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Properties and Applications of a Restricted HR the gradients and the increment of a quaternion functiayh-hi

Gradient Operator lighting the difference between the left and the right geadis
due to the non-commutativity of quaternion algebra. Setyond
Mengdi Jiang®, Yi Li ®, Wei Liu * we document several properties of the operators that have no
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are the exponential, logarithmic, and the hyperbolic tamnge
functions. Finally, we prove that the restricted HR gratien
are consistent with the usual definition for the gradient of a
real function of a real variable. Its application to the dation

Abstract—For quaternionic signal processing algorithms, the ¢ quaternion-valued least mean squares (QLMS) adaptive
gradients of a quaternion-valued function are required for . . . .
algorithm is also briefly discussed.

gradient-based methods. Given the non-commutativity of qater- i ; .
nion algebra, the definition of the gradients is non-trivial The HR The paper is organised as follows. The restricted HR gra-

gradient operator provides a viable framework and has founda dient operator is developed in Sectioh II, with its propesti
number of applications. However, the applications so far hee and rules introduced in Sectidnllll. Explicit expressions f
been mainly limited to real-valued quaternion functions anl  the derivatives for a wide range of functions are derived in
linear quaternion-valued functions. To generalize the opeator Section[IV and results for the right restricted HR operator

to nonlinear quaternion functions, we define a restricted vesion ) - ) .
of the HR operator. The restricted HR gradient operator comes &€ summarised in Sectidn] V. The increment of a general

in two versions, the left and the right ones. We then present quaternion function is discussed in Secfion VI with the QLMS
a detailed analysis of the properties of the operators, indding adaptive algorithm revisited as a special case where thie cos

several different product rules and chain rules. Using the BW  f,nction is real-valued. Conclusions are drawn in Sedfidh V
rules, we derive explicit expressions for the derivatives foa class
of regular nonlinear quaternion-valued functions, and prove that
the restricted HR gradients are consistent with the gradiets in

real domain. A. Introduction of quaternion

II. THE RESTRICTEDHR GRADIENT OPERATORS

Quaternion is a non-commutative extension of complex
. INTRODUCTION number. A quaterniony is composed of four parts, i.e.,

Quaternion calculus has been introduced in signal procegs-: Ga + @i + Gej + gak, Whereq, is the real part, ,WhICh

: . o . . . . Is also denoted a&(q). The other three terms constitute the
ing with application areas involving three or four-dimamsl i o _ i )

. . — imaginary partl(q). i, j andk are the three imaginary units,
signals, such as color image processing [1]-[3], vectasse i ) i o

— . : o ) which satisfy the following rules for multiplication;j = k,

array systems [4]=[10] and wind profile prediction [[11],]12 i ki i = k2 — 1 and
Several quaternion-valued adaptive filtering algorithraseh JR=tkr=g,0m =" =k =4 an

been proposed in_[9]=[13]. Notwithstanding the advantages ij = —ji, ki = —ik,kj = —jk. (1)
of the quaternionic algorithms, extra cares have to be taken

in their developments, in particular when the derivativés CI)Due to 1), in general the product of two quatemions depends

guaternion-valued functions are involved, due to the fagl’ the order, i.e.qp # pq wherep and ¢ are quaternions.

that quaternion algebra is non-commutative. A so-called thowever, the product commutes as long as at least one of the
faators, sayy, is real.

