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a b s t r a c t

Objectives: Area-level public health interventions can be difficult to evaluate using natural

experiments. We describe the use of propensity score matching (PSM) to select control local

authority areas (LAU) to evaluate the public health impact of alcohol policies for (1) pro-

spective evaluation of alcohol policies using area-level data, and (2) a novel two-stage quasi

caseecontrol design.

Study design: Ecological.

Methods: Alcohol-related indicator data (Local Alcohol Profiles for England, PHE Health

Profiles and ONS data) were linked at LAU level. Six LAUs (Blackpool, Bradford, Bristol,

Ipswich, Islington, and Newcastle-upon-Tyne) as sample intervention or case areas were

matched to two control LAUs each using PSM. For the quasi caseecontrol study a second

stage was added aimed at obtaining maximum contrast in outcomes based on propensity

scores. Matching was evaluated based on average standardized absolute mean differences

(ASAM) and variable-specific P-values after matching.

Results: The six LAUs were matched to suitable control areas (with ASAM < 0.20, P-

values >0.05 indicating good matching) for a prospective evaluation study that sought

areas that were similar at baseline in order to assess whether a change in intervention

exposure led to a change in the outcome (alcohol related harm). PSM also generated

appropriate matches for a quasi caseecontrol study e whereby the contrast in health

outcomes between cases and control areas needed to be optimized in order to assess

retrospectively whether differences in intervention exposure were associated with the

outcome.
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Conclusions: The use of PSM for area-level alcohol policy evaluation, but also for other public

health interventions, will improve the value of these evaluations by objective and quan-

titative selection of the most appropriate control areas.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The need for a better evidence base for public health policies is

widely acknowledged.1 Interventions should at the very least

be evaluated on: (a) whether the research is of sufficient

quality to support a decision on implementation of the

intervention; (b) what the research outcomes are; and (c)

whether the research findings are generalizable to potential

recipients of the intervention.2 However, evaluation of public

health interventions is often more difficult than for clinical

interventions because they generally aim at achieving popu-

lation rather than individual level impact, and the intervention

may be complex,3 programmatic, and context dependent.2

Rigorous evaluation requires an exposed and a non-

exposed group to be compared (or compared across different

levels of exposure). Additional design elements that further

strengthen causal inferences include multiple pre/post mea-

sures, multiple exposed and unexposed groups, and accurate

measurement of exposures.3 Ideally, (public health) in-

terventions should be evaluated using a randomized

controlled design, but these may not always be feasible or fail

to be considered when interventions are implemented.4

Alternatively, ‘natural experiments’ can be created and used

to study the relation between external changes and effects on

population disease patterns. A famous example is John Snow's
analysis and intervention to prevent the spread of cholera.

More recently natural experiments have been used to evaluate

the introduction of smoke-free legislation.5e7

However, in contrast to external shocks, beneficial events

generally have a much less pronounced impact, and it may

also take longer for an effect to emerge, making evaluation

harder to study and more susceptible to bias.3 It is thus

important from an evidence-based policy perspective to

qualitatively and quantitatively study variations in the de-

livery of interventions, either temporally or spatially, to

evaluate their impact on population health.

When evaluating the impact of public health policies an

important methodological consideration is how to select

appropriate control areas in such a way as to strengthen

causal inference. In contrast to studies with individual-level

data (e.g. with participants), the control areas for studies on

policies are often opportunistically chosen and may include

neighbouring local authority areas or other, broadly compa-

rable areas to which the research team has access.

In this paper we describe the use of propensity scores to

match ‘case areas’ to ‘control areas’ so that a subsequent

qualitative and/or quantitative evaluation of a policy is

demonstrable between local areas comparable for the domain

under study. It has been shown that propensity score

matching (PSM) can be an effective methodology to minimize
F, et al., Propensity score
es and quasi caseecon
bias by matching cases to controls based on a set of baseline

covariates,9 and has been used in health services research,

pharmaco-epidemiology10e13 and health economics.14 How-

ever, there has been limited use in public health to demon-

strate the effect of certain interventions at the individual level

(for example:3,15,16). We further demonstrate a novel two-

stage propensity score matching (PSM) design aimed at

mimicking a traditional case control study that has not been

used previously.

