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Vector-sensor arrays such as those composed of crossed dipole pairs are used as they can account for a signal’s polarisation in
addition to the usual direction of arrival information, hence allowing expanded capacity of the system. The problem of designing
fixed beamformers based on such an array, with a quaternionic signal model, is considered in this paper. Firstly, we consider the
problem of designing the weight coefficients for a fixed set of vector-sensor locations. This can be achieved by minimising the
sidelobe levels while keeping a unitary response for the main lobe. The second problem is then how to find a sparse set of sensor
locations which can be efficiently used to implement a fixed beamformer. We propose solving this problem by converting the
traditional 𝑙

1
normminimisation associated with compressive sensing into a modified 𝑙

1
normminimisation which simultaneously

minimises all four parts of the quaternionic weight coefficients. Further improvements can be made in terms of sparsity by
converting the problem into a series of iteratively solved reweighted minimisations, as well as being able to enforce a minimum
spacing between active sensor locations. Design examples are provided to verify the effectiveness of the proposed design methods.

1. Introduction

Traditionally fixed beamformers have been designed assum-
ing the arrays consist of isotropic array elements [1, 2]. As a
result the polarisation of a signal is not taken into account
when considering the performance of an array. Instead, a
vector-sensor array can be considered, allowing measure-
ments of both the horizontal and vertical components of the
received waveforms [3–14].

In the past ten years, quaternion-valued signal processing
has attracted more and more attention with application
areas involving three- or four-dimensional signals [15], and a
quaternionic signal model has been introduced into the field
of vector-sensor arrays for both adaptive beamforming and
direction of arrival (DOA) estimation, [6, 7, 9–11, 13, 16, 17].
A quaternionic formulation provides a compact and conve-
nient representation of three- and four-dimensional signals,
although there will not be improvement in performance in
theory as equivalent formulations can be established in corre-
sponding domains, that is, two real-valued numbers versus
one complex-valued number, or four real-valued numbers
(using a “long vector”) versus one quaternion-valued num-
ber. However, to the best of our knowledge the area of fixed

beamformer design for vector-sensor arrays using such a
signal model has not been considered yet (in particular, it
would be the first time to address the problem of designing
sparse vector-sensor arrays).

If such a beamformer is to be implemented using a
uniform linear array (ULA), it is well known that the adjacent
sensor separation can be no larger than half the operating
wavelength, in order to avoid grating lobes.This can be prob-
lematicwhen considering arrayswith a large aperture size, due
to the cost associated with the number of sensors required.
As a result, sparse arrays become a desirable alternative [18],
which allow separations to be greater than half a wavelength,
while still avoiding grating lobes due to the randomness of
sensor locations. However, the tradeoff in using sparse arrays
is the unpredictable sidelobe behaviour and it is often neces-
sary to optimise sensor locations in order to achieve a desired
performance, (e.g., minimising the peak sidelobe level).

Therefore, the second problem to consider when design-
ing a fixed beamformer is how to find a sparse set of sensor
locations that can be efficiently used to implement a desired
fixed beamformer. Some nonlinear optimisation methods
such as genetic algorithms (GAs) [19–23] and simulated
annealing (SA) [24] have been regularly used to achieve
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the required location optimisation for sensor arrays. The
disadvantage of these methods is the potentially long compu-
tation time and the possibility of convergence to a nonoptimal
solution.

More recently, the area of compressive sensing (CS)
has been explored [25], and CS-based methods have been
proposed in the design of sparse arrays [26–32] through 𝑙

1

norm minimisation. It is also known that the sparsity of
the final array can be improved by converting the problem
into a series of iteratively reweighted minimisations [31–35].
This is achieved by the addition of a reweighting term which
penalises small weight coefficients more heavily, meaning
they are less likely to be repeated in the next iteration. In this
paperwe propose extending these schemes so that they can be
used in designing a sparse set of vector-sensor locations with
a quaternionic signal model. This is achieved by reformulat-
ing the problem into amodified 𝑙

1
normminimisation similar

to what is used for complex-valued minimisation schemes
[36] and it can readily be solved using existing convex
optimisation toolboxes [37, 38].