gradient operator was proposed (inl[14], and has been applié . .
. . . . . Let v = |I(q)| andv = I(q)/v, the quaterniory can also
in [15]. The interesting formulation appears to provide a . o _ . :
. . be written asy = ¢, + vv. Vv is a pure unit quaternion, which
general and flexible framework that could potentially have ] o o
. C . . rias the convenient propeny := vv = —1. The quaternionic
wide applications. However, it has only been applied to-real™ o ’ otk . Lt
valued functions and linear quaternion-valued functidns. conju?at(;oij 'th :qa—*qw—chz—qdd,r?rq __f“_v:" t|23
order to consider more general quaternion-valued funsxioneasy 0 show thajg™ = "¢ = |q[°, and hencg™" = ¢"/lq[".
we propose a pair of restricted HR gradient operators, ttie le o . _
and the right restricted HR gradient operators, based on e Definition of the restricted HR gradient operators
previous work on the HR gradient operator|[14] and our recentLet f : H — H be a quaternion-valued function of a
work [12]. guaterniong, where H is the non-commutative algebra of
To summarize, we make the following main contributiongjuaternions. We use the notatigty) = f, + foi + fcj + fak,

Firstly, we give a detailed derivation of the relation betwe where f,, ..., f; are the components of. f can also be
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viewed as a function of the four componentsgofi.e., f = Introducing operatorsV, := (9/dq,0/9q',8/9¢?,0/9q"),

f(4a, v, gc, ga)- In this view f is a quaternion-valued functionand V,. := (9/dqq, d/0qp, 0/dq., d/Dqq), equations[(10-14)
on R*: f: R* — H. To express the four real components ofnay be written as
q, it is convenient to use its involutiong’ := —vqv where H
v € {i,j,k} [16]. Explicitly, we have Vof =VrfJ (15)

where the Jacobian matrix

q" = —iqi = qa + Q@i — qcj — qak, 2
¢ =—795 = o — @i+ qcj — qak, 3 . .
k= —kqk = | — e + qak (4) =i L7 o (18)
q" = —KqK = qa — @bt — qc) + qdk. 101 i —k
1 —i —j k

The real components can be recovered by
and J is the Hermitian transpose of [14]. Using JJ 7 =

1 , . 1 ) ,
_ % J k _ i gk
=glatdtad ) e =platd—d -0, © JHJ =1/4 [15], we may also write
1 S
= — —q J — k — - 6 1
Ge=pl0— 0 +d —a).qa= (e ¢ = ¢ +4q°). (6) Vol = V.1, a7)

Two useful relations are which is the inverse formulae for the derivatives.

* _ %(qi Y@ 1" —q), g+d +¢ +d° =4R(q). (7) We ca_II the gradient operator def.ined by](15) the restricted
HR gradient operator. The operator is closely related td4Re

A so-called HR gradient off (¢q) was introduced in [[14], operator introduced in[14]. However, in the original defom

which has been applied to real-valued functions and lineaf the HR operator, the Jacobiahappears on the left-hand

quaternion-valued functions. In order to find the gradiasfts side of V.. f, whereas in our definition it appears on the right

more general quaternion-valued functions, we follow a lsimi (as the Hermitian transpose).

approach to propose a ‘restricted’ HR gradient operatangso  The differentialdf is related toV, f by

of the derivation was first presented in [12]). To motivate th f of of of

definitions, we consider the differentidf (¢) with respect to df = d + 34 ——dq" + 34 qu + 34 ——dq".  (18)

differential dg := dq, + dgvi + dq.j + dgak. We observe that

df = dfs, + idfy + jdf. + kdfq, where

9 fa dfa dfa

q

Due to the non-commutatlwty of quaternion products, the

order of the factors in the products of the above equation (as
dga + dgy + dg. + fa 8) well as equationd (10-13)) can not be swapped. In fact, one
94a g 9qc dq d may call the above operator the left restricted HR gradient
We havedq, = (dq + dq' + d¢? + d¢*)/4 according to[(5). operator. As is shown in Appendix] A, one may also define a
Making use of this and similar expressions féy,, dg. and right restricted HR gradient operator by

