 6). However the analysis does allow us to state clearly which inputs are being
considered, as is shown in Tables 3, 4, 5, and 6.

The choice of parameters for shared beliefs and the times at which these shared
beliefs might change obviously represent an abstract model of the real world. However
we believe that this choice can be made explicit (and show how in our presentation
of performance results). This avoids the need for someone to inspect the code of the
model in order to determine exactly what assumptions (parameters choices in this case)
have been made and hence to determine precisely what has been proved. Moreover it
is a model that is extremely conservative in its assumptions about the real world.

In Sect. 3.2.2 we modelled reliable communication via a hypothesis to our theorem.
We will use the same technique to capture hypotheses about the workings of the
Continuous and Physical engines. Thus, potentially, once we have shown R |# (ψ →
ϕ) then we can use the fact that, for instance Π satisfies ψ to establish {R,Π} |# ϕ

As a result of this analysis a number of additional plans were introduced into the
agent code to handle edge conditions where information was changing particularly
rapidly. The code shown in Appendix 1 is the final code. The plans on line 50 and
lines 56–58 in the Rational Engine in Appendix 1 (a) were introduced as a result
of model-checking to cover cases where, for instance, an abort has already occurred
but information arrives that a thruster is newly broken, or that a thruster had been

123

Autom Softw Eng

Table 4 Results of the analysis of a single agent with thruster failures

Inputs
Property close_to broken thruster_bank_line get_close_to

(18) middle x, y, z (x, 1, 1), (y, 1, 1), (z, 1, 1) middle

(21) middle x (x, 1, 1) middle

Results

Property States Time

(18) 16,609 1 h, 18 m, 42 s

(21) 2,754 9 m, 04 s

Table 5 Analysis of a multi-agent system with no thruster failure attempting to move into a line

Leader agent
Property Maintaining Aborted States Time

(23) ag1, ag2, ag3, ag4 × 1,381 18 m, 6 s

(24) ag1, ag2, ag3, ag4 × 2,751 25 m, 07 s

(25) ag1, ag2, ag3, ag4 × 2,751 26 m, 47 s

Follower agent (inputs)

Property close_to get_close_to assume_formation Position drop_formation

(26) middle (middle, plan) line × line

(27) middle (middle, plan) line × line

Follower agent (results)

Property States Time

(26) 602 5 m, 33 s

(27) 602 4 m, 41 s

Table 6 Analysis of results of a
multi-agent system with no
failures but changing formations

Property Maintaining States Time

(28) ag1, ag2, ag3, ag4 1,892 29 m, 58 s

(29) ag1, ag2, ag3, ag4 3,333 1 h, 5 m, 21 s

successfully fixed but is now reporting it is broken again. This demonstrates the ability
of verification to locate errors that were not found by simulation or testing.

Agent operation without thruster failure or outside communication We first chose to
investigate the operation of the agent in a situation where its thrusters do not fail and
when no messages were received from outside. Therefore it started out with the goal
of assuming its position in a formation, and that the position it was to assume was in

123

Autom Softw Eng

the middle of a line. This was achieved by preventing the environment from sending
the perception broken(X). The environment delivered no messages.

We define two assumptions about the environment:

if the agent requests a plan to get to some position, then it eventually believes it
has received a plan.

PlanningSucceeds(Pos) ≡
!(Aag1query(get_close_to(Pos, P)) ⇒ ♦Bag1 have_plan(Pos, plan))(13)

if the agent executes a plan then eventually it believes it has reached the desired
position.

PlanExecutionSucceeds(Pos) ≡ !(Aag1perf(execute(plan)) ⇒
♦Bag1 in_position(Pos)) (14)

We want to establish, using model checking, that:

if the agent receives a plan on request, and the execution of that plan takes it to the
middle position in a line, then eventually the agent will believe it is maintaining
a position in the middle of the line.

PlanningSucceeds(middle) ∧ PlanExecutionSucceeds(middle) ⇒
♦Bag1 maintaining(middle) (15)

If we wish to relax our environmental assumptions, we can also show that

if plan execution always succeeds, then either the agent will eventually believe
it is in its desired position, or it never believes it has a plan for getting there.

PlanExecutionSucceeds(middle) ⇒
♦Bag1 maintaining(middle) ∨ !¬Bag1 have_plan(middle, plan) (16)

Table 3 shows the environment provided for each property (Inputs), and the size of the
generated product automata (in states) and the time taken in hours, minutes and seconds
on a dual core 2.8 GHz Macbook with 8 GB of memory running MacOS × 10.9.29

(Results). The columns on the left of the Inputs chart show the arguments that were
supplied to each of the potential percepts (i.e., every time it took an action the agent
could either gain the perception get_close_to(middle, plan) or not, but could not, for

9 It can be seen (particularly, for instance, by comparison of Tables 4 and 6) that time taken does not scale
consistently with the number of states in the product automata. This is because the time taken to generate
the automata was sensitive to the complexity of generating new states within the agent code—for instance,
as already noted, where a lot of Prolog-style reasoning was needed there was a significant slow down in the
generation of new program states.

123

Autom Softw Eng

instance, get the perception get_close_to(left,plan)). × indicates that the percept was
not supplied at all.

These results could be combined deductively with results about the correct perfor-
mance of the Continuous and Physical engines to produce a proof that the the agent
would eventually believe it was in position. Furthermore, with additional analysis to
prove that the sensors always operated correctly:

if the agent believes it is in the middle then it really is in the middle

Bag1 maintaining(middle) ⇒ in_position(ag1, middle) (17)

then the theorem could be extended to prove that the agent really could be guaranteed
always to reach its position.

The important thing to note is that the theorem resulting from the model checking
process explicitly states its assumptions about the real world (i.e., that plans are always
produced and are always accurate) rather than concealing these assumptions within
the coding of the model. Since it is, in reality, unlikely that you could ever guarantee
that plan execution would always succeed it might be necessary to combine the model
checking with probabilistic results to obtain an analysis of the likely reliability of the
agent (see further work in Sect. 6).

Investigating the response to thruster failure If we include the possibility of thruster
failure into our analysis then we can show that

if the planning process succeeds then either the agent eventually believes it is
maintaining the position or it believes it has a broken thruster.

PlanningSucceeds(middle) ∧ PlanExecutionSucceeds(middle)

⇒ ♦Bag1 maintaining(middle) ∨
Bag1 broken(x) ∨ Bag1 broken(y) ∨ Bag1 broken(z) (18)

We can improve on this result by adding extra assumptions about the way the envi-
ronment behaves:

whenever the agent fixes a fuel line then eventually it believes the thruster is
working again.

ChangingLineSucceeds(T) ≡ !(Aag1perf(change_line(T))

⇒ ♦¬Bag1 broken(T)) (19)

where T is the thruster effected. A second hypothesis is

broken thrusters never lead to an abort because of thruster failure.

