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Abstract

Many direct numerical simulations of spherical hot spot auto-ignitions, with different fuels, have

identified different auto-ignitive regimes. These range from benign auto-ignition, with pressure waves

of small amplitude, to super-knock with the generation of damaging over-pressures. Results of such

simulations are generalised diagrammatically, by plotting boundary values of  , the ratio of acoustic

to auto-ignition velocity, against . This latter parameter is the residence time of the developing

acoustic wave in the hot spot of radius ro, namely ro/a, normalised by the excitation time for the

chemical heat release, e . This ratio controls the energy transfer into the developing acoustic front. A

third relevant parameter involves the product of the activation temperature, E/R, for the auto-ignition

delay time, i , normalised by the mixture temperature. T, the ratio, i / e , and the dimensionless hot

spot temperature gradient,  rT  ln , where r is a dimensionless radius. These parameters define

the boundaries of regimes of thermal explosion, subsonic auto-ignition, developing detonations, and

non-auto-ignitive deflagrations, in plots of  against  .The regime of developing detonation forms a

peninsula and contours, throughout the field. The product parameter    rT
ei

RTE  ln/

expresses the influences of hot spot temperature gradient and fuel characteristics, and a unique value

of it might serve as a boundary between auto-ignitive and deflagrative regimes. Other combustion

regimes can also be identified, including a mixed regime of both auto-ignitive and “normal”
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deflagrative burning. The paper explores the performances of a number of different engines in the

regimes of controlled auto-ignition, normal combustion, combustion with mild knock and, ultimately,

super-knock. The possible origins of hot spots are discussed and it is shown that the dissipation of

turbulent energy alone is unlikely to lead directly to sufficiently energetic hot pots. The knocking

characterisation of fuels also is discussed.

1. Introduction

Reactive hot spots can arise for a number of reasons: partial mixing with hot gas or burned products,

heat transfer from hot surfaces, and turbulent energy dissipation in flowing reactants. Their size may

be of the order of millimetres. Following Zel’dovich [1], a gradient of reactivity can give rise to an

auto-ignition velocity, ua. At one extreme this can lead to a detonation, at another, to a benign,

controlled auto-ignitive propagation. The rate of change of the heat release rate at the hot spot

determines the associated amplitude of the generated pressure pulse and, if ua is high enough, to be

close to the acoustic speed, a, this pulse can be coupled with the heat release in a detonation wave.

Earlier findings [2,3] from direct numerical simulations, DNS, of hot spot auto-ignitions in 0.5 H2/0.5

CO/air mixtures showed a peninsula could be constructed, within which detonations could develop.

The boundaries were defined by the dimensionless groups, a/ua, and earo  , in which ro is the radius

of a spherical hot spot and e is the excitation time. This is the time during which most of the heat

release occurs at the end of the auto-ignition delay time, i [4].

This approach has been employed in studies of engine knock and super-knock in gasoline engines [5-

10]. The phenomena leading to super-knock are a rather complex sequence of events comprising the

primary formation of hot spots that pre-ignite and initiate premature flame propagation, with earlier

increases in pressure and temperature in the unburned mixture. A secondary, more reactive, hot spot

may then be generated in the reactants and lead to a developing detonation, following the theory

developed in [2,3]. While the salient features of the latter appear to be understood, the mechanisms

causing the primary hot spots are still the subject of debate. The earlier the initial pre-igniton, the

more severe is the secondary auto-ignition. The cyclical nature of “super-knock“ is discussed in

Section 5. The paper focuses on the secondary hot spots and the parameter range within which a

detonation can develop. The original simulations have been extended to other fuels and focus on the

secondary hot spots, by relating the detonation peninsula also to the auto-ignitive activation energy of

the mixture and hot spot temperature gradient. This extended understanding is able to characterise

engine auto-ignition over a wide range of conditions from benign auto-ignition, through mild knock,

to super-knock and offers a fundamental approach to assessing the anti-knock characteristics of fuels.