A third problem considered in this work is how to enforce
a minimum spacing between active locations so that the
vector-sensors with a nonzero physical size can fit into the
resultant locations in practice.This is an extension of thework
in [31], where a size constraint is employed for the design of
traditional sparse scalar-sensor arrays.

The rest of this paper is structured as follows: Section 2
gives details of the proposed design method, including some
basics about quaternions (Section 2.1), the array model being
used (Section 2.2), the method to find the weight coefficients
for a fixed set of locations (Section 2.3), the quaternionic
CS-based (Section 2.4) and quaternionic reweightedminimi-
sation based (Section 2.5) design methods, and methods of
enforcing the size constraint (Section 2.6). Design examples
are given in Section 3, with conclusions drawn in Section 4.

2. Proposed Design Method

2.1. Quaternions. A quaternion is a hypercomplex number
defined as follows [39]:

𝑞 = 𝑅 (𝑞) + 𝑖𝐼 (𝑞) + 𝑗𝐽 (𝑞) + 𝑘𝐾 (𝑞) , (1)

where 𝑅(𝑞) is the real part of the quaternion and 𝐼(𝑞), 𝐽(𝑞),
and 𝐾(𝑞) are the three imaginary components. Similarly for
vectors and matrices of quaternions we have

k = 𝑅 (k) + 𝑖𝐼 (k) + 𝑗𝐽 (k) + 𝑘𝐾 (k) ,

M = 𝑅 (M) + 𝑖𝐼 (M) + 𝑗𝐽 (M) + 𝑘𝐾 (M) .
(2)

The conjugate and modulus of a quaternion are given by

𝑞
∗
= 𝑅 (𝑞) − 𝑖𝐼 (𝑞) − 𝑗𝐽 (𝑞) − 𝑘𝐾 (𝑞) ,

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨 =
√𝑅2 (𝑞) + 𝐼2 (𝑞) + 𝐽2 (𝑞) + 𝐾2 (𝑞).

(3)

The imaginary units 𝑖, 𝑗, and 𝑘 satisfy the following:

𝑖𝑖 = 𝑗𝑗 = 𝑘𝑘 = 𝑖𝑗𝑘 = −1. (4)
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Figure 1: Array model being considered with crossed dipole
elements.

Finally {⋅}⊲ denotes the conjugate transpose of quater-
nionic vectors and matrices.

It is worth noting that in many scenarios quaternions
prove useful as they allow the easy representation of problems
with four-dimensional data. However, care has to be taken
when formulating a problem using quaternions as they are
noncommutative.

2.2. Quaternionic Array Model. Figure 1 shows the array
structure being considered. There are 𝑀 potentially active
crossed dipole pairs located along the 𝑦-axis, uniformly
spaced a distance 𝑑 apart. At each location one of the dipoles
is parallel to the𝑥-axis and the other to the𝑦-axis. Also shown
is a signal with its direction of arrival (DOA) defined by the
angles 𝜃 and 𝜙. Without loss of generality, we assume the
signals impinge upon the array from the 𝑦-𝑧 plane; that is,
𝜙 = 𝜋/2 or 𝜙 = −𝜋/2. The angle 𝜃 is limited to 0 ≤ 𝜃 ≤ 𝜋/2.
A plane-wave signal model is considered; that is, the signal
impinges upon the array from the far field.

The spatial steering vector of the array is given by

ss (𝜃, 𝜙) = [1, 𝑒
−𝑗2𝜋𝑑 sin 𝜃 sin𝜙/𝜆

,

. . . , 𝑒
−𝑗2𝜋(𝑀−1)𝑑 sin 𝜃 sin𝜙/𝜆

]
𝑇

,

(5)

where 𝜆 is the wavelength of the signal of interest and {⋅}𝑇
denotes the transpose operation.