NoIrrepairableBreaks(T) ≡ !(Bag1 broken(T)

⇒ !¬Bag1 aborted(thruster_failure)) (20)

123

Autom Softw Eng

Property (21) states that

if planning succeeds for the middle position, and the x thruster is always believed
to be fixable and changing a fuel line means eventually the agent believes the
thruster is no longer broken, then eventually the agent will believe it is main-
taining its position.

PlanningSucceeds(middle) ∧ PlanExecutionSucceeds(middle)

∧ ChangingLineSuceeds(x) ∧ NoIrrepairableBreaks(x)

⇒ ♦Bag1 maintaining(middle) (21)

This is obviously only true if the y and z thrusters do not also break. Unfortunately
expressing the conditions for the additional thrusters made the automaton too large for
construction in reasonable time (however, see ‘aside’ below). As a result this property
was checked only with the option of sending the agent the predicate broken(x) not
with the option of broken(y) or broken(z). However this restriction is clear from the
presentation of results in Table 4.

4.3.4 Analysis of multi-agent models and communication

We now extend the scenario into one which involves multiple agents and communi-
cation. In the previous scenario the agent knew which pre-determined position in a
formation it was to assume. In this example a further “lead agent” is introduced. This
is a purely software agent whose role is to decide which position in some formation
each of four satellites are to assume and communicate that information to the agents
controlling the spacecraft. It can place the satellites in a line or a square formation
and can react to an abort from one of the satellites (e.g., because of thruster failure)
to modify the formation if possible (i.e., moving from a square to a line). Appendix 1
(b) shows the code for this lead agent agent.

In the previous examples we were able to determine the appropriate random inputs
to the verification by inspecting the shared beliefs asserted by the Abstraction Engines
for each agent. The lead agent has no abstraction engine since it is not controlling a
physical system directly and so does not actually receive any information from shared
beliefs. It receives all its inputs as messages from other agents. We therefore have
to analyse it in the light of the messages the other agents in the system (e.g., ag1)
send rather than by analysis of the Abstraction Engine. Messages are passed directly
between rational agents rather than being processed by the Abstraction Engines. Just
as we “read off” the shared beliefs from the Abstraction Engine we can “read off”
possible messages from the Reasoning Engine code of the other agents in the system
by looking for uses of the send instruction. However, this does not allow us to verify the
system against the presence of unknown agents, or message corruption. It is important
to note, therefore, that we are explicitly not investigating this in the context of a system
where malicious agents may send conflicting messages.

Using this analysis we determine the following messages that may be received
by agents in the system. aglead may receive the message maintaining(AgName)

123

Autom Softw Eng

in which agent, AgName, asserts that is is maintaining its position and the mes-
sage aborted(thruster_failure, AgName) in which agent, AgName states that it has
aborted its current maneouvre because of thruster failure. The satellite agents (as
represented by ag1) can receive three messages, assuming_formation(F) which tells
them that the group will be assuming some formation, F; position(Pos) which informs
them that they should assume position, Pos within the formation; and the instruction
drop_formation(F) which tells to abandon the attempt to assume the formation F. In
the system under consideration, AgName can be ag1, ag2, ag3 or ag4. F is one of line
or square, and Pos could be none, right, middle, left, topright, topleft, bottomright or
bottomleft. For reasons of efficiency, we do not consider the issue of thruster failure in
the multi-agent system so we will not use values of aborted(thruster_failure, AgName)
in what follows.

Single formation We verified the behaviour of both the leader agent and the follower
agents in the situation where there is only one formation, a line, to be adopted. We
needed a new assumption about the performance of the environment, stating that:

once the leader believes it has informed an agent that it should assume a position
in a line formation then, eventually, it will believe it has received a message
telling it that the (informed) agent is maintaining that position.

AlwaysResponds(AgName, Pos) ≡
!(Baglead informed(AgName, Pos) ⇒ ♦Baglead maintaining(AgName))

(22)

With this assumption we were able to verify that

if all agents respond, the lead agent eventually believes the agents have assumed
a linear formation.

AlwaysResponds(ag1, line) ∧ AlwaysResponds(ag2, line) ∧
AlwaysResponds(ag3, line) ∧ AlwaysResponds(ag4, line)

⇒ ♦Baglead in_formation(line) (23)

We also verified some safety properties, e.g.:

the leader never believes it has assigned an agent (ag1 in the case shown below)
to two positions at the same time.

!Baglead position(ag1, left) ⇒
¬(Baglead position(ag1, middle) ∧ Baglead position(ag1, right)) (24)

the leader never believes it has assigned two agents to the same position (the left
in the case shown below).

123

Autom Softw Eng

!Baglead position(ag1, left) ⇒
¬(Baglead position(ag2, left) ∨ Baglead position(ag3, left) ∨
Baglead position(ag4, left)) (25)

The follower agent uses the code investigated in our single agent case, but when it is
interacting with a multi-agent system we want to verify that the messages it sends to
the leader agent accurately portray its beliefs. So, we show that

under the assumption that planning and plan execution are successful for the rel-
evant formation and position, the follower will eventually believe it has informed
the leader that it is maintaining its position.

PlanningSucceeds(middle) ∧ PlanExecutionSucceeds(middle) ⇒
!(Bag1 handling(assuming_formation(line)) ∧ Bag1 my_position_is(middle) ⇒
♦Bag1 sent(aglead, maintaining(ag1)) (26)

We can also verify that

followers only send messages if they believes they are maintaining the positions
they have been assigned.

!(Aag1send(aglead, maintaining(ag1)) ⇒
Bag1 my_position_is(middle) ∧ Bag1 maintaining(middle)) (27)

The results of this analysis are shown in Table 5

Changing formations Lastly we investigated the behaviour of the leader agent in
situations where the formation could change.

if all agents respond, then eventually the leader agent will believe a square
formation to have been achieved.

AlwaysResponds(ag1, square) ∧ AlwaysResponds(ag2, square) ∧
AlwaysResponds(ag3, square) ∧ AlwaysResponds(ag4, square)

⇒ ♦(Baglead in_formation(square)) (28)

if all agents respond, then whenever the leader agent believes all the agents to
be in square formation it will eventually believe them to be in a line formation.

AlwaysResponds(ag1, line) ∧ AlwaysResponds(ag2, line) ∧
AlwaysResponds(ag3, line) ∧ AlwaysResponds(ag4, line)

⇒ !(Baglead in_formation(square) ⇒ ♦(Baglead in_formation(line)))

(29)

123

Autom Softw Eng

Fig. 4 Hybrid program for a leader and a follower car in a single lane

The results of this are shown in Table 6
We can, of course, continue with further verification. However, it should be clear

to the reader by now how this proceeds, combining model checking of behaviour for
individual agents in the presence of a random environment, together with straight-
forward temporal/modal reasoning that can be carried out by hand or by appropriate
automated proof tools.

