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This draft was prepared using the LaTeX style file belonging to the Journal of Fluid Mechanics 1
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In the process of flux expulsion, a magnetic field is expelled from a region of closed

streamlines on a TR
1/3
m time scale, for magnetic Reynolds number Rm ≫ 1 (T being

the turnover time of the flow). This classic result applies in the kinematic regime where
the flow field is specified independently of the magnetic field. A weak magnetic ‘core’ is
left at the centre of a closed region of streamlines, and this decays exponentially on the

TR
1/2
m time scale.

The present paper extends these results to the dynamical regime, where there is compe-
tition between the process of flux expulsion and the Lorentz force, which suppresses the
differential rotation. This competition is studied using a quasi-linear model in which the
flow is constrained to be axisymmetric. The magnetic Prandtl number Rm/Re is taken
to be small, Rm large, and a range of initial field strengths b0 is considered.

Two scaling laws are proposed and confirmed numerically. For initial magnetic fields

below the threshold bcore = O(UR
−1/3
m ), flux expulsion operates despite the Lorentz

force, cutting through field lines to result in the formation of a central core of magnetic
field. Here U is a velocity scale of the flow and magnetic fields are measured in Alfvén
units. For larger initial fields the Lorentz force is dominant and the flow creates Alfvén

waves that propagate away. The second threshold is bdynam = O(UR
−3/4
m ), below which

the field follows the kinematic evolution and decays rapidly. Between these two thresholds
the magnetic field is strong enough to suppress differential rotation leaving a magnetically
controlled core spinning in solid body motion, which then decays slowly on a time scale
of order TRm.

1. Introduction

Throughout the universe electrically conducting fluid flows interact with magnetic fields.
By the stretching and folding of magnetic field lines, initially weak fields can grow, a pro-
cess known as dynamo action (Moffatt 1978). As the magnetic field increases in strength
it then resists deformation through Lorentz forces exerted on the flow. Eventually a state
of fully developed MHD turbulence ensues, composed of a superposition of coherent
structures and random eddies interacting with magnetic fields.

In order to understand the complex interactions of flows and magnetic fields over a
wide range of spatial and temporal scales it is valuable to investigate simplified models. In
geophysical and astrophysical flows, coherent structures are believed to play a key role in
generating large scale magnetic fields (Tobias & Cattaneo 2008). Since these structures
have correlation times much greater than the turnover time of the turbulence, one of
the most illuminating models of flow–field interaction is the effect of a steady fluid flow
with closed streamlines — a single closed eddy — on an initially uniform magnetic field.
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2 A. D. Gilbert et al.

Motivation for this approach comes from the study of the coupling of magnetic fields
and convection (Weiss & Proctor 2014); furthermore in rapidly rotating convection the
dynamics may be dominated by long-lived coherent structures taking the form of vortices
(Julien et al. 2012). The problem has been addressed in a kinematic regime in which the
magnetic field is presumed to be so weak as not to affect the flow, which may then be
specified and ceases to have any dynamical attributes. This classic problem was first
studied for a smooth flow in the pioneering numerical study of Weiss (1966), and by
Parker (1966) for the case of a piecewise smooth flow. These works led to identification
of the fundamental process of flux expulsion, whereby the field is destroyed within regions
of closed streamlines; in cellular flows the resulting magnetic fluxes are then concentrated
on bounding separatrices.

The mathematical theory of flux expulsion is elucidated for linear and axisymmetric,
smooth flow fields by Moffatt & Kamkar (1983) and for more general streamline geometry
by Rhines & Young (1983). The effect of a closed eddy on a weak imposed field at high
magnetic Reynolds number Rm (that is, UL/η where U is the characteristic flow speed,
L is a characteristic length and η is the magnetic diffusivity) is to expel field towards

the cell boundaries on a time scale of order TR
1/3
m , where T = L/U is the turnover time

scale. The key mechanism is the effect of shear or differential rotation in reducing length
scales and so accelerating diffusion, be it of magnetic vector potential, passive scalar or
vorticity: the useful and general term shear–diffuse mechanism was coined by Bernoff
& Lingevitch (1994). These studies are elaborated in Bajer (1998) and Bajer, Bassom
& Gilbert (2001), referred to as BBG in what follows. In BBG a further time scale is
identified at the eddy centre: here any differential rotation must vanish for a smooth flow,
and the shear–diffuse process is weaker. The flux expulsion time scale here increases to

order TR
1/2
m and a weak remnant, which we will call a magnetic core, is created and

decays exponentially on this time scale.

Our goal in the present paper is to extend these kinematic studies into the dynamical
regime, in which the field affects the flow via the Lorentz force. While it is clear that for
sufficiently weak magnetic fields kinematic results are recovered, we address the question
of the threshold for the field to have a dynamical effect for the classic problem of flux
expulsion in an axisymmetric flow. From another viewpoint, the question becomes: for
what field strengths (in a two-dimensional flow) will a magnetic field have an impact
on the material conservation of vorticity? Many interesting dynamical effects in quasi
two-dimensional hydrodynamics in rotating systems, such as zonal flow generation, have
been ascribed to the material conservation properties of potential vorticity (Dritschel
& McIntyre 2008). It is therefore critical for MHD studies to determine the effect
of magnetic fields in modifying these conservation properties. It is known that such
dynamical effects of the magnetic field can be subtle, and depend sensitively on molecular
values of the transport coefficients. Perhaps the key study that highlights this is Cattaneo
& Vainshtein (1991): the authors consider transport in turbulent two-dimensional fluid
flows with a mean magnetic field b0 across the system. For field strengths b0 (in Alfvén

or velocity units) of order UR
−1/2
m , the mean field becomes dynamically important in

suppressing the stretching of Lagrangian parcels and so of transport; see also Vainshtein
& Cattaneo (1992), Cattaneo (1994) and more recently Kim (2006), Keating & Diamond
(2008) and Keating, Silvers & Diamond (2008). The reason is that the stretching of field
leading to small scales (transverse to field lines) is accompanied by increasing magnetic
energy, which is only limited by the effect of molecular (not turbulent or effective)
diffusion. To put this more bluntly in the magnetic context a ‘cascade’ (turbulent or
otherwise) of field to small scales is far less passive than appears to be the case for
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Flux expulsion with dynamics 3

