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Abstract 

 

Positron emission tomography (PET) is a highly quantitative imaging modality and can probe 
a number of functional and biologic processes depending on the radio-labeled tracer. Static 
imaging followed by analysis using semi-quantitative indices, such as standardized uptake 
value (SUV), is used in the majority of clinical scans. However, considerably more 
information can be extracted from dynamic image acquisition protocols followed by 
application of appropriate image reconstruction and tracer kinetic modelling techniques. At 
the same time, this approach has been mainly restricted to drug development and clinical 
research applications due to their complexity both in terms of protocol design as well as 
methodology for parameter estimation. Active research in the field of non-invasive input 
function extraction, novel protocol design for whole body and dual tracer parametric imaging 
applications, as well as kinetic parameter estimation methods utilizing spatiotemporal (4D) 
image reconstruction algorithms aim to make this overall potentially more powerful approach 
more feasibly adopted in routine clinical imaging. Furthermore with the advent of sequential 
and simultaneous PET/MR, strategies for synergistic benefits in kinetic modelling are starting 
to emerge, potentially enhancing the role and clinical necessity of PET/MR imaging. In this 
article we elaborate and review different advancements in kinetic modelling both from a 
protocol design as well as the methodology point-of-view. Moreover, we discuss future trends 
and potentials which could facilitate more routine usage of tracer kinetic modelling 
techniques in clinical practice.    
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1.1 Introduction 
 
 

   Positron emission tomography (PET) is a powerful and highly specialised imaging modality 
for non-invasive measurements of different physiological and biological processes at a 
molecular level. The theory of emission tomography applies to PET, but the data acquisition 
is significantly different from the well-known single photon emission tomography (SPECT). 
The principles of PET are based on the fact that by labelling a compound with a positron 
emitting isotope and intravenously injecting it in the patient in tracer quantities, one can detect 
its bio-distribution inside the body and investigate a number of physiological and biochemical 
processes such as perfusion, proliferation and glucose metabolism. The following discussion 
focuses mainly but not exclusively on [18F]FDG PET imaging and is easily extendible to other 
tracers. 
 
1.2 PET imaging in oncology  
 
   PET is an establish modality in Oncology, as for the last 2 decades PET imaging has been 
used for numerous studies, involving many benign and malignant abnormalities. One of the 
radiopharmaceuticals that is mostly used is [18F]FDG or18-F labeled 2 deoxy-2-D-glucose. As 
FDG and glucose are similar, they compete during phosphorylation. The 2 byproducts FDG-
6-phosphate and glucose-6-phosphate follow different routes. Glucose is further metabolized 
into fructose-6-phosphate, while FDG is trapped. The basis of [18F]FDG PET is the elevated 
levels of glucose consumption in malignant cells. Increased expression of glucose transporters 
and enzymes responsible for metabolism can contribute to this glucose accumulation and 
consumption. FDG uptake is also regulated by the hypoxic nature of the tumor as well as the 
cellular proliferation and reduced tumor suppressing mechanisms [1].  
   The 2 tissue compartmental model can adequately describe the kinetics of FDG. The first 
compartment is the free tracer and the second one is the trapped FDG-6-phosphate. The tracer 
enters the free pool with a rate constant equal to K1 which is the product of blood flow (BF) 
and extraction fraction (EF). In the case of FDG the EF is in the order of 20% and K1 reflects 
this EF. In the free pool the tracer can either be cleared with a rate k2 and a fractional 
clearance rate (K1k2 / k2+ k3) or become trapped with a rate k3 and a fractional uptake rate 
(K1k3 / k2+k3) = Ki. The PET signal is decomposed into the input function and the impulse 
response function from the 2 compartments. The IRF from the free compartment can be 
considered as the input to the compartment K1 multiplied by the exponential decay due to 
clearance or trapping  Cf = K1e

-(k
2
+k

3
)t  . Accordingly the IRF for the bound compartment can 

be factorized as the input integral from the free compartment multiplied by the trapping rate 
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The impulse response function can then be factored as: 
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with the overall PET signal being the convolution of the IRF with the input function. 
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Fig 1. Two-tissue compartmental model. The interstitial space and cellular space are commonly lumped together 
as the first tissue compartment. K1 and k2 then capture delivery of FDG into and out of this compartment, and k3 
captures the intracellular phosphorylation rate. Measured PET signal C(t) cannot distinguish between non-
phosphorylated and phosphorylated compartments. 
 

1.3  Pitfalls in static clinical imaging - Why dynamic imaging ?  
 
   PET scanners are very specialized cameras and in principle work in a similar way to normal 
digital cameras, by collecting photons over a period of time, to produce a static image from 
the integrated measurements. This mode of imaging is almost exclusively used in clinical 
practice, for qualitative assessment and visual inspection and interpretation of the 
reconstructed images. However quantitative estimates related to the accumulation of a radio-
labelled compound have complemented or superseded the visual interpretation in many 
clinical applications and provide a more objective assessment of the system under study.  
  Semi-quantitative indices such as the standardized uptake value (SUV) can provide valuable 
information regarding the system under study and can help in interpretation, differentiation 
and analysis, for tumour detection, staging and response monitoring. However tracer uptake 
values have also been used for other applications, such as measuring the extent of tumour 
oxygenation and angiogenesis, the level of tumour receptor expression and evaluating inter-
tumoral uptake heterogeneity. 

SUV is a simplified metric that requires single temporal-frame imaging:  
 

SUV = activity concentration C(t)
Injected dose / Body weight 

   (4) 

 
It is frequently used in oncology as a simple method of basic quantification in static imaging 
protocols and provide a surrogate estimate to biologically related parameters. The SUV can 
actually be viewed as an estimate of the kinetic influx rate Ki, and the accuracy in the 
estimation depends on the following two conditions:  

(a) in the voxel or region of interest, contribution of non-phosphorylated FDG (which 
includes the vascular and the extravascular compartments) is negligible relative to 
phosphorylated FDG (a commonly utilized two-tissue compartmental model is shown in Fig. 
1. 

(b) time integral of plasma FDG concentration is proportional to injected dose divided by 
body weight (BW), lean body mass (LBM) or body surface area (BSA) as used in the SUV 
metric (the latter two are somewhat more reliable and less prone to artificial increase or 
decrease due to change in body habitus, e.g. as is common among oncology patients 
undergoing treatments [2-6].  