Expanding on standard PSMmethodology, this manuscript

deals specifically with the use of PSM for local area-level data

of both intervention and outcome data for which PSM is not

often, if ever, used. We will describe this in the context of the

evaluation of local authority public health interventions

aimed at reducing alcohol-related harm where detailed data

collection and in-depth analysis are required, which prohibits

inclusion of all 353 local authority units (LAU) in England.
Methods

Motivating example

Alcohol related harm varies by geographical area. In order to

test whether the intensity of local alcohol policies is associ-

atedwith changes in alcohol related harm requires additional

data collection because the level of intervention delivered

locally is not available from routine administrative datasets.

We consider a case study to determine the most appropriate

control Local Authority Unit (LAU) for six areas where data

are being collected: Blackpool, Bradford, Bristol, Ipswich,

Islington, and Newcastle-upon-Tyne. We consider two po-

tential evaluation designs: a) a cohort (prospective or retro-

spective) where we aim to test whether the introduction of

new local alcohol polices are associated with change in

alcohol related harm; and b) a case control where we aim to

test whether sites with contrasting levels of alcohol related

harm differ in relation to intensity of local alcohol

interventions.

Ideally, we would prefer to obtain the same data for an

area where a specific intervention will be introduced (i.e. the

‘case area’) but also for that same area as if the intervention

had not been introduced (i.e. the ‘counterfactual case’).17

When evaluating the impact of a new policy we cannot

simultaneously measure its effectiveness in a specific area

where the policy is introduced and in the same area where it

is not introduced, and we are forced to compare it to another

area. Thus the choice of an appropriate control is essential to

achieving an unbiased assessment of effectiveness. In situ-

ations where randomization is not possible, we need a
matching for selection of local areas as controls for evaluation of
trol designs, Public Health (2015), http://dx.doi.org/10.1016/
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method to ensure that selected control areas are as similar as

possible to intervention areas at baseline such that, in the-

ory, it would not have made a difference to evaluation of the

efficacy which of the areas would receive the intervention or

which would be the control (e.g. to mimic as much as

possible the counterfactual case). If we have baseline infor-

mation for all local areas, we need a method to choose the

most closely related area across a (large) number of key

variables.

We propose the use of Propensity Scores for matching

(PSM), which is in essence a model to estimate the probabil-

ity/propensity that a study unit which has not received the

intervention (usually a study participant) is similar at base-

line to another unit from the ‘intervention group’, based on a

set of key characteristics. As such, it reduces the problem of

comparison across large numbers of key variables to a

1-dimensional problem; i.e. the minimization of the differ-

ence, or distance, between case and control propensity

scores. In the context of our study this matching is done to

select controls for six local areas in England instead of indi-

vidual study participants for which PSM is generally used.

Exact matching in this context would not be feasible since

many of the indicators are population rates or other contin-

uous variables, and exact matching on these for some in-

dicators will only occur in a few instances, while exact

matching on all covariates in this case is impossible. Here we

extend the PSM methodology to enable the study of alcohol-

related harm in England at the level of local authority units

(LAU).

Data

LAU indicator data for comparison between areas were ob-

tained from the Local Alcohol Profiles for England (LAPEs) 2014

update (http://www.lape.org.uk/data.html),18 and were linked

to 2013 Health Indicator data (http://www.apho.org.uk/

resource/view.aspx?RID¼142075) produced by the Northwest

Knowledge and Intelligence Team and LAU-level data from

the UK Office of National Statistics. This resulted in a set of 93

indicator variables which were used by the experts (online

supplementary material).

