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1. Introduction 

Ti foams have gained a wide interest in a variety of applications in the last decade due to them 

offering a unique combination of properties, such as high strength to weight ratio, high 

permeability and excellent biocompatibility [1]. There are several techniques for the production 

of Ti foams with different pore sizes and shapes, many of which are based on powder metallurgy 

(e.g.[2]). One such method is Metal Injection Moulding (MIM) in combination with the space 

holder method. MIM itself offers several advantages as a production process, and there is 

ongoing development of new binder systems adapted to different materials [3-5]. For foams, this 

technique offers several advantages over other foaming techniques, such as the potential for high 

volume production and the ability to produce complex near net shapes without the need for 

subsequent grinding and machining, which can result in closure and contamination of the pores 

with wear debris [6]. The MIM-space holder technique involves mixing of the metal and space 

holder powders with a multi-component binder and moulding them into the desired shapes 

before debinding and sintering. One crucial step in the success of the process is choosing the 

right binder and debinding it in an effective and economical way. There are two main methods 

for debinding, namely thermal debinding and solvent debinding. The former usually results in 

more contamination and needs to be done carefully and at a slow rate to avoid the formation of 

cracks and slumping of the samples [7]. The latter is usually carried out in either water or other 

solvents such as hexane. Hitherto, most of the reports on the production of Ti foams via MIM-

space holder method used paraffin wax as a major binder constituent and organic solvent 

debinding for binder removal [8, 9]. However, one significant problem is that the debinding and 
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space holder removal  processes can often take a very long time (up to 72 hours) [10]. Another 

problem is that environmentally unfriendly organic solvents are used for paraffin wax debinding 

such as Chloroform [9] and hexane [8, 10, 11]. In this paper, the use of water soluble polymer, 

namely Poly ethylene glycol (PEG) as a main constituent in the binder and its debinding 

behaviour will be studied for the production of Ti foams by the MIM-space holder method. In 

addition, different water debinding and space holder dissolution techniques will be explored and 

a comparison will be made among those techniques. Furthermore, the effect of the temperature 

on the removal of the binder and space holder will be examined. This knowledge will allow the 

design of a more efficient process.  

2. Experimental Procedure  

2.1. Starting Materials  

Commercially pure Ti grade 2 (Arcam AB, Sweden) powder with spherical particles was used in 

this study. The particle size distribution of the Ti powder was analysed via a Malvern 

Mastersizer 3000 using the wet dispersion method. Potassium chloride (Sigma-Aldrich, 

Steinheim, Germany) was used as a space holder and its particle size distribution was analysed 

using a Malvern Mastersizer 3000 with the dry analysis method. Table 1 summarises the size 

distribution and density of the powders used. The morphologies of both the Ti powder and KCl 

space holder are shown in figures 1a and 1b. The space holder was sieved through a 500 micron 

sieve. The binder consisted of PEG1500 (Sigma-Aldrich, Steinheim, Germany), Poly methyl 

methacrylate (PMMA, Sigma-Aldrich) and stearic acid with purity of ≥97% (Fluka, Sigma-

Aldrich). The density of the powders and binder constituents were measured using an AccuPyc II 

1340 Pycnometer, Micromeritics, USA.  
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Table 1. Characteristics of Starting Materials  

Name Dx (10) Dx (50) Dx (90) Density, g/cm3 

Ti Powder 52 µm 72.5 µm 102 µm 4.5371 

KCl Powder  188 µm 307 µm 476 µm 1.9866 

PEG 1500 - - - 1.1300 

PMMA  - - - 1.2060 

Stearic Acid  - - - 1.0075 

 

          

Figure 1. A. KCl Powder, B. Ti powder 

KCl particles were cubic with a hopper-like shape in some cases. This shape usually results from 

a crystal growth mechanism where atoms add preferentially at the edges, leading to a faster 

growth at the edges compared to the centre. Ti particles, produced by gas atomisation, were 

approximately spherical in shape. 

 

 

A 
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2.2. Feedstock preparation 

The feedstock was prepared by mixing the Ti powder with the KCl space holder using a 

centrifugal Speedmixer 800 FZ (Hauschild; supplied by Synergy Devices Ltd, UK).  Four 

cylindrically shaped dispersion media made of zirconia were added to mixture. Next, PMMA 

and stearic acid were added to the mixture and the mixing process continued according to the 

following mixing program.  

Table 2. Mixing Programme of Feedstock 

Mixing 

Speed 

(rpm) 

1300 1600 1800 1400 1600 1800 

Time, 

(minutes) 
4 4 2 2 2 2 

 

The mixing programme was chosen so that the heat generated from friction as the constituents 

mix was sufficient to melt the PMMA.  It consists of 2 sets of increasing speeds, intended to 

build up the heat each time. PEG was added in the last three stages of the mixing programme in 

order to guarantee that the PMMA first gets melted and homogenised in the mixture before 

adding the PEG, as the latter has a low melting temperature in comparison with the former.  It 

should be noted that the temperature of the mix cannot be directly measured in the equipment, so 

visual observation of molten state was used to determine when the temperature was sufficient. 