These two assumptions can however break down in clinical PET imaging and lead to 
noticeable inaccuracies [7-10]. As for the first assumption, less FDG-avid tumours that have  
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Fig 2. Relative percentage changes in SUV and SKM due to therapy compared with corresponding changes 

in MRGlu-Patlak on a lesion per lesion basis for SUVBW (triangles), SUVLBM (circles) and SUVBSA 
(squares) (a) uncorrected for blood glucose and (b) corrected for blood glucose, and (c) for SKM. All simplified 
method showed a substantially smaller fractional change than Patlak analysis, emphasizing the importance of 
kinetic analysis in assessing response to therapy [11]. 

 
 
relatively small FDG phosphorylation rates may not be optimally imaged at standard 

imaging times (e.g. 60min after injection) due to contributions of the vascular compartment 
and/or intracellular non-phosphorylated FDG, thus resulting in limited differentiability 
between diseased and normal tissue or organs [12]. This can be a particular issue post-therapy 
when there can be substantial background FDG activity in tissues [13]. This also leads to 
spatial distributions for SUV images that vary with time (a special problem in practice due to 
variable scan times post injection inherent in clinical practice). 

As for the second condition, if a patient is for instance undergoing chemo- or hormone 
therapy, the dynamics of plasma FDG could be significantly affected, and the time integral of 
the plasma FDG could deviate from what would be predicted from the dose and 
BW/LBM/BSA alone [9, 14]. The SUV estimate for such a case could then not accurately 
correspond to the kinetic influx rate, and the therapy response may not be accurately reflected 
by the change in SUV. This latter also explains why patient populations of varying plasma 
dynamics result in scattered correlation between the SUV and Ki measures [15].  

Overall, the single time point SUV PET/CT methodology has documented limitations (e.g. 
[16-21]) in terms of separation between malignant uptake and benign uptake (e.g. 
inflammation, infection), and may underestimate disease presence in certain malignancies [7]. 
A more advanced approach, namely dual-time-point FDG PET imaging proposes to measure 
the retention index (RI) as the percent change in SUV images from early (~60 min) to late (90 
to 180 min) scans [22-31]. This approach has been applied to a number of malignancies; e.g. 
head and neck [32], lung [33], breast [34], gallbladder [35], cervix [36] and glioma [37], and 
has been shown to result in enhanced differentiation between malignant vs. benign processes 
[32, 38, 39] and improved prognostic utility [40]. At the same time, RI is also a semi-
quantitative measure of tissue or tumor FDG kinetics. For a fixed system of micro-parameters, 
it can (undesirably) modulate (i) with different temporal positioning of the dual scans and (ii) 
with varying plasma dynamics. Moreover, this technique can require long patient waiting 
times and may face increased likelihood of misalignments (and difficulty in correction) 
between early and late scans. 

In a treatment response monitoring study by Freedman et al. [41], it was demonstrated that 
changes in the SUV did not correlate well with Ki, and in some cases generated “large” 
discrepancies resulting in opposite conclusions regarding the progression of disease. The 
authors attributed the discrepancies to the above-mentioned two shortcomings of the SUV 
measure. A solution to the second shortcoming is to supplement the PET scan with blood 
sampling data, arriving at the fractional uptake rate (FUR) measure [42, 43]. This approach in 
its original form involved invasive blood sampling from time of injection. A closely related 
approach, referred to as simplified kinetic analysis (SKA), utilized population-based input 
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functions, and blood sample collected late-phase to scale the population-based input function 
[44]. In any case, the FUR/SKA approaches, similar to the SUV framework, continue to not 
correct for the presence of nonphosphorylated FDG. In fact, it was shown in [41] that 
although merely correcting the SUV for the available plasma input did somewhat improve 
correlations between changes in SUV and Ki (from 0.733 to 0.849), it only minimally reduced 
number of “large” discrepancies between the two measures. Additional correction of the SUV 
for contributions of nonphosphorylated FDG resulted in excellent correlation (0.975) and zero 
large discrepancies, exposing the deficiencies associated with single time frame imaging. In a 
comparative study Cheebsumon et al found that fractional changes in assessing response to 
therapy were under- or over-estimated using SUV compared to Patlak analysis  (Fig 2) even 
after correcting for plasma glucose levels [45]. Several studies have compared a number of 
semi-quantitative methods based on static protocols (SUV, simplified kinetic method) with 
kinetic analysis method based on dynamic imaging protocols (Patlak graphical analysis and 
full compartmental modelling) on [18F]-FDG imaging, further motivating the need for 
dynamic imaging [46-49].  
   When dynamic methods are used, the individual rate constants have to be calculated using 
multiple time courses of the activity concentration in the tissue of interest. Two deferential 
equations can describe the concentration change rate in each compartment to analytically 
derive the operational equation. 
 

( )
1 ( ) 2 ( ) 3 ( ) 4 ( )

f t
a t f t f t b t

dC
K C k C k C k C

dt
       (5)                           ( )

3 ( ) 4 ( )
b t

f t b t

dC
k C k C

dt
   (6) 

After using Laplace transformations the compartmental concentrations can be written as 
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And the overall PET signal as 
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The metabolic rate of glucose can then be calculated as 1 3

2 3

pC K k
MRgl

LC k k



 with the lumped 

constant (LC) being the difference in transport and phosphorylation between glucose and 
FDG and pC the arterial plasma glucose concentration. 

 

1.4 Clinical indications for pharmacokinetic modelling  
 
   The last few years a number of studies have highlighted the potential role of kinetic 
modelling in diagnosis, by providing addition parameters more relative to the underlying 
pathology, while at the same time assisting in drug development and therapy response 
monitoring through drug labelling and subsequent kinetic parameter evaluation. 
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Fig 3. MR and FDG PET images in a 47-year-old male patient with diffuse large B cell CNS lymphoma. 
Contrast T1-weighted MR image shows multiple enhancing lesions at bilateral paraventricular area (a). Baseline 
dynamic FDG PET shows an increase in K1, k3 and CMRGlc and a decrease in k2 at lymphoma lesions (b). 
Follow-up dynamic FDG PET shows a decrease in all four parameters (c) [50]. 
 
