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ABSTRACT

Muscle forces can be selected from a space of muscle recruitment strategiesdiee pr
stable motion and variable muscle and joint forces. However, current optimizagtbods
provide only a single muscle recruitment strate@gie modelled the spectrum of muscle
recruitment strategies while walking. The equilibrium equations at the jointsglenus
constraints, static optimization solutions, andch&nnel electromyography recordings for
seven walking cycles were taken from earlier studies. The spectrum of musclewarces
calculated using Bayesian statistics and MCMG@Gile EMG-driven muscle forces were
calculated using EM@riven modelling. We calculated the differences between the spectrum
and EMGdriven muscle force for 1 to 15 input EMGs and we identified the muscle strategy
that best matched theecorded electromyography pattern. The bdéist strategy, static
optimization solution, and EM@riven force data were compared using correlation analysis.
Possible and plausible muscle forces were defined as within physiological besanaiadi
within EMG boundaries. Possible muscle and joint forces were calculated byagongtthe
muscle forces between zero and the peak muscle force. Plausible muscle forces were
constrained within six selected EMG boundaries. The spectrum todeén force difference
increased from 40 N to 108 N for 1 to 15 EMG inputs. The-fiestuscle strategy better
described the EM@lriven pattern (R= 0.94; RMSE = 19 N) than the static optimization
solution (R = 0.38; RMSE = 61 N). Possible forces for 27 of 34 muscles varied between zero
and the peak muscle force, inducing a peak hip force of 11.3weiyts. Plausible muscle
forces closely matched the selected EMG patterns; no effect of the EMG cunstaai
observed on the remaining muscle force ranges. The model can be used altstodyive
muscle recruitment strategies in both physiadal and pathophysiologicaheuromotor

conditions.
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INTRODUCTION

Internal forces that physical activigngendeon our skeleton through muscles and joints
are important for studying human moti¢h] and skeletal mechanid®]. However, the
biomechanical assessment of muscle forces is difficult because the muscudbskstem is
highly redundanf3] and the sensorimotor control system isimngically variablg4]. Muscles
recruitmenttarges multiple and competing goaland depends on #htask being executed,
subjective healthy condition ambisethat plague the sensory inputs and muscles output in
determining the appropriateotor command5]. A better understanding of the repertoire of
alternative sensorimotor control strategies may reveal impantatidying human motion and

skeletal mechanids].

According to the uncontrolled manifold hypothesis, our central nervous system ubkes all
redundant degrees of freedom to ensure flexible and stable nj6tioRossible muscle
synergies can therefore be defined as organizations of muscle forcealitiaegbint torques
and motion or, in other wordsalternativesolutions tothe muscle load sharing problem
Kording and Wolpertshowed that our central nervous system (CNS) likelgrpretsthe
problem of optimal performance in a statistical fashion by weighting knigelgathered from
previous experieres and information gathered from multiple sensory modaljd¢s By
considering both types of information in the form of prior and likelihood, Bayesiastisgti
have been shown to properly describe the mechanism behind the generationenfemto
trajectorieq7], forces[8] and judgment timing9]. Likewise, our CNS may solve the muscle
load sharing problerf#] by recruiting muscles from a space of alternative solutiensuring
stable motiorj6]. However, the large majority of current methods used for calculating muscle
forces target, among the infiaipossible solutions, the single muscle synergy that minimizes a

chosen cost function [10].
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By using different energyand stres$ased cost functions, static optimization methods have
been shown to provide muscle force patterns that are inajiediagreement with the recorded
electromyography (EMG)[11]. However, static optimization methods are known to
underestimate theontributionof balanced agonistntagonist muscle contractiofi®], the se
called muscle ceontractions, which are essential in a number of circumstances. For example,
muscle cecontractions are important in (a) controlling the joint impedance and stabilibgdur
daily activities[13] and (b) for executing motions characterized by rapid changes of joint
torque, suclasthose occurring while landinid.4] and running15]. Muscle cecontractions
have also been found to determine the fupe during activity in terms of magnitue,
distribution and timing13,16] In cats, the static optimizations solution has been shown a poor

predictor of the soleus and gastrocnemius forcepdgtt7].

EMG-driven methods have been developed to calculate muscle force patterns that follow the
muscle electrical activity morded using electromyography (EMG). EMi@ven muscle forces
are calculated by inputting the EMG signal to muscle excita@ma contractiordynamic
models which are then used to solve the dynamic problem of the midis+#20] However,
model simplifications and measurement errors cause inconsistenciestéteenotion being
studied and the calculated EMfBiven muscle forces. Inverse EMfiven models solve the
muscle load sharing probleby forcing the static optimization solution within an arbitrarily
defined interval around the calculated EM@&ven muscle force to ensure that a solution to the
problem exist [19] Forward EMGdriven models use optimizatidrased procedures to tune
the model so that the calculated EM@ven muscle forces generate the desired motion of the
model [18,20] LIloyd and Besief18] used an EM@lriven model of the knegpanning mudes
to estimate the knee torque. Sartori ef20] used a lowefimb model to calculate muscle
forces during walking, running, sidestepping and crossover cuttampeuvresHowever, the

single representative muscle synergy calculated using both-&Mén and static optimization
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methods cannot provide information about the spectrum of muscle synergies driving motion

[18—20].

Another possibility is to explore themtiresolution space of the muscle legldaring problem
[21]. The space of physiologically possible muscle synergies can be describedsakition
space of the inverse, highly indeterminate, linear problem of muscle equilibritnen jatrtts,
which can be geometrically represented by a bounded portion of aplgperin the muscle
force domain[11]; its orientation, offset and boundaries are respectively determined by the
muscle lever arms, joint torques and physiological constraints of nfasmde Heincet al. [22]
combined Bayesian statistics and Markov Chain Monte Carlo (MCMC) methods foriegpl
the solution space of highly indeterminate inverse linear problems in a softeléed c
METABOLICA, which uses Bayesian statistics to estimate the posterior probability density
function (PDF) for the unknowns and the MCMC algorittamsample the estimated PDF. By
constraining muscle forces between zero and the muscle peak force, this appsoaeerh
used to explore the muscle potential to generate force during a single wadkirejZ1]. No
study has investigated the natural unpredictable varialityjuscle forces during activity.
Combining musculoskeletal models,y®aian statistics, MCMC sampling methods and EMG
driven muscle force modelling is a viable solution for calculating the spectfusither

potential or physiologically plausible musculoskeletal forces during activity

The aim of this study was to invesiig the repertoire of muscle synergies during walking.
The lowerlimb joint torques, muscle lever arpmsuscle force constraingd he EMG signals
for seven walking trialsvere taken fromearlier studieg23,24]. The spectrum of muscle
recruitment strategies was calculated using Bayesian stadistitd CMC sampling methods
while EMG-driven muscle forces were calculated using the available EMGs and-tygill
muscle excitation and contractioomodel. Themodel was characterised by studying the
consistency between EM@iven forcesand the model of thenotion, and comparinghe