For crossed dipoles the spatial-polarization coherent
vector contains information about a signals polarisation and
is given by [3–5, 11]

sp (𝜃, 𝜙, 𝛾, 𝜂) =
{{

{{

{

[− cos 𝛾, cos 𝜃 sin 𝛾𝑒𝑗𝜂] for 𝜙 = 𝜋
2

[cos 𝛾, − cos 𝜃 sin 𝛾𝑒𝑗𝜂] for 𝜙 = −𝜋
2
,

(6)

where 𝛾 ∈ [0, 𝜋/2] is the auxiliary polarization angle and 𝜂 ∈
[−𝜋, 𝜋) is the polarization phase difference.
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Now the array structure can be split into two subarrays,
that is, one parallel to the 𝑥-axis and one to 𝑦-axis. The steer-
ing vector of each of these subarrays is complex-valued and
given by

sx (𝜃, 𝜙, 𝛾, 𝜂) =
{{

{{

{

− cos 𝛾ss (𝜃, 𝜙) for 𝜙 = 𝜋
2

cos 𝛾ss (𝜃, 𝜙) for 𝜙 = −𝜋
2
,

sy (𝜃, 𝜙, 𝛾, 𝜂) =
{{

{{

{

cos 𝜃 sin 𝛾𝑒𝑗𝜂ss (𝜃, 𝜙) for 𝜙 = 𝜋
2

− cos 𝜃 sin 𝛾𝑒𝑗𝜂ss (𝜃, 𝜙) for 𝜙 = −𝜋
2
.

(7)

These are then combined to give an overall quaternionic
steering vector as follows:

s (𝜃, 𝜙, 𝛾, 𝜂) = sx (𝜃, 𝜙, 𝛾, 𝜂) + 𝑖sy (𝜃, 𝜙, 𝛾, 𝜂) ,

= 𝑅 (sx (𝜃, 𝜙, 𝛾, 𝜂)) + 𝑗𝐽 (sx (𝜃, 𝜙, 𝛾, 𝜂))

+ 𝑖𝑅 (sy (𝜃, 𝜙, 𝛾, 𝜂)) + 𝑖𝑗𝐽 (sy (𝜃, 𝜙, 𝛾, 𝜂)) ,

= 𝑅 (sx (𝜃, 𝜙, 𝛾, 𝜂)) + 𝑖𝑅 (sy (𝜃, 𝜙, 𝛾, 𝜂))

+ 𝑗𝐽 (sx (𝜃, 𝜙, 𝛾, 𝜂)) + 𝑘𝐽 (sy (𝜃, 𝜙, 𝛾, 𝜂)) .
(8)

The response of the array is given by

𝑃 (𝜃, 𝜙, 𝛾, 𝜂) = w⊲s (𝜃, 𝜙, 𝛾, 𝜂) , (9)

where w is the quaternionic weight coefficient vector defined
as

w = [𝑤1 𝑤2 ⋅ ⋅ ⋅ 𝑤𝑀]
𝑇

, (10)

and 𝑤
𝑚
is a quaternionic value for𝑚 = 1, 2, . . . ,𝑀.

2.3. Weight Vector Design for a Fixed Set of Locations. The
first problem we consider here is that of designing the weight
coefficients for a given array geometry, where the sensor
locations could be that of a ULA or a known sparse structure
or other layouts.

In order to achieve a desirable response (or reference
response) 𝑃

𝑟
(𝜃, 𝜙, 𝛾, 𝜂), we can minimize the error between

the designed and desired responses subject to a set of linear
constraints to meet any specific requirements of the design,
which can be formulated as follows:

minw
󵄩󵄩󵄩󵄩󵄩
p
𝑟
− w⊲S󵄩󵄩󵄩󵄩󵄩2

subject to w⊲S
𝐶
= f ,

(11)

where ‖ ⋅ ‖
2
denotes the 𝑙

2
norm,

p
𝑟
= [𝑃
𝑟
(𝜃
1
, 𝜙
1
, 𝛾
1
, 𝜂
1
) , . . . , 𝑃

𝑟
(𝜃
𝐿
, 𝜙
𝐿
, 𝛾
𝐿
, 𝜂
𝐿
)] ,

S = [s (𝜃
1
, 𝜙
1
, 𝛾
1
, 𝜂
1
) , . . . , s (𝜃

𝐿
, 𝜙
𝐿
, 𝛾
𝐿
, 𝜂
𝐿
)] .