 
   The potential benefit of kinetic analysis has been demonstrated for a number of tracers and 
in a number of different pathologic conditions. In head and neck imaging and specifically in 
central nervous system lymphomas, kinetic analysis of dynamic [18F]-FDG may help in 
diagnosis as well as response monitoring (Fig. 3) [51, 52], while can provide more reliable 
tumour detection estimates [53]. Using [18F]-DOPA Schiepers et al [54] demonstrated the 
importance of kinetic modelling in tumour-grade differentiation, while Thorwarth et al [55] 
using [18F]-FMISO showed a high correlation between kinetic parameters and response to 
therapy. Similar findings have been reported by Schiepers et al [56] using [18F]-FLT in brain 
tumours, with a correlation between kinetic parameter estimates and disease progression 
while Wardak et al [57] in their study using glioma patients pointed out the significance of 
full kinetic modelling in therapy response monitoring. In lung cancer, dynamic [18F]-FDG 
imaging followed by kinetic analysis has been shown to assist in differentiation between 
squamous cell carcinoma, adenocarcinoma with differences in kinetics between these 
subtypes [58]. In colorectal tumours, kinetic analysis may help differentiate between primary 
tumours and normal tissue [59], while kinetic parameters may provide information with 
respect to proliferation and angiogenesis [60, 61]. Improved treatment monitoring and 
survival prognosis has also been demonstrated using information following kinetic parameter 
estimation [62]. Improved tumour differentiation has also been reported in soft tissue tumours 
[63, 64] while the importance of kinetic modelling in predicting the response to therapy has 
also been demonstrated [65]. A multitude of studies are available in the literature for the 
potential significance of kinetic modelling in clinical oncology and drug development as 
highlighted in a number of critical reviews [66-69].  
   

1.5 Challenges in clinical adoption of pharmacokinetic modelling 
 
   The added benefit of kinetic modelling approaches compared to semi-quantitative indices 
have been reported in several studies. Fully quantitative analysis can provide more 
meaningful parameters compared to semi-quantitative indices, in term of their relation with 
the true physiological parameters that one is trying to infer. Traditionally though application 
of dynamic imaging protocols followed by graphical analysis or full kinetic analysis 
modelling strategies, has mainly been restricted to clinical research. The limited adoption of 
dynamic imaging protocols in clinical practice stems from the technical difficulties associated 
with kinetic modelling, rendering such techniques difficult to be adopted in routine clinical 
practice.   
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   One of the main issues associated with clinical adoption of kinetic modelling is the need to 
have an accurate estimate of the tracer's activity concentration in the blood over the course of 
the dynamic study. Having an arterial input function using continuous blood sampling is the 
gold standard; however it is invasive, time consuming and technically challenging, while 
extensive facilities and specialized personnel are required. Alternatives are available and 
advancements in data processing, algorithmic design, instrumentation and multimodality 
imaging with PET/MR can facilitate in the routine extraction of input functions in the clinic.        
   Another important issue is the limited anatomical FOV coverage offered by current PET 
systems (15-25cm), restricting dynamic acquisition protocols to a specific part of the body. 
Therefore kinetic modelling strategies have so far been limited to single bed acquisition 
protocols, making them ill-suited for whole body parametric imaging applications. 
Furthermore dynamic imaging  protocols can last for up to 1.5 hours post-injection and as 
such, affect both patient comfort, as well as patient throughput. However the recent 
introduction of novel data acquisition schemes for whole-body dynamic imaging coupled to 
improvements in scanner data acquisition and management, has enabled the early application 
of kinetic modelling strategies in whole-body clinical applications. 
   Choosing the correct model is very important and is dependent upon the administered tracer, 
the target region and the scanner characteristics. In most cases the actual underlying model is 
too complicated to be identified due to the statistical variations of the measured data and the 
limitations introduced by the instrumentation. A simplified version of the model is then 
chosen in most cases as a trade off between statistical reliability of the derived parameters and 
error due to using a simplified model. Furthermore, due to the limited counting statistics, 
parameter estimation is usually performed at a regional level, after ROI delineation based on 
anatomical information and kinetic model application. This method is attractive as many 
voxels are summed together, improving the statistics and resulting in reliable parameters. 
However as the underlying tissue contains heterogeneous kinetics, the average that is 
calculated when estimating regional kinetics, inheritably results in biased estimates. 
Additionally, the spatial average limits the spatial information that PET data can potentially 
provide. To overcome these problems, one should model the kinetics at the scanner’s finest 
image discretization element, which is the voxel. In this way parametric images are obtained, 
allowing the spatial heterogeneity of the physiologic parameters to be assessed. However, 
despite the benefits of parametric imaging compared to regional analysis, it suffers from 
increased noise due to reduced counting statistics at the voxel level. This results in bias and 
non-statistically reliable parameter estimates. Also computational time becomes an important 
parameter. To address the excess noise, while maintaining the spatial information, different 
post reconstruction methods have been reported in the literature to improve signal-to-noise 
ratio (SNR), such as spatial and temporal filtering, Fourier transformations, ridge regression 
methods, spatial constraints and voxel clustering. These methods are expected to improve 
parameters but kinetic parameter estimation is performed using independently reconstructed 
images leading to suboptimal parameter estimation. Direct 4D parameter estimation methods 
provide a promising alternative but until recently their slow convergence properties and their 
added complexity have hampered their more frequent application. Novel optimization 
strategies for fast and efficient parameter estimation could render 4D reconstruction strategies 
suitable to be used in clinical dynamic imaging and provide parametric images of improved 
accuracy and precision.    
 

1.6 Advanced strategies in pharmacokinetic modelling 
 
As mentioned previously, there are a number of challenges associated with the clinical 
adoption of kinetic modelling strategies in clinical practice. However the last few years 
advancements in data analysis, protocol design and instrumentation have provided a solid  
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Fig 4. Three-dimensional rendering of segmented artery from the time-of-flight magnetic resonance angiography 
images (A); the arterial region of interest (ROI) version one (B); the arterial ROI version two (C); and the arterial 
ROI version three (D). Reprinted with permission from J Cereb Blood Flow Metab. Jan 2013; 33(1): 115–121. 
 
 
foundation toward more widespread utilization of dynamic imaging followed by fully 
quantitative analysis, in the clinic. In the rest of the article we review techniques and recent 
advancements in key areas associated with pharmacokinetic modelling and discuss their 
potential application in routine clinical practice.  
 