The total period of mixing, 16 minutes, is much shorter than that reported in the literature (e.g. 

over 1h for the same binder components for MIM of stainless steel powder, with a blade mixer at 
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a speed of 30rpm and a temperature of 70°C [12].) due to the effectiveness of the high speed 

centrifugal mixer with the dispersion media in mixing and homogenising the powders and 

polymers. The mixture was then pelleted by extruding it twice through a plunger type injection 

molder at 150 °C and cutting it into small pellets. The pellets were then allowed to cool for five 

minutes before carrying out any subsequent processing. The volume percentage of the solid part 

was equal to 55 % of which 50 % was space holder and 50 % was Ti, while the volume 

percentage of the binder was equal to 45 % of which 65 % PEG, 30 % PMMA and 5 % stearic 

acid.  

2.3.  Differential Scanning Calorimetry (DSC) and Thermogravimetric (TG)  Analyses of 

the Binder  

These analyses were performed in order to find out the melting and decomposition behaviour of 

the binder and according to which the injection temperature and debinding temperature were set. 

The DSC analysis of the binder and its constituents was performed using a DSC 6, Perkin Elmer, 

USA. The thermogravimetric analysis was carried out under argon atmosphere using a Pyris 1 

TGA instrument, Perkin Elmer, USA.  

2.4. Rheological Characteristics of the Feedstock 

The viscosity of the feedstock was measured using a twin bore barrel capillary rheometer 

(Rosand RH2000, Malvern, UK). The test was carried out at 150 °C and at a shear rate in range 

of 900 to 5000 s-1 using a tungsten carbide die. The die had a diameter of approximately 2 mm 

and a length of 16 mm. Rabinowitsch correction was applied to the results in order to get 

absolute viscosity readings by correcting the shear rate value and obtaining the true shear rate as 
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the flow of the feedstock is pseudoplastic (non-Newtonian) [13]. The flow behaviour index was 

calculated using the following power law equation [14]: 

                                ᐭ ൌ ሶߛܭ ݊െͳ                                                                                  (1) 

where ό is the viscosity, K is a constant, ߛሶ  is the shear rate and n is the flow behaviour index, 

which is equal to 1 for Newtonian fluids and less than 1 for pseudoplastic fluids.  

2.5. Sample  Preparation  

Small cylindrical parts were injection moulded at a temperature of 150 °C and pressure of 45 

MPa using a plunger type injection moulder (J.B. Engineering, United of Kingdom). The 

specimens were 10 mm in diameter and 6 mm in height. One green sample was broken and its 

surface was gold coated by sputtering for 3 minutes in order to investigate the surface of the 

sample using Scanning Electron Microscopy (Camscan Mk II, Cambridge Scanning, UK). 

2.6. Solvent Debinding and Dissolution of the Space Holder  

One advantage of using partially water soluble binder is that fraction of the binder and the space 

holder can be removed in one process unlike other binders where organic solvent debinding and 

water dissolution are required and have to be carried out separately. The water soluble part of the 

binder and space holder were removed by water dissolution using different techniques. The first 

technique was performed by real time monitoring of weight loss of both the binder and space 

holder using a Mettler Toledo density balance with resolution of 0.1 mg. The sample was put on 

the weighing basket of the density balance under water and weight loss was recorded with time. 

The temperature was recorded using a thermometer supplied with the density balance. The 
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following equations were used to calculate the percentage of space holder and binder removed 

with time:  

                       ܲ௄஼௟ା௉ாீ  = 
ௐ೔ି ௐ೟ ௐ೔ିௐ೑  × 100 %                                                                 (2) 

                ܹ ௙=ሺ்ݓ௜ ൅ ௉ெெ஺ݓ  ൅ ௌ஺ሻݓ ൈ ௜ܹ                                                              (3) 

 

where: 

௄ܲ஼௟ା௉ாீ: The percentage of binder and space holder removed  

௜ܹ: The initial weight of the sample (in water in the case of the first experiment and in air in 

the case of other experiments)      