Selection of indicator variables

A variety of approaches for covariate selection ranging from

sole reliance on subject-matter specification of variables to

completely data-driven approaches has been described, but it

has been shown empirically that in cases with a limited

number of ‘units’ sole reliance on a selection algorithm may

increase the likelihood of bias and that in these situations

expert selection of variables combined with empirical speci-

fication may be beneficial.19 Therefore, we used expert vari-

able selection (in this example by the authors), using a

modified Delphi approach, with and without subsequent

data-driven optimization strategies. A list of 93 indicator

variables (online supplementary material) was used by all

authors (e.g. the experts) independently to select a set of five

(set 1) and 12 (set 2) covariates which they considered to be

key factors influencing baseline levels of alcohol-related

burden, and potentially predicting uptake of, and response
Please cite this article in press as: de Vocht F, et al., Propensity score
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to, the introduction of new alcohol-related policies. All re-

sponses were subsequently collated and a narrow and a wider

dataset were derived by including the 5 and 12 (initially 5 and

15 were selected, but 3 of selected 15 overlapped) indicators

most often selected (see Tables 1 and 2 for a list of the

variables).

Matching strategies

Subsequently, we calculated propensity scores to match each

case LAU to control LAUs for two different purposes:

(a) a prospective study in which cases are matched to two

controls each based on a propensity score model of

selected key baseline factors, and

(b) a two-stage, quasi caseecontrol design for retrospective

evaluation of natural experiments.

The first purpose (a) is to ensure that effects from policies

can be compared prospectively by comparing control and case

areas that are comparable at baseline. This is the standard

way PSM is used in epidemiology, but at area-level instead.We

explored three different empirical strategies to a priori decide

on the explanatory variables entered into the PSmodel: model

1 based on the five key baseline characteristics of set 1 to

evaluate matching on a small set of indicators; model 2 based

on the 12 key variables identified in set 2 to evaluatematching

on a large set of indicators; and a hybrid method (model 3) in

which set 2 was reduced to improve statistical estimation by

reducing multicollinearity. This was achieved by working

backwards frommodel 2 by removal of variables for which the

generalized variance inflation factor (calculated as: GVIF1/(2*Df)2)

was 10 or higher.20 This approach was included because it

allows for a larger set of key variables to initially base the PSM

on, but uses a data driven approach to improve statistical

estimation of the propensity scores by removal indicators that

add little new information.

For our second intended purpose (b), we describe a novel,

quasi caseecontrol design for retrospective evaluation of

natural experiments in which ideally we'd want control areas

that were similar to the case areas prior to the intervention,

but that are now as different as possible for outcome mea-

sures. This approach is applicable to a situation in which we

are interested in maximized differences in outcome between

case and control areas, but we were unable to prospectively

obtain data when an interventionwas introduced. Similar to a

case control study, we can then compare the policies (i.e. the

exposure) that were in place across that period (either quan-

titatively or qualitatively) and assess whether there is evi-

dence of an association between intervention exposure and

case/control status. However, for valid inferences to be made

using this design the case and control areas should have been

comparable at baseline, and to allow for this a 2-stage design

is required. LAUs are PS-matched such that they are compa-

rable at baseline for the set of confounders (stage 1), and

subsequently in a 2nd stage differences in the outcome (e.g.

measures of alcohol-related harm in our example) are maxi-

mized. Stage 2matching therefore can be considered a form of

‘maximum variation sampling’ in that from the controls,

those withmaximumdifference in outcomes of interest to the
matching for selection of local areas as controls for evaluation of
trol designs, Public Health (2015), http://dx.doi.org/10.1016/
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Table 1 e Details of six matched LAU sets using the ‘wider’ set of key variables and multicollinearity reduction for propensity score model 3.

Local
authority
unit

Annual
admission
episodes for

alcohol
attributable
conditions

Alcohol-
related
recorded
crimes

(crude rate
per 1000

population)

Annual
admission
episodes for

alcohol
attributable
conditions
(under 18)

IR&HR
drinkers
(% in the
drinking

population)a

ONS
supergroupb

Alcohol-
related

mortalityc

(males)

Alcohol-
related

mortalityc

(females)

Bar
employees
(% of all

employees)