energy or enstrophy in three- or two-dimensional turbulence. Similar effects arise in
magnetoconvection (Galloway, Proctor & Weiss 1978; Weiss & Proctor 2014), in which
flux expulsion drives magnetic flux to the boundary of convective cells. In dynamical
regimes, the resulting peak fields are limited not by equipartition values b0 = O(U)
but can be substantially larger, with dependence on the magnetic diffusivity and fluid
viscosity.
To address the problem of dynamical effects and thresholds for flux expulsion, in this

paper we will work in the most straightforward setting of a flow with initially circular
streamlines permeated by a uniform magnetic field of strength b0. The problem is set up
in section 2, parameterised by b0 and values of the magnetic Reynolds number Rm and
(fluid) Reynolds number Re. We will work in the quasi-linear approximation in which we
keep the fluid flow axisymmetric and truncate the Lorentz force feedback by retaining
only the mean azimuthal component. This is reasonable as we are examining the onset
of the importance of the Lorentz force in the dynamics. The approach can be justified
in some contexts such as dynamos in high Reynolds number rotating flow (as we have
here)† (Bassom & Gilbert 1997) and transport and jet formation in geophysical systems,
for example see Tobias, Dagon & Marston (2011) and Srinivasan & Young (2012).
In section 3 of the paper we present numerical simulations of the evolution of field

and flow (within the quasi-linear model) for a range of initial magnetic field strengths.
Here we observe the key competition or race between the processes of flux expulsion and
Lorentz force feedback: will the Lorentz force act early enough to halt the stretching in
the flow and so defuse the dramatic effect of flux expulsion in destroying the field? Or,
will flux expulsion act first and cut elastic field lines so as to remove the Lorentz force
feedback and leave a magnetic core behind? We work in a regime in which Re ≫ Rm ≫ 1
to highlight the transition between these effects without consideration of viscosity, and
this gives us our first threshold bcore(η) for b0, as discuss below. However we also obtain
a second, lower threshold bdynam(η), below which the magnetic field has no discernible
effect and the kinematic picture holds. In sections 4 and 5 we develop the theory for the
two thresholds identified in section 3, based both on the classic asymptotics in Moffatt &
Kamkar (1983) and Rhines & Young (1983), and on the more elaborate picture in BBG,
which we need to identify the lower threshold. Finally section 6 offers some concluding
comments and avenues for further research.

2. Governing equations

Our starting point is the equations for MHD, written in the form

∂tu+ u · ∇u = b · ∇b−∇p+ ν∇2
u, (2.1)

∂tb+ u · ∇b = b · ∇u+ η∇2
b, (2.2)

∇ · u = ∇ · b = 0. (2.3)

The two-dimensional flow and field (measured in velocity units) are confined to the plane
z = 0 in cylindrical polar coordinates (r, θ, z), and setting u = ∇× (ψẑ), b = ∇× (aẑ)
we obtain the equations in terms of the stream function ψ, vorticity ω, flux function a,

† Note that in a rotating fluid flow, the axisymmetric component of the Lorentz force
can only be balanced against viscous terms, whereas a non-axisymmetric component can be
balanced against weak inflows and outflows (cf. the Taylor (1963) constraint), and for this
reason the response to the axisymmetric component dominates at large Reynolds number, as in
the quasi-linear model.
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4 A. D. Gilbert et al.

and current j, all functions of (r, θ, t), as

∂tω = J(ψ, ω)− J(a, j) + ν∇2ω, (2.4)

∂ta = J(ψ, a) + η∇2a, (2.5)

ω = −∇2ψ, j = −∇2a. (2.6)

Here the Jacobian is given by J(ψ, ω) = r−1[(∂rψ)(∂θω)− (∂θψ)(∂rω)].
Following the discussion in Moffatt & Kamkar (1983), we commence with an initial

uniform magnetic field in the x-direction and an axisymmetric flow field. Thus ψ and ω
are taken to be independent of θ and the fields a and j are represented using an eimθ

dependence with m = 1. Although our focus is always on m = 1, it is helpful in the
analytical development to leave a general, integer value of m > 0. We therefore set for
the flow

ω = ω(r, t) + · · · , ψ = ψ(r, t) + · · · , (2.7)

and for the field

a = ã(r, t)eimθ + c.c.+ · · · , j = j̃(r, t)eimθ + c.c.+ · · · , b = b̃(r, t)eimθ + c.c.+ · · · .
(2.8)

The tildes denote the harmonic m > 0 in θ, but for readability we drop these in what
follows.

Now the Lorentz force feedback from the field to the flow will incorporate a mean part,
independent of θ, and harmonics e2imθ, which will then proliferate, giving the trailing
terms not written down explicitly in (2.7, 2.8). We employ a truncation by neglecting
these higher order harmonics, and retain only the terms shown. This leaves the quasi-
linear system for the field harmonic m and the mean flow, written compactly as

∂ta+ imαa = η∆ma, (2.9)

∂tω = r−1∂rG+ ν∆0ω. (2.10)

The angular velocity is α(r, t) = −r−1∂rψ, and the current and vorticity are linked by

j = −∆ma, ω = −∆0ψ, (2.11)

where ∆m = ∂2r + r−1∂r −m2r−2. The Lorentz force term in (2.10) is G(r, t) given by

G = im(aj∗ − a∗j). (2.12)

We will use this quasi-linear approximation to gain an understanding of the essential pro-
cesses in the competition between flux expulsion and the Lorentz force, both numerically
and analytically.

For initial conditions, our focus is on the case of a uniform field in the x-direction of
strength b0, which has current j = 0. However we generalise to an arbitary value of m,
and consider an initial multipole, current-free field given by the vector potential

a(r, 0) = − 1
2 ib0r

m (2.13)

(with b0 real). We also need an initial axisymmetric fluid flow u and have chosen a
Gaussian vortex with

ω(r, 0) = T−1(4π)−1e−r2/4L2

, α(r, 0) = T−1(2πr2/L2)−1(1− e−r2/4L2

). (2.14)

where L is a length scale, T a time scale, and below U = L/T . We will non-dimensionalise
the system using these scales and defining, for example:

r = Lr̂, t = T t̂, u = U û, b = U b̂, ν = ULν̂, η = ULη̂, (2.15)
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Figure 1. The angular velocity profile α (solid) in (2.16) and α′ (dashed), with the location of
maximal differential rotation |α′| identified as r† ≃ 1.8.

with hats denoting non-dimensional quantities. With this we can also identify Rm ≡ η̂−1

as a magnetic Reynolds number, Re ≡ ν̂−1 as a Reynolds number and M ≡ b̂−1
0

as a magnetic Mach number. We will in what follows drop the hats and work with
dimensionless quantities, except when we refer to our results in the final discussion
section.