dqq, we find an expression falf,, in terms of the differentials

dfa =

R VENT .= J(V,.)T, 19
dq, dq*, d¢’ anddq”. Repeating the calculation fatlfs, jdf. Vaf) (Ve f) (19)
and kdf4, we finally arrive at where
df = Ddgq + Dydg’ + D;dg’ + Dydg" 9) Vi i=(0%/0q,0% /04’ 0" J0¢7,0% |0q"),
where and
1 of . of orf 1(6f Of .a )
| — 51— — =iy =i 20
1 <5qa 6qb 9¢.” "~ g k) - 19 9¢  4\0qa Ogp 8qd (20)
1 L of ., of orf 1(6f Of )
- —_— === | =— —i=— — 21
1 <aqa T ot aqdk> o A o0~ 1\oa. " oq, 77 aqc "oa) @Y
1 of of onf 1 [/of  Of 8
1 <aqa ot a_qd’“> - 32 o =1 (on i I o) @
1 of ., of . of > off 1 <8f of .of 3f>
Dy = + =i+ 13 — ===+ + -— 23
* <5qa day' ch] 9qa (13) 0" " 4\0q. g jaqc 9qq @3)
More details are given in Appendix]A. Thus one may defin€he right restricted HR gradient operator is related to the
the partial derivatives of (¢) as follows: differential df by
of _ of _ . of . of _ _ O (01 f ;0N f RO f
3 = D, g =D, ek = Dj, I =D,. (14 df = dg 5e +dg’ 7 + dg 3 +dg - (24)



In general, the left and right restricted HR gradients are no 3) The second product rule: However, the usual product
the same. For example, even for the simplest linear function rule applies to differentiation with respect to real vari-

f(q@) = qoq with ¢o € H a constant, we have ables, i.e.,
R dfg  Of Jg
dq0q 9"qoq 50, 9.9 5,

= g
=qo = R(qo)- (25) 0qp  Oqy 9q¢

0 0
H _”q h | f‘ h di i for ¢ = a,b,c, ord.
owever, we will show later that the two gradients coincide 4) The third product rule: The usual product rule also

for a class of funct!ons. In Pamcular, they are the same for applies if at least one of the two functiorg) and
real-valued quaternion functions. : .
) . . ~ . glq) is real-valued, i.e.,

The relation between the gradients and the differential is 5 5
an important ingredient of gradient-based methods, whieh w 914 = g fg
L dq dq " g

will discuss further later.
5) The first chain rule: For a composite functigiig(q)),

[1l. PROPERTIES AND RULES OF THE OPERATOR 9(q) := ga + gvi + gcj + gak being a quaternion-valued
function, we have the following chain rule [15]:

(33)

(34)

We will now focus on the left restricted HR gradient

and simply call it the restricted HR gradient unless stated Vof = (VIf)M (35)
otherwise. It can be easily calculated from the definitidhat . , k _

, . whereVy := (9/dg,0/dg*,0/dg’,0/0g") and M is a
9q _ , 9¢" _ , 04" _ _1, (26) 4 x 4 matrix with elementdM,,, = dg*/dg” for p, v €
0q 0q 0q 2 {1,i,j,k} and g* = —pugu (¢* is understood as the