௧ܹ: The weight of the sample at time t 

௙ܹ: The expected weight of the sample after complete dissolution of the water soluble space 

holder and binder components  

  ௜: The weight fraction of Ti்ݓ

 ௉ெெ஺: Weight fraction of PMMAݓ

  ௌ஺: Weight fraction of stearic acidݓ

Although stearic acid can be dissolved in water to a certain extent and its solubility increases as 

the water temperature rises [15], it was assumed to be insoluble in the first experiment as the 

temperature was relatively low (20 °C). The second technique was performed using an ultra-

sonic bath at room temperature. The sample was weighed in air using Mettler Toledo balance 
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with resolution of 0.1 mg and then put on the metal gauze of the ultrasonic bath and vibrated 

ultra-sonically. The weight loss was monitored with time by taking the sample out of the bath 

every 15 minutes and drying it using heated compressed air for 15 minutes before weighing the 

sample three times at different intervals in order to make sure that a consistent reading was 

taken. The third technique was done using heated ultrasonic bath supplied with a thermostat and 

built in thermometer in order to have precise control over temperature. The temperature was set 

to 50 °C (set according to the DSC analysis of the PEG) and the sample was ultrasonically 

vibrated. Every 15 minutes, the sample was taken out of the bath and dried using similar drying 

procedure to the second experiment followed by weight loss measurement. The fourth 

dissolution technique was performed using a hot plate stirrer with magnetic bar to mix the water 

vigorously. The sample was put on a metal basket and hung using a metal stand. The basket was 

placed inside a 1000 ml water beaker. The beaker was put on a hot plate stirrer. The rotation 

speed of the magnetic bar was set to 900 rpm while the temperature was set so that the water 

temperature inside the beaker was equal to 50 °C. The temperature was monitored using a digital 

thermometer with a K-type thermocouple (Digitron TM22, England). The drying procedure and 

weight loss measurement were performed in a similar manner to the previous experiments. In 

calculations for these experiments, equation 3 was used without inputting a value for the weight 

fraction of stearic acid (wSA) as at 50°C stearic acid dissolves much more easily in water than at 

20°C  [15], and is considered therefore not to contribute to the final weight.     

2.7. The Effect of Temperature on dissolution of Space Holder and Binder  

Specimens were placed on a metal basket of a heated bath at different temperatures. The 

temperatures were decided according to the melting temperature of PEG which was obtained 

through DSC analysis (found to be 50.12 °C). The dissolution processes were carried out at three 
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different temperatures below the melting temperature of the PEG and three temperatures above 

the melting temperature of PEG in order to understand the effect of temperature on the 

dissolution of binder and space holder. The first set of temperatures were 25, 30 and 40 °C, 

whereas the second set of temperatures were 60, 70 and 80 °C. The debinding and dissolution 

processes were carried out for three hours at these sets of temperatures. The samples were taken 

out of the bath every hour in order to measure the weight loss. The samples were dried and 

weighed using similar technique to that mentioned previously. The cubic root of mass was 

calculated and plotted against time in order to find the dissolution rate constant (K) for each 

temperature using the Hixson–Crowell cube root law.  

                                               ξ݉య = ඥ݉௜య   - Kt                                                                        (4) 

where: 

m: The remaining mass of binder and space holder at time t   

mi: The initial mass of binder and space holder  

K: The dissolution rate constant, also counting the temperature-dependent component of the rate    

t: time in seconds 

After calculating the dissolution rate constant for each temperature, an Arrhenius plot was 

constructed by drawing the logarithm of K against the inverse temperature. Finally, the 

activation energy for the dissolution process was calculated by calculating the negative slope of 

Arrhenius plot and multiplying it by the gas constant (8.314 J/mol.K).     

2.8. Thermal Debinding and Sintering of Samples 
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The removal of the high viscosity part of the binder (PMMA) and sintering of samples were 

performed in one cycle using a tube furnace under an inert atmosphere (argon) according to the 

thermal profile in figure 2.  

 

Figure 2. Thermal debinding and sintering cycle 

The samples were firstly heated to 450°C for 1 hour in order to ensure the complete removal of 

PMMA according to the TGA results. There was then a dwell at 800 °C for pre sintering to give 

some initial structural integrity (a common practice in powder production of foams [16, 17]) 

before sintering them at 1400°C for 2h. The true densities of the material making up the foams 

(only the solid part) were measured using a pycnometer (AccuPyc II 1340, Micromeritics, USA), 

whereas the bulk densities of the foams were measured using Archimedes' principle after sealing 

the surface of the samples with a layer of high vacuum grease.   