Binge
drinking
(% in the
drinking

population)a

Distance Matched
set

Bristol, City of 2435 8.1 57.4 23.3 B 22.5 6.0 1.6 26.3 ¡1.59 1

Nottingham 2398 9.7 43.0 21.0 B 26.3 8.2 1.2 23.9 �1.78 1

Bournemouth 2373 7.3 63.2 23.5 B 32.5 7.6 2.2 25.5 �1.48 1

Islington 2658 10.9 71.5 22.0 C 19.6 6.5 1.0 21.1 ¡0.84 2

Harlow 2380 8.1 25.5 20.7 E 16.6 3.3 1.5 19.6 �1.23 2

Burnley 3245 8.4 121.4 20.7 B 17 6.8 2.3 23.9 �1.06 2

Ipswich 2009 7.9 49.6 21.7 E 13.8 4.8 2.1 17.0 ¡4.11 3

Plymouth 2265 8.1 92 23.4 B 15.2 5.4 2.0 23.4 �4.14 3

North Devon 1920 4.9 74.3 23.1 D 12.0 9.5 3.5 19.1 �4.14 3

Newcastle

upon Tyne

2575 5.2 76.9 22.9 B 20.1 9.1 2.6 33.7 ¡0.55 4

City of London 1912 31.3 39.1 20.6 C 18.2 5.9 0.6 25.3 �1.42 4

Blackburn with

Darwen

3163 6.5 74.6 20 B 18.2 3.9 1.2 18.9 �0.62 4

Bradford 2565 6.2 49.5 19.7 B 16.4 8.9 1.4 18.8 ¡2.75 5

Cambridge 2190 5.0 57.7 24.5 B 17.8 4.1 1.6 26.3 �2.70 5

Craven 1719 2.8 45.2 23.5 D 8.79 5.5 3.1 25.6 �2.75 5

Blackpool 2950 11.9 113.8 22 D 40.5 12.6 3.2 23.7 0.16 6

Hammersmith

and Fulham

2554 10.2 59.5 22.9 C 20.6 7.2 1.3 22.6 �0.40 6

Manchester 3276 9.0 76.7 21 B 33.6 12.9 1.6 29.0 1.18 6

P-value t-test

difference

after

matching

0.12 0.45 0.31 0.83 e 0.43 0.13 0.24 0.98 0.07

a Binge drinking, Increasing Risk (IR) and Higher Risk (HR); synthetic estimate.1

b (A) Mining and Manufacturing, (B) Cities and Services, (C) London Centre, (D) Coastal and Countryside, (E) Prospering UK.
c per 100,000 population.
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Table 2 e Results of six ‘matched’ (based on maximum variation matching (step 2)) LAU sets for retrospective quasi
caseecontrol evaluation.

Local
authority

Annual admission
episodes

for alcohol attributable
conditions

Alcohol-related
recorded crimes
(crude rate per

1000)

Annual admission
episodes

for alcohol attributable
conditions

(under 18 years of age)

Alcohol-
related

mortality
(males)

Alcohol-
related

mortality
(females)

Propensity
score

Bristol, City of 2435 8.1 57.4 22.5 6.0 0.287

Gloucester 2043 6.6 54.3 17.6 9.0 0.064

Richmondshire 1644 2.6 70.7 5.0 6.2 0.012

Islington 2658 10.9 71.5 19.6 6.5 0.394

Kensington and

Chelsea

1353 8.5 46.9 9.5 5.6 0.047

Cheltenham 1903 5.3 85.9 14.3 5.7 0.046

Brighton and Hove 1987 6.6 88.5 21.1 11.3 0.030

Ipswich 2009 7.9 49.6 13.8 4.8 0.152

Worcester 1848 6.6 96.3 10.4 11.2 0.013

Newcastle upon Tyne 2575 5.2 76.9 20.1 9.1 0.091

York 1413 4.9 65.1 13.3 6.8 0.019

Weymouth and

Portland

1703 6.0 79.6 25.5 10.2 0.030

Bradford 2565 6.2 49.5 16.4 8.9 0.129

Blackburn with Darwen 3163 6.5 74.6 18.2 3.9 0.474

Selby 1382 3.7 57.4 11.6 6.0 0.018

Blackpool 2950 11.9 113.8 40.5 12.6 0.387

Bury 2272 5.6 78.3 17.7 11.1 0.037

Salford 3192 6.2 125.5 21.1 12.0 0.091

p u b l i c h e a l t h x x x ( 2 0 1 5 ) 1e1 0 5
case areas are matched to each case.23 When implementing

the two stage approach in our example, Stage 1 was compa-

rable to the methodology outlined above for the normal, pro-

spective evaluation: based on the wider set of key variables,

but without the alcohol-related outcomes because these are

required for maximum variation sampling in stage 2 (N ¼ 7).