Our goal then is to solve the PDEs specified in (2.9–2.12), for the initial conditions
(2.13) and now

ω(r, 0) = (4π)−1e−r2/4, α(r, 0) = (2πr2)−1(1− e−r2/4). (2.16)

The angular velocity α and differential rotation α′ ≡ ∂rα are depicted in figure 1, where
for convenience we often use a prime to denote a radial derivative. The radius r† marks
the location of maximal differential rotation |α′|, where we will see that flux expulsion
commences in a kinematic regime.

The parameter set comprises the three non-dimensional quantities {η, ν, b0}, and we
use this form as it is more convenient to place “η” rather than the bulky term “R−1

m ”
in our calculations. We are interested in the regimes that are realised depending on the
strength of the initial field for different diffusive parameters. In this study our primary
interest is in the interaction of flux expulsion (depending on η) and the Lorentz force
(linked to b0), rather than viscous effects. We will thus take ν ≪ η and so work at a
low value of the magnetic Prandtl number Pm ≡ Rm/Re = ν/η.† In all the simulations
shown, we have simply taken Pm = 0.01, and tests confirm that our results are insensitive
to this precise value. Our parameter set is thus reduced to {η, b0} and we are interested
in thresholds for different types of behaviour, giving b0 as a function of η with a power
law scaling: how strong must the initial field be for the Lorentz force to modify the classic
picture of flux expulsion?

Theory for these thresholds is developed in section 4. Before giving numerical results in
the next section though, it is worth outlining the origin of the classic approximation for
kinematic flux expulsion (for more detail see Moffatt & Kamkar (1983), Rhines & Young
(1983)). Consider when there is no dissipation, then the vector potential and current are

† Note that viscous damping would emerge on a time scale of order Re whereas the effects

we consider occur on time scales of order R
1/3
m and R

1/2
m , and thus our results are likely to be

correct over a wider range of values of Pm including Pm = O(1).
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6 A. D. Gilbert et al.

given by

a = − 1
2 ib0r

m e−imαt, j ≃ − 1
2 ib0r

mm2α′2t2 e−imαt, (2.17)

where we have retained in j just the terms that grow fastest, that is quadratically with
time t. For small η, then, the right-hand side η∆ma = −ηj in (2.9) grows quadratically
from small values and the accumulated effect of the dissipation gives a term cubic in t.
Incorporating this damping in the evolution of a then yields the approximate solution

a ≃ − 1
2 ib0r

m e−imαt− 1

3
ηm2α′2t3 , j ≃ − 1

2 ib0r
mm2α′2t2 e−imαt− 1

3
m2ηα′2t3 . (2.18)

This gives dramatic suppression of the vector potential and so of the magnetic field,
which commences at the radius r† where |α′| is maximised, indicated on figure 1 for the
Gaussian profile (2.16), on a timescale t† = O(η−1/3).† Specifically r† and t† (up to an
order one constant) are given by

r† = argmax
r

|α′(r)|2, t† = [ 13m
2ηα′(r†)2]−1/3. (2.19)

The dagger helpfully denotes the cutting of magnetic field lines caused by flux expulsion.
For our purposes there are two problems with this approximation. The first is that

the Lorentz force term (2.12) vanishes identically to this order. The next order terms
need to be taken into account, and we undertake this in a systematic development in
section 4.2. The second issue is discussed in BBG and is that this approximation breaks
down near the origin where α′ → 0. In other words the approximation is predicated on a
shear α′ = O(1) that makes the quadratic multiplier t2 in j in (2.18) dominant; towards
the centre of a vortex another, inner approximation has to be used. Although this may
seem a technical issue, in fact it is key to understanding the dynamical problem, and we
develop this in section 4.1 following BBG. In preparation for this we note here that the
angular velocity in (2.16) behaves as r → 0 according to

α = α0 + α1r
2 + α2r

4 + · · · , (2.20)

α0 = 1/8π, α1 = −1/64π. (2.21)

From the point of view of the kinematic problem, with the axisymmetric flow specified
independent of the field, the form (2.20) gives the behaviour near the origin. Smoothness
considerations eliminate any odd powers of r and generically the constant α1 is non-
zero. This constant plays an important role in kinematic theory as it controls how
the differential rotation α′ responsible for flux expulsion switches off near the origin.
Dynamically the magnetic field can change the form of the flow near the origin, as we shall
see. We also note that the numerical values of α0 and particularly α1 ≃ −1/200 are rather
low, meaning that the turnover time of the flow is large in our non-dimensionalisation
and making the corresponding time scales appear long on our plots. For best comparison
with simulations we will retain factors of α1 in our theoretical development.

3. Numerical simulations

3.1. Illustrative runs

Our goal in this section is to present numerical simulations of the model (2.9–2.12)
with the initial conditions (2.13, 2.16). This will motivate the theory in the next section,
but we will also refer ahead to results in that section. Our parameters are only {η, b0}

† Naturally, in the kinematic problem this profile is taken to be fixed for all t and not viscously
damped; only the magnetic field evolves via (2.9) in the given flow field with α(r, t) = α(r, 0).
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Figure 2. Kinematic magnetic field evolution. In (a,b) t = 104 and (c) 4× 104. In (a)
−10 6 x, y 6 10, while in (b,c) only the central region −2 6 x, y 6 2 is depicted.
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Figure 3. (a) Schematic of kinematic evolution of magnetic field for η ≪ 1, and (b) log–log
plot of EM (upper solid) and EA (lower solid) as functions of time t. In (b) the scaling laws t−7

(4.10) and t−6 (4.11) are depicted (dashed), and the formulae (4.13), (4.14) are shown (dotted).

and we first show the various phenomena that occur when we fix η = 10−7 (with m = 1,
ν = 0.01η as always), and allow a range of values of b0.
Our starting point is the kinematic problem when the field b0 is sufficiently weak

that dynamical effects may be neglected. Although the Lorentz force feedback is easily
switched off in our simulations, one of our goals is to quantify just how weak the initial
field b0 needs to be for kinematic theory to apply, for η ≪ 1. In any case we integrate (2.9)
in isolation. Figure 2 shows colour scale plots of the vector potential reconstructed from
(2.8), so that lines of constant colour give magnetic field lines, from blue (low values of a
in (2.8)) to red (high values); zero or weak a is green. The panels show different times, and
in each panel the colour scale is normalised separately on the maximum/minimum vector
potential for that panel. Panel (a) gives a wide view, showing spiral wind-up of field lines
by the flow and suppression of magnetic field by diffusion for moderate r. Panels (b,c)
show a zoom into the central region, where the onset of flux expulsion around r† can be
seen in (b), followed by further destruction of field leading to the final phase in (c), of a
decaying, remnant field structure localised at the origin.

