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ABSTRACT 

Muscle forces can be selected from a space of muscle recruitment strategies that produce 1 

stable motion and variable muscle and joint forces. However, current optimization methods 2 

provide only a single muscle recruitment strategy. We modelled the spectrum of muscle 3 

recruitment strategies while walking. The equilibrium equations at the joints, muscle 4 

constraints, static optimization solutions, and 15-channel electromyography recordings for 5 

seven walking cycles were taken from earlier studies. The spectrum of muscle forces was 6 

calculated using Bayesian statistics and MCMC while EMG-driven muscle forces were 7 

calculated using EMG-driven modelling. We calculated the differences between the spectrum 8 

and EMG-driven muscle force for 1 to 15 input EMGs and we identified the muscle strategy 9 

that best matched the recorded electromyography pattern. The best-fit strategy, static 10 

optimization solution, and EMG-driven force data were compared using correlation analysis. 11 

Possible and plausible muscle forces were defined as within physiological boundaries and 12 

within EMG boundaries. Possible muscle and joint forces were calculated by constraining the 13 

muscle forces between zero and the peak muscle force. Plausible muscle forces were 14 

constrained within six selected EMG boundaries. The spectrum to EMG-driven force difference 15 

increased from 40 N to 108 N for 1 to 15 EMG inputs. The best-fit muscle strategy better 16 

described the EMG-driven pattern (R2 = 0.94; RMSE = 19 N) than the static optimization 17 

solution (R2 = 0.38; RMSE = 61 N). Possible forces for 27 of 34 muscles varied between zero 18 

and the peak muscle force, inducing a peak hip force of 11.3 body-weights. Plausible muscle 19 

forces closely matched the selected EMG patterns; no effect of the EMG constraint was 20 

observed on the remaining muscle force ranges. The model can be used to study alternative 21 

muscle recruitment strategies in both physiological and pathophysiological neuromotor 22 

conditions. 23 

24 
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INTRODUCTION 30 

Internal forces that physical activity engender on our skeleton through muscles and joints 31 

are important for studying human motion [1] and skeletal mechanics [2]. However, the 32 

biomechanical assessment of muscle forces is difficult because the musculoskeletal system is 33 

highly redundant [3] and the sensorimotor control system is intrinsically variable [4]. Muscles 34 

recruitment targets multiple and competing goals, and depends on the task being executed, 35 

subjective healthy condition and noise that plague the sensory inputs and muscles output in 36 

determining the appropriate motor command [5]. A better understanding of the repertoire of 37 

alternative sensorimotor control strategies may reveal important in studying human motion and 38 

skeletal mechanics [5]. 39 

According to the uncontrolled manifold hypothesis, our central nervous system uses all the 40 

redundant degrees of freedom to ensure flexible and stable motion [6]. Possible muscle 41 

synergies can therefore be defined as organizations of muscle forces that stabilize joint torques 42 

and motion; or, in other words, alternative solutions to the muscle load sharing problem. 43 

Körding and Wolpert showed that our central nervous system (CNS) likely interprets the 44 

problem of optimal performance in a statistical fashion by weighting knowledge gathered from 45 

previous experiences and information gathered from multiple sensory modalities [4]. By 46 

considering both types of information in the form of prior and likelihood, Bayesian statistics 47 

have been shown to properly describe the mechanism behind the generation of movement 48 

trajectories [7], forces [8] and judgment timing [9]. Likewise, our CNS may solve the muscle 49 

load sharing problem [4] by recruiting muscles from a space of alternative solutions, ensuring 50 

stable motion [6]. However, the large majority of current methods used for calculating muscle 51 

forces target, among the infinite possible solutions, the single muscle synergy that minimizes a 52 

chosen cost function [10].  53 
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By using different energy- and stress-based cost functions, static optimization methods have 54 

been shown to provide muscle force patterns that are in qualitative agreement with the recorded 55 

electromyography (EMG) [11]. However, static optimization methods are known to 56 

underestimate the contribution of balanced agonist-antagonist muscle contractions [12], the so-57 

called muscle co-contractions, which are essential in a number of circumstances. For example, 58 

muscle co-contractions are important in (a) controlling the joint impedance and stability during 59 

daily activities [13] and (b) for executing motions characterized by rapid changes of joint 60 

torque, such as those occurring while landing [14] and running [15]. Muscle co-contractions 61 

have also been found to determine the hip force during activity in terms of magnitude, 62 

distribution and timing [13,16]. In cats, the static optimizations solution has been shown a poor 63 

predictor of the soleus and gastrocnemius force pattern [17].  64 

EMG-driven methods have been developed to calculate muscle force patterns that follow the 65 

muscle electrical activity recorded using electromyography (EMG). EMG-driven muscle forces 66 

are calculated by inputting the EMG signal to muscle excitation- and contraction-dynamic 67 

models, which are then used to solve the dynamic problem of the motion [18–20]. However, 68 

model simplifications and measurement errors cause inconsistencies between the motion being 69 