1.6.1 Input function estimation  
 

Kinetic imaging requires the accurate calculation of the input function. Arterial blood 
sampling is an invasive and complicated method which makes scanning very uncomfortable 
to the patient and virtually impossible to translate in clinical practice. For this purpose, 
numerous techniques have been proposed to calculate the input function from images as a 
convenient and non-invasive alternative to arterial cannulation. However even image-derived 
input function (IDIF) estimation is by no means any easy task and there are several issues that 
needs to be addressed if such a methodology is to be applied in clinical practice. Here we list 
only some of them while a recent review article on IDIFs can be found by Zanotti-Fregonara 
et al [70]. 

-   Segmentation of blood pool: One of the difficult aspects is to locate the region of 
interest with relevant information, e.g. carotid arteries. Many researchers have 
attempted segmentation of regions using the early time frames of the dynamic PET 
images. This is very difficult as PET resolution is limited to about 4-5 mm making the 
segmentation of small structure a difficult task. A way to solve this issue is to segment 
the arteries using angiograms acquired from other imaging modalities as shown in Fig. 
4 [71]. For example, Fung and Carson have recently proposed of a method that used a 
particular MR protocol to obtain high resolution of the carotid arteries [72]. This 
technique along with another recent investigation by Iguchi et al [73] are promising 
examples to translate in the recently developed simultaneous PET/MR imaging. In 
cases of whole body imaging, this might be further complicated compared to brain 
imaging, due to additional sources of motion. A region, which could be used for 
obtaining the blood pool, is the cardiac cavity or ascending aorta, however this is 
generally limited to acquisitions that include these structures within the field of view.  

- Limited Spatial Resolution: Dynamic PET imaging has limited spatial resolution due 
to partial volume and motion effects. In brain imaging, motion is relatively simple to 
correct by applying frame-by-frame realignment or measuring rigid motion with the 
use of external devices [74]. As such the main effect for limiting resolution is partial 
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volume, with activity spilling in and out. For example, Fung and Carson attempted to 
minimise this complication by selecting only a centreline [75]. On the other hand, in 
whole body, respiratory motion is a major challenge as it can degrade resolution for up 
to 2cm and it is the main limiting factor for quantitative imaging [76]. Motion 
correction approaches have been proposed using PET-MR imaging but such 
approaches are still at an early stage [77] and will require further work to translate 
them in the clinical PET-MR protocols. However in the body, since the regions used to 
extract the input function are relatively large compared to the carotids in the brain, 
partial volume effects can be less of a concern. 

- Plasma Vs whole blood and metabolites: Even if the input function is calculated, there 
is need in several cases to calculate the amount of metabolites in the blood as they 
augment the background signal without necessarily participating in the kinetics, 
although in some cases metabolites may show competitive kinetics in some organs as 
discussed previously [78]. Luckily though in [18F]-FDG imaging no metabolite 
correction is needed, while the difference between plasma and whole-blood 
concentration is minimal. 

- Limited Temporal Resolution: PET in theory offers very high temporal resolution (less 
than a nanosecond) but in practice the spatiotemporal resolution is limited by the fact 
that enough counts need to be measured within a timeframe to extract quantitative 
information. Particularly, for the calculation of the peak of the input function a 
temporal resolution of a couple of seconds is needed. Current iterative reconstruction 
algorithms have the ability to provide high spatial resolution images but within this 
timeframe they fail to produce quantitative results due to noise-induced bias generated 
from the non-negativity constraint [79]. Furthermore using graphical analysis methods 
(such as Patlak) where the area under the input curve is important and for tracers with 
metabolites mainly at the late frames, the coarse sampling in the early frames, where 
the activity changes rapidly, will introduce errors in the subsequent kinetic parameters. 
This is due to the approximately estimated area under the peak (AUP) being a 
significant proportion of the total area under the curve (AUC) following metabolite 
correction compared to a non metabolized tracers, where the area AUP is only a small 
fraction of the AUC [80].   
 

   In particular cases that some regions in the brain exhibit simple and well-understood 
biochemical exchanges with the arterial input function, the kinetic parameters of the brain can 
be expressed by relating to the kinetic behaviour of this reference region [81]. These models 
are known as reference tissue models and have proven valuable for kinetic analysis of 
dynamic PET imaging of the brain function. However, the models are susceptible to a suitable 
reference tissue, which might not be apparent across a large range of patients and it is limited 
to particular tracers. Other methods, known as population-based input function, estimate the 
input function from a library of input functions [82].  
   Overall the translation of input function to whole-body parametric imaging is dependent on 
the tracer, the clinical application and the organ is imaged. There will be need to reconsider 
approaches currently in use, such as the IDIF methods and make them more robust by 
incorporating the power of new multimodality imaging techniques such as PET/MR as will be 
further elaborated. 
 

1.6.2 Towards dynamic whole-body parametric imaging  
 

Dynamic PET imaging has so far been primarily treated (incorrectly) as mutually exclusive 
from whole-body imaging. Both are very powerful, as we discuss below, and can be merged. 
This may have important implications in the clinic, including therapy response assessment, 
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and in phase-1 type studies involving new treatments, which commonly involve subjects with 
disseminated disease. The subsequent discussion and analsis primarily focuses on [18F]-FDG 
PET imaging, but is also applicable to other tracers. Whole-body PET/CT imaging [83-87] is 
nowadays widely and routinely used for assessment of loco-regional and distant metastatic 
disease involvement. At the same time, PET can be used to quantitatively measure the FDG 
uptake or influx rate constant Ki (as surrogate of metabolic uptake) via dynamic imaging and 
tracer kinetic modelling [88-94] (the Patlak graphical method being commonly invoked in 
single-bed imaging). However, routine clinical multi-bed PET imaging commonly involves 
single temporal-frame imaging.  

 Clinically feasible combination of whole-body and dynamic imaging first poses the 
following challenges: (i) presence of temporal gaps for any given bed position, and (ii) need 
for non-invasive quantification of the input function, for clinical feasibility. The first one is 
addressed via graphical Patlak analysis, which can be applied with as little as two time point 
measurements. The second issue however is challenging, and we discuss shortly.  