2. Auto-ignition in the strong ignition regime
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The auto-ignition delay time at a given pressure is expressed by :

 RTECexi p , and (1)

 2RTET ii   . (2)

The localised auto-ignitive activation temperature, E/R, is expressed by:

  .1ln RETi   (3)

Assuming that the reactivity gradients arise solely from changes in temperature with the radius, r, the

auto-ignition propagation velocity is

  iia TTrru   . (4)

Detonations are associated with the auto-ignitive front propagating at close to the acoustic velocity, a,

and it is convenient to introduce the dimensionless ratio,  :

 = a/ua =   TrT i   a. (5)

The way in which  decreases with increasing temperature is shown for the Primary Reference Fuels,

i-octane/n-heptane, in Fig. 1, for five different Octane Numbers, and an assumed value of  rT  of

-2K/mm. The data on i are from [11], and the values of a are from [12]. Between about 700 and

800K there is a sharp decrease in  Ti  with T and, consequently, also in  . This is countered in

the regime of negative temperature coefficient, but is subsequently resumed at about 1000K, as 

approaches unity. In the absence of a negative temperature coefficient, the same temperature gradient

that can ignite a detonation at a high temperature, quenches it at a lower temperature, as noted in [13].

A critical value of the temperature gradient, signified by suffix c, occurs when  = 1.0, and from Eq.

(5),

 
c

rT  =  
iaT  . (6)

From Eqs (5) and (6),

 =  rT    1 crT . (7)

For a given mixture and its conditions,  is proportional to rT  .

From Eqs. (2) and (5),

  arTRTEi  2- . (8)
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Both Voevodsky and Soloukhin [14], and Meyer and Oppenheim [15], employing H2/O2 mixtures,

used Eq. (2) to define the boundary between strong and weak auto-ignitions. Strong ignition was

defined as a stable detonation, with near-instantaneous and uniform auto-ignition, and a low value of

 Ti  . Meyer and Oppenheim suggested a threshold value of Ti  for this regime of - 2 µs/K.

Figure 2 shows results from the DNS studies of [2,3], for a detonation developing rapidly from a hot

spot of radius 3 mm, in a stoichiometric mixture of 0.5 H2/0.5 CO/air, with  = 1.0 at 1200K, i =

39.16 µs, and a = 731 m/s. The Chapman-Jouguet wave speed is soon attained within the hot spot.

The temperature gradient across the hot spot was -2.426 K/mm, and the value of Ti  was -0.564

ȝs/K, is smaller than the value of Meyer and Oppenheim. A hot spot developing into a thermal 

explosion was also investigated in [2,3] with  = 0.75 and at 1000K. This showed a value of Ti 

of -32 µs/K. Similar plots of hot spot histories for other conditions appear in [2,3].

3. Excitation time and the detonation peninsula

This features the other relevant dimensionless group formulated in [2,3]. The nature of an auto-

ignition also depends upon the rate at which the heat is released at the end of the delay time [4,13].

The time for the acoustic wave to move through the hot spot of radius ro, divided by the excitation

time, e , is defined by  :

eo ar   . (9)

It is a measure of the energy transferred into the acoustic front: the acoustic wave transit time through

the hot spot, divided by the time for the heat release.

From Eq. (8)

 = -  RTEi   oraorrTT ///  . (10)

Introducing e , gives

 rTE-  ln , where (11)

e

i
E






RT

E
and orrr  .

If oT is peak temperature at the centre of the hot spot, rT  ln can be approximated by ln(T/To).

The associated error for an assumed constant linear gradient, rT  , ranges from 0.05% for rT 

= -1 K/mm, to 4.7% for -100 K/mm. Little is known of the detailed structure of hot spots, but various
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DNS studies of turbulent flow suggest a structure less ordered than the spherical geometry envisaged

here. Essentially ro can be regarded as the length over which the temperature gradient is nearly

constant.

In a different context, Lee, Radulsecu, Sharpe, Shepherd and co-workers [16-19] have demonstrated

the importance of E in assessing the stability of detonations. Low values of both E/RT and ei  are

conducive to a spatially more uniform reaction zone, more strongly coupled with the shock wave.