studied and the calculated EMG-driven muscle forces. Inverse EMG-driven models solve the 70 

muscle load sharing problem by forcing the static optimization solution within an arbitrarily 71 

defined interval around the calculated EMG-driven muscle force to ensure that a solution to the 72 

problem exists [19]. Forward EMG-driven models use optimization-based procedures to tune 73 

the model so that the calculated EMG-driven muscle forces generate the desired motion of the 74 

model [18,20]. Lloyd and Besier [18] used an EMG-driven model of the knee-spanning muscles 75 

to estimate the knee torque. Sartori et al. [20] used a lower-limb model to calculate muscle 76 

forces during walking, running, sidestepping and crossover cutting manoeuvres. However, the 77 

single representative muscle synergy calculated using both EMG-driven and static optimization 78 
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methods cannot provide information about the spectrum of muscle synergies driving motion 79 

[18–20].  80 

Another possibility is to explore the entire solution space of the muscle load-sharing problem 81 

[21]. The space of physiologically possible muscle synergies can be described as the solution 82 

space of the inverse, highly indeterminate, linear problem of muscle equilibrium at the joints, 83 

which can be geometrically represented by a bounded portion of a hyper-plane in the muscle 84 

force domain [11]; its orientation, offset and boundaries are respectively determined by the 85 

muscle lever arms, joint torques and physiological constraints of muscle force. Heino et al. [22] 86 

combined Bayesian statistics and Markov Chain Monte Carlo (MCMC) methods for exploring 87 

the solution space of highly indeterminate inverse linear problems in a software called 88 

METABOLICA, which uses Bayesian statistics to estimate the posterior probability density 89 

function (PDF) for the unknowns and the MCMC algorithm to sample the estimated PDF. By 90 

constraining muscle forces between zero and the muscle peak force, this approach has been 91 

used to explore the muscle potential to generate force during a single walking frame [21]. No 92 

study has investigated the natural unpredictable variability of muscle forces during activity. 93 

Combining musculoskeletal models, Bayesian statistics, MCMC sampling methods and EMG-94 

driven muscle force modelling is a viable solution for calculating the spectrum of either 95 

potential or physiologically plausible musculoskeletal forces during activity.  96 

The aim of this study was to investigate the repertoire of muscle synergies during walking. 97 

The lower-limb joint torques, muscle lever arms, muscle force constraints and the EMG signals 98 

for seven walking trials were taken from earlier studies [23,24]. The spectrum of muscle 99 

recruitment strategies was calculated using Bayesian statistics and MCMC sampling methods, 100 

while EMG-driven muscle forces were calculated using the available EMGs and a Hill-type 101 

muscle excitation- and contraction-model. The model was characterised by studying the 102 

consistency between EMG-driven forces and the model of the motion, and comparing the 103 
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proposed method with a commonly used static optimization procedure. Finally, the muscle 104 

potential to generate force and the spectrum of physiologically plausible muscle forces were 105 

calculated and analysed. 106 

 107 

 108 

109 
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MATERIALS AND METHODS 110 

Model development 111 

The model, developed for studying possible muscle recruitment strategies during motion, 112 

was based on an earlier lower-limb model of a complete stride [23]. The complete motion 113 

capture is available for download at www.physiomespace.com (key-word: 114 

LHDL_1stMatchedVolunteer_MOCAP). EMGs were recorded for 15 lower-limb muscles (i.e., 115 

gluteus maximus, gluteus medius, rectus femoris, vastus lateralis, vastus medialis, 116 

semitendinosus, biceps femoris long head, tibialis anterior, extensor digitorum, extensor 117 

hallucis, peroneus longus, soleus, gastrocnemius lateralis, gastrocnemius medialis, flexor 118 

digitorum) using a TelEMG® system (BTS, Milan, Italy, 2000 Hz). The model, implemented 119 

in Matlab (The MathWorks, Natick, MA, USA), is generic in that it can be used to study the 120 

muscle load sharing problem of any musculoskeletal model and task of motion. The analysis is 121 

described in four parts: (1) the gait model; (2) the calculation of the muscle force potential, 122 

hereinafter referred to as physiologically possible muscle forces; (3) the calculation of the 123 

spectrum of muscle forces that represent the unpredictable variability of the muscle recruitment 124 

process, hereinafter referred to as physiologically plausible muscle forces; and, (4) data 125 

analysis. 126 

The gait model 127 

The musculoskeletal model, including the joint angles and torques while walking was 128 

obtained from earlier studies [23,25,26] (Fig. 1). In summary, the lower-limb musculoskeletal 129 

model was a muscle-actuated articulated system based on the work of Delp et al. [27], whose 130 

anatomy was taken from the computed-tomography images and dissection of an 81 year-old 131 

female donor (63 kg weight, 167 cm height). The articulated system was a 13-segment, 15 132 

degree-of-freedom system, actuated by 84 Hill-type muscle-tendon units. The inertial 133 

http://www.physiomespace.com/
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properties were calculated assuming homogenous bone (1.42 g/cm3) and soft-tissue (1.03 134 

g/cm3) density [28]. The physiological cross section area (PCSA) was calculated from the 135 

muscle volume and length. The peak isometric muscle stress was assumed equal to 1.37 MPa, 136 

the upper bound of published values [29]. The remaining muscle parameters were based on the 137 

work of Delp et al. (1990). The gait simulation used skin-mounted marker trajectories (Vicon 138 