(12)

𝐿 is the number of points sampled in the desired beam
response, S

𝐶
is the constraint matrix, and f is the correspond-

ing response vector.
In this work, we use the ideal response for 𝑃

𝑟
(𝜃, 𝜙, 𝛾, 𝜂),

that is, a value of one for the main lobe and zeros for the
other entries. Here we consider a special case of the above
formulation, where we only minimize the design error over
the sidelobe region and the designed response is constrained
to be unity at the main lobe region. In this case, we have

minw
󵄩󵄩󵄩󵄩󵄩
p
𝑟
− w⊲S󵄩󵄩󵄩󵄩󵄩2

subject to w⊲S
𝑀𝐿
= 1,

(13)

where p
𝑟
and S will only cover the sidelobe region, S

𝑀𝐿
is

constructed in a similar manner to S but only considers the
main lobe of interest, and 1 is a vector with a value of unity
for all its entries.

To convert the problem into a form that can easily be
solved, the quaternionic values have to be split into real and
imaginary parts that can be considered separately. This gives
the problem in the following form:

min
w̃

󵄩󵄩󵄩󵄩󵄩
p̂
𝑟
− w̃𝑇S̃󵄩󵄩󵄩󵄩󵄩2

subject to 𝑅 (w̃𝑇S̃
𝑀𝐿
) = 1

𝐼 (w̃𝑇S̃
𝑀𝐿
) = 0

𝐽 (w̃𝑇S̃
𝑀𝐿
) = 0

𝐾(w̃𝑇S̃
𝑀𝐿
) = 0,

(14)

where the following definitions are used:

w̃ = [𝑅 (𝑤
1
) , −𝐼 (𝑤

1
) , −𝐽 (𝑤

1
) , −𝐾 (𝑤

1
) , . . . ,

𝑅 (𝑤
𝑀
) , −𝐼 (𝑤

𝑀
) , −𝐽 (𝑤

𝑀
) , −𝐾 (𝑤

𝑀
)]
𝑇

p̂
𝑟
= [𝑅 (p

𝑟
) , 𝐼 (p

𝑟
) , 𝐽 (p

𝑟
) , 𝐾 (p

𝑟
)] ,

S̃ =

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑅(s
1
) 𝐼 (s

1
) 𝐽 (s

1
) 𝐾 (s

1
)

−𝐼 (s
1
) 𝑅 (s

1
) −𝐾 (s

1
) 𝐽 (s

1
)

−𝐽 (s
1
) 𝐾 (s

1
) 𝑅 (s

1
) −𝐼 (s

1
)

−𝐾 (s
1
) −𝐽 (s

1
) 𝐼 (s

1
) 𝑅 (s

1
)

.

.

.
.
.
.

.

.

.
.
.
.

𝑅 (s
𝑀
) 𝐼 (s

𝑀
) 𝐽 (s

𝑀
) 𝐾 (s

𝑀
)

−𝐼 (s
𝑀
) 𝑅 (s

𝑀
) −𝐾 (s

𝑀
) 𝐽 (s

𝑀
)

−𝐽 (s
𝑀
) 𝐾 (s

𝑀
) 𝑅 (s

𝑀
) −𝐼 (s

𝑀
)

−𝐾 (s
𝑀
) −𝐽 (s

𝑀
) 𝐼 (s

𝑀
) 𝑅 (s

𝑀
)

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

,

(15)

where s
𝑚
is the 𝑚th row vector of the matrix S and S̃

𝑀𝐿
is

constructed in a similar way to S̃ but only using themain lobe.
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As mentioned this design method can be used with any
known array geometry. However, in many cases, the array
geometry is not known in advance and a location optimisation
process is needed to find the set of array sensor locations, such
as in the sparse array design problem, whichwill be dealt with
in the next subsection.

2.4. CS-Based Design of Sparse Vector-Sensor Arrays. As
before, suppose 𝑃

𝑟
(𝜃, 𝜙, 𝛾, 𝜂) is a reference pattern which we

wish to achieve. First, consider Figure 1 as being a grid of
potentially active crossed dipole locations. In this instance,
(𝑀−1)𝑑 is the aperture of the array and𝑀 is a large number.
Sparseness is then introduced by selecting the weight coeffi-
cients to give as few active crossed dipoles as possible, while
still giving a designed response that is close to the desired one.