5
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proposed methodvith a commonly usedstatic optimization procedur&inally, the muscle
potential to generate for@nd the spectrum gdhysiologically plausible muscle forces were

calculated and analysed
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MATERIALSAND METHODS

Model development

The model developed for studying possible muscle recruitment strategies during motion
was based oran earlier lowetimb modelof a complete stridg23]. The complete motion
capture is available for download atwww.physiomespace.com (key-word:
LHDL_1stMatchedVolunteer MOCAPEMGswere recorded for 15 lowdimb muscles (i.e.,
gluteus maximus, gluteus medius, rectus femoris, vastus lateralis, vastus medialis,
semitendinosus, biceps femoris long hetlialis anterior extensor digitorum, extensor
hallucis, peroneus longus, soleus, gastrocnemius lateralis, gastrocnendiiasisméexor
digitorum) using a TelEMG system (BTS, Milan, Italy, 2000 HZJhe modelimplemented
in Matlab (The MathWorks, Natick, MA, USAis generic in that it can be used to study the
muscle load sharing problem of any musculoskeletal model and task of motion. This amalys
described in four parts: (1) the gait mgd@) the calculation of the muscle force potential,
hereinafter referred to as physiologically possible muscle fo(8¢ghe calculation of the
spectrum of muscle forces that represent tipredictable variability of the muscle recruitment
process, hereinafter referred to as physiologically plausible musdesfand (4) data

analysis.

The gait model

The musculoskeletal modahcluding the joint angles and torques while walkimgs
obtaned from earlier studid23,25,26](Fig. 1) In summary, théower-limb musculoskeletal
modelwasa muscleactuated articulated system basedhtmwork ofDelp et al.[27], whose
anatomy wagaken fromthe computedomography images and dissectionanf81 yearold
female donor (63 kg weight, 167 cm height). The articulated systesa 13segment, 15

degreeof-freedom systemactuatedby 84 Hill-type musclegendon units. The inertial

7
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134  propertieswere calculated assuming homogenous bone (1.42 Yy/amd sft-tissue (1.03

135 g/en?) density[28]. The physiological cross section area (PCSA) was calculated from the
136 muscle volume and length. The peak isometric muscle stress was assumed equal t0,1.37 MPa
137 the upper bound of published valy28]. The remaining muscle parameters waessed on the

138 work of Delp et al.(1990) The gait simulation used skinounted marker trajectories (Vicon
139 Motion Capture, Oxford UK, 100 Hz) and ground reaction forces at both feet (Kistler
140 Instrument AG, Switzerland, 2000 Hzgcorded following the protocol proposed by Leardini
141 etal. (2007)30]. Joint angles and torques were calculated using the inverse kinematiciaynam
142  and static optimization algorithms implemented in Opendfj. The model yielded joint
143  torques within published vaés hip contact forces in agreement with in vivo measurements
144  and muscle force patterns in good qualitative agreement with corresponding EM@mgs

145  [23,25,26].
146 Physiologically possible muscle and joint forces

147 Physiologically possible muscle forces are defined as muscle forces piitysiological
148 boundaries, generatingpe joint torque from inverse dynamiesmd assuming that muscle
149 activationcan range from zero to full activation. Therefore, the muscle’s force ajarger
150 potential is represented by the boundaries of physiologically possible muses. feor each
151 walking frame, the instantaneous equilibrium equation at the joints (Eq. fgseeging the
152 muscle load sharing problem, was determined by extracting the muscle levéneamuscle
153 constraints and the net joint torques from an earlier simulation of wgd&#gThe equation

154 takes the form

DwFl — MR mxn. g n. yf m
155 BxF—M,BEER_,F_EER,MEER Eq. 1
F,<F<E
156 whereB is the matrix of muscle lever arnfsis the muscle force vectdy is the joint torque

157  vector,F, andF, are respectivelyhe lower and theipper muscles forceoundariesm is the
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158 number of degreef-freedom of the articulated system anis the number of muscles in the
159 model.The peak muscle force was calculated using atifik muscle model. The active and
160 passive forcdength relationsipis were taken from the work of Theli82], while the force

161 velocity relationship was taken from the work of Delp ef&d]. Muscleforce vectors within
162 thespectrumwere categorised using a single parameter, or musaterdoaction, defing as

163 thedifference between the actual muscle force and the minimal force required to generat
164 given joint torque. Each muscle force vector, solution ofhthecle recruitment problem, was
165 thus composed by a firghinimal coecontraction component, represted by the static
166  optimization solution, and a second component or muset@itraction forceomponentThe

167 muscle cecontraction level waassumedhe fractionbetweerthe actual muscle econtraction
168 force component and the difference between thk prescle force and the static optimization
169  solution.The lower bound of muscles for€gwas set to zero, mimicking the muscle inability
170 to sustain compressive forcdhe upper bound of muscle forc€s was definedby studying
171  five uniformly distributel co-contraction levels from zero (i,éhe optimization solution) to
172  full co-contraction (i.e.the peak muscle force vecto§amples of physiologically possible
173 muscle forces, solutions of Eq. 1, were calculated uslegaBoLICA [22]. The software
174  interpretsthe vector of muscle forcésas a multivariate random variable characterized by its
175 probability density function (PDF) and it samples the calculated PDF usiraykoWIChain
176  Monte Carlo (MCMC) algorithm. The vector of muscle foltevas assumed uniformly

177  distributed[21]. Thus, the prior probability density function of muscle forces takes the form
178 T, (F) a ®(F)O(F, — F) Eq. 2