Motion Capture, Oxford UK, 100 Hz) and ground reaction forces at both feet (Kistler 139 

Instrument AG, Switzerland, 2000 Hz), recorded following the protocol proposed by Leardini 140 

et al. (2007) [30]. Joint angles and torques were calculated using the inverse kinematic, dynamic 141 

and static optimization algorithms implemented in Opensim [31]. The model yielded joint 142 

torques within published values, hip contact forces in agreement with in vivo measurements 143 

and muscle force patterns in good qualitative agreement with corresponding EMG recordings 144 

[23,25,26]. 145 

Physiologically possible muscle and joint forces 146 

Physiologically possible muscle forces are defined as muscle forces within physiological 147 

boundaries, generating the joint torque from inverse dynamics and assuming that muscle 148 

activation can range from zero to full activation. Therefore, the muscle’s force generating 149 

potential is represented by the boundaries of physiologically possible muscle forces. For each 150 

walking frame, the instantaneous equilibrium equation at the joints (Eq. 1), representing the 151 

muscle load sharing problem, was determined by extracting the muscle lever arm, the muscle 152 

constraints and the net joint torques from an earlier simulation of walking [23]. The equation 153 

takes the form 154 

ቊܤധ × തܨ = ധܤ;ഥܯ א Ը௠×௡;ܨത א Ը௡;ܯഥ א Ը௠ܨ௟ഥ < തܨ < ௨ഥܨ  Eq. 1 155 

where ܤധ is the matrix of muscle lever arms, Fത is the muscle force vector, Mഥ  is the joint torque 156 

vector, ܨ௟ഥ  and ܨ௨ഥ  are respectively the lower and the upper muscles force boundaries, m is the 157 



  Martelli et al. 

  9 

number of degree-of-freedom of the articulated system and n is the number of muscles in the 158 

model. The peak muscle force was calculated using a Hill-type muscle model. The active and 159 

passive force-length relationships were taken from the work of Thelen [32], while the force-160 

velocity relationship was taken from the work of Delp et al. [27]. Muscle force vectors within 161 

the spectrum were categorised using a single parameter, or muscle co-contraction, defined as 162 

the difference between the actual muscle force and the minimal force required to generate a 163 

given joint torque. Each muscle force vector, solution of the muscle recruitment problem, was 164 

thus composed by a first minimal co-contraction component, represented by the static 165 

optimization solution, and a second component or muscle co-contraction force component. The 166 

muscle co-contraction level was assumed the fraction between the actual muscle co-contraction 167 

force component and the difference between the peak muscle force and the static optimization 168 

solution. The lower bound of muscles force ܨ௟ഥ  was set to zero, mimicking the muscle inability 169 

to sustain compressive forces. The upper bound of muscle forces ܨ௨ഥ  was defined by studying 170 

five uniformly distributed co-contraction levels from zero (i.e., the optimization solution) to 171 

full co-contraction (i.e., the peak muscle force vector). Samples of physiologically possible 172 

muscle forces, solutions of Eq. 1, were calculated using METABOLICA [22]. The software 173 

interprets the vector of muscle forces ܨത as a multivariate random variable characterized by its 174 

probability density function (PDF) and it samples the calculated PDF using a Markov Chain 175 

Monte Carlo (MCMC) algorithm. The vector of muscle force Fത was assumed uniformly 176 

distributed [21]. Thus, the prior probability density function of muscle forces takes the form 177 

௨ഥܨ)Ȁ(തܨ)Ȁ ߙ (തܨ)௣௥ߨ െ  ത) Eq. 2 178ܨ

where Ȁ(ܨത) takes on the value of one if all components of the argument are positive and 179 

vanishes otherwise. The posterior PDF describing how ܨത is distributed is  180 

 Eq. 3 181 (തܨ|ഥܯ)ߨ(തܨ)௣௥ߨ ߙ (ഥܯ|തܨ)ߨ
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meaning that the posterior probability density function of muscle forces ߨ(ܨത|ܯഥ) is 182 

proportional to the prior PDF, ߨ௣௥(ܨത), and the sensory information about the system states 183 ߨ(ܯഥ|ܨത), or likelihood. The stability of motion was defined by assuming the joint torque vector 184 ܯഥ the deterministic value calculated using inverse dynamics. For each walking frame, Markov 185 

Chain Monte Carlo (MCMC) algorithm was used to generate the ensemble {ܨത଴,ܨതଵ, �  ത௡} of 186ܨ,

200,000 samples whose entries are random realizations drawn from Eq. 3. The null space of the 187 

matrix ܤധ, containing the muscle lever arm extracted from the model [23], is calculated using 188 