wherev € {4, j, k}. However, in order to find the derivatives same agj). Explicitly, we may write
for more complex quaternion functions, it is useful to first
: ) : of af og"
establish the rules of the gradient operators. We will see D" = Za—gﬂaq”' (36)
that some of the usual rules do not apply due to the non- ®
commutativity of quaternion products. The proof is outlined in AppendixIC.
1) Left-linearity: for arbitrary constant quaternionsand ) The second chain rule: The above chain rule uges
3, and functionsf(¢) and g(g), we have and its involutions as the intermediate variables. It is
d(af + Bg) 8f sometimes convenient to use the real componentg of
RAJTA9) _ B (27) for that purpose instead. In this case, the following chain
oq” Bq 5) v
rule may be used:
for v € {1,4, 4, k} with ¢' := ¢. However, linearity does
not hold for right multiplications, i.e., in general Vof =(VIf)O (37)
Ofa , 0f (28) whereO is a4 x 4 matrix with entryOy, = dg4/9q"
oq 7 9q" with ¢ € {a,b,c,d} andv € {1,i,5,k}, and V¢ :=
This is because, according to the definitignl (10), (0/9gq,0/0gp,0/0g.,0/Dg4). Explicitly, we have
Ofa 1 of of of 9gy
dge_-N 2, (29) =y =L (38)
0 4 0 v v
q (o 00 dq 5 094 0q
for (¢,v) € {(a, 1), (b,—1), (¢, —7), (d, —k)}. However, 7) The third chain rule: if the intermediate functigriq)
ay # ~a in general. Therefore it is different from is real-valued, i.e.g = g,, then from the second chain
(0f/9q)c, which is rule, we obtain
1/9f of. af. of of _0f 9y
L(oL _0F, 97, 9/, (30 =1 (39)
4 (3% 3%2 anj 044 « (30) O0q g dq
2) The first product rule: the following product rule holds: 8) f(q) is not independent of’, ¢7 or ¢* in the sense that,
- in general,
Ve(fg) = fVag + (Vi f)glJ™. (31)
0/(6) f( ) o, f( )20, o)
For example, g’ ’
dfq _ 99 of of . of . Of This can be illustrated by‘(q) = ¢2. Using the first
9,1 29— 79l 9] — 759k ). :
0q  "0q 4\0q." Oq°  Oqe 9qq o) product rule (equatlorf@l)) we have
Thus the product rule in general is different from the 6q? - Z
usual one. 9q' i a%



for (¢,v) € {(a,1), (b,i), (¢, —7),(d, —k)}. It can then Theorem 1. Assumingf : H — H admits a power series
be shown that representationf (q) := g(q) == > . ___ ang", With a,, being

dq> . 0¢? _ 0¢? a quaternion constant ang = ¢ — qo, for Ry < |¢| < Re
aq = Qv?, 87-7' =4qc), a—qk = qak. (41) with R, Ro > 0 being some constants, then

This property demonstrates the intriguing difference 9f(q)

=5 [f'(@)+(9(@) - 9(@))a—-a)""]. (48)

between the HR derivative and the usual derivatives,  9q 2
although we can indeed show that where f'(q) is the derivative in the usual sense, i.e.,
0
8_(]” =0 (42) / = ~n—1 - n—1
q f (Q) = Z nanq = Z nan(q_QO) . (49)
One implication of this observation is that, for a nonlin- n=-00 n=-00

ear algorithm involving simultaneously more than one  Proof: Using Lemmalll and the left-linearity of HR
gradientsdf/dq”, we have to take care to include allgradients, we have

the terms. of 1 &
S0 =35 2 "+ (@ =)@ —q) 7]
IV. RESTRICTEDHR DERIVATIVES FOR A CLASS OF 9 n=-—00
REGULAR FUNCTIONS s RN I
. . . » =f@+5 | > anl@ =] (@—7)"
Using the above operation rules, we may find explicit o
expressions for the derivatives for a whole range of fumstio 1., - ey~ w1
. . . = — + — _ ,
We first introduce the following lemma: 2[f (@) +(9(@) 9@ Ng- )]
proving the theorem. ]

Lemma 1. The derivative of the power functiof{q) = (¢ —

¢)", with integern and constant quaterniogy, is The functionsf(q) form a class of regular functions d.

A full discussion of such functions is beyond the scope o thi

M - 1 (n~n—1 + M) , (43) paper. However, we note that a similar class of functionghav
9q 2 =4 been discussed in_[17]. A parallel development for the farme
with ¢ = ¢ — qo. is possible, and will be the topic of a future paper. Meanghil