179 where® (F) takes on the value of one if all components of the argument are positive and

180 vanishes otherwise. The posterior PDF describing haswdistributed is

181 n(F|M) a m,, (F)nr(M|F) Eqg. 3
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182 meaning that the posterior probability density function of muscle far¢€$M) is

183  proportional to the prior PDF,, (F), and the sensory information about the system states
184 m(M|F), or likelihood. Thestability of motionwas defined byssuming the joint torque vector
185 M the deterministic valuealculated using inverse dynamics. For each walking fridagkov

186 Chain Monte Carlo (MCMC) algorithm was used to generate the ens@RthFe, ..., F™} of

187 200,000samplesvhoseentries are random realizations drawn fiem 3. The null space of the
188  matrix B, containing the muscle lever arm extracted from the m@®%| is calculated using
189  Singular \alueDecomposition. The vectdt is decomposed into a componéptlying on the

190 null space and a componéftorthogonal taf;. Samples are drawn from the solution space
191 using @ MCMC algorithm by separately sampling the comporgntising a hitandrun

192  algorithm and the componeRj} using a Gibbs algorithi§22].

193 The hip, knee and ankle ateon forces were calculated using the equation
194  JR=JRq+ X%, F Eq. 5
195 whereJR, is the joint reaction force vector calculated using inverse dynaamds; is the

196 i joint-spanning muscle force vector.
197 Physiologically plausible muscle forces

198 Physiologically plausile muscle forces amdefined as forces most likely to occur during
199 normal gait and can be seen as a-guup of the physiologically possible muscle forces.
200 Therefore, physiologically plausible muscle forces were calculated by iiogb
201 physiologically possible muscle forces and the variability of the musd&iesd activity from

202 repeated EMGs.

203 Muscle forces were calculated using EMGs and-tjipke excitation and contraction
204  dynamic models according to the guidelines proposed by BZgacThe raw EMG signal was

205 bandpass filtered (zerpole-gain design, 8 order, Butterworth filter) with cubff frequencies

10
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206 of 10 and 400 Hz to minimize noise due to mo@wtifactsand the EMG amplifief34]. The

207 filtered EMG signal was rectified and lepass filtered (zerpolegain design, ? order,

208  Butterworth filter) with cutoff frequency of 6 H433] anda 22 ms electromechanical delay
209 representing the muscle mesponse to stimuli, appliéo synchronize the processed signal
210 with the muscle respon$g5]. Normalisation of the processed EMG sigwakthen necessary
211 to obtain a signabetweenzero and one representing meselctivation[33]. We scaled the

212  processed EMG signtd match the peak muscle activation calculated using static optimization
213 [23]. TheEMG-driven muscle force was calculated using the calculated muscle activation, the
214 active and passive fordength relationships from the work of Thelg®2] and the force

215 velocity relationship from the work of Delp et {7] for all seven git repetitionsThe force

216 range that is, the upperH) to the lower(F;) bound ofmuscle forcesof physiologically

217  plausible muscle forcewas assumed #te 0.68 quantile (i.e. mean £ SD) of the EMG-driven
218 muscle force distribution projected onto the solution space of Eq. 1. Samples ofquiyalty

219 plausible muscle forces were generated usitEyABOLICA by constraining muscle forces
220 within the calculated force range for selected muscles betlveenzero and the peak

221  physiological force for the remaining muscles.
222 Data analysis

223 Simulations vere run on a desktop P@/{ndow 7,64 bit, Intel Xenon E2630 v2, 2.60
224  GHz, 64 GB of memory)The gait cyclevas dividednto clustes of time framesandprocessed
225 by 12differentCPUsusing parallel computing he speed in generating muscle force samples

226  was output by the code.

227 The gait model was assessed bgmparing the donor's PCSAs to corresponding
228 measurements from donors of 8319 year of[8G¢ Themuscle lever arm and the joint torques
229 in the modelvere compared to corresponding publishedes{l86—40].Calculation of muscle

230 forces wereverified by comparing the joint torque generated by the muscleshaitbdlculated

11
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231 using inverse dynamicdhe consistency between the EMfBiven muscle forcesand the
232 motionwas assessed by usingthistance between the EMfBiven muscle forces and the
233  solution space of Eq. 1 #semetric;the average forcdistance ovegait and musclesand the
234  muscleby-muscle average distance during ga#re calculatedThe nearestmuscle force
235 vectorto the EMGdriven force vector, henceforth referred to as the-fiesvlution, was used
236 for comparing theability of the present ntkeod with that of a commonly used static
237  optimization proceduri describing theecordedEMG patternTo this purpose, we calculated
238 (a) the linear regression between the Elllven muscle force and the bdistmuscleforce,
239 and (b) the linear regression between the EdMiBen muscle force and the static optimization

240  solution obtained by minimizing the squared sum of muscle stress [27,31].

241 Alternative muscle recruitment strategies were studied in terms of physiolggioa#iible

242  and plausible muscle and joint forces. Physiologically possible forcessssssed by plotting
243 the boundaries of muscle and joint forces for a progressive increhasemfscle o-contraction

244  level Physiologicallyplausible muscle forces were calculabgdinputting to the moded sub

245  set of EMGH19]; for this study we used six of the pripal lowerlimb muscles spanning the
246  hip, the knee and the ankliglfteus maximus, rectus femoris, vastus lateralis, biceps femoris
247 long head, tibialis anterior and gastrocnemius medidlts. availableEMGs not input to the

248 model were compared with the respective force spectrum from the model.

249

12
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RESULTS

The process resulted in 108 and 20.6 M of different muscle forcesespectively
representing potentiand plausible muscle forcelsiving walking The algorithm generated

909 muscle force vectors, solution of Eqg. 1, per second per processor.