Singular Value Decomposition. The vector ܨത is decomposed into a component ܨଵഥ  lying on the 189 

null space and a component ܨଶതതത orthogonal to ܨଵഥ . Samples are drawn from the solution space 190 

using an MCMC algorithm by separately sampling the component ܨଵഥ  using a hit-and-run 191 

algorithm and the component ܨଶതതത using a Gibbs algorithm [22]. 192 

The hip, knee and ankle reaction forces were calculated using the equation 193 

തതതܴܬ = തതതௗܴܬ + σ ത௜௡௜ୀଵܨ  Eq. 5 194 

where ܴܬതതതௗ is the joint reaction force vector calculated using inverse dynamics, and ܨത௜ is the 195 

ith joint-spanning muscle force vector.  196 

Physiologically plausible muscle forces 197 

Physiologically plausible muscle forces are defined as forces most likely to occur during 198 

normal gait and can be seen as a sub-group of the physiologically possible muscle forces. 199 

Therefore, physiologically plausible muscle forces were calculated by combining 200 

physiologically possible muscle forces and the variability of the muscle electrical activity from 201 

repeated EMGs.  202 

Muscle forces were calculated using EMGs and Hill-type excitation- and contraction-203 

dynamic models according to the guidelines proposed by Zajac [33]. The raw EMG signal was 204 

band-pass filtered (zero-pole-gain design, 8th order, Butterworth filter) with cut-off frequencies 205 



  Martelli et al. 

  11 

of 10 and 400 Hz to minimize noise due to motion artifacts and the EMG amplifier [34]. The 206 

filtered EMG signal was rectified and low-pass filtered (zero-pole-gain design, 2nd order, 207 

Butterworth filter) with cut-off frequency of 6 Hz [33] and a 22 ms electromechanical delay, 208 

representing the muscle time response to stimuli, applied to synchronize the processed signal 209 

with the muscle response [35]. Normalisation of the processed EMG signal was then necessary 210 

to obtain a signal between zero and one representing muscle activation [33]. We scaled the 211 

processed EMG signal to match the peak muscle activation calculated using static optimization 212 

[23]. The EMG-driven muscle force was calculated using the calculated muscle activation, the 213 

active and passive force-length relationships from the work of Thelen [32] and the force-214 

velocity relationship from the work of Delp et al. [27] for all seven gait repetitions. The force 215 

range, that is, the upper (ܨ௨ഥ ) to the lower (ܨ௟ഥ) bound of muscle forces of physiologically 216 

plausible muscle forces, was assumed at the 0.68 quantile (i.e. mean ± SD) of the EMG-driven 217 

muscle force distribution projected onto the solution space of Eq. 1. Samples of physiologically 218 

plausible muscle forces were generated using METABOLICA by constraining muscle forces 219 

within the calculated force range for selected muscles and between zero and the peak 220 

physiological force for the remaining muscles.  221 

Data analysis 222 

Simulations were run on a desktop PC (Window 7, 64 bit, Intel Xenon E5-2630 v2, 2.60 223 

GHz, 64 GB of memory). The gait cycle was divided into clusters of time frames and processed 224 

by 12 different CPUs using parallel computing. The speed in generating muscle force samples 225 

was output by the code.  226 

The gait model was assessed by comparing the donor’s PCSAs to corresponding 227 

measurements from donors of 83±9 year of age [36]. The muscle lever arm and the joint torques 228 

in the model were compared to corresponding published values [36–40]. Calculation of muscle 229 

forces were verified by comparing the joint torque generated by the muscles with that calculated 230 
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using inverse dynamics. The consistency between the EMG-driven muscle forces and the 231 

motion was assessed by using the distance between the EMG-driven muscle forces and the 232 

solution space of Eq. 1 as the metric; the average force distance over gait and muscles, and the 233 

muscle-by-muscle average distance during gait were calculated. The nearest muscle force 234 

vector to the EMG-driven force vector, henceforth referred to as the best-fit solution, was used 235 

for comparing the ability of the present method with that of a commonly used static 236 

optimization procedure in describing the recorded EMG pattern. To this purpose, we calculated 237 

(a) the linear regression between the EMG-driven muscle force and the best-fit muscle force, 238 

and (b) the linear regression between the EMG-driven muscle force and the static optimization 239 

solution obtained by minimizing the squared sum of muscle stress [27,31].  240 

Alternative muscle recruitment strategies were studied in terms of physiologically possible 241 

and plausible muscle and joint forces. Physiologically possible forces were assessed by plotting 242 

the boundaries of muscle and joint forces for a progressive increase of the muscle co-contraction 243 

level. Physiologically plausible muscle forces were calculated by inputting to the model a sub-244 

set of EMGs [19]; for this study we used six of the principal lower-limb muscles spanning the 245 

hip, the knee and the ankle (gluteus maximus, rectus femoris, vastus lateralis, biceps femoris 246 

long head, tibialis anterior and gastrocnemius medialis). The available EMGs not input to the 247 

model were compared with the respective force spectrum from the model.  248 

249 
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RESULTS 250 

The process resulted in 103 M and 20.6 M of different muscle forces respectively 251 

representing potential and plausible muscle forces driving walking. The algorithm generated 252 