These terms are related to  and  in Eq. (11), through the driving hot spot temperature gradient

[6,20]. Higher values of E/R make oblique detonations more unstable, creating an irregular cellular

structure [21].

Figure 3 shows plots of  against  that define the peninsula within which detonations can develop

from hot spot auto-ignitions, as well as the extent of other auto-ignition regimes. The peninsula,

defined by its upper and lower limits of u and l , was constructed from the results of many

simulations of separate hot spot auto-ignitions. The absence of turbulence was not unduly restrictive,

as turbulence time scales can be about three orders of magnitude larger than the auto-ignition times. If

a hotspot initiates a propagating flame, initially it will be laminar, with progressively increased

wrinkling, length scales, and acceleration due to turbulence as it propagates [22]. As  is increased,

more of the heat release is transferred into the acoustic front, to extend the range of  values that can

support a developing detonation, as can be seen from the figure. This aspect is demonstrated by the

simulation shown in Fig. 4 of [3], in which the developing strength of the acoustic front can be

observed as it moves outwards, and develops into a detonation outside the hot spot.

The original simulations involved H2/CO/air mixtures [2,3], chosen because the detailed chemical

kinetics were well established. Additional data for n-heptane/air and i-octane/air mixtures were

subsequently simulated by Peters and Paczko. The original data centred around values of E of (110 ±

67).10
3
at 1100K, and (15.6 ± 8).10

3
at 1000K for H2 /CO. The later values were 2.45.10

3
at 800K for

n-heptane and 58.7.10
3
at 893K for i-octane. Although the different values of E have but small

influence upon the detonation peninsula boundaries, they influence the hot spot temperature elevation,

through Eq. (11). If E is known, the value of rT  ln then might be found at any point. It is,

however, difficult to designate values of rT  ln , for reasons discussed in Section 6.

The full line curves defining the peninsula in Fig. 3 are best fit curves for these different sources of

data. Within the important narrow toe of the peninsula developing detonations are confined to the

lower values of  , approaching unity. The lower values of u and the narrowing of the toe at the

small values of  arise because insufficient of the heat release is transferred into the developing
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acoustic wave. Thermal explosions, at values of  below l , are more rapid, with less severe

pressure fronts than those in Fig. 2, and temperature gradients that are smaller [2,3].

4. Onset of deflagration

Above the upper limit, u , of the developing detonation peninsula, the ensuing propagation of

reaction after hot spot auto-ignition becomes increasingly deflagrative as  increases. Further auto-

ignition is, of course, not precluded outside the peninsula, but the pressure pulses will be relatively

weak, with no transition to detonation.

The DNS of Sankaran et al. of turbulent homogeneous mixtures [23] explored the regime within

which deflagrative and auto-ignitve propagations co-exist. These simulations showed that when

rT  is small, auto-ignitive propagation speeds are high in relation to those of laminar flames but,

as this gradient is increased, a transition to a slower reaction front occurs, with a deflagration speed

that is controlled by molecular transport processes. Initially, about 17% of the heat release rate was

from deflagrative flames and the remainder from auto-ignitive propagation. This suggests that the hot

spot critical radii were attained for both modes of continuing propagation, but that the auto-ignitive

ones were dominant. The smaller and more stretched kernels did not develop, while the larger ones

survived. A transition parameter, ȕ, was defined in [23] as the deflagration velocity, ud, normalised

by ua. With ȕ > 1, the deflagration front became dominant, although, initially, the deflagration

velocity would not be fully developed.

Following earlier studies of i-octane auto-ignition [24], Mansfield and Wooldridge [25] found that,

with a 0.59 H2/0.41 CO/N2/air syngas mixture, at  = 0.5, ȕ became greater than unity at rT  ~ -5

K/mm. With this gradient, an assumed hot spot radius, ro, of 3 mm, and E = 110. 10
3
at 1100K,

 rTE  ln = 1490. The generalised relationship for this parameter = 1500 is shown in Fig. 3, as a

tentative threshold for the onset of a deflagration. Usually, there is no sharp division between auto-

ignitive and deflagrative propagation, and this is clear from the DNS of [23] and [26], which reveal a

broad regime in which the two modes co-exist.