5 Scenario: adaptive cruise control

For our final example we demonstrate how our approach can integrate with approaches
based on hybrid automata or hybrid programs which focus on the continuous dynamics
of the system. We look at an example developed in KeYmaera by Loos et al. (2011).
This example considers the problem of a car with adaptive cruise control that must
maintain a safe distance between itself and the car in front and may only change lane
when it is safe to do so. Loos et al., analyse this problem compositionally working
up from the simple case of two cars in a single lane to an arbitrary number of cars
on a motorway with an arbitrary number of lanes. The control system for the cars is
modelled as a hybrid program.

It is outside the scope of this paper to describe the syntax and semantics of hybrid
programs. But we reproduce a simple example from (Loos et al. 2011) to give a flavour
of the language. In Fig. 4, x f is the position of the follower car, v f its velocity and a f
its acceleration. Similarly xl , vl and al represent the position, velocity and acceleration
of the leader car. −B is a global constant for the maximum possible deceleration due
to braking (so acts as a bound on the speed at which both the leader and follower may
slow down, this allows the results to be composed into theorems about whole convoys
of cars), −b is a global constant for the minimum deceleration and A is the maximum
possible acceleration. ϵ is an upper bound on the reaction time for all vehicles. Safeϵ
is an equation used by the control system to determine the safe distance between cars.
A key part of the verification effort reported is establishing this equation and proving
that it does guarantee the system to be collision free. It is defined as

Safeϵ ≡ x f +
v2

f

2b
+

(
A
b

+ 1
) (

A
2
ϵ2

)
< xl + v2

l

2B
(30)

In Fig. 4, llc defines a repeated sequence of a discrete control, ctrl, followed by
dynamic control, dyn. The discrete control is the parallel composition of the control
of the leader, lctrl , and the follower, fctrl . The leader has a simple control program—it
may adopt any acceleration (al : : = ∗) within the available range. fctrl defines three

123

Autom Softw Eng

possible states. In the first (a f : : = ∗; ?(−B ≤ a f ≤ −b)) the acceleration may be
any negative value in the allowed range. In the second (?Safeϵ; a f : : = ∗; ?(−B ≤
a f ≤ A)) the acceleration may be any possible value provided the car is a safe distance
behind the leader, and in the final state (?(v f = 0); a f : : = 0), the acceleration may
be zero if the velocity is zero. The dynamic control, dyn, states how position and
velocity vary depending upon acceleration, using the standard differential equations
for motion.

The control systems for the cars in the more complex examples follow a similar
form—represented as a non-deterministic choice over legal states for the system. The
decision-making represented by the constraints on each state is relatively simple here
with no reference, for instance, to any goals of the system. It would be possible to
represent more complex control in hybrid programs, particularly since the constraints
have access to full first order logic (unlike the constraints in linear hybrid automata)
as well as simple if-then control structures, but it would be cumbersome to do so since
the language remains low level.

We implemented an agent for adaptive cruise control within the system described
in Sect. 4. This adopted the above rules for safety but added in additional features
involving goal-based and normative behaviour. We present the code for the Reasoning
Engine here, the code for the Abstraction Engine can be found in Appendix 2.

The simple case of a car travelling in a single lane of a motorway is shown in
Listing 4. The agent has a goal to drive at the speed limit. To achieve this goal it
accelerates if it believes it can do so and then waits for a period before checking if
the goal is achieved. If it can not accelerate then it waits until it believes it can. The
construct ∗b causes an intention to suspend until b becomes true. can_accelerate is
determined by a reasoning rule and is true if it is safe to accelerate and the driver is
not currently taking any action. Once the car has reached the speed limit (line 18) it
maintains its speed. At this point the goal will be dropped because it has been achieved.
So if the speed drops below the speed limit the goal will be re-established (lines 20,
21). If it stops being safe to accelerate, the agent brakes (line 23). Actions by the driver
override decisions by the agent, but it still will not accelerate unless it believes it is
safe to do so.

We tested the agent in a simple Java environment which modelled the dynamics
described by Loos et al. (2011) and performed the calculation of Safeϵ passing the
perception, safe, to the Abstraction Engine if Safeϵ returned true.10

We then used our agent based model checking to verify that the agent obeyed
the constraints verified by Loos et al. (i.e., it only accelerated if it was safe to do
so) We analysed the abstraction engine (shown in Appendix 2) to determine the
possible incoming shared beliefs were safe, at_speed_limit, driver_accelerates, and
driver_brakes. Then we proved that

whenever the agent accelerates then it believes itself to be a safe distance from
the car in front:

10 We could have had the Abstraction Engine calculate ‘safe’ but it seemed more in keeping with (Loos et
al. 2011) to have this calculated centrally.

123

Autom Softw Eng

!(Acaraccelerate → Bcar safe) (31)

Listing 4 Cruise control agent (single lane):reasoning engine

We also investigated a more complex case (also analysed by Loos et al) in which cars
could change lane. We implemented the normative rules of the UK highway code so
that the agent would always attempt to drive in the leftmost lane unless it wished to
overtake a car in front, in which case it would attempt to overtake on the right.

The code is shown in Listing 5. This code introduces further features of our Gwen-
dolen language variant. The action ‘perf’ is interpreted by the environment as a mes-
sage to the Abstraction Engine to adopt a goal which in turn causes the execution of
some non-symbolic code. +'b and −'b are used to indicate when an agent adds b
to, or removes b from, the set of shared beliefs. We introduce a new type of perform
goal which is distinguished from an achieve goal by the fact that there is no check
that it succeeds; once the actions in a plan associated with a perform goal have been
executed then the goal vanishes. Lastly, .lock and .unlock are used to lock an intention
to remain current, this ensures that the sequence of deeds are executed one after the
other without interference from other intentions.

The code represents an agent which can be in one of two contexts, moving left or
overtaking which are represented as beliefs. Lines 9–10 control switching between
these contexts. The use of contexts allows us to control dropping goals as the sit-
uation changes even if they have not been achieved. The percepts car_ahead and
car_ahead_in_left_lane are supplied by the Abstraction Engine and represent the
detection of a car the agent wishes to overtake or pass on the right. The intention
is that these beliefs are shared before the car would need decelerate in order to main-
tain a safe distance from the car in front (although we verified the more general case
where the beliefs could appear in any order). Similarly clear_left is used by the agent
to indicate whether there is no car in the left hand lane which the agent wants to over-
take before moving left. Lines 13–15 control the assertion and removal of clear_left.

123

Autom Softw Eng

Lines 16–17 control the adoption and abandonment of the goal, in_leftmost_lane.
Lines 19–26 are the code for achieving this goal depending upon whether or not it is
safe to move left, or there is a car in the left hand lane to be overtaken before moving
left. Lines 28–45 work similarly for the overtaking context with the belief overtaken
used by the agent to keep track of whether it has successfully overtaken a car.

Listing 5 Cruise control agent (changing lanes):reasoning engine

Once again we analysed the abstraction engine (Appendix 2) to obtain the
list of shared beliefs that might be sent to the rational engine: in_leftmost_lane,
in_rightmost_lane, changed_lane, safe_right, safe_left, car_ahead_in_lane, car_
ahead_in_left_lane.