Remark. The division in(G" — §*")/(q — ¢*) is understood as W& observe that many useful elementary functions satisfy th
G — ™) (G —q*) " or (G—¢*)~'(¢" — ¢*") which are the conditions in Theorerf1. To illustrate the application of th

same since the two factors commute. The division operaticifigorem, we list below the derivatives of a number of such

in what follows are understood in the same way. functions.
Proof: The lemma is obviously true for = 0. Letn > 1, Example 1. Exponential functionf(q) = e? has representa-

we apply the first product rule, and find tion .
9(g —qo)" _ 93" " - et:=S L (50)
- R(§" 44 !
34 =5 +R(G") (44) =n
where R(¢"~!) is the real part ofj”~!. We then obtain by Applying Theorenill with, = 1/n! andgo = 0, we have
induction q q_ q*
= R 1GEE = ) oD
= Y RE@TT. (45 A A
q m—0 Making use ofe? = e%(cosv + v sinv) andq = ¢, + Vv, we
USing R(qn—l—m) _ %((jn—l—m + (j*(n—l—m)), the summa- have e 1 )
tions can be evaluated explicitly, leading to equat{or (43) 90 2 (€7 + e v sinv). (52)

Forn < 0, we use the recurrent relation ] ) )
Example 2. The logarithmic functionf(¢) = In¢ has repre-

—-n s—(n—1
(g —gq)™") =g1 {8‘1 S —R(G™) (46) sentation
Jq dq g — i (—1)”—1( 1) (53)
and the result nae - " R
(g —qo) ! 1 ; _ n—1 _ ; ;
— 5y~ 1 R(G ). (47) with a, = (—1)""!/n andgy = 1. Sinceqy is a real number,
q

) ) o ) 9(@*) = f(¢*). Therefore, we have from Theordr 1
Equation[(4B) is proven by using induction as for- 0. More
details are given in Appendix]B. [ ] ag;q — % (q—l + %) _ (54)




Using representatioing = In|g| + Vv arccos(¢./|g|), the Thus

expression can be simplified as 8‘(7;—((1) — %[f’(q) + f(q)] = f'(q). (64)
q
dlng 1 <q—1 i 1 arccosq_“> 7 (55) n
dq 2 v g

The functions in above three examples all satisfy the con-
ditions in Theoreni2, hence we expect Theofdm 2 applies.
Example 3. Hyperbolic tangent functiory(q) = tanhq is One can easily verify by direct calculations that the theore

wherev = |I(q)].

defined as indeed holds.
_elt—e™? @ 2¢°
tanhg:= == =q¢— 5+ 75~ (56) V. THE RIGHT RESTRICTEDHR GRADIENTS
Therefore, Theoreril 1 applies. On the other hand, using than this section, we briefly summarize the results for thetrigh
relatione? = e? (cosv + Vsinv), we can show that restricted HR gradients, and highlight the difference witf
1 sinh 2¢g, + vsin2 i i .
tanh g _sn.l 2q + Vsin v (57) restrlctc-:‘d HR gra.dlents . -
2 sinh® g, + cos?v 1) Right-linearity: for arbitrary quaternion constaatsand
Then the second term in the expression given by Theddlem 1 3, and functionsf(q) and g(q), we have
can be simplified. The final expreisllo.n can be written as O (fa + g8) _ ‘9Rfa ) 8_Rgﬂ 5)
(“)tz;nhq 1 (sech2 o+ ﬁ} sin 2v ) ’ (58) aq” dq” dq”
q 2 cosh 2g, + cos 2v However, linearity does not hold for left multiplications,
where sechq := 1/coshq is the quaternionic hyperbolic i.e., in general
secant function. R R
o . 0%af , 97T (66)
Remark. Apparently, the derivatives for these functions can dq 0q
also be found by direct calculations without resorting to 2) The first product rule: for the right restricted HR oper-
Theoren{L. ator, the following product rule holds:

We now turn to a question of more theoretical interests.