Figure 3 shows a schematic of kinematic field evolution (adapted from BBG): at t† =
O(η−1/3) there is the onset of flux expulsion at a radius r†. This then spreads outwards
and inwards, as indicated in (2.18). At late times t = O(T ) = O(η−1/2) (see (4.1)) this
wave of destruction reaches the centre of the axisymmetric flow and all that is left behind
is a rotating, exponentially decaying remnant, an eigenfunction of the scalar advection
equation, seen in figure 2(c).
For times greater than the flux expulsion onset time t†, we can identify the field inside

r† as the magnetic core and it is convenient to define the corresponding magnetic energy
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Figure 4. Magnetic field evolution for b0 = 5× 10−4. The region −10 6 x, y 6 10 is shown for
(a) 104, (b) 2× 104 and (c) 2.5× 104.

(a) (b) (c)

Figure 5. Magnetic field evolution for b0 = 2× 10−4. The central region −2 6 x, y 6 2 is
shown for (a) t = 104, (b) 2× 104 and (c) 5× 104.

and (half) the integrated square vector potential by

EM (t) =

∫ r†

0

2πr |b|2 dr, EA(t) =

∫ r†

0

2πr |a|2 dr. (3.1)

These are shown as functions of time in the log–log plot figure 3(b): commencing at
t† ≃ 1.2 × 104 they rapidly adopt a t−7 (4.10) and t−6 (4.11) decay in time. At time of
order T ≃ 3.2 × 104 (4.1) the power law decay is replaced by exponential decay (4.13),
(4.14). Note that there is no absolute definition of t†: instead for practical purposes we
check when |a(r, t)| < δ|a(0, t)| with a small number δ: the earliest time at which this
occurs determines t†, with r† as the corresponding radius. We have chosen δ = 0.001 for
results shown here: other values make minor changes to the values of t† but do not affect
r† ≃ 1.8 and make no visible difference to the curves for EM or EA once a magnetic core
is so defined.
We now leave the kinematic problem and report on runs for varying values of the initial

magnetic field b0. First figure 4 shows a run for a relatively strong field b0 = 5×10−4. Here
we see the process of spiral wind-up commence in (a), but stretching of magnetic field
lines saps energy from the flow field, reducing the shear and stopping the flux expulsion
process. In panels (b,c) we see the field in the simulation start to unwind, reversing the
direction of the original vortex. This disturbance then propagates outwards to hit the
numerical boundary and, unphysically, bounces back and forth (not shown). In reality
the original flow would turn into Alfvén waves propagating to infinity along the field
lines. For this reason we do not spend further effort on the cases where the field is above
the threshold for flux expulsion to occur, even though one of our primary goals is to
establish this threshold, working from below.
We now reduce the initial field b0 in subsequent plots, starting with figure 5 which

shows magnetic field evolution for b0 = 2 × 10−4. In this case flux expulsion occurs to
cut the field lines at around r† ≃ 1.8; see panel (a). However once the field lines are
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Figure 6. Final angular velocity profiles for (a) b0 = 2 × 10−4 in figure 5 and (b) 5 × 10−5 in
figure 7, for t = 5× 104. The function α(r, t) (solid) is plotted against r, with the initial profile
α(r, 0) shown dotted.
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Figure 7. Magnetic field evolution for b0 = 5× 10−5. The central region −2 6 x, y 6 2 is
shown for (a) t = 104, (b) 2× 104 and (c) t = 5× 104.

cut to leave a magnetic core, the Lorentz force now acts to reduce field line curvature
and magnetic energy within the core, in panel (b). What remains is a core consisting of
two lobes of field relaxed to a state of low energy, and the flow field is modified so that
there is solid body rotation in the region occupied by the field, shown in figure 6(a). We
say that a dynamical core has been formed, dynamical as the Lorentz force has acted to
control the flow. This core will then decay, but on a longer Ohmic time scale (presumably
O(η−1), though we will not try to verify this).

Finally figure 7 shows evolution of a yet weaker field b0 = 5×10−5. Here again there is a
process of flux expulsion leaving a core which shrinks as the field is diffusively destroyed.
The Lorentz force again acts to leave a flattened region in the flow field, constant angular
velocity seen in figure 6(b), and a dynamical core with two lobes, albeit now smaller than
in the previous case. For fields yet weaker than this, we soon find results that become
indistinguishable from the kinematic regime in figure 2 and no dynamical core forms.

Another viewpoint is given in figure 8 which plots (a) EM and (b) EA against time for a
range of b0. In each panel the lowest, dashed curves gives the kinematic time traces (from
figure 2). For strong fields (highest, outermost curves), the onset t† of flux expulsion is
delayed and the field decays very slowly, noting that EM shows oscillations (torsional
oscillations) while the dynamical magnetic core relaxes. On the other hand EA behaves
monotonically, as it must since the quantity a obeys a scalar advection–diffusion equation.
As the initial field is reduced the traces follow the kinematic curves for a period and then
depart: this marks the formation of a dynamically controlled core sitting in a region of
solid body motion. Finally very weak field follows the kinematic traces.
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Figure 8. Plotted is (a) the magnetic energy EM and (b) EA as functions of time t for varying
field strength b0. The dashed curves are kinematic traces, while b0 = 2× 10−4, 10−4, 5× 10−5,
2× 10−5, 10−5, 5× 10−6 and 2× 10−6, going down the curves on the right of the plots.
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Figure 9. (a) The onset of flux expulsion t† as a function of initial field strength b0 using
different thresholds δ = 10−4, 10−3, and 10−2, reading down the curves. (b) EA plotted against
b0 at times 1