This problem is formulated as

min ‖w‖0

subject to 󵄩󵄩󵄩󵄩󵄩
p
𝑟
− w⊲S󵄩󵄩󵄩󵄩󵄩2 ≤ 𝛼,

(16)

where ‖w‖
0
is the number of nonzero weight coefficients in

w, p
𝑟
is the vector holding the desired beam response at the

sampled angular and polarisation points of interest, S is the
matrix composed of the corresponding steering vectors, and
𝛼 places a limit on the allowed difference between the desired
and the designed responses.

In practice, (16) is approximated by a minimisation of the
𝑙
1
norm of the weight coefficients [25]; that is,

min ‖w‖1

subject to 󵄩󵄩󵄩󵄩󵄩
p
𝑟
− w⊲S󵄩󵄩󵄩󵄩󵄩2 ≤ 𝛼.

(17)

This formulation is effective for the design of narrowband
sparse scalar-sensor arrays. When considering quaternionic
coefficients the problem has to be reformulated to ensure the
real and three imaginary parts of the quaternion are simul-
taneously minimised. This is achieved by following a scheme
similar to that used when considering the 𝑙

1
minimisation of

complex data [36].When all four parts of a quaternionic coef-
ficient are equal to zero, the crossed dipoles can be considered
inactive/not present, and as a result sparsity is introduced.

First we rewrite (17) as

min 𝑡 ∈ R
+

subject to 󵄩󵄩󵄩󵄩󵄩
p
𝑟
− w⊲S󵄩󵄩󵄩󵄩󵄩2 ≤ 𝛼, |⟨w⟩|1 ≤ 𝑡,

(18)

where

|⟨w⟩|
1
=

𝑀

∑

𝑚=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[
[
[
[
[
[

[

𝑅 (𝑤
𝑚
)

𝐼 (𝑤
𝑚
)

𝐽 (𝑤
𝑚
)

𝐾 (𝑤
𝑚
)

]
]
]
]
]
]

]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

. (19)

Now we decompose 𝑡 to 𝑡 = ∑𝑀
𝑚=1
𝑡
𝑚
, 𝑡
𝑚
∈ R+. In vector

form, we have

𝑡 = [1, . . . , 1]

[
[
[
[

[

𝑡
1

.

.

.

𝑡
𝑀

]
]
]
]

]

= 1𝑇t. (20)

Then (18) can be rewritten as

min
t

1𝑇t

subject to 󵄩󵄩󵄩󵄩󵄩
p
𝑟
− w⊲S󵄩󵄩󵄩󵄩󵄩2 ≤ 𝛼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

[
[
[
[
[
[

[

𝑅 (𝑤
𝑚
)

𝐼 (𝑤
𝑚
)

𝐽 (𝑤
𝑚
)

𝐾 (𝑤
𝑚
)

]
]
]
]
]
]

]

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

≤ 𝑡
𝑚
, 𝑚 = 1, . . . ,𝑀.

(21)

Now define

ŵ = [𝑡
1
, 𝑅 (𝑤

1
) , −𝐼 (𝑤

1
) , −𝐽 (𝑤

1
) , −𝐾 (𝑤

1
) , . . . ,

𝑅 (𝑤
𝑀
) , −𝐼 (𝑤

𝑀
) , −𝐽 (𝑤

𝑀
) , −𝐾 (𝑤

𝑀
)]
𝑇

ĉ = [1, 0, 0, 0, 0, . . . , 1, 0, 0, 0, 0]𝑇 ,

Ŝ =

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

0 0 0 0

𝑅 (s
1
) 𝐼 (s

1
) 𝐽 (s

1
) 𝐾 (s

1
)

−𝐼 (s
1
) 𝑅 (s

1
) −𝐾 (s

1
) 𝐽 (s

1
)

−𝐽 (s
1
) 𝐾 (s

1
) 𝑅 (s

1
) −𝐼 (s

1
)

−𝐾 (s
1
) −𝐽 (s

1
) 𝐼 (s

1
) 𝑅 (s

1
)