909 muscle force vectors, solution of Eq. 1, per second per processor.  253 

The model anatomy and motion were in agreement with earlier studies. The muscle lever 254 

arms were consistent with those reported in earlier theoretical and experimental studies [37–255 

39,41–44] (Table 1). The average donor’s muscle PCSA was 6.15 cm2, which represent the 25th 256 

lower percentile of the elderly population reported by Ward et al. [36] (Table 2). The joint 257 

torques pattern was in agreement with that reported by Benedetti and co-workers [40] (Fig. 2). 258 

The highest unbalance between the joint torque driving walking and the net joint torque 259 

produced by the muscles was 3x10-11 Nm. The distance between the model and the EMG-driven 260 

force, averaged over gait and muscles, was below 40 N, while the peak muscle-by-muscle 261 

average distance over gait increased up to 108 N for 15 EMGs input to the model (Fig. 3). The 262 

best-fit solution better represented the EMG pattern than it did the static optimization solution 263 

(Fig. 4). The coefficient of determination between the best-fit solution and EMG-driven muscle 264 

forces was R2 = 0.94, and the average error was RMS = 19 N (Fig. 5). The static optimization 265 

solution showed major discrepancies in the muscle force pattern during (a) the early stance 266 

phase of walking for the rectus femoris, (b) the stance-to-swing phase for the rectus femoris 267 

and the biceps femoris long head, and (c) the late swing phase for the gluteus maximus and the 268 

tibialis anterior. The coefficient of determination between the static optimization solution and 269 

EMG-driven muscle forces was R2 = 0.38, and the average error was RMSE = 61 N.  270 

Physiologically possible muscle synergies comprised muscle forces ranging from zero to the 271 

peak muscle force for most muscles. Twenty-seven out of the 34 lower-limb muscles ranged 272 

from zero to their peak force whereas seven muscles (gluteus maximus, adductor magnus, 273 

semimembranosus, vastus medialis, vastus lateralis, vastus medialis and soleus) couldn’t reach 274 
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their peak force. The resulting upper and lower boundaries of the hip, knee and ankle force 275 

spectrums showed typical double-peak patterns; the upper force boundary reached 11.3 BW, 276 

6.2 BW, 7.6 BW, and the lower boundary reached 4.4 BW, 2.5 BW and 3.5 BW at the hip, the 277 

knee and the ankle, respectively. Increasing the upper boundary of the muscle force up to 60% 278 

muscle co-contraction caused a proportional shift upward of the upper force boundary of 279 

possible muscle and joint forces. Further increasing the upper bound of muscle forces caused a 280 

complex non-linear response of muscle and joint forces. Negligible changes of the lower force 281 

boundary were observed by allowing different muscle co-contraction levels (Fig. 6 and 7). 282 

Physiologically plausible muscle forces well represented the pattern of the muscle electrical 283 

activity (Fig. 8 and 9). The gluteus maximus showed a consistent double-peak activity, reaching 284 

its peak values during the early stance (5% gait) and mid-swing (65% gait) phases of walking. 285 

The biceps femoris long head peaked at 10%, 50% and 90% gait. The rectus femoris peaked at 286 

heel strike (7% gait) and prior to toe-off (50% gait). The vastus lateralis peaked at heel-strike 287 

(5% gait) and prior to toe-off (43% gait). The medial gastrocnemius peaked at 40% gait and 288 

showed a smaller second peak at mid-swing (70% gait). The tibialis anterior showed a double-289 

peak activity, reaching its peak at early stance (5% gait) and mid-swing (75% gait). The EMG-290 

driven force range for the gluteus medius, vastus medialis, semitendinosus, extensor hallucis, 291 

extensor digitorum, peroneus longus, soleus, gastrocnemius lateralis and flexor digitorum, 292 

which were not input to the model, was smaller than the calculated force range (Fig. 9).  293 

DISCUSSION 294 

The aim of this study was to investigate possible muscle synergies during walking. We used 295 

a human gait model in conjunction with Bayesian statistics, MCMC sampling method and 296 

EMG-driven muscle force modelling to calculate muscle forces in full respect of physiological 297 

and dynamical constraints. The gait model provided reliable information about all the relevant 298 

musculoskeletal parameters during walking, including muscle lever arm, muscle size and joint 299 
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torques [36–40]. Muscle forces were calculated in an efficient manner, providing information 300 

about (a) the potential muscle and joint forces, and (b) the spectrum of muscle forces consistent 301 

with the muscle electrical activity input to the model.  302 

The algorithm generated 909 muscle force samples per second per processor. Therefore, the 303 

present method can be used to calculate the spectrum of muscle forces during motion on 304 

standard desktop machines and can take advantage from using parallel computing on 305 

multiprocessor systems. The model could well represent, on average, EMG-driven muscle 306 

forces. However, the muscle-by-muscle distance between the model solutions and the EMG-307 

driven muscle forces increased for an increasing number of EMG signals input into the model. 308 