VIO = ((VEDg" + T [f(Ve9)"]. (67
Even though it might not be obvious from the definitions, the Vi (79)] (Ve Dl + T (Veg)'] (67)

following theorem shows that the restricted HR derivatise i The second and third product rules are the same as for
consistent with the derivative in the real domain for a clafss the left restricted operator.
functions, including those in the above examples. 3) The first chain rule: for the composite functigty(q)),
Theorem 2. For the functionf(¢) in Theoren{1, ifgy is a we have URAT — AT (IR fT (68)
real number, then Vaf)” = (Vimr)™
%@) — f'(q) (59) 4) The second chain rule becomes:
q
wheng — R(q), i.e., wheng approaches a real number. (ViHT =0"(vinT. (69)
Proof: Using the polar representation, we wrige =  5) The third chain rule becomes

|g| exp(¥v6), whered = arcsin(v/|G|) is the argument of or-f  9g Of 20
with v = |I(¢)|. Theng™ = |¢|"™ exp(nv8), and dqv — 8¢” dg’ (70)

@ = @™ G- )" = 1q") _ |g|"~" sin(n#) (60) Note that,dg/0¢" = 9%g/0q” sinceg is real-valued.

1(9) sin ¢ We thus have omitted the superscriptAlso, 8 f/dg is

For realqy, § — qo — qo andv — 0 wheng — R(q). As a real derivative, so there is no distinction between left
a consequencd, — 0 at the limit (or6 — m, which can be and right derivatives.
dealt with by slight modification), and We can also find the right restricted HR gradients for common

sin(nf)  sin(nd) el 1 quaternion functions. First of all, Lemrhh 1 is also true fght

~ n «—qo)" . (61 o

sin 6 g " la = (@~ @) (61) derivatives:

Therefore, . .
Lemma 2. For f(q) = (¢ — qo)™ with n integer andgy a
@ -q™")G-q)" = ng (62) constant quaternion, we have
R ~n __ ¥n
and . % flg) 1 (nqn—l L ({* ) ’ (71)
dq 2 q—4q

[9(@) —9@N@—d) " = > nang" ' = f'(g). (63)

n=—oo

with § = g — qo.



Remark.To prove the lemma, we use the following recurrenwhere equation (76) has been used. Here@f/dq)* gives
relations: the steepest descent direction fér and the increment is
g —qo)” 0" . determined byo f /dq.
dq - dq ¢+ R(¢") (72) On the other hand, if is a quaternion-valued function, the
. - (n-1) increment will depend on all four derivatives. Takifigg) =
o((q _BqO) ) _ % —— —R(@") i (73) ¢° as an example, we have (see equatiéns (41) lard (43))
q q

Using LemmdXR, We can prove the following result:

dq® = (¢ + qo)dg + qvidg’ + q.jdg’ + qakdg®,  (78)

even thoughf (¢) appears to be independentgf ¢/ andq*.
It can be verified that the above expression is the same as the
differential form given in terms odq,, dg;, dg. anddqs. Thus
it is essential to include the contributions frawf /dq’ etc.

We also note that, if the right gradient is used consistently
9" f(q) _ 1 [f’(q) +(G—d) Mg - 9@*)” . (79) the same increment would result, since the basis of the

Theorem 3. Assumingf : H — H admits a power series
representationf (q) := g(q) == >_.— . G"an, With a,, being
a quaternion constant ang = ¢ — qo, for Ry < |¢| < Rq
with R, R, > 0 being some constants, then

9q 2 definitions is the same, namely, the differential form inmter
where f'(q) is the derivative in the usual sense, i.e., of dqqa, dgs, dg. anddqy.
0o 0o Now we apply the quaternion-valued restricted HR gradient
f(q) = Z ng" ta, = Z n(q —qo)" ‘a,. (75) operator to develop the QLMS algorithm as an application.
n=—00 n=-—00 This version of QLMS has been derived inl [9], [12], [13],