In this system we were able to verify that

the car only changes lane to the right if it believes it is safe to do so and the car
only changes lane to the left if it believes it is safe to do so:

!(Acarchange_right → Bcar safe_right) ∧ !(Acarchange_left → Bcar safe_left)
(32)

123

Autom Softw Eng

Table 7 Performance results
for the adaptive cruise control
example

Theorem States Time

31 7,127 6:57

32 8,366 23:19

It should be noted that our verification here shows that the implemented rational agent
adheres to the constraints on the discrete control used in the verification of the full
hybrid system by Loos et al. We assume, among other things, that ‘safe’ is calculated
correctly. The point is not to redo the safety analysis but to show that the additional
normative and goal-directed behaviours do not effect the agent’s ability to obey the
safety constraints.

5.1 Performance

Verification of the adaptive cruise control example was performed on a dual core
2.8 GHz Macbook with 8 GB of memory running MacOS X 10.9.2. The number of
states generated and time taken are shown in Table 7.

6 Concluding remarks

In this paper we have presented a compositional approach to the verification of the
decision-making parts of hybrid autonomous systems, demonstrating both that such an
approach is feasible and how it can be pursued. The methodology uses model checking
to perform formal verification of the reasoning of a rational agent that is controlling
a hybrid autonomous system. This approach avoids the necessity for complex and
opaque models of the external system. At the same time our approach allows the
results of model checking to be combined deductively (in a straight-forward way)
with results about the full system, in order to provide formal analysis of the whole.

Our hypothesis is that different verification techniques are more suited to differ-
ent aspects of hybrid system analysis. Program model checking is well-adapted to
the analysis of rational agent code, but less well adapted to reasoning in continu-
ous domains where probabilistic, analytical and deductive techniques may yield more
accurate results. Our approach allows theorems about the rational agent to be com-
bined deductively in a compositional fashion with results about the rest of the system.
Our claim is that it is easier, under this methodology, to make explicit the assumptions
we have utilized in order to allow verification to take place. While we have focused
particularly on the program model checking of rational agent implementations, the
methodology would also be suitable for general model checking of complex agent-
based (and possibly other) models for discrete control of hybrid systems. This could
be done in a specialised model checker for agent systems such as MCMAS (Lomuscio
et al. 2009) or MCK (Gammie et al. 2004). In essence we believe approaches such as
ours are suitable wherever there is significant complexity within the discrete reasoning
required to control a hybrid system.

123

Autom Softw Eng

To exhibit this approach, we explored three examples in which verification was
performed in this compositional manner. The first example used a simple program
based on the RoboCup Rescue scenario. Our second example examined code actually
developed separately for the control of satellites in low Earth orbit, and our third looked
at an adaptive cruise control system already analysed in KeYmaera. In all examples
we were able to prove properties about the efficacy of the system in the absence of
a detailed formal analysis of real world (and continuous) aspects. Work of this kind
enables us to provide accurate and clear analysis of the autonomous decisions made
by agents in real world scenarios. It is made feasible by the ability for us to refer to the
beliefs, goals and actions of the agent in the property specification language, which
allow us to limit our theorems to the internals of the agent.

Our interest is primarily in the verification of discrete logic/agent based decision-
making algorithms for controlling hybrid systems, rather than in the analysis of the
underlying continuous control. As such our approach abstracts away from the contin-
uous aspects entirely, much as many hybrid automata based analyses abstract away
from the details of decision-making. This potentially leads to over-approximation,
where we examine all the inputs that an agent could receive not just those that “make
sense” from the continuous perspective—e.g., in our adaptive cruise control example
we explored the case where the driver is reported to be both braking and accelerating
at the same time. It is a matter of some debate whether this truly represents an over-
approximation since it would potentially be possible for a malfunctioning sensor to
transmit contradictory information. However it is clear that the over-approximation
also has repercussions on the search space as the number of potential sensor inputs
increases which, combined with the inefficiencies of program model checking cur-
rently limits the scope of the methodology.

There are a number of avenues for further work. The most urgent problem is
that the agent verification technology is actually very slow (as can be seen from the
times reported in Sect. 4.3). Program model checking, such as that provided by Java
Pathfinder (JPF), analyzes the real code, often in an explicit way which increases the
time taken to generate new states in the model. Improving the efficiency of AJPF,
including the investigation of well-known abstraction techniques such as property-
based slicing (Bordini et al. 2009), is the subject of on-going work. Following the
work by Hunter et al. (2013), we have also investigated the use of AJPF to generate
models of the program that can be exported into other model checking systems such
as SPIN, NuSMV or MCMAS (Dennis et al. 2013b).

We have shown how agent decision-making can be formally verified in the presence
of random environmental interactions. However, we would also like to incorporate a
more refined probabilistic analysis of environmental interactions. For instance, it is
highly probable that no guarantee can be supplied that data incoming from sensors is
correct, yet it is highly likely that the sensor will come with a probabilistic guarantee
of reliability. It is therefore desirable to extend the kind of analysis we have done here
to theorems of the form “Assuming data from sensors is correct 98% of the time, and
actions succeed 98% of the time, then 97% of the time the agent never believes it has
reached a bad state”. Initial investigation of a link between AJPF and the probabilistic
PRISM model checker (Kwiatkowska et al. 2002) reported in Dennis et al. (2013b)
will allow us to explore this direction further.

123

Autom Softw Eng

We are also interested in formalising the composition of the environment used for
this kind of analysis. We presented an informal overview of how incoming percepts
could be chosen and in the examples we performed this selection was carried out by
hand. However, we believe that much could be done to automate the process and so
ensure that no potential inputs are overlooked.

As noted above, the non-deterministic modelling of sensor input places limits on the
ability of our system to scale as the number of sensors, and more importantly sensor
values, increase. It would therefore be beneficial to move in the direction of Frehse et
al. (2004) and represent the continuous parts of the system as an abstract automata, or
a similar formulation, which allowed us to control the number of possible states. This
would draw on work such as (Lomuscio et al. 2010; Păsăreanu et al. 2008; Silva and
Melo 2011).

Finally, we also wish to consider agent control systems that can co-operate together,
exchange information (and, potentially, plans) and, in some cases, learn new plans for
solving problems. Techniques such as those presented above, if embedded within an
agent’s own reasoning capabilities, would allow individual agents to assess whether
any new plan violated safety constraints imposed upon it, and would allow groups of
agents to reason about whether their combined capabilities could ever achieve some
goal.

Similarly we are interested in techniques for providing guarantees that an agent
always operates within certain bounds no matter what new plans it is given or learns.
Some initial steps towards this have been investigated in Dennis et al. (2013a).

Acknowledgments This research was partially funded by Engineering and Physical Sciences Research
Council grants EP/F037201 and EP/F037570, and primarily occurred while the third and fifth authors were
at University of Southampton. Our thanks go to a number of anonymous referees who have both improved
the paper and made suggestions that will inform our thinking in future.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

Appendix 1: Code for LEO satellite example

Appendix 1(a): A satellite agent

The code in this section is for an agent that is in direct control of a single satellite but
which receives information on formations from a separate, coordinating, leader agent.