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 0

𝑅 (s
𝑀
) 𝐼 (s

𝑀
) 𝐽 (s

𝑀
) 𝐾 (s

𝑀
)

−𝐼 (s
𝑀
) 𝑅 (s

𝑀
) −𝐾 (s

𝑀
) 𝐽 (s

𝑀
)

−𝐽 (s
𝑀
) 𝐾 (s

𝑀
) 𝑅 (s

𝑀
) −𝐼 (s

𝑀
)

−𝐾 (s
𝑀
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Finally we arrive at the final formulation for the sparse
vector-sensor array design problem

min
ŵ

ĉ𝑇ŵ
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𝑚
, 𝑚 = 1, . . . ,𝑀.

(23)
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2.5. Iteratively Solved ReweightedQuaternionicMinimisations.
For the design of sparse arrays consisting of isotropic array
elements with real-valued coefficients, reweighted 𝑙

1
minimi-

sations are used in order to get a closer approximation to the
𝑙
0
minimisation [31, 34, 35]. This is done by solving a series

of reweighted 𝑙
1
minimisations, where the reweighting term

penalises smaller weight coefficients more heavily.
Following the idea, we introduce a reweighting parameter

to each quaternionic coefficient. This leads to (23) being
altered to
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ĉ𝑇ŵ

subject to 󵄩󵄩󵄩󵄩󵄩
p̂
𝑟
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where we now have
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−1
(25)

with 𝜖 being set to slightly below the minimum implemented
absolute coefficient value for a given location.

The problem is iteratively solved as follows.

(1) Set 𝑖 = 1 and obtain an initial estimate of the weight
coefficients by solving (23).

(2) Consider 𝑖 = 𝑖 + 1; find the reweighting terms 𝑎𝑖
𝑚
for

all𝑚 and solve (24).
(3) Repeat step 2 until the number of active sensor

locations has remained constant for three or more
iterations of the algorithm.

Note that it is the addition of the reweighting term that
improves the sparsity of the solution. If a small nonzero
valued combined weight coefficient is found in the previous
iteration, it results in a large reweighting term in the current
iteration. As a result the nonzero value is unlikely to be
repeated, therefore improving the sparsity of the solution.
Conversely, a large nonzero valued coefficientwill give a small
reweighting term. As a result the large nonzero value is likely
to be repeated.

2.6. Enforcing the Physical Size Constraint. In above formula-
tions, the solutions do not take the size of the vector-sensors
into account. As a result we could end up with an array
that could not be implemented in practice due to the vector-
sensors not fitting in their deigned locations. Therefore, a
minimum spacing of the vector-sensors’ physical size should
be applied to the optimisation.

This can be achieved using the methods recently pro-
posed in [31], where the postprocessing method and iterative
minimum distance sampling method can be directly applied
to our sparse vector-sensor array design. These two methods
involve some degree of merging locations that are too close
together. This is a form of steering vector error that may
degrade the performance of the array. As a result, a constraint
is required on the minimisation to limit the effects of this
error, given by limiting 𝜀‖w̃‖

2
to a small value in the design,

where 𝜀 is the limit on the expected norm-bounded steering
vector error, as normally employed in the design of robust
beamformers. To further improve the performance of the
array, the weight vector for the final sensor location can be
redesigned using the method proposed in Section 2.3.

A thirdmethod to enforce the size constraint is to alter the
reweighting scheme so that all locations not meeting the size
constraint are heavily penalised in order to avoid replication
in the next iteration. The modified reweighting terms are
given by

𝛿
𝑖

𝑚
=

{{{{

{{{{

{

(
󵄨󵄨󵄨󵄨󵄨
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󵄨󵄨󵄨󵄨󵄨
+ 𝜖)
−1

𝑚 = 1

(
󵄨󵄨󵄨󵄨󵄨
𝑤
𝑖−1

𝑚

󵄨󵄨󵄨󵄨󵄨
+ 𝜖)
−1

𝑚 > 1 and constraint met

(𝜖)
−1 otherwise.

(26)

The iterative procedure detailed in Section 2.5 is now also
repeated until a solution complying with the size constraint is
met (rather than looking at how many iterations the number
of nonzero valued coefficients has remained constant for).