The model anatomy and motion were in agreement with earlier studies. The theuscl
arms were consistent with those reported in earlier theoretical and expafistadied37—
39,41-44)Table 1). The average donor’'s muscle PCSA was 6.%5vdnich repesent the 25
lower percentile of the elderly population reported by Ward €36]. (Table 2). The joint
torques pattern was in agreement with that reported by Benedetti avatlars[40] (Fig. 2).
The highest unbalance between the joint torque driving walking andeth®int torque
produced by the muscles was 3%18im. The distance between the model and the EdiGen
force, averaged over gait and muscles, was below 40 N, while the peak-husulscle
average distance over gait increased up to 108 N for 15 EMGs input to the modél (Hig. 3
bestfit solution better represented the EMG pattern than it did the static optimizatigiorsolu
(Fig. 4). The coefficient of determination between the #iestolution and EM&riven muscle
forces was R= 0.94, and the average error was RMS = 19 N &jigrhe static optimization
solution showed major discrepancies in the muscle force pattern duritige (early stance
phase of walking for the rectus femorfb) the stancéo-swing phase for the rectus femoris
and the biceps femoris long head, and (c) the late swing phase for the glaxgusisrand the
tibialis anterior. The coefficient of determination between the static optimizatiatosoand

EMG-drivenmuscle forces was?®R 0.38, and the average error was RMSE = 61 N.

Physiologically possible muscle synergies comprised muscle famegisg from zero to the
peak muscle force for most muscles. Twesgyen out of th&4 lower-limb muscles ranged
from zero to their peak force whereas seven musdegeusmaximus,adductor magnus,

semimembranosusastusmedialis,vastudateralis,vastusmedialis andoleu$ couldn’t reach

13
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their peak force. The resulting upper and lower boundaries of the hip, knemkdedorce
spectrums showed typical dougeak patterns; the upper force boundary reached 11.3 BW,
6.2 BW, 7.6 BW, and the lower boundary reached 4.4 BW, 2.5 BW and 3.5 BW at the hip, the
knee and the anklegspectivelylncreasing the upper boundary of the muscle force up to 60%
muscle cecontraction caused a proportional shift upward of the upper force boundary of
possible muscle and joint forcd=urther increasinthe upper bound of muscle forces caused a
complex non-linear response of muscle andtjforces Negligible changes of the lowfarce
boundary were observed by allowing different muscleauatraction level{Fig. 6 and 7)
Physiologically plausible muscle forces well represented the pattere ofdbkcle electrical
activity (Fig.8 and 9) The gluteus maximus showed a consistent depigk activity reaching

its peak values during the early stance (5% gait) anesmidg (65% gait) phasef walking.

The biceps femoris long head peakd0%, 50% and 90% gait. The rectus femoris peaked a
heel strike (7% gait) and prior to toff (50% gait). The vastus lateralis peaked at-s&@te

(5% gait) and prior to teeff (43% gait). The medial gastrocnemius peaked at 40% gait and
showed a smaller second peak atsswdng (70% gait). The tibiadianterior showed a double-
peak activityreaching its peak at early stance (5% gait) andswitig (75% gait)The EMG

driven force range for the gluteus medius, vastus medialis, semitendinosospekialucs,
extensor digitorum, peroneus longus, soleus, gastrocnemius lateralis and fles@urmjgi

which werenot input to the modelyas smaller than the calculated force range (Fig. 9)
DISCUSSION

The aim of this study was to investigate possible muscle synergies dutkiggwd/e used
a human gait model in conjunction with Bayesian statistics, MCMC sampling method and
EMG-driven muscle forcenodellingto calculate muscle forcas full respect ophysiological
and dynamical constraint§he gait model provided reliable information about all the eetev

musculoskeletal parameters during walking, including muscle lever arm, nsimeknd joint

14
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torques [36—40]Muscleforceswere calculatedn an efficient mannemrovidinginformation
about (a) the potential muscle and joint foreesl (b) the spectrum of muscle forces consistent

with the muscle electrical activity impto the model.

The algorithm generated 909 muscle force samples per second per processtorelliee
present methodan be us@to calculate the spectrum of muscle forces during mation
standard desktop machinemd can take advantage from using parallel computing on
multiprocessor systems. The model couldll represent, on average, EMiEven muscle
forces However,the muscleby-muscle distance between the model solutions and the-EMG
driven muscle forces increased for an increasing number of &lt@ls input into the model.
Thisinconsistencynay explain why EM&lriven models may not offer a solutimen several
EMGs are input to the mod¢l9]. Other autbrs optimized the model parameters within
physiological boundaries, solving the model consistency problem and ensuring thédioa sol
to the motion problem exis{8,20,45] However, the optimized modkkely provides little
information about how the calculated solution represents the subjectstndigbecause of the
typically large variability of physiological parameteidore work is necessary to understand
how model simplifications and input errors influence model calculations. To this pufpese, t
proposed method is well suited to take in input the variability of joint torques and ENi®s, ei
caused by the natural unpredictable variability of motion or by uncertaimigsgeasurements
The besfit solution in the model more closely represent®éd= 0.94)the muscle electrical
activity than a static optimization proceduré €R0.38) largely accepted for simulating normal
walking [11,31] without requiring any assumptisabout the adopted sensorimotor behaviour.
Therefore, the proposed method can be used to calculate muscle forces when tive objec
the sensorimotor behaviour is variable or not knoweluding in the instances oéither

physiological or pathophysiological neuromotor conditions.

15
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324 Physiologically possible muscle synergies comprehend muscle forcasgrémgn zero to
325 the peak muscle force (Fi) and jointcontact forceof up to 11.3 BW at the hip (Fig@). Up

326 to 60% muscle ca@ontractioncaused a linear increase of muscle and joint fonvbgreas
327 higher muscle ce@ontractioncaused a nofinear increase of the same quantitieg(Biand?7).

328 While the probability for these extreme loading conditions to occur has to bmuhete,these

329 findings may have implications in studying muscle ability to control joint impedamzk
330 stability[13], the yet unresolved fracture mechanism for-kvergy osteoporotic fracturgks],

331 and may reveal importamtformationfor the development of exercise therapies for bone health
332 [47]. Physiologically plausible muscle force patterns well represented tiselanelectrical
333  activity input to the model (Fi@). Therefore, the proposed approach can be used to study deep
334 aspects of human motion. For example, the calculated spectrum can be used fogexmlor

335 different muscles can combine their action in response to the same motor demand.