Appendix 1(i): The abstraction engine

It should be noted that, while we believe a BDI-style programming language to be
an appropriate implementation language for R, the Reasoning Engine, we are investi-
gating the use of stream processing languages for A, the Abstraction Engine. This is
the subject of ongoing work. In the example here, however, the abstraction engine is
programmed in our variant of the Gwendolen language.

123

Autom Softw Eng

Code for the Abstraction Engine, A, is shown in Listing 6. We use standard BDI
syntax, as described previously, extended with new constructs for manipulating the
shared beliefs. +'b and −'b are used to indicate when an agent adds b to or removes
b from the set of shared beliefs.

The code is split into roughly three sections for abstraction, reification and house-
keeping (not shown). The key aim for this satellite is to take up a position in a formation
of satellites. Lines 1–14 provide code for generating abstractions. As information about
the satellite’s current location arrives fromΠ (via ‘stateinfo’) the agent (if it does not
already believe itself to be in location ‘close_to(Pos)’) requests the calculation of the
distance from its desired location (via comp_distance) which returns a judgment of
whether the agent is “close enough” to the target position. This is then used to assert
a shared belief about whether the agent is in position or not.

Similarly, information about the thruster status is used in lines 8–14. Thruster infor-
mation arrives via perception as ‘thruster(X,L1,L2,P,C,V)’ which gives information
about the pressure on the two incoming fuel lines (L1 and L2) and the output fuel line
(P) as well as the current (C) and voltage (V) in thruster X. Based on this information,
particularly the observation that the output fuel pressure has dropped below 1, the
agent can assert or retract shared beliefs about whether a particular thruster is broken
(lines 10 and 12).11

The reification code in lines 18–42 tells the abstraction engine how to respond
to requests for calculations or actions from the Reasoning Engine, R, e.g., a request
to ‘get_close_to’ is translated into a calculation request to Ω to call the function
‘plan_named_approach_to_location_multi’. The details of this code are of less interest
in terms of verification of the Reasoning Engine, since they describe its effects upon the
rest of the system rather than the external system’s effect on the Reasoning Engine.
However, it is worth noting that some of these effects still involve the assertion of
new shared beliefs (e.g., in lines 19–22, when the abstraction engine has a response
to its calculation from the Continuous Engine it asserts the value of this response
as a shared belief get_close_to(Pos, P)). Similarly it can be seen that a request to
change fuel line (i.e., ‘change_line’ at line 36–43) involves setting several valves
(‘run’ takes two arguments, the name of a MatLab function and a list of arguments
to be supplied to that function. ‘pred’ allows a MatLab function call name to be
composed from a number of strings), modifying the shared beliefs about which fuel
line is being used (‘thruster_bank_line’), and then waiting for any change to take
effect before asserting a shared belief that the thruster should no longer be broken.
Note that, at this point, if the pressure is still low on the output fuel line then the
shared belief that the thruster is broken will be reasserted the next time thruster data is
perceived.

Finally, the housekeeping code handles some details of abstracting specific thruster
information sent by Π into more generic information which passes the name of the
thruster as a parameter, and the code for handling waiting. This is omitted from the
code fragment shown.

11 In our implementation interaction with shared beliefs is handled as an action by the underlying system,
changes to the shared beliefs are then acquired by the perception mechanisms in the abstraction and reasoning
engine.

123

Autom Softw Eng

Listing 6 Low earth orbit: abstraction engine

Note that we can read off the changes in the shared beliefs of the system that may
arise simply by looking for the occurrences of +' and −' that occur in the above
code.

Appendix 1(ii): The reasoning engine

Code for the Reasoning Engine, R, is shown in Code fragment 7. We use the same
syntax as we did for the Abstraction Engine, A, and for the rescue robots in Sect. 3.
We additionally use the construction ‘∗b’ to indicate that processing of a plan should
suspend until some belief, b, becomes true. Here the actions, ‘perf’ and ‘query’, are
interpreted by the environment as messages to A to adopt a goal. Calls to query pause
execution of the plan in order to wait for a shared belief indicating a response from
the calculation engine. The plans that are triggered in the abstraction engine by perf
and query can be seen in the reification part of A’s code.

123

Autom Softw Eng

In the Reasoning Engine we use both achieve and perform goals (Riemsdijk et al.
2009). Achieve goals persist in the agent’s goal base until it believes them to be true,
so plans for achieve goals may be enacted several times until they succeed. Perform
goals, on the other hand, disappear once a plan associated with them has been executed
and contain no implicit check that they have succeeded.

The code for R has several plans and one belief rule. A belief rule is a Prolog-style
rule used for deducing beliefs. In this case it deduces that a thruster failure is repairable
if the thruster is currently using the first fuel line.

assuming_formation (lines 6–10) is a perform goal that runs the agent through some
general initialisation, i.e., finding the formation to be assumed (if not already known)
and the agent’s position in that formation and then starting an attempt to achieve that
position. The agent can either start out with the goal of assuming a formation, or can
be sent the goal as a request from another agent.

Lines 12–20 of code handle instructions from a leader agent to drop the attempt to
assume the current formation.

Lines 22–24 deal with converting any new beliefs (typically received from mes-
sages sent by a coordinating leader agent) about the position the agent is required
to adopt (position) into a belief that the agent actually wants to adopt that position
(my_position_is). Once a position has been adopted by the agent then no other sug-
gestion is accepted.

none informs the agent that it is not needed for this formation and so it immediately
asserts a belief that it is maintaining the desired position.

Lines 26–36 handle moving to a position, one case involves the agent requesting a
plan to get there and the other case assumes the agent already has a plan.

Lines 39–56 handle the agent’s plans for getting into a state where it is maintaining
a position, while handling possible aborts. Once it believes it is in the right place in
the formation it will instruct the Abstraction Engine to initiate position maintenance
procedures, perf(maintain_path). If it is not in the right place it sets up a goal to get
there +!in_position(Pos) [achieve]. If a thruster is broken, but the system has not yet
aborted, then the agent waits for the thruster to be fixed (because maintaining(Pos)
is an achieve goal, once this plan is completed when the thruster is fixed, the agent
will then select a different plan to achieve the move into position). Lastly if the sys-
tem is aborted the agent will wait for new instructions. If the satellite successfully
reaches a position then it will perform +! cleanup to remove any interim beliefs it
has generated such as which plans it has and whether it is attempting to assume a
formation.

Lines 57–60 involve informing a leader agent once the agent is maintaining its
position. Lines 61–71 handle thruster failures either by attempting a repair or by
aborting. Lines 73–85 handle aborts by dropping any goals to maintain a position,
informing a leader agent of the abort and getting the satellite to cease any attempt
to maintain a position. ‘perf(null)’ switches off the satellites thrusters, effectively
stopping any maneuver it is attempting.