The dominance of the auto-ignitive mode, ȕ < 1, involved additional criteria and these can arise in

two contrasting ways, which are independent of .au The first is when ud, is either a laminar or a

turbulent burning velocity, significantly less than .au The second occurs when, with increasing

turbulence, ud, and ȕ, after attaining a peak value with ȕ 1 ޓ, then decline, due to the onset of 

localised flame extinctions arising from the increasing flame stretch rate, with ȕ = 0 at complete flame

quench. This regime, discussed in Section 6, is identified in [27,28]. It has been shown to be suitable
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for controlled auto-ignitive engine combustion in [29]. Practical engine combustion in such mixed

regimes is now discussed in Section 5.

5. Engine performance and the detonation peninsula

Following the earlier employment of the detonation peninsula [5-10], it has been used in a combined

experimental engine and LES study to demonstrate how increasing spark advance, and the associated

increasingly severe engine knock, cause the corresponding engine cycle loci to cross the threshold

into the detonation peninsula [30].

Lean-burn engine combustion is efficient and reduces pollutant emissions, but improved performance

is curtailed by the lean flammability limits under turbulent conditions and low burning velocities.

These limitations can be overcome with auto-ignitive propagation [31]. This requires high

temperature to enhance auto-ignitive burning, and lean mixtures with low O2 content, and recirculated

exhaust gas to reduce deflagrative flame propagation. Such a regime has been variously defined as

one of controlled auto-ignition, flameless combustion, MILD combustion (moderate intense low-

oxygen dilution), usually in burners, and (incongruously) homogeneous charge compression ignition,

through zones of reactivity gradients [31]. In engines “mild” is normally used as a description of

slight, but not intense, knock.

A range of different engine auto-ignition conditions were studied, covering four different engines, 1-

4, all at different locations, operating in 10 modes, A to J, summarised in Table 1. The operational

regime, in terms of auto-ignition and knock are shown, relative to the developing detonation peninsula

boundary and contours of rTE  ln , on Fig. 4.

The controlled auto-ignition regime is covered by Conditions A to C. The progression from this

regime, through no knock to super-knock, is traced by the progressive blackening of the symbols on

Fig. 4, indicative of strengthening developing detonations. Pressures and temperatures are given in

Table 1. Condition D is representative of no knock, H represents slight knock, E heavier knock.

Conditions F, G, I, and J represent super-knock, associated with auto-ignitive pre-ignition [38], and

subsequent strong developing detonations.

For Conditions A to C, the Hydra single cylinder engine was the only engine operating entirely in the

controlled auto-ignition regime, with  = 0.25 [32]. The low value of  , combined with flame

extinctions due to the engine turbulence, inhibited deflagrative burning, in favour of auto-ignitive

burning. In these, and all other cases considered here for the derived data on Fig. 4, it is assumed that

ro = 5 mm and rT  = -2 K/mm. Primary reference fuels were employed with this engine,

comprised of volumetric proportions of 0.84 i-octane and 0.16 n-heptane. Following [33] values of i

were obtained by multiplying the stoichiometric value at the relevant temperature in [11] by 0.8/ ,
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with i varying as P
-1.7

[6,32]. Values of e were taken from [5] with the same allowances for  and

P. These enabled  ,  , and E to be evaluated [32]. The engine was free of knock and smooth-

running, with minimal cyclic variations, for all three conditions. Figure 4 indicates, with reasonable

accuracy, that the three operational points A to C are in the subsonic auto-ignition regime, with no

deflagration. It suggests that condition B, was close to knock, a consequence of the low value of  at

811K, see Fig. 1. In the very early stages of knock, originating at a single hot spot, the amplitude of

the pressure pulse is proportional to
2 [38]. The low values of  rTE  ln- tend to confirm that

combustion was in the auto-ignitive mode. Spark-assisted compression ignition is sometimes used to

control the initiation of deflagration when operating in the mixed auto-ignitive/deflagrative regime

[29].