A particular study by Ho-Shon et al. [95] proposed optimization of multi-bed dynamic PET 
acquisitions, based on a statistical Bayesian regression method. This approach focused on 
ROI-based parametric analysis and included demonstration of 2-bed acquisition examples 
with uneven bed frames and bi-directional scanning. Similarly, in an abstract by Hoh et al. 
[96], multi-bed dynamic acquisition was proposed to allow for ROI-based Patlak analysis 
over multiple beds. Later, Sundaram et al. [97] motivated by the previously-mentioned SKA 
method, and also utilizing the suggestion by Hoh et al., proposed a short 2- or 3-bed late 
dynamic acquisition as a simplified alternative to multi-bed Patlak analysis aimed at ROI-
level parametric analysis. Kaneta et al. [98] also conducted multi-bed dynamic acquisition of 
human subjects (0-90min post-injection) in the context of imaging hypoxia using 18F-FRP170, 
involving multi-pass whole-body acquisitions, each lasting for 12min (6 beds x 2min/bed). 
However, only dynamic images were presented, without tracer kinetic modeling. 

The Patlak model involves time-integral of the input function. A novel work by van den 
Hoff et al. [99] proposed a solution beyond this. Utilizing whole-body dual time-point image 
acquisition, and denoting C(t) and Cp(t) as the measured PET activity for a given voxel and 
the input function from the heart, respectively (as seen in Fig. 1), each measured at times t1 
and t2, the authors showed that the Patlak slope Ki is estimated as: 

 
 
                                                                                                                        (12) 
 
  

where Vdenoted a population-based estimate of the Patlak intercept. The derivation included 
assumption of mono-exponential decay of the input function between the two scans. The 
results indicated excellent correlation (r=0.99) with actual Patlak measured slopes, and even 
when the second term in above equation was dropped (r=0.98) though in this case, the slope 
of regression changed substantially from zero. This approach was primarily validated using 
single-bed imaging (n=9), but also included application to a single whole-body scan.  

Recently, another whole-body PET imaging scheme was proposed in companions papers 
by Karakatsanis et al. [100, 101], including optimization and validation. The approach 
involved 6min initial scan over the heart, as well as generation of dynamic whole-body 
datasets (6 passes), the latter shown in Fig.5. This enabled a non-invasive solution to input 
function estimation combining the first 6min scan over the heart (capturing the early 
dynamics) and subsequent passes over the heart. Standard Patlak linear graphical analysis 
modeling was employed at the voxel level, coupled with plasma input function estimation 
from the images, to estimate the tracer uptake rate Ki (slope), resulting in parametric images at  
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Fig 5. (left) Following 6min scan of the heart (not shown), 6 whole-body passes are acquired as shown. Every 
pass consisted of 7 bed positions (45sec/bed acquisition). (right) The SUV image, the Ki parametric image 
derived from all 6 last frames and the Ki image after omitting the last 2 frames are shown. Reprinted with 
permission from Karakatsanis et al., Phys. Med. Biol., vol. 58, pp. 7391-7418, 2013 (IOP Publishing). 

 

the individual voxel level. The images (as seen in Fig.5) convey a different ‘feel’ compared to 
SUV imaging, for instance saturating background FDG activities as commonly seen in some 
organs (e.g. liver has considerable blood presence). A similar acquisition approach was 
recently investigated by another group for n=21 patients with malignant or benign pulmonary 
lesions [102] showing good ability to distinguish malignant lesions from benign ones 
(p<0.05), though a similar statistical significance was observed when utilizing SUVmax. The 
abovementioned framework was also recently extended using a generalized Patlak model that 
additionally incorporates modeling of FDG dephosphorylation (k4 constant) [103]. 

This framework, however, faces a number of challenges: 
(a) It can result in enhanced noise levels. To address this, two general solutions may be 

explored: (i) improved statistical methods (e.g. ridge regression, correlation coefficient 
filtering) as proposed in those works. (ii) Direct 4D parametric imaging which already 
investigated for this particular problem to some extent [104, 105].  

(b) It may be stated that initial 6min PET scan for the purpose of input function estimation 
is not appropriate use of resources. Furthermore, early PET imaging (<<60min post-injection) 
has the additional disadvantage that conventional SUV images cannot be generated. It may be 
instead meaningful to scan at later stages (e.g. 45-75min or 60-90min post-injection), where a 
population input function is used, but this time scaled using multiple late-phase input function 
estimates (by subsequent passes over the heart), which at the same time enables generation of 
SUV-type images by simple summation of the frames. This can then be utilized to enable 
complementary generation of SUV and parametric images for enhanced clinical and 
quantitative task performance, and clinicians can be provided with both views.  

Finally, we note that the abovementioned overall framework may also be promising in 
non-oncology applications. In particular, parametric imaging of blood vessels has to potential 
to enhance visualization and quantification of the atherosclerotic burden. This is because, 
similar to what black-blood MRI pursues [106], this approach may enable saturation of the 
signal at the center of the vessel lumen while focal uptake at the periphery of the vessel walls 
can be detected [107]. 
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1.6.3 4-D kinetic parameter estimation strategies  
 
To maintain the intrinsic spatial resolution characteristics provided by the current PET 
systems, kinetic parameter estimation can be performed at the voxel level providing 
parametric images of physiologically and biologically related parameters. However as kinetic 
modelling is performed at each voxel, the resulting TACs can be substantially noisier 
compared to regional TACs. This problem has long been identified and has restricted the 
widespread use of parametric imaging in clinical practice, as parametric maps can be very 
noisy, reducing their potential value in different clinical applications. Originally the problem 
associated with deriving noisy parametric maps stems from the two-step approach 
traditionally used in estimating kinetic parameters, with independently reconstructed time 
frames followed by kinetic modelling. To tackle the problem one can incorporate temporal 
information after or during reconstruction, imposing constrains and resulting in less biased 
and more precise parameter estimates. A differentiation can be made, as some of these 
methods make use of a non-physiologically based temporal model, as a means of temporal 
regularization prior to parameter estimation. These methods are referred to as ‘indirect’ 4-D 
methods, as although they use a model as a temporal constraint between the frames, they 
deliver parameter estimates via a 2 step route. In a second group of methods, a joint approach 
to parameter estimation is used, where kinetic parameters are estimated directly during or 
before the reconstruction process, in a single step. These methods are often referred to as 
‘direct’ 4-D methods as they use physiologically meaningful kinetic models. As such, the task 
of image reconstruction can be thought as of reconstructing parameter estimates directly from 
measured projections, without any intermediate step [108-110].  
 