336 Tothebest of theauthors’knowledge this is the first numerical study exploring the spectrum
337 of muscle synergies during motion. The model has been shown capsgiakling kinematic,

338 Kkinetics, hip contact forces and muscle firing patterns in agreement with publistesdspfor

339 multiple activities[23,25], providing conficéncein the reliability of the studied muscle load
340 sharing problem. The large variability of physiologically possible and ploggaallly plausible
341 muscle forces is consistent with the known ability of the CNS for adopting véeyedif muscle
342  recruitmentstrategie§16,48]. Although no measurements of the joint contact force under full
343 muscle cecontractions are available, the range of the calculated hip contact foreEL(8.7
344 BW) compars well with the hip contact force of 8.7 BW measured by Bergmann and co
345 workers during stumbling, a valubat has been largely attributed to musclecantraction
346 rather than to motion dynami¢$6]. This provides confidence the calculated spectrum of

347 muscle forces.
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Themain limitation of the present study is that the majority of the muscle furaesvere
not constrained between EM@iven muscle force boundaries (e.the semitendinosus)
showeda much highewariability (Fig. 9) than that obtained from repeated EMG recordings
indicatingthat the calculated spectrum of physiologically plausinlescle forces is larger than
thatobservedn vivo. While it is possible that a reduced number of EMGs input to the model
[19] explainthe majority of the muscle force variabilithhet optimal number and type of EMG
signals has to be determin&kcond, the processed EMG signal was normalised using the peak
muscle activation calculated using static optimizatidmereas others normalized the processed
EMGs to a maximm voluntary contraction taskl8,19] However, a standardized EMG
normalization process hastyto be definefll9]. Third, the present results cannot be generalized
due to thesingleanatomyused. More research is necessarydive this limitation Fourth, the
joint torque wasset to the deterministic values calculated using inverse dynathigs
neglecting the joint torque uncertaintiegtributable to model assumption and measurement
errors[49]. However, this allowed studyirige isolated effect of alternative muscle recruitment
strategie®n calculated muscle and joint forceast, he peak isometric muscle stress was the
upper boundary of published values (1.37 MR8]), possibly causing an evestimation of
calculated forceddowever the upper boundary of muscle forces is a linear function of the peak
isometric muscle stress while the lower boundary is almost invgd@&nt Therefore, he
boundaries of muscle and joint forces for every intermediate value of the pegtrisstress

can be easily extrapolated.

Despite the study limitationspresent findings are important for th biomechanics
community in that they provide a viable numerical approacmtmellingthe stochastic nature
of the muscle recruitment proce3e pesent results strengthen the notion that muscle co
contractionis important in studying human motipandprovide a viable numerical approach

for studying physiological and pathophysiological conditions characterizedomplex
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sensorimotor behaviours. Moreover, because the proposed approach makes no assumptions on
the “normality” of neuromotor control, we p&ct it to be equally effective in subjects affected

by severe neuromuscular pathologies.

AKNOWLEDGMENTS

This study was supported by the Australian Research Council project (DE140101530)

awarded to S.MThe work of E.S was partially supportedM§~DMS grant 1312424,

REFERENCES

1. Thelen, D. G., Anderson, F. C. & Delp, S. L. 2003 Generating dynamic simulations of
movement using computed muscle contdddiomech 36, 321-328.
(doi:S0021929002004323 [pii])

2. Taddei, F., Martelli, S., Valente, G., Leardini, A., Benedetti, M. G., Manfrini, M. &
Viceconti, M. 2012 Femoral loads during gait in a patient with massive skeletal
reconstructionClin. Biomech. (Bristol, Avon) 27, 273-280.
(doi:10.1016/j.clinbiomech.2011.09.006)

3. Park, H. & Durand, D. M. 2008 Motion control of musculoskeletal systems with
redundancyBiol. Cybern. 99, 503-16. (doi:10.1007/s00422-008-0258-5)

4. Kdrding, K. P. & Wolpert, D. M. 2006 Bayesian decision theory in sensorimotor
control. Trends Cogn. Sci. 10, 319-26. (doi:10.1016/j.tics.2006.05.003)

5. Loeb, G. E. 2012 Optimal isn’t good enouBtual. Cybern. 106, 757—65.
(doi:10.1007/s00422-012-0514-6)

6. Latash, M. L. & Anson, J. G. 2006 Synergies in Health and Disease: Relations to
Adaptive Changes in Motor Coordinatid?hys. Ther. 86, 1151-1160.

7. Kdrding, K. P. & Wolpert, D. M. 2004 Bayesian integration in sensorimotor learning.
Nature 427, 244—7. (doi:10.1038/nature02169)

8. Kording, K. P., Ku, S. & Wolpert, D. M. 2004 Bayesian integration in force estimation.
J. Neurophysiol. 92, 3161-5. (d0i:10.1152/jn.00275.2004)

9. Miyazaki, M., Nozaki, D. & Nakajima, Y. 2005 Testing Bayesian models of human
coincidence timingJ. Neurophysiol. 94, 395-9. (doi:10.1152/jn.01168.2004)

18



402
403
404
405

406
407
408

409
410
411
412

413
414
415

416
417
418

419
420

421
422

423
424
425

426
427
428

429
430
431

432
433
434
435

436
437
438
439

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Martelli et al.

Praagman, M., Chadwick, E. K., van der Helm, F. C. & Veeger, H. E. 2006 The
relationship between two different mechanical cost functions and muscle oxygen
consumptionJd. Biomech. 39, 758-765.
(doi:http://dx.doi.org/10.1016/].jbiomech.2004.11.034)

Crowninshield, R. D. & Brand, R. a 1981 A physiologically based criterion of muscle
force prediction in locomotionl. Biomech. 14, 793—-801. (doi:10.1016/0021-
9290(81)90035K)

Cholewicki, J., McGill, S. M. & Norman, R. W. 1995 Comparison of muscle forces
and joint load from an optimization and EMG assisted lumbar spine model: towards
development of a hybrid approachBiomech. 28, 321-31.
(doi:http://dx.doi.org/10.1016/0021-9290(94)0006b-

Park, S., Krebs, D. E. & Mann, R. W. 1999 Hip muscle co-contraction: eeidiem
concurrent in vivo pressure measurement and force estim@aarPosture 10, 211—
222. (doi:S0966636299000338 [pii])

Yeadon, M. R., King, M. A., Forrester, S. E., Caldwell, G. E. & Pain, M. T. G. 2010
The need for muscle emntraction prior to a landing. Biomech. 43, 364-9.
(doi:10.1016/j.jbiomech.2009.06.058)

Bobbert, M. F., Yeadon, M. R. & Nigg, B. M. 1992 Mechanical analysis of the landing
phase in hedloe runningJ. Biomech. 25, 223-34.