The second engine was spark-ignited, SI, multi-cylindered and turbo-charged, operating under the

Conditions D, E, F [34] on Table 1. Here OI refers to the Octane Index, which is the Octane Number

of the Primary Reference Fuel that just knocked under the same conditions. The test Conditions

exhibited three gradations of developing knock, ranging respectively, from no discernible auto-

ignition or knock, outside the peninsula, through fairly heavy knock, to pre-ignition followed by

super-knock, within the toe of the peninsula, on Fig. 4. The mixtures became progressively more

reactive, as a result of increasing temperatures and pressures. The third engine, at the single condition,

G, [35] was similarly SI and turbo-charged, and had a similar fuel to the second engine, characterised

respectively, by Octane Indices, OI, of 107 and 105. Values of i and e were taken to be the same

as those of the surrogate fuel, the chemical kinetic scheme for which is described in [5]. These values

enabled those of  ,  , and E to be found for the conditions for both engines. Super-knock occurred

in the second engine for the condition F, and in the third engine for the single condition G.

The fourth engine, also turbo-charged, under the Conditions H, I, J, exhibited similar trends at high P

and T [36,37] Super-knock usually occurs infrequently, and this aspect was studied carefully at

Condition J. In an attempt to explain its spasmodic nature, temporal changes in pressure were

recorded over 5,000 engine cycles. This captured a few rare records of super-knock [36]. From the

engine pressure records in Fig. 7 of [39], it can be seen that super-knock was followed by an

appreciably lower exhaust gas T and P. There was a consequently increased, air inhalation into the

next cycle, and a lower temperature of recirculated burned gas. This lower T and P resulted in a

reduced burn rate that, in turn, increased the exhaust T and P. Consequently, the burned gas

recirculated into the third cycle would be at a higher temperature, possibly sufficient to induce auto-

ignitive pre-ignition, particularly in the vicinity of the hot exhaust valve, Although pre-ignition does

not necessarily cause super-knock, it was always a pre-condition for its occurrence [36]. Pre-ignition
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is akin to spark advance and, because of the high turbulent burning velocities at the high T and P [40],

these values would be rapidly increased still further to create vigorous auto-ignition and super-knock

within the toe of the peninsula. This sequencing could explain the observed occurrence in this

instance of super-knock every other cycle.

At the present time the details of the pre-ignition mechanism are unclear. One suggestion has been

that fuel droplets from the injecting spray impinge on the cylinder wall and mix with lubricating oil

and mixture droplets moving in to the gas phase [41,42]. Long-chain molecules from the lubricant

with its additives are sufficiently auto-ignitive to create mild auto-ignitions that can, nevertheless,

initiate a flame [39]. However, some evidence suggests that, at the observed temperatures and

pressure of such hot spots, the mixture would have to be rather more auto-ignitive than heptane/air

[39,43].

6. Origins of the hot spots

An estimate was made of the nature of an automotive hot spot generated through the dissipation of

turbulent energy. The cascade of turbulent energy flux from the largest to the smallest length and time

scales terminates in its complete dissipation as molecular motion, at the Kolmogorov scale of

distance, Ș. This is reviewed in the context of combustion in [44]. If the mass specific rate of turbulent

energy dissipation is İd, and the kinematic viscosity, Ȟ, then:

Ș = (Ȟ3/ İd)0.25. (13)

The Kolmogorov time scale is given by:

ĲȘ = (Ȟ/ İd)0.5. (14)

Power spectral densities [44] and spectra of vorticity fluctuations [45] have been measured in wind

tunnels. Informative spatial vorticity contours have been obtained from direct numerical simulations

[46]. Values of İd are found by integrating the 3D energy spectrum in terms of the resulting vorticity,

Ȧ, with:

İd = ȞȦ2
. (15)

The rms strain rate was defined by Taylor [47], in terms of the Taylor scale of distance, Ȝ, and the rms 

turbulent velocity, u֤ by:

u֤/Ȝ = (İd/ Ȟ)0.515-0.5. (16)

From Eqs (14) and (15):

ĲȘ = Ȧ -1
. (17)

DNS of isotropic turbulence [46] show the creation of coherent, cylindrical, ribbon-like vortices,

within which exist small regions of very high vorticity, of lifetime < 0.3 ĲȘ. These reside within a
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background vorticity with lifetimes < ĲȘ. The former occupy 1%, and the latter 25%, of the total

volume. Vortices with a lifetime < ĲȘ had a radius of about 4Ș. In turbulent flame analyses a limiting

small scale radius of 6Ș has been employed [48].