2
T , T and 2T , reading down the curves.

3.2. Thresholds and scaling laws

We can summarise the results of the previous section as the presence of two thresholds.
For a given flow field, the first is the threshold b0 = bcore(η) above which the Lorentz force
is so strong that flux expulsion does not occur and so t†, EM and EA cannot be defined.
Figure 9(a) shows t† as measured numerically using several values of δ (see below (3.1)).
There is a sharp transition from the onset of flux expulsion at a time independent of
initial field strength, to one that diverges rapidly with b0; at the same time the radius r†

increases from 1.8 to around 2.2 (not shown). This sharp transition makes the threshold
b0 = bcore(η) easy to measure, at least approximately.
The second, lower threshold is b0 = bdynam(η) above which the field is sufficiently strong

(i.e. sufficiently dynamical) to modify the flow field and suppress diffusive decay. In this
case the Lorentz force opposes differential rotation and results in solid body motion in a
region near the origin. In terms of the flow field, this has the effect of turning off α1 in
(2.20) and so removes the weak differential rotation at the origin that otherwise controls
the exponential decay of the core in the kinematic regime; see figure 3(a) and section
4.1. Above the threshold we are left with a slowly decaying dynamical core. To measure
this threshold we have considered the quantity EA; (unlike EM this is free from torsional
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Figure 10. Thresholds bcore(η) (upper dataset) and bdynam(η) (lower dataset) plotted against
η. In each case the data points come from a series of runs with varying b0. The solid lines give
the scalings η1/3 (upper) and η3/4 (lower). The dotted lines give the scalings from (5.4) and
(5.7).

oscillations — see figure 8) at three times 1
2T , T and 2T and plot this against b0 in

figure 9(b). Where the curves cluster together on the right-hand side, the energy decays
negligibly on the T time scale and we are in the dynamical core regime. Where the curves
are spread out on the left-hand side, the field is so weak that the evolution is kinematic
with a core decaying rapidly, that is, on the T time scale. The somewhat broad transition
between these marks the threshold bdynam(η), for this value of η.

Neither of these thresholds is precisely defined, but in any case we are primarily
interested simply in how they scale with η. We select a representative transitional field
strength bdynam to be the initial value of b0 for which log[EA(2T )/EA(T )] is half of its
kinematic value. We estimated bdynam using a series of runs with 10 values of b0 per
decade on the logarithmic scale. For example in figure 9 we obtain bdynam = 7.9× 10−6

for η = 10−7. Figure 10 shows bdynam estimated this way, in the lower dataset, showing
good agreement with the scaling law bdynam ∼ η3/4 (solid) from (5.5).

To estimate the threshold bcore(η) for core formation we adopt two methods and these
are shown in the upper dataset in figure 10. The first is obtained by selecting the minimum
field strength b0 for which the ratio EA(T )/EA(2T ) < 1.08 (asterisks), and this shows a
good fit to the scaling law bcore ∼ η1/3 in (5.3), with bcore ≃ 4 × 10−4 at η = 10−7. For
another method, we chose the largest b0 for which core formation, that is the existence of
a value of t†, was detected in our code (plus signs), giving bcore ≃ 5× 10−4 at η = 10−7.
This also confirms the scaling law, albeit with more scatter. Note that alternatively we
can use the scalings to rescale the vertical and the horizontal axes in figure 9(a,b) for a
set of values of η and so collapse the curves, which works well but which we do not show
here.

Finally we comment on the numerical methods used. Equations (2.9–2.12) were written
as a system of six first order PDEs for the real and imaginary parts of a, ∂ra, and v,
∂rv. This system was then passed to the NAG solver d03pef, which employs a Keller
box method and integrates in time, with rlo 6 r 6 rhi for rlo = 0.05, rhi = 20 and up to
2×104 radial gridpoints in typical runs. At the inner and outer boundaries, the condition
of behaviour as rm was imposed on the vector potential, namely r∂ra − ma = 0. For
the flow component v, the code similarly imposed behaviour proportional to r at the
inner boundary, and to r−1 at the outer. In the cases where flux expulsion occurs and
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a magnetic core is formed, the outer boundary does not play a role, as discussed above,
and rhi = 20 is sufficiently large (at least over the time scales shown here).

4. Calculation of the Lorentz force feedback

Our goal in this section is to derive the various scaling laws above, in particular those
in figure 10. It is evident from figure 8 that the kinematic evolution is key, in that the
dynamical curves typically follow the kinematic evolution, at least for a time. We consider
the kinematic regime, corresponding to the limit b0 → 0 and a fixed flow field. We then
assess the feedback on the flow through the Lorentz force.

4.1. Flux expulsion: inner solution

We begin by recalling the classic flux expulsion calculation yielding (2.18) as an
approximate outer solution to the equation (2.9). This gives a and j at radii where
α′(r) 6= 0 (fixed as η → 0) and is valid for a general smooth profile α(r). However the
approximation breaks down at the centre of the flow field where α′(0) = 0 necessarily,
and so another approximation, the inner solution, is needed there. Generally we assume
that α(r) expands as (2.20) with α1 6= 0,† working in a kinematic regime, but we note
that in a dynamical regime the Lorentz force acts to suppress differential rotation given
by α′(r). The kinematic theory is provided in BBG and is most easily set out by defining
a length scale L, time scale T , their inverses, and a velocity scale V by

k ≡ L−1 = (mα1/2η)
1/4, p ≡ T −1 = (2ηmα1)

1/2, V = L/T = (8η3mα1)
1/4, (4.1)

and new variables by

τ = pt, ρ = kr. (4.2)

The exact solution to (2.9) may then be obtained with only the quadratic term retained
in α(r) in (2.20), that is α ≃ α1r

2 (where we also set α0 = 0 as solid body rotation is
irrelevant). The solution is

a = − 1
2 ib0k

−mρmg e−ifρ2

, (4.3)

j = − 1
2 ib0k

2−mρmg [4i(m+ 1)f + 4f2ρ2] e−ifρ2

, (4.4)

where f(τ) and g(τ) satisfy

∂τg = −2i(m+ 1)fg, ∂τf − 1 = −2if2, (4.5)

and so

f(τ) = (1 + i)−1 tanh[(1 + i)τ ], g(τ) = {cosh[(1 + i)τ ]}−m−1. (4.6)

Now once a core has formed, for t > t†, undertaking the integrals in (3.1) gives
straightforwardly

EM = π(m+ 1)! b20 k
−2m|g|2|f |2 (−2fi)

−m−2, (4.7)

EA = 1
4πm! b20 k

−2m−2|g|2 (−2fi)
−m−1, (4.8)

with f = fr + ifi for brevity.
This is all exact if α(r) is given by only the leading terms, in α0 and α1 in (2.20).