Bergmann, G., Graichen, F. & Rohimann, A. 2004 Hip joint contact forces during
stumbling.Langenbecks Arch Surg 389, 53-59. (d0i:10.1007/s00423-003-0434-

Jinha, A., Ait-Haddou, R., Kaya, M. & Herzog, W. 2009 A task-specific validation of
homogeneous non-linear optimisation approach@&keor Biol 259, 695-700.
(d0i:10.1016/}.jtbi.2009.04.014)

Lloyd & Besier 2003 An EM@riven musculoskeletal model to estimate muscle
forces and knee joint moments in viloBiomech. 36, 765—776. (doi:10.1016/S0021-
9290(03)00010-1)

Nikooyan, A., Veeger, H. E. J., Westerhoff, P., Bolsterlee, B., Graichen rgm&m,
G. & van der Helm, F. C. T. 2012 An EMG-driven musculoskeletal model of the
shoulderHum. Mov. &ci. 31, 429-47. (doi:10.1016/j.humov.2011.08.006)

Sartori, M., Reggiani, M., FarinB. & Lloyd, D. G. 2012 EM&riven forward
dynamic estimation of muscle force and joint moment about multiple degrees of
freedom in the human lower extremiBLoSOne 7, €52618.
(doi:10.1371/journal.pone.0052618)

Martelli, S., Calvetti, D., Somersal&., Viceconti, M. & Taddei, F. 2013
Computational tools for calculating alternative muscle force patterns duringnmétio
comparison of possible solutiords Biomech. 46, 20972100.
(doi:10.1016/j.jbiomech.2013.05.023)

19



440
441
442

443
444
445

446
447
448
449

450
451
452

453
454
455

456
457
458

459
460
461

462
463
464
465

466
467
468

469
470
471
472

473
474
475

476
477

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Martelli et al.

Heino, J., Calvetti, D. & Somersalo, E. 2010 Metabolica: a statistical resealrfibr t
analyzing metabolic network€omput. Methods Programs Biomed. 97, 151-67.
(doi:10.1016/j.cmpb.2009.07.007)

Martelli, S., Taddei, F., Cappello, A., van Sint Jan, S., Leardini, A. & Viceconti, M.
2011 Effect of sub-optimal neuromotor control on the hip joint load during level
walking. J. Biomech. 44, 1716-1721. (doi:10.1016/j.jbiomech.2011.03.039)

Viceconti, M., Clapworthy, G. & Van Sint Jan, S. 2008 The Virtual Physiological
Human -a Euroan initiative for in silico human modellirgA European Initiative
for in silico Human Modellingd. Physiol. ci. 58, 441—6.
(doi:10.2170/physiolsci.RP009908)

Martelli, S., Kersh, M. E., Schache, A. G. & Pandy, M. G. 2014 Strain energy in the
femord neck during exercisd. Biomech. 47, 1784-91.
(doi:http://dx.doi.org/10.1016/j.jbiomech.2014.03.036)

Martelli, S., Pivonka, P. & Ebeling, P. R. 2014 Femoral Shaft Strains During Daily
Activities: Implications For Atypical Femoral Fractur&€in. Biomech.
(d0i:10.1016/j.clinbiomech.2014.08.001)

Delp, S. L., Loan, J. P., Hoy, M. G., Zajac, F. E., Topp, E. L. & Rosen, J. M. 1990 An
interactive graphicbased model of the lower extremity to study orthopaedic surgical
procedureslEEE Trans. Biomed. Eng. 37, 757—767. (doi:10.1109/10.102791)

Dumas, R., Aissaoui, R., Mitton, D., Skalli, W. & de Guise, J. a 2005 Personalized
body segment parameters from biplanar low-dose radiogrépBl. Trans. Biomed.
Eng. 52, 1756—63. (doi:10.1109/TBME.2005.855711)

Buchanan, T. S., Lloyd, D. G., Manal, K. & Besier, T. F. 2004 Neuromusculoskeletal
modeling: estimation of muscle forces and joint moments and movements from
measurements of neural commahdppl Biomech 20, 367-395.
(d0i:10.1016/j.bbi.2008.05.010)

Leardini, A., Sawacha, Z., Paolini, G., Ingrosso, S., Nativo, R. & Benedetti, M. G.
2007 A new anatomically based protocol for gait analysis in chil@aih Posture 26,
560-71. (doi:10.1016/j.gaitpost.2006.12.018)

Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T.,
Guendelman, E. & Thelen, D. G. 2007 OpenSim: ogaurce software to create and
analyze dynamic simulations of moveme&EE Trans. Biomed. Eng. 54, 1940—1950.
(doi:10.1109/TBME.2007.901024)

Thelen, D. G2003 Adjustment of muscle mechanics model parameters to simulate
dynamic contractions in older adulfs Biomech. Eng. 125, 70-77.
(d0i:10.1115/1.1531112)

Zajac, F. E. 1989 Muscle and tendon: properties, models, scaling, and application to
biomechanics and motor contr@rit Rev Biomed Eng 17, 359-411.

20



478
479
480

481
482
483

484
485
486

487
488
489
490

491
492
493
494

495
496
497

498
499
500

501
502

503
504
505

506
507
508

509
510

511
512
513

514
515

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Martelli et al.

Merlo, A., Farina, D. & Merletti, R. 2003 A fast and reliable technique for muscle
activity detection from surface EMG signdlBEE Trans Biomed Eng 50, 316—323.
(doi:10.1109/TBME.2003.808829)

Kernozek, T. W. & Ragan, R. J. 2008 Estimation of anterior cruciate ligament tension
from inverse dynamics data and electromyography in females during dcbpgda
Clin. Biomech. (Bristol, Avon) 23, 1279-86. (doi:10.1016/].clinbiomech.2008.08.001)

Ward, S. R., Eng, C. M., Smallwood, L. H. & Lieber, R. L. 2009 Are current
measurements of lower extremity muscle architecture accuthte©Drthop. Relat.
Res. 467, 1074-82. (doi:10.1007/s11999-008-0594-8)

Scheys, L., Van Campenhout, A., Spaepen, A., Suetens, P. & Jonkers, I. 2008
Personalized MPbased musculoskeletal models compared to rescaled generic models
in the presence of increased femoral anteversion: effect on hip moment arm. lengths
Gait Posture 28, 358—-365.