This inconsistency may explain why EMG-driven models may not offer a solution when several 309 

EMGs are input to the model [19]. Other authors optimized the model parameters within 310 

physiological boundaries, solving the model consistency problem and ensuring that a solution 311 

to the motion problem exists [18,20,45]. However, the optimized model likely provides little 312 

information about how the calculated solution represents the subject under study because of the 313 

typically large variability of physiological parameters. More work is necessary to understand 314 

how model simplifications and input errors influence model calculations. To this purpose, the 315 

proposed method is well suited to take in input the variability of joint torques and EMGs, either 316 

caused by the natural unpredictable variability of motion or by uncertainties on measurements. 317 

The best-fit solution in the model more closely represented (R2 = 0.94) the muscle electrical 318 

activity than a static optimization procedure (R2 = 0.38) largely accepted for simulating normal 319 

walking [11,31], without requiring any assumptions about the adopted sensorimotor behaviour. 320 

Therefore, the proposed method can be used to calculate muscle forces when the objective of 321 

the sensorimotor behaviour is variable or not known, including in the instances of either 322 

physiological or pathophysiological neuromotor conditions.  323 
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Physiologically possible muscle synergies comprehend muscle forces ranging from zero to 324 

the peak muscle force (Fig. 6) and joint contact force of up to 11.3 BW at the hip (Fig. 7). Up 325 

to 60% muscle co-contraction caused a linear increase of muscle and joint forces, whereas 326 

higher muscle co-contraction caused a non-linear increase of the same quantities (Fig. 6 and 7). 327 

While the probability for these extreme loading conditions to occur has to be determined, these 328 

findings may have implications in studying muscle ability to control joint impedance and 329 

stability [13], the yet unresolved fracture mechanism for low-energy osteoporotic fractures [46], 330 

and may reveal important information for the development of exercise therapies for bone health 331 

[47]. Physiologically plausible muscle force patterns well represented the muscle electrical 332 

activity input to the model (Fig. 9). Therefore, the proposed approach can be used to study deep 333 

aspects of human motion. For example, the calculated spectrum can be used for exploring how 334 

different muscles can combine their action in response to the same motor demand.  335 

To the best of the authors’ knowledge this is the first numerical study exploring the spectrum 336 

of muscle synergies during motion. The model has been shown capable of yielding kinematic, 337 

kinetics, hip contact forces and muscle firing patterns in agreement with published patterns for 338 

multiple activities [23,25], providing confidence in the reliability of the studied muscle load 339 

sharing problem. The large variability of physiologically possible and physiologically plausible 340 

muscle forces is consistent with the known ability of the CNS for adopting very different muscle 341 

recruitment strategies [16,48]. Although no measurements of the joint contact force under full 342 

muscle co-contractions are available, the range of the calculated hip contact force (3.7-11.4 343 

BW) compares well with the hip contact force of 8.7 BW measured by Bergmann and co-344 

workers during stumbling, a value that has been largely attributed to muscle co-contraction 345 

rather than to motion dynamics [16]. This provides confidence in the calculated spectrum of 346 

muscle forces. 347 
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The main limitation of the present study is that the majority of the muscle forces that were 348 

not constrained between EMG-driven muscle force boundaries (e.g., the semitendinosus) 349 

showed a much higher variability (Fig. 9) than that obtained from repeated EMG recordings, 350 

indicating that the calculated spectrum of physiologically plausible muscle forces is larger than 351 

that observed in vivo. While it is possible that a reduced number of EMGs input to the model 352 

[19] explain the majority of the muscle force variability, the optimal number and type of EMG 353 

signals has to be determined. Second, the processed EMG signal was normalised using the peak 354 

muscle activation calculated using static optimization, whereas others normalized the processed 355 

EMGs to a maximum voluntary contraction task [18,19]. However, a standardized EMG 356 

normalization process has yet to be defined [19]. Third, the present results cannot be generalized 357 

due to the single anatomy used. More research is necessary to solve this limitation. Fourth, the 358 

joint torque was set to the deterministic values calculated using inverse dynamics, thus 359 

neglecting the joint torque uncertainties  attributable to model assumption and measurement 360 

errors [49]. However, this allowed studying the isolated effect of alternative muscle recruitment 361 

strategies on calculated muscle and joint forces. Last, the peak isometric muscle stress was the 362 

upper boundary of published values (1.37 MPa, [29]), possibly causing an overestimation of 363 

calculated forces. However, the upper boundary of muscle forces is a linear function of the peak 364 

isometric muscle stress while the lower boundary is almost invariant [23]. Therefore, the 365 

boundaries of muscle and joint forces for every intermediate value of the peak isometric stress 366 

can be easily extrapolated. 367 

Despite the study limitations, present findings are important for the biomechanics 368 

community in that they provide a viable numerical approach for modelling the stochastic nature 369 

of the muscle recruitment process. The present results strengthen the notion that muscle co-370 

contraction is important in studying human motion, and provide a viable numerical approach 371 

for studying physiological and pathophysiological conditions characterized by complex 372 
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sensorimotor behaviours. Moreover, because the proposed approach makes no assumptions on 373 

the “normality” of neuromotor control, we expect it to be equally effective in subjects affected 374 

by severe neuromuscular pathologies. 375 
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TABLES 534 