 

1.6.3.1  Indirect parameter estimation using temporal regularization 
 
Temporal smoothing is based on the similar behaviour neighbouring time frames have. 
Walledge et al [111] exploiting this concept, applied a filtered image of the previous frame as 
the initializing image for the next frame. Temporal smoothing has also been used within a 
MAP framework [112-116] while Reader et al [117] interchanged the reconstructed intensity 
between iterations with the fitted images, omitting the need for any prior term.  
   Another way to tackle the SNR problem is to consider temporal basis functions (TBF) 
representing a wide range of possible kinetics in the data. The use of TBF is based either on 
the data itself or the physiologic model under study. In the former case a smoothing is 
achieved while in the latter, the basis coefficients have physiologic meaning. Using b-spline 
TBF, Asma et al [118] and Nichols et al [119] reconstructed a set of basis function 
coefficients having though no physiological meaning. Nichols et al [119] used information 
from the head curve to optimize the splines, while Verhaeghe et al [120] used the inter-
iterations TACs. In an extension of the method, Verhaeghe et al [121-123] proposed joint 
estimation of coefficients and b-spline TBF. This approach has similarities to the method of 
Reader et al [124, 125] where the TBF are not specified a priori but are left to be jointly 
estimated with the coefficients in an interleaving fashion.   
   Similar temporal smoothing can be achieved using wavelets decomposition [126-128]. This 
decomposition gives a set of coefficients for a set of basis functions. By thresholding the 
coefficients, a signal denoising is achieved. Turkheimer et al [129] pioneered the field by 
applying kinetic modelling in the wavelet space while Verhaeghe et al [130] used a 
spatiotemporal wavelet basis function within a fully 4-D reconstruction.  
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Fig 6.  Optimization using surrogate functions that are iteratively constructed and maximized providing 
subsequent updates [131]. 
 

1.6.3.2 Direct parameter estimation strategies 
 
All the aforementioned methods are trying to improve SNR, without though considering the 
kinetic parameter estimation problem, which is the endpoint of image reconstruction in 
dynamic imaging. In order to simplify the parameter estimation sequence and directly 
reconstruct parameters of interest in a single step, a joint approach can be used to create 
parametric images by modelling the data before or during reconstruction.  
 

1.6.3.2.1 Reconstructing parametric sinograms 
 
One approach is to apply the kinetic modelling directly on the projection data, so as to 
reconstruct a single set of parametric sinograms [132-134]. Spectral analysis of the projection 
data has been used by Matthews et al [135] and Meikle et al [136]. This modelling approach 
is particularly advantageous in oncology, where the in vivo radiotracer distribution is not 
known for new anticancerous drugs. The method provided improved SNR compared to the 
conventional approach, but with expense of bias. This was attributed to the noisy data and the 
fact that the projection data contain heterogeneous dynamics from different tissues along a 
given LOR, causing adjacent coefficients to merge. Patlak analysis has also been used on 
wevelet transformed projections, resulting in 2 macro-parameter images [137]. Although 
direct sinogram methods result in reconstructing parametric images, they can only be applied 
with linear models which can be extended to projection space, as the projections are linearly 
related with the pixels along a given LOR. Also after modelling the data the Poisson 
distribution is no longer a valid assumption. 
 

1.6.3.2.2 Spatiotemporal 4-D image reconstruction 
 
   A problem encountered in post-reconstruction kinetic modelling is the accurate knowledge 
of the noise distribution in every reconstructed frame, in order to weight the data contribution 
during the fitting procedure. While analytic and approximate formulae for the weighting can 
be calculated for FBP reconstructed data, in iterative reconstruction methods, such a formula 
is not straightforward. This is due to pixel correlations and algorithm non-linearity, with the 
noise being object specific and vary within the reconstructed FOV. Incorporating the kinetic 
parameter estimation within image reconstruction results in a more accurate modelling of the 
noise propagation from Poisson distributed raw projection data to the kinetic parameters. 
   Direct reconstruction of regional kinetics have been used in the past [138-141], however 
ROI approaches suffers from all the aforementioned problems mentioned previously. As such, 
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direct parametric imaging is the obvious way to calculate parameters, while preserving spatial 
resolution. It was Snyder et al [142] and Carson and Lange [143] who first proposed such a 
scheme within an EM algorithm, without though implementing it. A plethora of direct 
parametric reconstruction methods have been implemented since then, both for linear and 
non-linear kinetic models. 
 
 
Linear models 
 
   Wang et al [144] incorporated a Patlak graphical analysis model with a MAP reconstruction, 
while Tsoumpas et al [109] used Patlak analysis along with the parametric iterative 
reconstruction algorithm of Matthews et al [135], showing improved SNR and mean square 
error (MSE). Similar modelling has been used to directly estimate patlak parameter from list 
mode data [145]. Tang et al [146] proposed a similar closed form algorithm, incorporating 
anatomical information from MR and using the joint entropy between the MR and PET 
parametric features as a prior, while Rahmim et al [147] applied a 4-D algorithm for direct 
Patlak parameter estimation in oncology FDG patients, showing reduced noise compared to 
conventional Patlak parametric images. Merlin et al [148] advanced the field further by 
incorporating a motion correction scheme within a Patlak 4-D reconstruction using the NCAT 
phantom. Finally Rahmim et al [149] developed and applied a direct AB-EM image 
reconstruction using the relative equilibrium graphical analysis formulation for reversibly 
binding tracers, exhibiting ~35% noise reduction in DV and DVR parameters compared to 
post-reconstruction methods.  
   Apart from graphical analysis models, data driven models have also been used within a 4-D 
framework. Reader et al [150] advanced the field by simultaneously estimating a system IF 
and the spectral coefficients. In a first step, the coefficients are optimized keeping the IF 
constant, while in a second step the coefficients are kept constant optimizing the IF. The 
method has been used by the authors as a means to regularize the data and as such it belongs 
to the TBF approaches. In the case of a true IF though, it can return the true BF coefficients 
and in this sense is a direct method. Wang and Qi [151] used a similar approach to include 
spectral analysis within a MAP reconstruction, using a Laplacian prior as sparsity constraint, 
similar to the one used by Gunn et al [152] in the basis pursuit approach to spectral analysis.  
 