In all PS modelling ‘control LAUs’ were matched to ‘case

LAUs’ using nearest neighbour optimal matching, which has been

shown to be comparable to ‘greedy’ matching, but can result in

better overall minimization of the distance between pairs.9,21

Nearest neighbour optimal matching aims to generate matched

pairs by minimizing overall average within-pair difference in

propensity scores across all pairings, while greedy matching

selects the control with the closest propensity score for each

case.22 Two control LAUs were matched to each case area and

were not re-used,which resulted in a total of 18 different LAUs

in each analysis. Alternatively, it is also possible (and may be

beneficial if time and budget constraints are of concern) to

allow for areas to be controls for multiple cases.

For the second purpose that requires two stage sampling,

each case area was initially matched to six control LAUs

(resulting in 42 LAUs for stage 2) in the first stage (to generate

enough matched potential controls for selection in stage 2),

and subsequently, in stage 2, PS were calculated based on

alcohol-related outcome measures. Within each set of one

case and six control LAUs, cases were then matched to two

controls each by selecting the two LAUs with the largest PS

distance from the case. All cases were kept and unmatched

controls were discarded.

Analyses were done using the MatchIt package24 in R

version 3.0.1.25 Average standardized absolute mean differ-

ences (ASAM) were calculated as a global measure of
Please cite this article in press as: de Vocht F, et al., Propensity score
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matching, using values much larger than 0.20 to indicate

possible matching problems.26
Results

(a) Prospective design

Because of missing information on one or more indicators,

of the total of 353 LAUs in England, 338 (e.g. six case areas and

332 potential control areas) could be included for model 1, 334

for model 2 and 332 for model 3.

The result of the matching can be seen for the best

matching strategy (model 3) in Table 1 (results for models 1

and 2 are presented in Tables S1 and S2 in Online Supple-

mentary Material, respectively). Model 1 would require only

few key variables for matching, but evaluation of global

matching indicated that it was only borderline (un)acceptable

(ASAM ¼ 0.28); for example the distances between Ipswich

and the selected controls; Great Yarmouth and Nuneaton and

Bedworth, is much smaller than for Blackpool, Salford and

Middlesbrough (Table S1).

Although it has been suggested to add as much informa-

tion as possible to propensity score models, model 2 based on

the 12 key variables (Table S2) similarly resulted in unac-

ceptable differences between the quality of the matched sets

(ASAM ¼ 0.39 with post matching P-values <0.05).
As shown in Table 1, minimizing multicollinearity in

model 3 results in acceptablematching (ASAM¼ 0.20). Balance

was also good within matched sets (P-values > 0.05). In addi-

tion to quantitative evaluation of balance, qualitatively (based
matching for selection of local areas as controls for evaluation of
trol designs, Public Health (2015), http://dx.doi.org/10.1016/
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on knowledge of the local areas) the matched sets seem

acceptable too. Overlap across all (scaled) key variables within

each set has been shown graphically in Fig. 1.

(b) Quasi caseecontrol

Of 353 LAUs, 334 could be used in this example. The first

stage of the quasi caseecontrol approach resulted in border-

line acceptable global matching (ASAM ¼ 0.23, and all post

matching variable-specific P-values >0.05; details provided in

Table S3 in Online Supplementary Materials); mainly as a

result of the need to oversample controls to achieve

maximum variation on alcohol-related key outcome mea-

sures in stage 2. In stage 2, two controls werematched to each

case LAU (from the six selected in stage 1) based onmaximum

PS distance between case and control LAUs (Table 2). All key

outcome variables have again been scaled and shown graph-

ically for each set in Fig. 2, and indicate that the data space of

the indicators for the case area (in grey) hardly overlaps with

that of the two control areas (the black lines). In direct com-

parisonwith the overlap in Fig. 1, it is clear that the differences

between the case LAUs and the controls are larger and are

prominent for more of the indicators.