† Note that the theoretical development in section 4 below is written as if α1 is positive to
follow BBG but the final results are dependent only on |α1| in any case. There are also several
inessential notational differences between the theory in the earlier paper and in the self-contained
development here.
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The solution combines two different processes, with a crossover time T defined in (4.1).
For t≪ T , the approximation captures a wave of flux expulsion, destruction of a, in the
locally quadratic angular velocity profile (2.20). In this regime, we have

f = τ − 2
3 iτ

3 + · · · , g ≃ 1, −2fi ≃
4
3τ

3, (4.9)

giving

EM ≃ π( 43 )
−m−2(m+ 1)! b20 k

−2m τ−3m−4 = O(t−3m−4), (4.10)

EA ≃ 1
4π(

4
3 )

−m−1m! b20 k
−2m−2 τ−3m−3 = O(t−3m−3), (4.11)

and so algebraic behaviour of these quantities, with dependence as t−7 and t−6 in the
important case m = 1 of an initial uniform field, as seen in figure 4.

On the other hand for t ≫ T the solution describes an exponentially decaying core
taking a Gaussian form near the origin, with

f ≃ (1 + i)−1, g ≃ 2m+1 e−(m+1)(1+i)τ , −2fi ≃ 1, (4.12)

and

EM ≃ 22m+1 π (m+ 1)! b20 k
−2m e−2(m+1)τ , (4.13)

EA ≃ 22m πm! b20 k
−2m−2 e−2(m+1)τ . (4.14)

Again this is confirmed by the results shown in figure 4 for m = 1.

4.2. Lorentz force from the outer solution

We need to evaluate the Lorentz torque G in (2.12) from the outer solution; however
there is a cancellation at leading order when we substitute a and j from (2.18). To
compute G we need to expand the flux expulsion solution systematically. This is most
easily done by setting

a = − 1
2 ib0r

m e−imαt+χ , (4.15)

where the complex function χ, of space and time, gives the effect of flux expulsion. The
current and Lorentz force are then

j = − 1
2 ib0r

m{m2α′2t2 + im[α′′ + (2m+ 1)α′r−1 + 2α′χ′]t (4.16)

− [χ′′ + χ′2 + (2m+ 1)χ′r−1]} e−imαt+χ ,

G = 1
4mb

2
0r

2m{2m[α′′ + (2m+ 1)α′r−1 + α′(χ′ + χ′∗)]t (4.17)

+ i[(χ′′ − χ′′∗) + (χ′2 − χ′∗2) + (2m+ 1) (χ′ − χ′∗)r−1]}eχ+χ∗

,

without approximation.

Now to calculate χ we introduce T = η1/3t as the time scale on which flux expulsion
occurs, and set χ = χ(r, T ). The exact equation for χ follows from (2.9) and is

∂Tχ = −m2α′2T 2−imη1/3[α′′+(2m+1)α′r−1+2α′χ′]T+η2/3[χ′′+χ′2+(2m+1)χ′r−1],
(4.18)

where as usual the prime denotes an r-derivative at constant T (or t). A series approxi-
mation for χ can now be developed, with expansion parameter η1/3 ≪ 1. Explicitly

χ(r, t) = χ0(r, T ) + η1/3χ1(r, T ) + · · · , (4.19)
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with

χ0 = − 1
3m

2α′2T 3 = − 1
3m

2ηα′2t3, (4.20)

χ1 = − 1
2 im[α′′ + (2m+ 1)α′r−1]T 2 + 4

15 im
3α′2α′′T 5 (4.21)

= − 1
2 im[α′′ + (2m+ 1)α′r−1]η2/3t2 + 4

15 im
3η5/3α′2α′′t5. (4.22)

To obtain the Lorentz torque at leading order (first line of terms in G in (4.17)) we need
only χ0, which then gives

G ≃ 1
2m

2b20r
2m{[α′′ + (2m+ 1)α′r−1]t− 4

3m
2ηα′2α′′t4} e−

2

3
m2ηα′2t3 . (4.23)

Here we see that despite the initial quadratic growth with time t of the current j in
(2.18), the Lorentz torque G grows only linearly via the first two terms (the latter term
being small for t = O(1), η ≪ 1). However at the time of flux expulsion t = O(η−1/3) all
the terms in G in (4.23) are of the same order, and so all are important in computing
the Lorentz force up to and during the destruction of field through flux expulsion.

4.3. Feedback through the Lorentz force: outer solution

We now discuss the effects of the Lorentz force on the flow: this features in the evolution
of azimuthal velocity v,

∂tv = r−1G+ ν(∆0v − r−2v), (4.24)

which in turn gives the equation for the angular velocity gradient α′,

∂tα
′ = (r−2G)′ + ν[r−1(∆0v − r−2v)]′. (4.25)

It is this key quantity we shall use. Our working hypothesis is that the Lorentz force
has the effect of flattening the angular velocity at radius r if the term (r−2G)′ evaluated
kinematically and integrated over all time, is comparable or bigger than α′ at that radius.
The threshold to consider is then when

α′(r) ∼

∫ ∞

0

[r−2G(r, t)]′ dt. (4.26)

Bearing in mind that the right hand side is quadratic in b0 and we are interested in
thresholds in terms of b0, we set the key function we need as

h(r) = −α′(r)−1 b−2
0

∫ ∞

0

[r−2G(r, t)]′ dt. (4.27)

The minus sign here arises as in (4.25) it is the integral on the right hand side which is
being compared with reducing the angular velocity gradient from α′(r) at t = 0 to zero
at large times t. We will take up the discussion of the physics in section 5, but for the
moment just focus on calculating h(r) for the outer solution and then the inner one.
First we take G as given from (4.23) withm = 1 now (to avoid unnecessary complexity)

and obtain

[r−2G]′ = 1
2b

2
0[G0(r)t+G1(r)ηt

4 +G2(r)η
2t7] e−

2

3
ηα′2t3 , (4.28)

with

G0(r) = α′′′+3α′′r−1−3α′r−2, G1(r) = −4α′α′′(α′′+α′r−1)− 4
3α

′2α′′′, G2(r) =
16
9 α

′3α′′2.
(4.29)