Arnold, A. S., Salinas, S., Asakawa, D. J. & Delp, S. L. 2000 Accuracy of muscle
moment arms estimated from MBased musculoskeletal models of the lower
extremity.Comput Aided Surg 5, 108-119. (doi:10.1002/1097-
0150(2000)5:2<108::AID-IGS5>3.0.C0O;2-2)

Bonnefoy, a, Doriot, N., Senk, M., Dohin, B., Pradon, D. & Chéze, L. 2007 A non-
invasive protocol to determine the personalized moment arms of knee and ankle
muscles.. Biomech. 40, 1776-85. (doi:10.1016/j.joiomech.2006.07.028)

Benedetti, M. G., Catani, F., Leardini, A., Pignotti, E. & Giannini, S. 1998 Data
management applications in gait analysis for cliniCih. Biomech. 13, 204-215.
(doi:10.1016/S0268-0033(97)00041-7)

White, S. C., Yack, H. J. & Winter, D. A. 1989 A thdimensional musculoskeletal
model for gait angsis. Anatomical variability estimated. Biomech. 22, 885-93.

Kepple, T. M., Sommer 3rd, H. J., Lohmann Siegel, K. & Stanhope, S. J. 1998 A
threedimensional musculoskeletal database for the lower extrenditséemech 31,
77-80.

Pierrynowsk M. R. & Morrison, J. B. 1985 Estimating the Muscle Forces Generated
in the Human Lower Extremity When Walking : A Physiological Solution. Math.
Biosci. 75, 43—-68.

Pierrynowski, M. R. 1995 Analytic representation of muscle line of action and
geometry. IrHuman Kinetics, pp. 214-256. Champaign.

Shao, Q., Bassett, D. N., Manal, K. & Buchanan, T. S. 2009 An EMG-driven model to
estimate muscle forces and joint moments in stroke pat@ongput. Biol. Med. 39,
1083-8. (d0i:10.1016/j.compbiomed.2009.09.002)

Viceconti, M., Taddei, F., Cristofolini, L., Martelli, S., Falcinelli, C. & SohilE.
2012 Are spontaneous fractures possible? An example of clinical application for

21



516
517

518
519
520

521
522
523
524

525
526
527

528
529
530
531
532

533

47.

48.

49.

50.

Martelli et al.

personalised, multiscale neuro-muscsk&letal modellingd. Biomech. 45, 421-426.
(doi:10.1016/j.jbiomech.2011.11.048)

Lang, T. F. et al. 2014 Spatial heterogeneity in the response of the prigxmato
two lowerbody resistance exercise regimeh®one Miner. Res. 29, 1337-45.
(doi:10.1002/jbmr.2155)

Besier, Fredericson, MGold, G. E., Beaupre, G. S. & Delp, S. L. 2009 Knee muscle
forces during walking and running in patellofemoral pain patients andngain-
controls.J. Biomech. 42, 898-905. (doi:S0021-9290(09)00039-6 [pii]
10.1016/j.jbiomech.2009.01.032 [doi])

Rieme, R., Hsiao-Wecksler, E. T. & Zhang, X. 2008 Uncertainties in inverse
dynamics solutions: a comprehensive analysis and an application GajaRosture
27, 578-588.

Valente, G., Martelli, S., Taddei, F., Farinella, G. & Viceconti, M. 2012 Muscle
discretization affects the loading transferred to bones in lowerlimb mukeldts
models.Proc. Inst. Mech. Eng. Part H J. Eng. Med. 226, 161-9.
(doi:10.1177/0954411911425863)

22



534

Martelli et al.

TABLES

535 Table 1- The range of the muscle lever arm (cm).

Muscle bundles

Scheys Arnold Bonnefoy
The model etal., etal, etal,

(37]

White et al Kepple et Pierrynowski

[38]  [39] [41] al.[42]  etal.[43,44]

Hip abduction moment arm
Gluteus medius anteri
Gluteus medius medi
Gluteus medius posteri
Gluteus minimus anteri
Gluteus minimus medi
Gluteus minimus posteri
Tensor fascia lata

4.7 .
51:
4.1 :
4.1 :
4.2
4.3:
4.7 .

5.7
5.7
4.9
4.7
5.3
5.7
6.8

1.0:
1.8:
0.7 :
0.2:
1.0:
0.0:
2.0:

4.0
4.5
4.8
3.8
4.0
4.2
6.5 6.0:74124:13.211.6:124 3.7:53

Hip adduction moment arm
Adductor brevi
Adductor longu
Adductor magnus super
Adductor magnus med
Adductor magnus inferi
Gracilig

54:
53:
6.5:
6.7 :
3.2:
8.4:

7.5
7.0
8.2
7.7
6.2
9.4

1.0:
2.2
3.0:
3.0:
2.2:
1 7.8 56:62 24:31 28:4.4 1.5:45

1.0

6.0
7.7
6.0
6.0
6.1

Hip flexion moment arm
lleo-psoa
Rectus femori
Sartoriug

3.5:
2.1:
2.0:

4.1
4.2
7.3

1.9:
1.8:

523:3553:6.1 88:10.2 9.2:11.2 24:50
7

Hip extension moment arm
Biceps femoris long he
Gluteus maximus anteri
Gluteus maximus medi

Gluteus maximus posteri
Semimembranos
Semitendinosy

25:
4.6
5.3:
4.8:
14:
2.2

6.0
53
6.9
9.0
54
6.3

0.2:
0.0:
0.0:
0.0:
0.0:
0.0:

6.0
4.0
4.5
6.2
5983.1:41
6.03.3:5.2

Knee flexion moment arm
Biceps femoris long he
Biceps femoris short he

Semimembranos
Semitendinosy

4.1 :
3.0:
2.9:
4.4

2.7

55
4.2
4.1

57:71 21:35 35:49 6.1:7.1

6.2:6.6 22:52 27:53 3.3:55

Knee extension moment arm
Rectus femori
Vastus intermedid
Vastus laterali
Vastus mediali