The two stage quasi case control methodology outlined

here has resulted in matched sets with comparable key
Fig. 1 e Radial plots of each case study (grey) and its twomatched

included in the propensity score model: HES alcohol-attributabl

attributable conditions (<18 years) (C), percentage increasing ri

(males) (E), alcohol-related mortality (females) (F), percentage of

Note that all variables have been scaled between 0 and 1 and t

Please cite this article in press as: de Vocht F, et al., Propensity score
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statistics at baseline but with maximum contrast in outcome

indicators (of alcohol-related harms). This is similar to what

would be expected for a matched caseecontrol study. The

impact of policies that were introduced or were in place be-

tween the case and control areas can now be quantitatively or

qualitatively evaluated.
Discussion

We demonstrate a quantitative and transparent framework

for selection of controls areas in order to develop a natural

experiment to evaluate public health policies. In addition, we

described a novel 2-stage approach in which PS matching can

be used to mimic a case control design; thus enabling evalu-

ation of (public health) policies retrospectively where infor-

mation on exposure needs to be collated. In this example, we

specifically focussed on selection of control LAUs in England

for the evaluation of the impact of alcohol policies in a set of

case areas. Both statistically and theoretically our analyses

demonstrate how a framework combining a priori key in-

dicators and quantitative propensity score matching can be

used to select appropriate control areas for prospective or

retrospective evaluation of the impact of public health in-

terventions at a population level.
control areas (line and dotted line) for each of the variables

e conditions (A), alcohol-related crime rate (B), HES alcohol-

sk and high risk drinkers (D), alcohol-related mortality

bar employees (G), percentage regular binge drinkers (H).

hat variable ONS Supergroup is not included in plots.
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Fig. 2 e Radial plots of each case study (grey) and its two matched control areas (line and dotted line) for each of the outcome

variables included in the 2nd stage propensity score model: number of adult alcohol-related hospital admissions (A), alcohol-

related crime rate (B), number of alcohol-related hospital admissions for under 18 years of age (C), Alcohol-specific mortality

rate (males) (D), Alcohol-specific mortality rate (females) (E). Note that all variables have been scaled between 0 and 1.
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Often no formal matching is attempted when the impact of

new policies is evaluated either at an individual27e34 or

aggregated (area) level, even though appropriate use of con-

trols is essential for valid evaluation of the impact of new

policies. The framework set out in this paper formalizes the

concepts set out in generic terms in recent MRC Guidance for

the evaluation of natural experiments,3 and the argument for a

data-driven procedure for control selection is analogous to that

of Abdie and Gardeazabal.35 Propensity Scores have not been

used to select control areas in public health, although they

have been used previously to match at an individual level; for

example to study the effect of a new public transit system to

connect low-income areaswith the urban centre on violence.36

This study's results showed that by adopting a formal and

quantitative framework case and control areas can bematched

effectively using, importantly, a transparent approach to select

control LAUs at an aggregated, instead of individual, level. We

further described how, using a combination of matching and

maximumvariationmatching, a quasi caseecontrol design can

be created for retrospective evaluation of a natural experiment.

An important benefit of these approaches over, for example,

qualitativeselectionof control areas is that, in theabsenceof the
Please cite this article in press as: de Vocht F, et al., Propensity score
effects of alcohol policies in case series and quasi caseecon
j.puhe.2015.10.033
possibility to randomize case and control areas, this approach

nonetheless approximates a randomized block experiment

(with respect to the covariates used).37 It further avoids the de

facto use of neighbouring areas as controls for convenience,

which may be subject to ‘spill-over effects’ because of the

introductionofanewpolicy in itsneighbouringarea.Ofcourse it

is still possible that thePSmodelwill result inmatchingof a case

area to a neighbouring area, butmatching is now based on a set

ofaprioridefinedcriteria rather than just convenience (while it is

of coursealwayspossible toexplicitlyexcludesuchmatching).A

further benefit is the transparency of the methodology that al-

lows for independent evaluation of matching indicators.