Finally we integrate (4.28) from time zero to infinity using integration by parts and
by setting the constant c0 defined by

c0 =

∫ ∞

0

t exp(−t3) dt = 3−2/3πHi′(0) ≃ 0.45137, (4.30)
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(see Olver et al. 2010, section 9.12) to obtain

h(r) = −c1η
−2/3α′−7/3 [G0(r) + α′−2G1(r) +

5
2α

′−4G2(r)], c1 ≡ 2−5/332/3c0, (4.31)

or, with the formulae for the Gj(r) in (4.29) we obtain

h(r) = c1η
−2/3α′−7/3 [ 13α

′′′ + α′′r−1 + 3α′r−2 − 4
9α

′′2α′−1]. (4.32)

This (implausible-looking) expression is correct for any α(r). However note that when
we approach the origin, α(r) expands as in (2.20) and then

h(r) ≃ c2η
−2/3α

−4/3
1 r−10/3, c2 ≡ 223−4/3c0. (4.33)

This is valid in the overlap region L ≪ r ≪ 1 where both inner and outer solutions are
valid (referring to figure 3). Before using this, we proceed to look at the feedback in the
inner solution.

4.4. Feedback through the Lorentz force: inner solution

Near the origin where the above formulation breaks down, we need to use the inner
solution (4.1–4.6) instead, which yields

G = mb20|g|
2k2−2mρ2m(f + f∗)[(m+ 1)− i(f − f∗)ρ2]e−i(f−f∗)ρ2

(4.34)

and hence (with m = 1) we find

(r−2G)′ = 2b20|g|
2k3(f2 − f∗2)[−3iρ− (f − f∗)ρ3]e−i(f−f∗)ρ2

. (4.35)

Now to obtain h(r) in (4.27) we divide by b20 and by α′ = 2α1k
−1ρ and integrate over all

time. With the use of (4.1) we obtain

h(ρ) = V−2

∫ ∞

0

|g|2(f2 − f∗2)[3i+ (f − f∗)ρ2]e−i(f−f∗)ρ2

dτ. (4.36)

We have taken the liberty of thinking of h now as a function of ρ = kr and taken the
integral over τ = pt. We cannot evaluate this analytically, except for large ρ when the
approximation (4.9) is valid throughout the time range giving the leading contribution
to the integral, with

h(ρ) ≃ c3V
−2ρ−10/3, c3 ≡ 28/33−4/3c0. (4.37)

This is valid in the overlap region 1 ≪ ρ≪ L−1 and making use of the definitions of p, k
and ρ in (4.1) we recover (4.33) as we must. More generally we can plot V2h(ρ) in (4.36)
against ρ as in figure 11 to give a universal curve for the Lorentz feedback at the centre
of a vortex with a general, smooth angular velocity profile (that is, with α1 6= 0).

5. Scaling laws and related information

We can use the results in the last section to make a number of predictions for scaling
laws. We begin with crude estimates and then give more precise versions. Our aim is to
evaluate the accumulated effect of the Lorentz force at a given radius r in a kinematic
regime and compare this with α′(r) at that radius. We use & and . to denote inequality
up to a constant of order unity. Recall that we are comparing

α′(r) and

∫ ∞

0

[r−2G(r, t)]′ dt (5.1)
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Figure 11. Plot of V2h(ρ) (solid) given in (4.36) against ρ with (a) linear scales, (b) log–log
scales. In (b) the approximation (4.37) is shown dashed.
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Figure 12. Plot of η2/3h(r) (solid) given in (4.32) for the Gaussian vortex against r with (a)
linear scales, (b) log–log scales (taking the absolute value). In (a) the approximation (4.33) is
shown dashed: it is also present in (b) but is somewhat overlapped with dotted curves showing

η2/3h(ρ) from (4.36) plotted against r for η = 106 to 109, reading up the curves.

at a given radius r or range of radii. From the definition of h(r) in (4.27) the integrated
effect of the Lorentz force at radius r is sufficient to suppress the differential rotation if

b0 ∼ h(r)−1/2. (5.2)

Also to fix ideas we plot h(r) in figure 12 for the Gaussian vortex (2.16) for a range of η
values using the outer expansion (4.32) and the inner expansion (4.36).

Core formation threshold: first consider if b0 & bcore then at all radii r the left-hand
side in (5.2) dominates. The Lorentz force (estimated by kinematic evolution) is strong
enough to modify the flow field and suppress differential rotation and so flux expulsion.
This represents the upper threshold for core formation. For greater fields, elastic forces
dominate and prevent the onset of flux expulsion.

First of all, consider a basic estimate. The location where flux expulsion would com-
mence is at the radius r† of order unity where the differential rotation α′ is maximised,
and it is here or nearby where the maximum in bcore will be realised. At order one values
of radius we can use (4.32) which gives h(r) = O(η−2/3) and results in the threshold

bcore = O(η1/3), (5.3)

as observed in figure 10 (upper dataset).
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To improve on this, it would make sense to minimise h(r) over all radii in view of
(5.2) so as to maximise the field for flux expulsion to take place. However h(r) has a
zero crossing, and we should note that the threshold for core formation is linked to
Alfvén wave generation, a process very far from the kinematic model we are using here.
We do suggest instead a more precise estimate which brings in factors of α1, taken by
substituting r† in (4.33) to give

bcore(η) = c
−1/2
2 η1/3α

2/3
1 (r†)5/3. (5.4)

This is shown on figure 10 with good agreement, fortuitously good given that it is only
correct up to a constant of unity.