123

Autom Softw Eng

Listing 7 Low Earth orbit: reasoning engine

We have omitted from the code the initial beliefs and goals of the agent. The
configuration of those beliefs and goals creates a number of different agents which we
used during testing. For instance, if the agent already has beliefs about the formation
that has been chosen and its position within that formation then it does not need to
request information from the leader agent. Some initialisation and clean up code has
also been omitted.

123

Autom Softw Eng

The architecture lets us represent the high-level decision making aspects of the
system in terms of the beliefs and goals of the agent and the events it observes. So,
for instance, when the Abstraction Engine, A, observes that the thruster line pressure
has dropped below 1, it asserts a shared belief that the thruster is broken. When the
Reasoning Engine, R, observes that the thruster is broken, it changes fuel line. This
is communicated to A, which then sets the appropriate valves and switches in the
Physical Engine, Π .

Appendix 1(b): A leader agent

Listing 8 shows a lead agent, aglead, which determines the position of other agents in
a formation. This agent has several belief rules that are designed to establish that all
agents have been informed of their positions in the formation (all_positions_assigned
is true if there is no position in the formation which is not the position of an agent).
The belief rule for desired_formation has two configurations: one in which the only
formation to be attempted is a line; and the other in which the agent will start out
attempting a square, and then change to a line. The belief one_formation determines
which configuration is adapted and can be used to generate different agents from the
same code.

Lines (15–24) handle the selection of a formation to be adopted and any clean-up
of old formation choices, etc., that are required (sub-plans for achieving this clean-up
are not shown).

The plan for in_formation (lines 26–31) is where most of the work happens. First,
the leader chooses positions for all the agents in the system and informs them of their
position. Then it informs all the agents of the formation to be adopted and waits for
the other agents to tell it when they have reached their positions.

Lines 33–36 show the code for assigning positions. While there is an agent who
has no position, and a position in the formation that has no agent assigned, the
leader will assign that agent to that position and inform the agent of this fact. Since
all_positions_assigned is an achieve goal, the plan continues to be selected until
either there are no more available agents or no more available positions. The plan
for inform_start (not shown) works in a similar way.

The description in Listing 8 is simplified from the actual code used. In particular
we have omitted those parts that handle messages from follower agents, which report
failures and aborts; we will not consider these aspects in the discussion of verification
here.

123

Autom Softw Eng

Listing 8 Multi-agent LEO system: leader agent

Appendix 2: Adaptive cruise control: the abstraction engines

Listing 9 shows the abstraction engine for our simple example where a car attempts to
drive a the speed limit in a single lane. As sensor input the abstraction engine receives

123

Autom Softw Eng

the speed of the car and the acceleration dictated by pressure on the acceleration or
brake pedals. It is also informed whether it is currently a safe distance from the car
in front. These inputs are passed on to the Reasining Engine as shared beliefs in lines
1–14. Lines 16–20 handle instructions from the rational engine. Where the driver is
using the acceleration or brake pedal the driver’s values are used for acceleration or
braking, otherwise a simple accelerating or braking command is used and a random
value invoked in the simulation.

Listing 9 Cruise control agent (single lane):abstraction engine

Listing 10 shows the abstraction engine used in the lane changing example. The
sensors now provide information about which lane car is in, the distance to the
cars in front in both the current lane and the lane to the left, and whether the car
is currently crossing lanes (i.e., maneuvering from one lane to another). The agent
has an initial belief about close a car should be to justify initiating an overtaking
maneouvre.

123

Autom Softw Eng

Listing 10 Cruise control agent (changing lanes):abstraction engine

Appendix 3: Logics workbench input

The Logics Workbench is an interactive system aiming to facilitate the access to logic
formalisms. It can be accessed online from an input shell currently located at http://
www.lwb.unibe.ch/shell/.

We represented the agent concepts as propositions so Bs human became bh,
Ba at (0, 0) became ba00, at (human, 0, 0) became ah00, at (robot, 0, 0) became
ar00 and so on.

This allowed us to simply represent the hypotheses and theorems from Sect. 3. For
instance found_human in (3) became

We defined each of the hypotheses in this way and then used provable to prove
the theorem. The sequence of commands used were:

123

Autom Softw Eng

We proved (10) in a similar fashion with bsf representing Bs found,bss representing
Bs sent(lifter, human(X, Y)), blr representing Bl rec(searcher, human(X, Y))),
and blf representing Bl free(human). The sequence of commands used were:

References

Alechina, N., Logan, B., Nguyen, H.N., Rakib, A.: Automated verification of resource requirements in multi-
agent systems using abstraction. In: Proceedings of the 6th International Workshop on Model-Checking
AI, Springer, LNAI, vol. 6572, pp. 69–84 (2010)

Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J.,
Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)

Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems. Proc. IEEE
88(7), 971–984 (2000)

Barringer, H., Giannakopoulou, D.: Proof rules for automated compositional verification through learning.
In: Proceedings of SAVCBS Workshop, pp. 14–21 (2003)

Bauer, K.: A New Modelling Language for Cyber-Physical Systems. PhD thesis, Technische Universität
Kaiserlautern (2012)

Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic. Elsevier, Amsterdam (2006)
Bond, A.H., Gasser, L. (eds.): Readings in Distributed Artificial Intelligence. Morgan Kaufmann, San

Mateo, CA (1988)
Bordini, R.H., Hübner, J.F., Vieira, R.: Jason and the Golden Fleece of agent-oriented programming. In: Bor-

dini, R.H., Dastani, M., Dix, J., El Fallah-Seghrouchni, A. (eds.) Multi-Agent Programming: Languages,
Platforms and Applications, chap. 1, pp. 3–37. Springer, Berlin (2005)

Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent programs by model checking.
J. Auton. Agents Multi Agent Syst. 12(2), 239–256 (2006)

Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-agent Systems in AgentSpeak Using
Jason. Wiley, Hoboken, NJ (2007)

Bordini, R.H., Fisher, M., Wooldridge, M., Visser, W.: Property-based slicing for agent verification. J. Log.
Comput. 19(6), 1385–1425 (2009)

Boyer, R.S., Moore, J.S. (eds.): The Correctness Problem in Computer Science. Academic Press, London
(1981)

123

Autom Softw Eng

Branicky, M.S., Borkar, V.S., Mitter, S.: A unified framework for hybrid control: model and optimal control
theory. IEEE Trans. Automat. Contr. 43(1), 31–45 (1998)

Bratman, M.E.: Intentions, Plans, and Practical Reason. Harvard University Press, Cambridge, MA (1987)
Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical reasoning. Comput. Intell.

4, 349–355 (1988)
Briand, X., Jeannet, B.: Combining control and data abstraction in the verification of hybrid systems.