 
Non-linear models 
 
   4-D reconstruction algorithms based on linear kinetic models can deliver direct estimates of 
macro-parameter images. Such estimates are more robust to noise and potentially easier to 
estimate and interpret with a clinical environment. However further information are available 
from full compartmental analysis based on non-linear model, with respect to constant rate 
between the different physiologic compartments. Kamasak et al [153] was one of the first to 
directly derive a set of micro-parameters of interest, using the 2-tissue compartmental model 
with a MAP criterion and a coordinate descent algorithm. Since the model is nonlinear in its 
parameters, the algorithm has nested optimization sub-algorithms to decouple the non-
linearity from the system model. EM [154] and PCG [155] based direct reconstruction 
algorithm have also been used for the 1-tissue compartment model .  
 
 
Decoupling the spatiotemporal image reconstruction problem 
 
  Deriving micro-parameter maps from noisy dynamic data can result in biased and noisy 
parametric images which in turn is a major stumbling block in their widespread application in 
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Fig 7.  Parametric images of perfusion  1K  (a), efflux rate  2k (b), fractional blood volume  Va  (c), volume of 

distribution  Vd  (d) and weighted residual sum of squares (e) calculated from dynamic thoracic [15O]H2O PET 

data with post-reconstruction kinetic analysis and direct 4-D image reconstruction. Good separation of the tissue 
constant rates and blood volume is seen with the direct method improving variance in kinetic parameter [156].  
 
 
clinical practice as already mentioned. However the aforementioned direct 4-D image 
reconstruction approaches have been shown time and time again to improve both accuracy 
and precision in the kinetic parameters compared to their post-reconstruction counterparts 
with the degree of improvement varying depending on the injected tracer and the kinetic 
model used. Nevertheless despite the improved bias and variance in micro-parameter maps,  
4-D algorithms incorporating nonlinear compartmental models are time consuming, complex 
and usually slow to converge, rendering them difficult to be applied in clinical practice. These 
algorithms are also restricted to a specific combination of spatial and temporal models. These 
issues stem from the coupling between the tomographic image reconstruction problem and the 
kinetic parameter estimation problem. In order to avoid optimising the 4D log-likelihood 
function a convenient method is to transfer the optimization problem to surrogate functions 
which are more easily optimized (Fig. 6). To tackle these issues Wang and Qi [157] proposed 
an algorithm to decouple these 2 components using this optimization transfer principle and  
paraboloidal surrogate functions. In an extension of this work, they used linear Patlak and 
spectral analysis models as well as nonlinear models within a nested EM algorithm [158, 
159]. Similar is the work of Matthews et al [160] in which following separation between the 
image and projection space problems, the ML image based problem is transformed into a LS 
problem for which many existing methods can be used. The method has been implemented 
with 1-tissue (Fig. 7) [156], irreversible 2-tissue (Fig. 8) [161, 162] and reversible simplified 
reference tissue [163] models, in perfusion, metabolism and neureceptor imaging studies 
respectively, with improved parameter precision and accuracy compared to post-
reconstruction kinetic modelling approaches. Using the same optimization transfer approach 
also Wang and Qi [164] developed a minorization-maximization algorithm to include a 
simplified reference tissue model within a 4-D framework. Finally, along similar lines with 
the work of Wang and Qi [157, 158] and Matthews et al [160] is the work of Rahmim et al 
[131], who also used a decoupling technique and a surrogate function with a single 
compartment model to directly estimate myocardial perfusion in 82Rb imaging. Achieving a 
decoupling between the  tomographic and the image based kinetic modelling problem has 
facilitated the use of existing image reconstruction and kinetic modelling algorithms in a way 
similar to the post-reconstruction modelling approach but monotonically converging to the 
direct parameter estimates. This in turn allows the direct estimation of micro-parameter  
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Fig 8.  Parametric maps from dynamic brain [18F]FDG PET data calculated with direct 4-D image reconstruction 
(top row) using optimization transfer and the conventional post-reconstruction method (middle row), along with 
its post-filtered version with a 5mm Gaussian kernel (bottom row) at the 12th tomographic iteration [162]. 
 
 
images in a fast and efficient manner, with faster convergence, while at the same time 
achieving improved precision and accuracy compared to post-reconstruction kinetic analysis, 
making their clinical implementation and application a more feasible task. Despite the 
improvements offered by  4-D reconstruction algorithms however, their application in the 
body can be complicated by the various kinetics encountered within the FOV. Using a 
common simple kinetic model within a 4-D reconstruction framework may lead to bias from 
erroneously modelled regions, propagate to other regions for which the model is accurate 
[165]. To prevent this bias propagation, Matthews et al [166] proposed an adaptive kinetic 
model algorithm to be incorporated within a 4-D reconstruction [167]. The algorithm 
introduces a secondary less constrained model which is adaptively included for voxels that the 
primary model in not able to fit  An analytic derivation of the different direct parameter 
estimation schemes has been reported by Wang and Qi [110].    
 

1.6.4 Synergistic benefits of PET/MR imaging in pharmacokinetic modelling  
 
   PET and MR can provide complementary anatomical and functional information of the 
system under study. Synergistic benefits can also be pooled by fusing the images using either 
co-registration techniques or sequential PET/MR imaging between the 2 modalities [168, 
169]. However with the advent of simultaneous PET/MR systems and the resulting 
spatiotemporal correlation of the respective data, additional information can become 
available, further enhancing the capabilities of these bimodal systems [170]. Although 
PET/CT is an established modality in oncology, as well as neurology and cardiology, the 
clinical importance of PET/MR is yet to be fully exploited, with limited applications showing 
its superiority against PET/CT and limiting is clinical importance. However simultaneous 
PET/MR has potentially the advantage to open the road to the clinical application of dynamic 
imaging and pharmacokinetic modelling protocols.   
   As elaborated previously, one of the main obstacles in the clinical adoption of kinetic 
analysis studies is the importance and necessity of an accurate estimation of the input 
function. AIFs are the gold standard but IDIFs present a more feasible alternative in the clinic, 
owing to the difficulties with arterial catheterization. However extraction of IDIFs require 
accurate localization of the vasculature which not always possible using CT data, especially in  
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Fig 9. Transaxial slice of the Patlak slope image of (a) the phantom image, (b) the image estimated from 3D 
reconstruction followed by modeling (the second iteration), (c) the direct 4D parametric reconstruction (the fifth 
iteration) and (d) the 4D direct MAP parametric reconstruction incorporating the MR image information (the 
fifth iteration) [146]. 
 