3. Design Examples

In this section design examples will be presented in order to
verify the effectiveness of the proposed design methods. This
will include one design example based on a ULA and one
example to illustrate how the methods can be used to design
a sparse vector-sensor array and how the reweighted method
can improve the sparsity of the solution. Finally, an example
will be given to illustrate the performance of arrays designed
while enforcing a size constraint.

For all of the figures that follow, positive values of 𝜃
indicate the value range 𝜃 ∈ [0∘, 90∘] for 𝜙 = 90∘, while
negative values of 𝜃 ∈ [−90∘, 0∘] indicate an equivalent range
of 𝜃 ∈ [0∘, 90∘] with 𝜙 = −90∘. The main lobe is designed to
be at the single point defined by 𝜃 = 0∘ and 𝜙 = 90∘, with the
sidelobes given by 𝜃 = [10∘, 90∘] for 𝜙 = 90∘ and 𝜙 = −90∘.

3.1. ULA Based Design Example. First we consider a ULA
consisting of ten crossed dipoles with an adjacent separation
of 0.5𝜆. Both here and in all that follows, 𝜆 is the wavelength
of the signal of interest.The polarisations are given by (𝛾, 𝜂) =
(30
∘
, 25
∘
). By solving (14) to obtain the weight coefficients
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Figure 2: Beam response for the design example based on a ULA.

Table 1: Locations found from solving (23) with a value of 𝛼 = 0.94.

𝑛 𝑑
𝑛
/𝜆 𝑛 𝑑

𝑛
/𝜆 𝑛 𝑑

𝑛
/𝜆

1 4.93 4 6.75 7 8.46

2 5.79 5 7.50 8 9.21

3 6.59 6 8.31 9 10.07

we end up with the response shown in Figure 2. It can be
clearly seen that the main lobe is in the correct location and
sufficient sidelobe attenuation has been achieved; that is, the
minimisation has successfully designed a fixed beamformer.

3.2. Sparse Location Optimisation Design Examples. Now
we will consider using the nonreweighted and reweighted
minimisations to design sets of sparse locations. In this
instance the maximum aperture of the array is 15𝜆 and the
polarisation of the signal of interest is defined by (𝛾, 𝜂) =
(10
∘
, −10
∘
).

Firstly, (23) is solved with a value 𝛼 = 0.45. However,
this resulted in 44 active locations over an aperture of 13.39𝜆,
giving amean adjacent sensor separation of 0.31𝜆. As a result,
a ULA of equivalent length could be implemented using a
smaller number of crossed dipoles. Therefore, there is no
saving in cost and so forth.

By increasing the value of 𝛼 to 0.94, the designed array
instead has 9 active locations over an aperture of 5.13𝜆,
giving a mean adjacent separation of 0.64𝜆. Therefore, less
sensors are required than an equivalent length ULA. On the
other hand, as the value of 𝛼 has been significantly increased
there will be more error between the desired and designed
responses than the case with 𝛼 = 0.45. The responses for
both cases are shown in Figure 3. This clearly shows the
degradation in the performance of the array response. The
main lobe width has been widened and the sidelobe levels
raised. For completeness the locations found for the value of
𝛼 = 0.94 are shown in Table 1.

As an alternative, we can iteratively solve the series of
reweighted minimisations given by (24) while using all the
original parameters. So there is no increase in the value of 𝛼
and we still use 𝛼 = 0.45, which suggests there should not be
degradation in the performance of the array’s response. This
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Figure 3: Beam response for the locations found by solving (23).

−90 −70 −50 −30 −10 10 30 50 70 90
−120

−100

−80

−60

−40

−20

0

Be
am

 p
at

te
rn

 (d
B)

𝜃 (deg)

Figure 4: Beam response for the locations found by solving (24).

Table 2: Locations found from solving (24) with a value of 𝛼 = 0.45.