Note that, the functiong(q) in TheoreniB in general form a[15]. However, with the rules we have derived, some of the
different class of functions than the one in Theofém 1, bseaifalculations can be simplified, as we will be showing below.
in the series representatiap appears on the right-hand side In terms of a standard adaptive filter, the outp{it] and
of the powers. However, ifi,, is a real number, then the twoerror e[n] can be expressed as

classes of functions coincide. Therefore, we have thevatig yln] = w” [n]x[n] (79)
result: T
e[n] = d[n] — w* [n]x[n], (80)
Theorem 4. If a,, is real, then the left and right restricted HR . )
gradients off(q) coincide. wherg w(n| = [w[l],@[Q], - ,w[M]]_ is the quaternion
adaptive weight coefficient vector with lengt¥/, d[n] the
Remark.As a consequence, we can see immediately the rigterence signal, andn| = [z[n—1], z[n—2],-- - , z[n—M]|”
tangent functions are the same as the left ones. the error signak[n] is
Apparently, Theorerl2 is also true for the right derivatives e*[n] = d*[n] — xH [n)w*[n] (81)

Hence, we have:

Theorem 5. The right-restricted HR gradient is consistentThe cost function is defined an] = e[nle*[n] which is real-

with the real gradient in the sense of Theor@m 2. valued. According to the discussion above and [14]] [18}, th

conjugate gradientVyJ[n])* gives the maximum steepness
direction for the optimization surface. Therefore it is dite
VI. THE INCREMENT OF A QUATERNION FUNCTION update the weight vector. Specifically,

When f(q) is a real-valued quaternion function, both left

1] = — * 82
and right restricted HR gradients are coincident with the HR Win + 1] =win] = u(VwJ[n])", (82)
gradients. Besides, we have wherey is the step size. To fin¥,J , we use the first product
R v rule:
off _of _ (of , (76) delnle*[n]
oqv  Ogq” dq = v
W ow
wherev € i,j,k. Thus onlydf/dq is independent. As a . de*[n] l(ae[n]e*[n] B 36[71]6*[”]1
consequence (see also [14]), - W 4 ow, oW,
v deln) . Oe[n]
8f N 8f y i Y P i Y P
w3 gk = (5) w1~ gy ) )

After some algebra, we find

of \"* of
=S (Zag) =4r(%Laq), 77
z,,: (8q q) (8q q) (7 Vo] :—%X[n]e*[n]. (84)



Therefore we obtain the following update equation for thehere (¢,pn) € {(a,1),(b, =), (c,—j),(d,—k)}, v €
QLMS algorithm with a step sizg {1,4,j,k}, andu” is thev-involution of . Therefore

df = dfa +2dfb+]dfc+kdfd

Win + 1] = W[n] + p(e[n]x* [n]). (85)
atifvt+ifetkfa) ) ..
Some simulation results have been reported_in [12]. = Z Z o fba i/ fd)u dq
v \(ow) 1
VIl. CONCLUSIONS u? | dg” 01
K i <¢Z> 0" .
v Iz

We have proposed a restricted HR gradient operator and
discussed its properties, in particular several diffevemsions Which leads to the definition§ ([0418) in the main text. Note

of product rules and chain rules. Using the operator, weyappi'al: Pecaus@” anddg” are quaternions, to obtain the last
the rules to find the derivatives for a wide class of nonline§Auation, we need to multiplyfy, df. anddf, by 7, j, andk

guaternion-valued functions that admit a power serleseFepFrom the left. )
sentation. The class includes the common elementary firecti On the other hand, we notice that the prefactor$ i[(87-89)

such as the exponential function, the logarithmic functiol'® be moved to the right-hand side of the other factors, i.e.

among others. The explicit expressions for the derivativids we may write

be useful for nonlinear signal processing applications alse dga = (dq + dq' + d¢’ + qu)l’ (92)
prove for a wide class of functions, that the restricted HR . ‘ 41
gradient tends to the derivatives for real functions witspet dgy = (dg + dq" — dg’ — qu)za (93)
to real variables, when the independent quaternion variabl dge = (dg — dg' + dg — dg") 1 (94)
tends to the real axis, thus showing the consistency of the 4 = (dg —dg 1 1 45’

initi 1
definition. dgq = (dg — dg’ — dg? + dq* )4k (95)