The possibility of such vortices generating auto-ignitive hot spots, was estimated by assuming that the

energy dissipated in a Kolmogorov scale vortex tube, during the Kolmogorov time, is equal to the

enthalpy increase in the same volume. Hence, if the associated temperature increase is ǻT, and Cp is

the mass specific heat at constant pressure, then, utilising Eq. (14),

İdĲȘ = (İdȞ)0.5 = cp ǻT. (18)

Normalised turbulent burning velocities and flame extinctions due to turbulence, can be correlated in

terms of their Karlovitz stretch factor, K, and the strain rate Markstein numbers [40], with the

turbulent Reynolds number, Rl, based upon the integral length scale. l, with

K = (u֤/Ȝ)(Ȟ/ul
2
) = 0.25(u֤/ul)

2
Rl

-0.5
. . (19)

From Eqs. (16) and (19):

(İdȞ)0.5 .
= (0.25x15

0.5
)(u’

3/2
)(Ȟ/l)0.5. . (20)

Consequently, a high energy dissipation is favoured by high values of u and low values of l. Some

typical engine conditions, under which hot spots might exist, are u’ = 5 m/s, Ȟ = 1.5 10
-6
m

2
/s, l = 2

mm, and cp= 1250 J/kg/K. These values in Eqs. (20) and (18) yield the low value of ǻT = 0.00024K.

With regard to the estimated size of the hot spot, following [48], with a vortex tube diameter of 12Ș,

Eq. (13) gives a dissipative diameter of 33 ȝm. 

For many conditions such a diameter would exceed the critical size of a hot spot that is necessary to

initiate both an auto-ignition and a propagating flame [39]. However, the very small temperature

elevation, due to turbulent energy dissipation, makes this an unlikely initiator of either phenomena.

More likely triggers would appear to arise from the small scale turbulent mixing of the reactants with

recirculated burned gas from the previous cycle, as discussed in Section 5, and heating from hot

surfaces, such as exhaust valves. Also as discussed, pre-ignition might be enhanced at hot spots by

fragments of lubricant of low i . Although the consequential damage can be serious, pre-ignition and

super-knock are both rare and random.

7. Conclusions

i. The  and  coordinates of the detonation peninsula boundary have been shown to be applicable

over a wide range of fuels.
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ii. The E parameter in Eq. (11) enables contours of hot spot temperature elevations to be inserted on

the  /  diagram, as on Fig. 4.

iii. An approximate boundary, at which auto-ignitive burning becomes less probable than deflagrative

flame propagation, has been identified on the  /  diagram. Greater certainty of this requires

knowledge of the turbulent combustion dimensionless groups and the conditions for turbulent flame

extinction.

iv. The necessary localised temperature elevations at hot spots that are compatible with auto-ignition

are unlikely to arise solely from the dissipation of turbulent energy.

v. The different regimes for hot spot auto-ignition, extending from controlled auto-ignition at one

limit, through the development of knock to super-knock, can be identified through the values of i ,

e , and E on the  /  diagram. More needs to be known about the detailed structure of the hot

spots and their sizes.

vi. The use of the detonation peninsula to identify engine knock intensity, avoids some of the

problems of attempting to assess fuels that are very different from i-octane/n-heptane, operating at

pressures and temperatures very different from those in the RON and MON tests [32].

vii. The super-knock regime, identified on the  / peninsula, corresponds to that for strong, stable,

continuous detonations in ducts. Both are characterised by values of  close to unity, with low values

of   , E , and hot spot temperature gradients [6]. These interrelationships are expressed by Eq.

(11).