In: Formal Methods and Models for Codesign (MEMOCODE), pp. 141–150. IEEE Computer Society
(2009)

Bujorianu, M.L.: Stochastic reachability analysis of hybrid systems. In: Communications and Control
Engineering. Springer, London, UK (2012)

Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans. Program. Lang.
Syst. 16(5), 1512–1542 (1994)

Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge, MA (1999)
Cohen, P.R., Levesque, H.J.: Intention is choice with commitment. Artif. Intell. 42, 213–261 (1990)
Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algorithms for the verification

of temporal properties. Form. Methods Syst. Des. 1, 275–288 (1992)
Damm, W., Disch, S., Hungar, H., Jacobs, S., Pang, J., Pigorsch, F., Scholl, C., Waldmann, U., Wirtz, B.:

Exact state set representations in the verification of linear hybrid systems with large discrete state space.
In: Proceedings of Automated Technology for Verification and Analysis, LNCS, vol. 4762, pp. 425–440.
Springer (2007)

Dastani, M., van Riemsdijk, M.B., Meyer, J.J.C.: Programming multi-agent systems in 3APL. In: Bordini,
R.H., Dastani, M., Dix, J., El Fallah-Seghrouchni, A. (eds.) Multi-Agent Programming: Languages,
Platforms and Applications, chap. 2, pp. 39–67. Springer, Berlin (2005)

Davis, R., Smith, R.G.: Negotiation as a metaphor for distributed problem solving. Artif. Intell. 20(1),
63–109 (1983)

de Boer, F.S., Hindriks, K.V., van der Hoek, W., Meyer, J.J.C.: A verification framework for agent program-
ming with declarative goals. J. Appl. Log. 5(2), 277–302 (2007)

DeMillo, R.A., Lipton, R.J., Perlis, A.J.: Social processes and proofs of theorems of programs. ACM
Commun. 22(5), 271–280 (1979)

Dennis, L.A., Farwer, B.: Gwendolen: A BDI language for verifiable agents. In: Workshop on Logic and
the Simulation of Interaction and Reasoning, AISB (2008)

Dennis, L.A., Farwer, B., Bordini, R.H., Fisher, M., Wooldridge, M.: A Common Semantic Basis for BDI
Languages. In: Proceedings of the 7th International Workshop on Programming Multiagent Systems
(ProMAS), LNAI, vol. 4908, pp. 124–139. Springer, Berlin (2008)

Dennis, L.A., Fisher, M., Lincoln, N., Lisitsa, A., Veres, S.M.: Declarative abstractions for agent based
hybrid control systems. In: Proceedings of the 8th International Workshop on Declarative Agent Lan-
guages and Technologies (DALT), LNCS, vol. 6619, pp. 96–111. Springer, Berlin (2010a)

Dennis, L.A., Fisher, M., Lincoln, N., Lisitsa, A., Veres, S.M.: Reducing code complexity in hybrid control
systems. In: Proceedings of the 10th International Symposium on Artificial Intelligence, Robotics and
Automation in Space (i-Sairas) (2010b)

Dennis, L.A., Fisher, M., Lisitsa, A., Lincoln, N., Veres, S.M.: Satellite control using rational agent pro-
gramming. IEEE Intell. Syst. 25(3), 92–97 (2010c)

Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent programming languages.
Autom. Softw. Eng. 19(1), 5–63 (2012)

Dennis, L.A., Fisher, M., Slavkovik, M., Webster, M.P.: Ethical choice in unforeseen circumstances. In:
Proceedings Towards Autonomous Robotic Systems (TAROS), Oxford, UK (2013a)

Dennis, L.A., Fisher, M., Webster, M.P.: Using agent JPF to build models for other model checkers. In:
Proceedings of Workshop on Computational Logic in Multi-Agent Systems (CLIMA), Corunna, Spain
(2013b)

Durfee, E.H., Lesser, V.R., Corkill, D.D.: Trends in cooperative distributed problem solving. IEEE Trans.
Knowl. Data Eng. 1(1), 63–83 (1989)

Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer
Science, pp. 996–1072. Elsevier, Amsterdam (1990)

Ezekiel, J., Lomuscio, A., Molnar, L., Veres, S.M., Peabody, M.: Verifying fault tolerance and self-
diagnosability of an autonomous underwater vehicle. In: AI in Space: Intelligence beyond Planet Earth
(IJCAI-11 Workshop) (2011)

Fetzer, J.H.: Program verification: the very idea. ACM Commun. 31(9), 1048–1063 (1988)

123

Autom Softw Eng

Fisher, M.: An introduction to practical formal methods using temporal logic. Wiley, Hoboken, NJ (2011)
Fisher, M., Dennis, L.A., Webster, M.P.: Verifying autonomous systems. ACM Commun. 56(9), 84–93

(2013)
Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In: Proceedings of Hybrid

Systems: Computation and Control, LNCS, vol. 3414, pp. 258–273. Springer, Berlin (2005)
Frehse, G., Han, Z., Krogh, B.: Assume-guarantee reasoning for hybrid I/O-automata by over-approximation

of continuous interaction. In: Proceedings of 43rd IEEE Conference on Decision and Control (CDC),
vol. 1, pp. 479–484 (2004)

Gammie, P., van der Meyden, R.: MCK: model checking the logic of knowledge. In: Proceedings of the
16th International Conference on Computer Aided Verification (CAV), pp. 479–483. Springer, Berlin
(2004)

Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verification of linear temporal
logic. In: Proceedings fo the 15th IFIP WG6.1 International Symposium on Protocol Specification,
Testing and Verification, pp. 3–18. Chapman & Hall, London (1996)

Goebel, R., Sanfelice, R., Teel, A.: Hybrid dynamical systems. IEEE Control Syst. Mag. 29(2), 28–93
(2009)

Henzinger, T.A.: The theory of hybrid automata. In: Proceedings of the 11th Annual IEEE Symposium on
Logic in Computer Science (LICS), pp. 278–292. IEEE Computer Society Press (1996)

Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HYTECH: a model checker for hybrid systems. Int. J. Softw.
Tools Technol. Transf. 1(1–2), 110–122 (1997)

Heuerding, A., Jäger, G., Schwendimann, M., Seyfried, M.: A logics workbench. AI Commun. 9(2), 53–58
(1996)

Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.J.: Agent programming in 3APL. Auton. Agent
Multi Agent Syst. 2(4), 357–401 (1999)

Hindriks, K.V., de Boer, F.S., van der Hoek, W., Meyer, J.J.: Agent programming with declarative goals.
In: Intelligent Agents VII (Proceedings of the 6th Workshop on Agent Theories, Architectures, and
Languages), LNAI, vol. 1986, pp. 228–243. Springer, Berlin (2001)

Holzmann, G.: Spin Model Checker: Primer and Reference Manual. Addison-Wesley, Reading (2004)
Hunter, J., Raimondi, F., Rungta, N., Stocker, R.: A synergistic and extensible framework for multi-agent

system verification. In: Proceedings of the 13th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 869–876. IFAAMAS (2013)

Jones, C.B.: Tentative steps toward a development method for interfering programs. ACM Trans. Program.
Lang. Syst. 5(4), 596–619 (1983)

Jones, C.B.: Systematic Software Development Using VDM. Prentice Hall Int, Englewood Cliffs (1986)
Jongmans, S.S.T.Q., Hindriks, K.V., van Riemsdijk, M.B.: Model checking agent programs by using the

program interpreter. In: Proceedings of the 11th International Workshop on Computational Logic in
Multi-Agent Systems (CLIMA), LNCS, vol. 6245, pp. 219–237. Springer, Berlin (2010)