Using these relations, we may find another expressiowffpr
APPENDIXA following the procedure above:
DEFINITION OF THE OPERATORS
v uaf'}’
We considetif = df, +idf, +jdf.+kdf,. By definition, we dfy = Zd don W o | (96)

(1)
The expression is different frorh _(90), in that the differalst
dq” are on the left ofu”. Therefore, we derive

havedf, = 3_,(9fy/9qs)dgs, With v, ¢ € {a,b, c,d}. Using
the relations

1 i j k
40 = 3lda+dq’ +dg’ +dg"), ®8) df = dfu + dfyi + dfg + dfak
1 i i k
dgy = - (dg + dg’ — dg’ — dg"), (87) Zd 5w O(fa + foi + fej + fak)
1 . . E 8q¢
dg. = I(dq —dq' +dq¢’ — dq"), (88) (Bo11)
daa = 7 (da — da’ — da? + dg"), (89) =—Zd ’ (;)u 5| (97)
n
we may rewritedf, as follows which is the basis for the definitions for the right restritte
1.0f, 3f7 3f7 of, HR derivatives as given in the main text.
= 150 " aq g Fag )l
qa db dc qd
APPENDIXB
1 afy 8f7 Ofy af7
—(5— — + =2 + k="L)dg' ADDITIONAL DETAILS FOR THE PROOF OFLEMMA ]
4 04, 6qb 4. 094 ) )
1,8f, 3f7 Of, ofy To prove Lemmé]l, we have used the following relation
+ 5 ( =] = )d -1
10¢, " 0q, 7 0q. T " 0qa 9~ i1
1.0 ) o o =—q R(qg ) (98)
+ f'y+ f’y+ fv_kj)qu dq
4°9qa Aq ch 944 To show this result, we not@(qq—')/dq = 81/0q = 0. Thus
which can be written as g™t 1, ... _
0=gq gq + 3@ =g g — kg k)

8 _
dfy = § Z (Z on V) dq” (90) = qagql +R(g), (99)

N



from which the result follows. We have used equatibnl (10)4]
and the fact that

9q 9q _ . 9q . 9q [5]
_ = T = l, _— = s T~ = k 100
94a Oq 0qc 7 0aa (100)
The proof also uses the following recurrent relation 6]
aqfn . |:aq(n1) B :|
= ——— —R(@g")|, 101
5 5 R oy

which can be shown as follows: using the first product rule,
we have (8]

—-n —(n—1 —1 —1
9" _ ! dq~ (") 1 <3q gD dq D
dq dq 4\ 0qq Oqp [9]
9 oy, 04T
—g—qq ( 1>j—g—qdq ( 1>k>. (102)

[10]
Using the factdgg—!/dq, = 0 and the second product rule,
we can find

Og~ 1! 0
8q—q¢ - — 718—;5 71. (103) [11]
Thus 12
aqin 7laq7(n71) qil —n L 1
Jq B o¢ 4 (¢ —ia™"
—jq "j — kq k)
B ) —(n—1) B B [13
=4q 1(JT —q 1R(q n) (104)
APPENDIXC

DERIVATIONS OF THE FIRST CHAIN RULE [14]

The functionf(g(q)) may be view as a function of interme-
diate variablesy,, g;, g. and g4. Using the usual chain rule, (9]
we have

of of 9gs [16]
g N~ 9L %9 105
dqp %: 994 Oqp (10)
[17]
with 3 € {a,b, c,d}, which gives
V. f=(Vif)P (106) (18]

where P is a 4 x 4 matrix with Pys = 0gg/0qs. With
(Ve f)J" =V, f, andVif = 4(VYf)J, the above equation
leads to

Vof =4(VIf)JPIH, (107)

where it is easy to show that/ PJ = M.
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