𝑛 𝑑
𝑛
/𝜆 𝑛 𝑑

𝑛
/𝜆 𝑛 𝑑

𝑛
/𝜆

1 2.32 6 6.64 10 10.07

2 3.22 7 7.50 11 10.92

3 4.08 8 8.36 12 11.78

4 4.93 9 9.21 13 12.68

5 5.79

results in 13 active locations spread over an aperture of 10.37𝜆
as detailed in Table 2. Here the mean adjacent separation is
0.86𝜆, meaning the array can be implemented with fewer
crossed dipoles than a ULA of equivalent length. Figure 4
shows the resulting response and it is clear that an acceptable
performance has been achieved.

3.3. Design Examples with Size Constraint. Two examples will
now be considered to show the effectiveness of two methods
for enforcing the size constraint. For both, the size of the
crossed dipoles being considered is assumed to be 0.8𝜆.

3.3.1. Postprocessing Design Example. For this example we
consider an aperture of 15𝜆 split into 300 potential sensor
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Table 3: Locations for the postprocessing design example.

𝑛 𝑑
𝑛
/𝜆 𝑛 𝑑

𝑛
/𝜆 𝑛 𝑑

𝑛
/𝜆

1 1.61 6 5.82 11 10.06

2 2.44 7 6.64 12 10.92

3 3.29 8 7.49 13 11.74

4 4.11 9 8.35 14 12.57

5 4.96 10 9.16 15 13.38
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Figure 5: Beam response for the postprocessing design example.

locations. In this instance the polarisation of the signal of
interest is given by (𝛾, 𝜂) = (0∘, 0∘). The values of 𝛼 = 0.75,
𝛽 = 0.1, and 𝜀 = 1 were used in the constraints placed on the
minimisation.

This resulted in 15 crossed dipoles spread over 11.77𝜆 as
shown in Table 3. Here the minimum adjacent separation is
0.81𝜆 indicating that the size constraint has been successfully
enforced. The resulting response is shown in Figure 5 which
shows a desirable response has been achieved.

In order to ensure an acceptable performance here we
had to redesign the weight coefficients for the final merged
locations. It is reasonable to expect the same from the iterative
minimum distance sampling method due to the fact that
some merger of location is still required. A similar perfor-
mance would also be achieved and as a result an example of
it is not given here. However, a reweighted design example
with size constraint is considered below as an alternative that
does not require a redesigning of weight coefficients due to
no locations being merged.

3.3.2. Reweighted Design Example. In this example we are
now considering 600 possible locations over the same aper-
ture. However, due to the improved sparsity for a given
amount of error offered by the reweighted method we can
now use a value of 𝛼 = 0.3.

This results in 14 crossed dipole locations shown in
Table 4. In this instance the aperture of the designed array is
11.29𝜆 with a minimum adjacent separation of 0.85𝜆. Again,
fromFigure 6we can see that an acceptable response has been
achieved.

Table 4: Locations for the reweighted design example.

𝑛 𝑑
𝑛
/𝜆 𝑛 𝑑

𝑛
/𝜆 𝑛 𝑑

𝑛
/𝜆

1 2.26 6 6.67 11 10.94

2 3.26 7 7.53 12 11.79

3 4.11 8 8.38 13 12.64

4 4.97 9 9.23 14 13.55

5 5.82 10 10.08
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Figure 6: Beam response for the reweighted design example.

4. Conclusions

In this paper the problem of designing fixed beamformers
based on vector-sensor arrays (with a quaternionic formu-
lation for compact and convenient representation) has been
considered. This problem can be split into two parts: first,
designing the coefficients for a fixed set of vector-sensor loca-
tions and, second, finding a set of sparse locations that can be
used to more efficiently implement a fixed beamformer.

The first part of the problem can be solved by minimising
the sidelobe levels in the response while keeping a unitary
response at the main lobe. For the second part of the problem
a reformulation of the traditional 𝑙

1
norm minimisation into

a modified 𝑙
1
normminimisataion has been proposed.This is

required in order to convert the problem into a form that can
be solved, while still ensuring that all four parts of the quater-
nionic weight coefficients are simultaneously minimised. It
is also possible to further improve the performance of the
proposed method by converting the problem into a series of
iteratively reweighted minimisations, as well as enforcing a
minimum spacing of the physical size of the sensors being
considered.Design examples have been provided to verify the
effectiveness of the proposed design methods.
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