Table 1 – The range of the muscle lever arm (cm). 535 

Muscle bundles  The model 
Scheys 
et al., 
[37] 

Arnold 
et al., 
[38] 

Bonnefoy 
et al., 
[39] 

White et al. 
[41] 

Kepple et 
al. [42] 

Pierrynowski 
et al. [43,44] 

Hip abduction moment arm               
 Gluteus medius anterior 4.7 : 5.7 1.0 : 4.0      
 Gluteus medius medial 5.1 : 5.7 1.8 : 4.5      
 Gluteus medius posterior 4.1 : 4.9 0.7 : 4.8      
 Gluteus minimus anterior 4.1 : 4.7 0.2 : 3.8      
 Gluteus minimus medial 4.2 : 5.3 1.0 : 4.0      
 Gluteus minimus posterior 4.3 : 5.7 0.0 : 4.2      
  Tensor fascia latae 4.7 : 6.8 2.0 : 6.5   6.0 : 7.4 12.4 : 13.2 11.6 : 12.4 3.7 : 5.3 
Hip adduction moment arm         
 Adductor brevis 5.4 : 7.5 1.0 : 6.0      
 Adductor longus 5.3 : 7.0 2.2 : 7.7      
 Adductor magnus superior 6.5 : 8.2 3.0 : 6.0      
 Adductor magnus medial 6.7 : 7.7 3.0 : 6.0      
 Adductor magnus inferior 3.2 : 6.2 2.2 : 6.1      
  Gracilis 8.4 : 9.4 1.0 : 7.8   5.6 : 6.2 2.4 : 3.1 2.8 : 4.4 1.5 : 4.5 
Hip flexion moment arm         
 Ileo-psoas 3.5 : 4.1       
 Rectus femoris 2.1 : 4.2 1.9 : 5 2.3 : 3.5 5.3 : 6.1 8.8 : 10.2 9.2 : 11.2  2.4 : 5.0 
  Sartorius 2.0 : 7.3 1.8 : 7           
Hip extension moment arm          
 Biceps femoris long head 2.5 : 6.0 0.2 : 6.0      
 Gluteus maximus anterior 4.6 : 5.3 0.0 : 4.0      
 Gluteus maximus medial 5.3 : 6.9 0.0 : 4.5      
 Gluteus maximus posterior 4.8 : 9.0 0.0 : 6.2      
 Semimembranosus 1.4 : 5.4 0.0 : 5.9 3.1 : 4.1     
  Semitendinosus 2.2 : 6.3 0.0 : 6.0 3.3 : 5.2         
Knee flexion moment arm          
 Biceps femoris long head 4.1 : 5.5   5.7 : 7.1 2.1 : 3.5 3.5 : 4.9 6.1 : 7.1 
 Biceps femoris short head 3.0 : 4.2       
 Semimembranosus 2.9 : 4.1   6.2 : 6.6 2.2 : 5.2 2.7 : 5.3 3.3 : 5.5 
  Semitendinosus 2.7 : 4.4             
Knee extension moment arm         
 Rectus femoris 2.5 : 5.2   3.7 : 4.3 2.1 : 2.7 2.8 : 3.4 4.3 : 5.1 
 Vastus intermedius 2.6 : 5.3       
 Vastus lateralis 2.5 : 5.0       
  Vastus medialis 2.4 : 4.9             
Ankle dorsi-flexor moment arm         
 Tibialis anterior 3.1 : 3.6   2.5 : 2.9 6.3 : 7.7 3.6 : 4.1 2.3 : 2.5 
  Extensor digitorum 2.7 : 3.1             
Ankle plantar-flexor moment arm         
 Triceps surae 3.4 : 5.0   4.4 : 5.6 4.9 : 6.5  5.3 : 6.5 6.3 : 7.1 
 Peroneus 1.7 : 2.3   2.8 : 3.0 5.7 : 7.3 2.9 : 4.0  1.7 : 1.9 
 Tibialis posterior 1.4 : 1.8   2.3 : 2.5 2.9 : 4.3 1.7 : 2.1  1.7 : 1.8 
 Flexor hallucis 2.1 : 2.2       

 536 
537 
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Table 2 – Physiological cross section areas (PCSAs) in the model and corresponding published 538 
values (cm2). 539 
 540 