Dynamical core threshold: now let us go to the other extreme. If b0 . bdynam then for
all radii the right-hand side of (5.2) dominates and the field will remain at leading order
kinematic. A core will form through flux expulsion and will shrink to an exponentially
decaying remnant at the origin following BBG. We thus need to look at where the
maximum of h(r) is realised. From (4.33) (see also figures 11, 12), from the point of view
of the outer solution, we can increase h(r) by reducing r. This represents the physical
fact that the flow field is ‘naturally’ fairly flat near the origin, the field long-lived, and
the Lorentz force required to flatten it completely becomes vanishing small. However
this cannot continue indefinitely and we can argue this in two ways. First of all it is
clear that this increasing h(r) in (4.33) (in the overlap region) must be cut off at radii
r ∼ L = O(η1/4) in (4.1) where the overlap region ends and the inner solution really takes
over. Substituting this in (4.33) gives the maximum of h(r) and the threshold estimated
as

bdynam = O(η3/4) (5.5)

in agreement with figure 10 (lower dataset).
With more precision and elegance, we can move to the inner solution and figure 11(a)

which shows that V2h is maximised at

c−2
4 ≡ h(0) =

∫ ∞

0

3i|g|2(f2 − f∗2) dτ ≃ 0.91732 (5.6)

(obtained numerically) to give

bdynam = c4V = c4(8η
3mα1)

1/4, (5.7)

from (4.1). Thus we link the threshold field to the velocity scale V based on the inner
solution, which has the crucial η3/4 dependence. This is plotted in figure 10 (lower dotted
line) showing good agreement up to a modest constant.

Onset of Lorentz force: finally suppose that b0 lies in the range bdynam . b0 . bcore.
Then flux expulsion occurs at a radius r†, a core is formed and a wave of flux expulsion
spreads inwards. The Lorentz force however does become important at a radius r∗(b0)
and time t∗(b0) given by

b0 = h(r∗)
−1/2, t∗ = [ 13ηα

′(r∗)
2]−1/3. (5.8)

These functions would depend on the original flow profile, but when r∗ ≪ 1 then the
approximation (4.33) in the overlap region comes into play (also α′(r∗) ≃ 2α1r∗) and we
can estimate that

r∗ ≃ c
3/10
2 b

3/5
0 η−1/5α

−2/5
1 t∗ ≃ c5η

−1/5b
−2/5
0 α

−2/5
1 , c5 = 2−2/331/3c

−1/5
2 . (5.9)

For example for η = 10−7 and b0 = 10−5 we obtain r∗ ≃ 0.16 and t∗ ≃ 2.3 × 104 in
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agreement with figure 8. Note that at the lower and upper limits of the range bdynam .

b0 . bcore, the core size is of order L in (4.1) and r†, respectively.

6. Discussion

We have studied some of the effects of dynamical feedback on flux expulsion using a quasi-
linear model, using both numerical simulation and theory based on the kinematic picture.
We have identified two thresholds: returning to our original dimensional formulation
before (2.15) and measuring magnetic field in velocity units, the first threshold is bcore ∼

UR
−1/3
m below which flux expulsion still operates, cutting field lines at the radius r† and

leaving a magnetic core within. The second is bdynam ∼ UR
−3/4
m below which the field

evolves as in the kinematic regime. Between the two thresholds a magnetic core is formed
in which the flow field near the origin is modified to be solid body rotation at leading
order, so halting the diffusive decay of the core. In the range between bcore and bdynam

the core radius scales as L(b0/U)3/5R
1/5
m .†

In each case diffusive processes are key and the results depend sensitively on the
magnetic diffusivity — only the cutting of fields lines by diffusion can halt the increase
of Lorentz force as the field reduces in scale. With this in mind, we have made careful
estimates based on the kinematic solutions, inner and outer, and we note that cruder
arguments could easily lead to incorrect conclusions. For example, although the magnetic
field grows linearly with time, the Lorentz force term also grows linearly in (4.23) and
not quadratically as might be suggested by a simplistic estimate b · ∇b ∼ b2/L, L
being the scale of the eddy, this overestimating the variation of b along field lines. Even
worse would be to estimate the Lorentz force as jb = O(t3). Likewise in (4.26) it is
necessary to calculate the effect of G integrated from time zero up to the time when flux
expulsion occurs (similar remarks apply in the kinematic regime, as discussed in Moffatt
& Kamkar (1983)). It is also important to look at the effect on the differential rotation,
not the velocity or angular velocity. Finally to pick up the lower threshold bdynam the
scaling structure of the inner solution from BBG is needed, in particular relating the field

magnitude to V = O(UR
−3/4
m ). We also note that any replacement of the true magnetic

diffusion term involving the Laplacian, by some hyperdiffusion or similar cut-off would
change these scaling laws. Any use of hyperdiffusion in the induction equation must be
treated with caution: although the change may have a minor impact on small-scale fields
at any moment, here it would have a significant impact on the large-scale, long-time
evolution.
Future directions of research could include generalising the geometry, for example to

an axisymmetric eddy localised in three dimensions, and a magnetic field with initially
an arbitrary orientation with respect to the eddy. It would also be interesting to study
other regimes of the Reynolds numbers. We have taken only Re ≫ Rm ≫ 1, although
we expect our results to have wider applicability, we think at least up to Re ∼ Rm. The
ordering Re ≫ Rm ≫ 1 is relevant in typical astrophysical and geophysical contexts,
and so the modelling could be broadly relevant to the formation of magnetic fields in
the early life of some astrophysical objects, for example the relict magnetic field likely
to lie in the radiative zone of the Sun (e.g. Mestel & Weiss 1986). At least it indicates
the importance of taking into account small scale reconnection processes that depend
on molecular transport coefficients, even in the formation of large-scale fields, this also

† Recall that L is the spatial scale of the flow and U the velocity scale of the flow. However the
actual key parameters at the lower threshold are the scale L of the flow and the magnitude of α1

in dimensional units of (length2× time)−1; in other words it is appropriate to take U = L3α1.
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being the point originally stressed by Vainshtein & Cattaneo (1992) in the context of
dynamo theory.
A related problem would be to consider an initial two-dimensional turbulent flow

containing eddies or vortices, on a range of length scales: which of these would develop
dynamical magnetic cores, and what would be their distribution? For what field threshold
would the evolution over all length scales be entirely kinematic? Finally, it would be
valuable to study dynamical flux expulsion numerically by means of full simulations in
unbounded geometry and explore the limitations of the quasi-linear approximation as set
out here. Simulations with Re ≫ Rm ≫ 1 can be undertaken efficiently using contour–
spectral methods (Dritschel & Tobias 2012) while regimes with Re ∼ Rm ≫ 1 would be
best simulated with standard pseudo-spectral codes.
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