Karim, S., Heinze, C.: Experiences with the design and implementation of an agent-based autonomous
UAV controller. In: Proceedings of the 4th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp 19–26. ACM (2005)

Kitano, H., Tadokoro, S.: RoboCup rescue: a grand challenge for multiagent and intelligent systems. AI
Mag. 22(1), 39–52 (2001)

Kohn, W., Nerode, A.: Multiple agent autonomous hybrid control systems. In: Proceedings of the 31st
Conference on Decision and Control (CDC), Tucson, USA, pp. 2956–2964 (1992)

Kurucz, A.: Combining modal logics. In: Blackburn, P., van Benthem, J., Wolter, F. (eds.) Handbook of
Modal Logic, pp. 869–924. Elsevier, Amsterdam (2006)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model checker. In: Proceedings
of the 12th International Conference on Modelling Techniques and Tools for Computer Performance
Evaluation (TOOLS), LNCS, vol. 2324. Springer, Berlin (2002)

Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers.
Addison Wesley, Reading (2003)

Lincoln, N.K., Veres, S.M.: Components of a vision assisted constrained autonomous satellite formation
flying control system. Int. J. Adapt. Control Signal Process. 21(2–3), 237–264 (2006)

Lincoln, N.K., Veres, S.M., Dennis, L.A., Fisher, M., Lisitsa, A.: Autonomous asteroid exploration by
rational agents. IEEE Comput. Intell. Mag. 8(4), 25–38 (2013)

123

Autom Softw Eng

Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: a model checker for the verification of multi-agent systems.
In: Proceedings of the 21st International Conference on Computer Aided Verification (CAV), LNCS,
vol. 5643, pp. 682–688. Springer, Berlin (2009)

Lomuscio, A., Strulo, B., Walker, N., Wu, P.: Assume-guarantee reasoning with local specifications. In:
Proceedings of the 12th International Conference on Formal Engineering Methods and Software Engi-
neering (ICFEM), pp. 204–219. Springer, Berlin (2010)

Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: hybrid, distributed, and now formally verified.
In: Proceeding of the FM, LNCS, vol. 6664, pp. 42–56. Springer, Berlin (2011)

Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specification. Springer,
Berlin (1992)

McMillan, K.: Circular compositional reasoning about liveness. In: Pierre, L., Kropf, T. (eds.) Correct
Hardware Design and Verification Methods, Lecture Notes in Computer Science, vol. 1703, pp. 342–
346. Springer, Berlin, Heidelberg (1999). doi:10.1007/3-540-48153-2_30

Misra, J., Chandy, K.M.: Proofs of networks of processes. IEEE Trans. Softw. Eng. 7(4), 417–426 (1981)
Muscettola, N., Nayak, P.P., Pell, B., Williams, B.: Remote agent: to boldly go where no AI system has

gone before. Artif. Intell. 103(1–2), 5–48 (1998)
Patchett, C., Ansell, D.: The development of an advanced autonomous integrated mission system for unin-

habited air systems to meet UK airspace requirements. In: Proceedings of the International Conference
on Intelligent Systems, Modelling and Simulation (ISMS), pp. 60–64 (2010)

Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics. Springer,
Heidelberg (2010)

Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: a BDI reasoning engine. In: Bordini, R.H., Dastani,
M., Dix, J., El Fallah-Seghrouchni, A. (eds.) Multi-Agent Programming: Languages, Platforms and
Applications, pp. 149–174. Springer, Berlin (2005)

Păsăreanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer, H.: Learning to divide and
conquer: applying the L* algorithm to automate assume-guarantee reasoning. Form. Methods Syst. Des.
32(3), 175–205 (2008)

Rao, A.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: Agents Breaking
Away: Proceedings of the 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent
World, LNCS, vol. 1038, pp. 42–55. Springer, Berlin (1996)

Rao, A.S., Georgeff, M.P.: Modeling agents within a BDI-architecture. In: Proceedings of the 2nd Interna-
tional Conference on Principles of Knowledge Representation and Reasoning (KR&R), pp. 473–484.
Morgan Kaufmann, San Mateo, CA (1991)

Rao, A.S., Georgeff, M.P.: An abstract architecture for rational agents. In: Proceedings of the International
Conference on Knowledge Representation and Reasoning (KR&R), pp. 439–449. Morgan Kaufmann,
San Mateo, CA (1992)

Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Proceedings of the 1st International
Conference on Multi-Agent Systems (ICMAS), San Francisco, USA, pp. 312–319 (1995)

Shoham, Y.: Agent-oriented programming. Artif. Intell. 60(1), 51–92 (1993)
Sierhuis, M.: Modeling and Simulating Work Practice. BRAHMS: a Multiagent Modeling and Simluation

Language for Work System Analysis and Design. PhD thesis, Social Science and Informatics (SW),
University of Amsterdam (2001)

Silva, P.S., Melo, A.C.: A formal environment model for multi-agent systems. In: Formal Methods: Foun-
dations and Applications, LNCS, vol. 6527, pp 64–79. Springer, Berlin (2011)

Stocker, R., Dennis, L.A., Dixon, C., Fisher, M.: Verifying brahms human-robot teamwork models. In:
Proceedings of the 13th European Conference on Logics in Artificial Intelligence (JELIA), LNCS, vol.
7519, pp. 385–397. Springer, Berlin (2012)

Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer, Berlin (2009)
Tiwari, A.: Abstractions for hybrid systems. Form. Methods Syst. Des. 32, 57–83 (2008)
van Riemsdijk, M.B., Dastani, M., Meyer, J.J.: Goals in conflict: semantic foundations of goals in agent

programming. Auton. Agent Multi Agent Syst. 18(3), 471–500 (2009)
Varaiya, P.: Design, simulation, and implementation of hybrid systems. In: Proceedings of the 20th Inter-

national Conference on Application and Theory of Petri Nets (ICATPN), LNCS, vol. 1639, pp. 1–5.
Springer, Berlin (1999)

Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model checking programs. Autom. Softw. Eng.
10(2), 203–232 (2003)

123

Autom Softw Eng

Webster, M.P., Fisher, M., Cameron, N., Jump, M.: Formal methods for the certification of autonomous
unmanned aircraft systems. In: Proceedings of the 30th International Conference on Computer Safety,
Reliability and Security (SAFECOMP), LNCS, vol. 6894, pp. 228–242. Springer, Berlin (2011)

Wei, C., Hindriks, K.V.: An agent-based cognitive robot architecture. In: Programming Multi-Agent Sys-
tems, LNCS, vol. 7837, pp. 54–71. Springer, Berlin (2013)

Wooldridge, M.: An Introduction to Multiagent Systems. Wiley, Hoboken, NJ (2002)
Wooldridge, M., Rao, A. (eds.): Foundations of Rational Agency. Applied Logic Series. Kluwer Academic

Publishers, Dordrecht (1999)

123