Memorial

Shortly before his death on 4
th
July following a heart attack, Norbert Peters approved the manuscript

of this paper for submission to “Combustion and Flame”. He is sorely missed by very many. Author

DB collaborated with him over 35 years, including 14 when both were Editors of the Journal, At the

ICDERS Colloquium in Leeds on the 5
th
August 2015 over 300 delegates paid tribute to Norbert at a

Memorial Meeting.
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Figure and Table Captions

Figure 1. Computed values of  for five different Octane Numbers of Primary Reference Fuels at 4

MPa and rT  = -2 K/mm. Data from [11].

Figure 2. History of a hot spot, ro = 3 mm, with  = 1, stoichiometric 0.5 H2/0.5 CO/air, To=

1200K and Po=5.066 MPa, i = 39.16 s. Time sequence (µs) 1-35.81, 2-36.16, -36.64, 4-

37.43, 5-37.72, 6-38.32, 7-38.86, 8-39.13. (a) temperature, (b) pressure, (c) combustion wave

speed.

Figure 3. ȟ/İ regime diagram, for hot spot auto-ignition, showing the detonation peninsula and other

regimes. Symbols indicate data from different fuels. . ഼: H2/CO/air [4], Ƒ: n-C7H16 /air, ∆: i-C8H18/air.

Figure 4. Increasing black fill of the symbols indicates increasing severity of knock for the different

conditions in Table 1, from no knock, through mild knock. to super-knock.

Table 1. Engine auto-ignition and super-knock conditions.
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Figure 1. Computed values of  for five different Octane Numbers of Primary Reference Fuels at 4

MPa and rT  = -2 K/mm. Data from [11].
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Figure 2. History of a hot spot, ro = 3 mm, with  = 1, stoichiometric 0.5 H2/0.5 CO/air, To= 1200K

and Po=5.066 MPa, i = 39.16 s. Time sequence (µs) 1-35.81, 2-36.16, -36.64, 4-37.43, 5-37.72, 6-

38.32, 7-38.86, 8-39.13. (a) temperature, (b) pressure, (c) combustion wave speed.
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Figure 3. ȟ/İ regime diagram, for hot spot auto-ignition, showing the detonation peninsula and other

regimes. Symbols indicate data from different fuels . ഼: H2/CO/air [4], Ƒ: n-C7H16 /air, ∆: i-C8H18/air.

Figure 4. Increasing black fill of the symbols indicates increasing severity of knock for the different

conditions in Table 1, from no knock, through mild knock. to super-knock.
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Table 1. Engine auto-ignition and super-knock conditions.

Engine Fuel Auto-ignitive

mode

Fig.

Ref.

ĳ T K P MPa E Ref.

1. Hydra single

cylinder with

Roots blower.

(Shell Global

Solutions).

PRF 84 [5,11,33] Controlled

benign auto-

ignition.

A 0.25 729 6.52 6,799 [32,6]

B 0.25 811 4.84 543

C 0.25 1057 3.37 5,829

2. Turbo-

charged S.I.

engine (GM

Powertrain)

RON/MON 95/85,

OI=105.

Surrogate 0.62 i-

octane, 0.29, toluene,

0.09 n-heptane,

OI=105 [5]

No auto-

ignition

D 1.0 800 7.0 13,269 [34]

Fairly heavy

knock

E 1.0 850 9.0 6,716 [34]

Pre-ignition,

super-knock

F 1.0 926 12.8 2,696 [34]

3. Turbo-

charged S.I.

engine (VW)

RON/MON 98/89,

OI=107. Surrogate as

above [5]

Pre-ignition,

Super-knock

G 1.0 918 13.3 2,822 [35]

4. Turbo-

charged S.I.

engine

(Tsinghua

University,

Beijing)

Composition in [37].

RON/MON,

94.1/81.9. Data for

93.4/81 from [5,32].

Slight knock H 1.0 824 10.45 5,229 [36,37]

Super-knock,

deflagration

I 1.0 949 10.91 1,906 [36,37]

Super-knock,

detonation

J 1.0 917 10.5 2,467 [36,37]