25:
2.6:
25:
24:

5.2
5.3
5.0
4.9

3.7:43 21:27 28:34 43:51

Ankle dorsi-flexor moment arm
Tibialis anterio
Extensor digitorun

3.1:
2.7

3.6
3.1

25:29 63:77 36:4.1 23:25

Ankle plantar-flexor moment arm
Triceps sura|

Peroneu

Tibialis posterio

Flexor halluci

536
537

3.4:
1.7
1.4:
2.1:

5.0
2.3
1.8
2.2

44:56 49:65 53:6.5 6.3:7.1
2.8:3.0 57:73 29:40 1.7:1.9
23:25 29:43 1.7:21 1.7:1.8
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538
539
540

Table 2— Physiological cross section areas (PCSAS) in the model and correspondisgegulibl

values (cr).
Muscles Ward et al[36]" Thedonor*
Mean (STD) Left Right
Psoas major 7.7 (2.3) 3.8 2.9
lliacus 9.9 (3.4) 4.0 2.7
Gluteus maximus 33.4 (8.8) 27.6 24.1
Gluteus medius 33.8 (14.4) 14.9 15.4
Gluteus minimus N/A 2.5 N/A
Sartorius 1.9 (0.7) 1.2 1.1
Tensor Fascia Lata N/A 2.6 2.4
Rectus femoris 13.5 (5.0) 2.1 2.7
Vastus lateralis 35.1 (16.1) 9.3 9.3
Vastus intermedius 16.7 (6.9) 6.4 7.0
Vastus medialis 20.6 (7.2) 11.7 12.0
Gracilis 2.2 (0.8) 1.6 1.3
Adductor longus 6.5 (2.2) 5.1 4.1
Adductor brevis 5(2.1) 5.4 6.0
Adductor magnus 20.5 (7.8) 12.7 8.5
Biceps femoris long head 11.3 (4.8) 3.3 3.4
Biceps femoris short head 5.1(1.7) 4.6 4.0
Semitendinosus 4.8 (2.0) 2.9 3.0
Semimembranosus 18.4 (7.5) 12.8 16.1
Tibialis anterior 10.9 (3) 4.3 4.0
Extensor hallucis lonmgus 2.7 (1.5) 1.7 2.7
Extensor digitorum longus 5.6 (1.7) 1.4 3.7
Peroneus longus 10.4 (3.8) 4.5 5.9
Peroneus brevis 4.9 (2.0) 3.4 4.4
Gastrocnemius medial hea 21.1 (5.7) N/A N/A
Gastrocnemius lateral heag 9.7 (3.3) 6.3 6.1
Soleus 51.8 (14.9) 10.5 11.2
Flexor hallucis longus 6.9 (2.7) N/A N/A
Flexor digitorum longus 4.4 (2) 2.5 2.6
Tibialis posterior 14.4 (4.9) 1.1 1.4
Mean 13.9 (5.0) 6.1 6.2

Martelli et al.

* The physiological cross section area was calculated byumieg the muscle volume and length and usingdi estimates of the
p

pennation anglgs0].

"PCSA values represent the mean and the standard devifitimmasurements taken from 21 elderly donors (83 + 9 yeais:fenale ratio,

9:12) [36).
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550 FIGURES

551 Fig.1: The musculoskeletal model (a), the motion capture scheme (b) and the model during

552 an intermediate frame of walking (c).

553 Fig.2. Comparisn between the calculated joint torque (solid black) at the hip, the knee and
554 the ankle and the joint torqiands (grey bands) reported by Benedetti ¢#@].for

555 healthy subjects.

556 Fig.3: Distance betweenMG-driven muscle forces and the solution space of the muscle

557 load sharing problem for an increasing number of ENi@st to the model. In blue,
558 the muscle distance averaged over gait and muscles. In greenydbieby-muscle
559 distance averaged over gait.

560 Fig.4: Force patterns for the EMG@xriven, the static optimization and the bistmuscle

561 synergy extracted from the solution space of the muscle recruitment problem.

562 Fig.5: Linear regression analysis between the ENtwen muscle forces, the static

563 optimization solution (right) and the befit muscle synergy (left).

564 Fig.6: Physiologically possible muscle forces. The dagbladk line represents the peak

565 muscle force. The soliced and solidblue lines represent the upper and the lower
566 muscle force bundary (low-band passd at 6 Hz, zerepole design, sixtlorder
567 Butterworth filter) Each level represents an admissible muscleotraction of 0.2,
568 0.4,0.6,0.8 and 1.

569 Fig.7: Physiologically possible hip, knee and ankle contact forces. The shexledrga

570 represents possible joint forces calculated constraining muscle fatveseln zero
571 and the peak muscle force. The sdildck lines represent the joint contact force
572 boundary foran admissible muscle @mntraction of 0.2, 0.4, 0.6, 0.8 andldw-
573 band pas=sd at 6 Hz, zerpole design, sixtlorder Butterworth filter)
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578

579

580

581

Fig. 8:

Fig. 9:

Martelli et al.

The15-channeEMG signals for the seven gait trials. The shaded areas represent the
0.68 quantile (i.e. mean £ SD) of the EMG distribution. The EMGssstilised to

calculate the spectrum of physiologically plausible muscle forces is shadetl in r

Physiologically plausible muscle forces. The selected muscle forcerwspsct
constrained between EM@iven force boundaries are shaded in red whereas the
remaining mude force spectrums are shaded in grey. For these latter, the dashed

black line represents the peak muscle force.
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582  Figure1l

The motion capture The simulation of walking
(body-matched volunteer)
(c)

(b)

2 Kistler force platforms

583 www_physiomespace.com
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585 Figure2

) Hip extensor torque Hip abductor torque ’ Hip internal-rotation torque
0 e

= H

m

& =

:; -6

g <l

= -10

= 24

- -12

- -14 3

0 20 40 60 80 10C
% gait

Knee extensor lorque

Ankle plantarflexion torque

8
0 20 40 60 80 100 0O 20 40 60 80 100
586 % gait % gait

Joint torque (% BW H)

587

28



Martelli et al.

588 Figure 3
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