Muscles 
Ward et al. [36]^ The donor* 

Mean (STD) Left  Right 
Psoas major 7.7 (2.3) 3.8 2.9 
Iliacus 9.9 (3.4) 4.0 2.7 
Gluteus maximus 33.4 (8.8) 27.6 24.1 
Gluteus medius 33.8 (14.4) 14.9 15.4 
Gluteus minimus N/A 2.5 N/A 
Sartorius 1.9 (0.7) 1.2 1.1 
Tensor Fascia Lata N/A 2.6 2.4 
Rectus femoris 13.5 (5.0) 2.1 2.7 
Vastus lateralis 35.1 (16.1) 9.3 9.3 
Vastus intermedius 16.7 (6.9) 6.4 7.0 
Vastus medialis 20.6 (7.2) 11.7 12.0 
Gracilis 2.2 (0.8) 1.6 1.3 
Adductor longus 6.5 (2.2) 5.1 4.1 
Adductor brevis 5 (2.1) 5.4 6.0 
Adductor magnus 20.5 (7.8) 12.7 8.5 
Biceps femoris long head 11.3 (4.8) 3.3 3.4 
Biceps femoris short head 5.1 (1.7) 4.6 4.0 
Semitendinosus 4.8 (2.0) 2.9 3.0 
Semimembranosus 18.4 (7.5) 12.8 16.1 
Tibialis anterior 10.9 (3) 4.3 4.0 
Extensor hallucis lonmgus 2.7 (1.5) 1.7 2.7 
Extensor digitorum longus 5.6 (1.7) 1.4 3.7 
Peroneus longus 10.4 (3.8) 4.5 5.9 
Peroneus brevis 4.9 (2.0) 3.4 4.4 
Gastrocnemius medial head 21.1 (5.7) N/A N/A 
Gastrocnemius lateral head 9.7 (3.3) 6.3 6.1 
Soleus 51.8 (14.9) 10.5 11.2 
Flexor hallucis longus 6.9 (2.7) N/A N/A 
Flexor digitorum longus 4.4 (2) 2.5 2.6 
Tibialis posterior 14.4 (4.9) 1.1 1.4 
Mean  13.9 (5.0) 6.1 6.2 

 541 
* The physiological cross section area was calculated by measuring the muscle volume and length and using published estimates of the 542 
pennation angle [50]. 543 
^ PCSA values represent the mean and the standard deviation of measurements taken from 21 elderly donors (83 ± 9 years; male:female ratio, 544 
9:12) [36]. 545 
 546 

 547 

 548 

  549 
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FIGURES 550 

Fig. 1:  The musculoskeletal model (a), the motion capture scheme (b) and the model during 551 

an intermediate frame of walking (c). 552 

Fig. 2:  Comparison between the calculated joint torque (solid black) at the hip, the knee and 553 

the ankle and the joint torque bands (grey bands) reported by Benedetti et al. [40] for 554 

healthy subjects. 555 

Fig. 3:  Distance between EMG-driven muscle forces and the solution space of the muscle 556 

load sharing problem for an increasing number of EMGs input to the model. In blue, 557 

the muscle distance averaged over gait and muscles. In green, the muscle-by-muscle 558 

distance averaged over gait. 559 

Fig. 4:  Force patterns for the EMG-driven, the static optimization and the best-fit muscle 560 

synergy extracted from the solution space of the muscle recruitment problem. 561 

Fig. 5:  Linear regression analysis between the EMG-driven muscle forces, the static 562 

optimization solution (right) and the best-fit muscle synergy (left). 563 

Fig. 6:  Physiologically possible muscle forces. The dashed-black line represents the peak 564 

muscle force. The solid-red and solid-blue lines represent the upper and the lower 565 

muscle force boundary (low-band passed at 6 Hz, zero-pole design, sixth-order 566 

Butterworth filter). Each level represents an admissible muscle co-contraction of 0.2, 567 

0.4, 0.6, 0.8 and 1.   568 

Fig. 7:  Physiologically possible hip, knee and ankle contact forces. The shaded grey area 569 

represents possible joint forces calculated constraining muscle forces between zero 570 

and the peak muscle force. The solid-black lines represent the joint contact force 571 

boundary for an admissible muscle co-contraction of 0.2, 0.4, 0.6, 0.8 and 1 (low-572 

band passed at 6 Hz, zero-pole design, sixth-order Butterworth filter). 573 
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Fig. 8:  The 15-channel EMG signals for the seven gait trials. The shaded areas represent the 574 

0.68 quantile (i.e. mean ± SD) of the EMG distribution. The EMGs sub-set used to 575 

calculate the spectrum of physiologically plausible muscle forces is shaded in red.  576 

Fig. 9:  Physiologically plausible muscle forces. The selected muscle force spectrums 577 

constrained between EMG-driven force boundaries are shaded in red whereas the 578 

remaining muscle force spectrums are shaded in grey. For these latter, the dashed-579 

black line represents the peak muscle force.  580 

  581 
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Figure 1 582 
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Figure2 585 
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Figure 3 588 
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Figure 4 591 
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Figure 4 594 
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Figure 5 597 
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Figure 6 600 
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Figure 7 603 
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Figure 8 606 
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Figure 9 609 
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