 
neuroimaging studies. Furthermore registration accuracy provided between separate PET and 
MR datasets at different physiologic states or even in sequential PET/MR imaging, might not 
be sufficient when small vessels, such as the small carotic artery, need to be delineated [71]. 
Simultaneous acquisition of the respective structural and anatomical information ensures 
accurate registration between the 2 datasets and precise localization of the ROI to be 
delineated. Nevertheless accurate delineation is only one of the problems associated with IDIF 
and spill-in and spill-out effects are also a major concern. However again simultaneously 
acquired MR data can be used within an MR-guided PET image reconstruction, with 
anatomical information acting as priors within a MAP framework [171-175] or using them for 
IF correction based on estimating recovery coefficients [73]. Inclusion of MR prior 
information can also be extended to direct 4-D image reconstruction (Fig. 9) for improved 
variance in the kinetic parameters [176]. This synergistic benefit between the 2 modalities 
goes beyond the IDIF correction and can assist in assessing cancerous regions with 
heterogeneous kinetics. Partial volume effects in these regions usually result in adjacent 
kinetics, especially at the boundaries of tissues with differential physiology, being averaged. 
MR-based PVC methods in simultaneous PET/MR can help particularly in treatment response 
or drug efficacy studies by assessing potentially heterogeneous kinetics within the target 
region.    
   Another area that simultaneously MR data can assist dynamic imaging protocols is motion 
correction [177-182]. In kinetic analysis dynamic studies, motion occurs both within each 
temporal frame due to respiration, cardiac contraction and involuntary patient movement as 
well as across temporal frames again due to involuntary patient movement. Both inter- and 
intra-frame motion causes adjacent kinetics to be averaged resulting in erroneous TACs and 
subsequently in erroneous kinetic parameters. Furthermore attenuation-emission mismatches 
causes further degradation in the parameter estimates. Motion tracking with various external 
optical sensors has been used in dynamic imaging protocols with varying accuracy due to 
difficulties associated both with hardware and software complexity. Furthermore such 
techniques are inefficient in PET/MR due to the coils preventing the optical sensors from 
having a clear FOV. However  using high temporal resolution MR data acquired during the 
dynamic PET acquisition, the motion vectors can be estimated providing  motion correction 
both within as well as across frames. The temporal resolution is offered by the MR system is 
of particular importance in the early time frames where short frames are acquired to capture 
the fast influx phase of the tracer's distribution. Apart from the potential of improving the 
kinetics parameters through MR-derived motion correction, the IDIF calculation can also 
benefit from such motion correction schemes [183]. Recent advancement are summarized in 
review of MR-based motion correction schemes [184]. 
   Apart from improvements on the PET data, MR information can be used to facilitate more 
reliable kinetic parameters during parameter estimation. Fluckiger et al [185] used DCE-MRI  
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Fig 10.   Comparison of parametric images of cerebral blood flow (CBF) obtained in the hybrid 3 T MR–PET 
scanner. PET CBF images (top) were obtained simultaneously with MRI CBF images (bottom) ASL. Arterial 
input function was obtained by continuous blood sampling from the radial artery using an MR-compatible blood 
monitor and corrected for delay and dispersion [186]. 
 
 
data to separate the blood volume component from the whole tissue TAC enabling kinetic 
parameter estimation with fewer free parameters while Poulin et al interchanged input 
functions estimated with PET and MR [187].      
   Methodological synergies between the 2 modalities is not the only incentive in simultaneous 
dynamic PET/MR imaging, as application synergies are also possible. Dynamic imaging with 
[15O]H2O and 15O2 is used to assess perfusion and metabolic rate of oxygen as well as oxygen 
extraction and to date these parameters are mainly used for assessing anti-angiogenesis drug 
efficacy after neo-adjuvant of primary chemotherapy, tumor brain imaging, myocardium 
imaging, as well as activation studies. However similar haemodynamic parameters can be 
estimated from a variety of MR techniques, such arterial spin labelling and DCE-MRI, and 
fMRI. Comparison of blood flow estimates from individual PET and MR studies have been 
reported [188, 189]. However performing haemodynamic measurements in dynamic PET/MR 
could provide parameters estimated simultaneously from each respective modality as shown 
in Fig. 10 and compared to each other for cross-validation [186] [190]. Additionally 
complementary information provided by the PET and the MR can also be used to assess their 
functional relationship. Apart from oncology and neuroimaging, cardiology could also benefit 
from simultaneous dynamic PET/MR myocardial perfusion studies with 82Rb. Limited studies 
have been reported so far on the application of dynamic PET/MR in pharmacokinetic 
modelling. However due the aforementioned benefits of MR, more research groups are 
steering their efforts towards methodological development and clinical applications in 
simultaneous dynamic PET/MR imaging.  
 

1.7 Conclusion 
 
 
   In this note we tried to give an overview of the recent advancements in kinetic modelling 
which could facilitate their routine use in clinical practice. Throughout this work emphasis 
was given in oncology [18F]FDG PET imaging due its extensive utilization in clinical 
practice. We realize that some of the reviewed methods and techniques are potentially only 
applicable in a research environment due to their complexity. However we expect that the 
aforementioned advancements in input function estimation, coupled to improvements in 
acquisition protocol design and parameter estimation algorithms could make dynamic 
imaging a feasible alternative to static imaging with fully quantitative parameters based on 
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kinetic modelling complementing or even superseding semi-quantitative analysis in the clinic. 
Whole-body parametric imaging has already been proven to be a applicable in a clinical 
environment while direct 4-D image reconstruction methods have demonstrated superior 
precision and accuracy in kinetic parameter estimation. Extending these techniques to 
PET/MR imaging could potentially revolutionize the way clinical imaging is performed, 
enhancing the potentials of PET/MR and extending its application and scope to dynamic 
multi-parametric imaging in the clinic.   
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