We do not argue that this is the only methodology, and al-

ternatives have been developed. For example, Abadie et al.38

describe an alternative methodology of using ‘synthetic’ con-

trols, which are weighted averages of potential controls with

weights chosen to mimic indicators in the case area. This

methodology has distinct benefits in circumstances where the

intervention may be be a unique event or in situations where

suitable control sites exposed to differing levels of the inter-

vention are unavailable, but inference does depend on the reli-

ability of a regressionmodel to estimate the outcome and these
matching for selection of local areas as controls for evaluation of
trol designs, Public Health (2015), http://dx.doi.org/10.1016/
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can be very uncertain. Regardless, by adopting one of these, or

another similar, quantitative methodology for selection of

control areas, evaluation of public health policies can now be

evaluatedbasedonabetter andmore transparentmethodology,

instead of relying on unvalidated, convenience control areas.38

An additional benefit is that the selection of two controls per

case as done in this example, resulted in only 18 LAUs included

in the study, which now enables collection of more detail in-

formation from these areas (if required). This would not have

been feasible if all LAUs in England had been included.

The bias-reducing potential of PSM depends critically on

the choice of the key variables used in the matching model.39

Indeed, the a priori selection of the most important indicators

from an available set of 93 indicators in our example will have

involved subjective assessment. Some empirical studies have

shown that after PSM substantial bias can still be presentwhen

compared to the results from RCTs,40 although others showed

good agreement between the two.41 By utilizing a strategy

analogous to that described at individual level by Patorno

et al.19 we aimed to mitigate this possibility by (a) selection of

the most important key variables by experts independently

and prior to development of the PS model, and specifically

describing the approach for selection and evaluation42 so that

the PSmodel would have a good theoretical foundation, and (b)

by specifying the PS model specifically for public health pol-

icies on alcohol. The latter is important since minimizing bias

for one problem does not preclude the absence of bias in

another problem.39 Nonetheless, only key covariates selected

by the team of experts were included, while data also had to be

available for inclusion in the PS models. For example some of

the experts would have liked to include an indicator of the

‘nighttime economy’,43 but these were not available (although

the percentage of bar workers in an area was included, which

could be a proxy for the nighttime economy in an area).

Similarly, most alcohol policies are aimed to directly affect

drinking habits, and thereby aim to indirectly affect harm. As

such, inclusion of measured consumption at LAU aggregation

would have been preferable, but these data are not available.

In the Local Alcohol Profiles for England (LAPE) data con-

sumption is only available as ‘synthetic estimates’ inferred

from modelling of various indicators.44

Another limitation of the proposed methodology is the

relatively small number of LAUs, which prohibits more

detailed matching models. It has been shown that PSM works

better with a large number of potential controls to select

from.40 However, there is only a limited number of LAUs (353

at most) and the main interest is comparing policies at this

level (note that describing a methodology to deal with this

formally was the aim of this work). As such we suggest a

qualitative, in addition to quantitative, additional evaluation

of the matched sets to evaluate that matched pairs seem

appropriate, as well as some flexibility in the use of ASAM cut-

off values and other quantitative measures. The number of

units could be increased by conducting the analysis using

smaller spatial units, which would have the benefit of evalu-

ation of policies or natural experiments in parallel between

and within the different areas in a LAU. Although preferable,

the main limitation of this approach is that data required for

matching will likely not be collected at such small level. Since

no additional LAUs exist, an alternative approach could be to
Please cite this article in press as: de Vocht F, et al., Propensity score
effects of alcohol policies in case series and quasi caseecon
j.puhe.2015.10.033
reduce the number of variables in the PS model by incorpo-

rating an additional dimensionality-reduction step such as to

use a factor analysis methodology on the raw data and in-

clusion of the main factors in the PS model. However, this

would include another level of assumptions for which the

theoretical basis is unclear.

In conclusion, to evaluate the impact of new (alcohol)

policies on public health ideally randomized experiments

should be conducted. If this is not possible, for example

because new policies have been introduced in certain LAUs

prior to researcher involvement, because evaluation can only

be done retrospectively, and/or outcomedata are not available

yet (such as when the researchers rely on routinely collected

data as the outcome of interest), we described two methods

that makes use of propensity score matching to nonetheless

select the most appropriate control areas thereby at least

approximating the a priori randomization procedure.
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Appendix A. Supplementary data
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