3. Results and Discussion  

3.1. DSC and TGA Results  
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The results of the DSC analyses of the binder and its constituents are shown in figure 3. As can 

be seen from figure 3 that the peak melting point of PEG was shifted to the left in the presence of 

PMMA (i.e. lowered from 50.12 °C for pure PEG 1500 to 48 °C for PEG in binder). Whereas the 

peak melting temperature of the PMMA was shifted to the right (i.e. increased from 126 °C for 

pure PMMA to 139 °C in the presence of PEG). This is an indication of interaction among the 

binder polymers where the crystalline PEG interacts with the amorphous PMMA resulting in a 

blend of some amorphous regions with crystalline regions composed of PEG entirely.  Jian and 

Guoqin [18] studied the behaviour of interaction between PEG and PMMA and found that PEG 

and PMMA can form semi-interpenetrating polymer-networks that are composed of mixtures of 

crystalline and amorphous regions when the PEG content is greater than 35 wt %. Thus, in order 

to make sure that all the binder components are melted, a temperature of 150 °C was chosen for 

further investigations and sample preparation. Furthermore, a temperature of 50 °C was chosen 

for some of the dissolution and debinding processes to guarantee PEG melting.  

 

Figure 3. DSC results of PMMA and PEG. 

The results of TGA analyses of the binder (PEG, PMMA and SA) and pure PMMA are shown in 

figure 4. 
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Figure 4. TGA results of the binder and pure PMMA 

It can be noted from figure 4 that pure PMMA was completely decomposed at approximately 

430 °C, whereas almost all of the binder was decomposed at a temperature of 450°C. This means 

that the thermal debinding stage should be carried out at a temperature equal or above 450 °C in 

order to guarantee the removal of components remaining after water debinding and dissolution of 

the space holder. The binder shows a higher decomposition temperature than pure PMMA 

because of interaction among the binder components. Thus, it is expected that PEG removal will 

be harder than its debinding in the pure form. In addition to this, several factors will affect the 

removal of PEG from the samples, including the percentage of PMMA in the binder, the particle 

size and shape of the injected powder as well as the molecular weight of the PEG used [19].  

3.2 Rheological Analysis Results  

The result of the viscosity analysis of the feedstock is shown in figure 5.   
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Figure 5. Viscosity Analysis of feedstock 

 

As can be seen from Figure 5, as the shear rate increases, the viscosity of the feedstock 

decreases. This is an indication that the feedstock shows some shear thinning behaviour which is 

preferred for the MIM process, especially in producing complex shapes. The shear sensitivity 

value (n) was approximately equal to 0.655. It is believed that this drop in viscosity occurs due to 

the re-orientation of particles and breakage of agglomerates [20]. However, some argue that this 

phenomenon takes place due to reduced friction and unfolding of polymer chains at high shear 

rates [21]. It was reported that the viscosity of the MIM feedstock should be less than 1000 Pa.s 

in the shear rate range of 102-105 (1/s) [20]. Thus, the viscosity of the feedstock meets the criteria 

to be successfully injection moulded.  

3.3 SEM Analysis Results  

Figure 6 illustrates the morphology of the broken sample which was imaged using SEM at 6 kV.  
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Figure 6. SEM images of the surface of as-broken green sample 

It can be noted that the KCl particles remain cubic in shape and are not coated with the binder to 

the same extent as the Ti powder. This can be helpful for rapid removal of the space holder from 

the sample by water dissolution where water penetrates into the specimen faster and breaks up 

the ionic lattice of the KCl resulting in solvated ions.  

3.4 Debinding and Dissolution Results  

 The results of different water debinding and dissolution techniques are shown in figure 7. It can 

be noted that the ultrasonic water debinding and dissolution at a temperature of 50 °C was the 

quickest method in comparison with other water debinding and dissolution techniques, where the 

PEG and space holder were completely removed after 4 hours. The hot plate stirring method 

came second with double the removal time of the heated ultrasonic bath method. The third and 

last methods were ultrasonic dissolution at ambient temperature and dissolution at 20 °C. It can 

also be seen from figure 7 that the linear parts of the curves of the heated ultrasonic dissolution 

and hot plate stirring were much larger compared to the other two methods. This is due to the 

fact that temperature has a great impact on the removal rate of both space holder and PEG, the 

latter especially as the melting temperature of PEG (50°C) were reached in the experiments. 
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Hence studying the temperature effect would be a matter of great importance in the removal rate 

of PEG and space holder. Furthermore, it can also be observed that the removal rates were 

approximately equal for the heated ultrasonic and hot plate stirring dissolution in the initial 

stages of water debinding and dissolution, but this trend changes with time in favour of the 

heated ultrasonic bath. This is due to the high efficiency of the ultrasonic vibrations in removing 

the dissolved space holder and PEG faster from the inside of the sample and consequently lifting 

the limitation of the rate being controlled by the diffusion process of the dissolved space holder 

and PEG to the outer surface. This has been considered previously as the bottleneck in slowing 

the removal process of the space holder and PEG from the sample [22-24].  

 

Figure 7. Results of Different Debinding and Dissolution Methods. 

It can also be noticed that the real time monitoring of water debinding and dissolution using a 

density balance gives a smooth curve over time. However, the complete removal of space holder 

and PEG was not realised. This can be attributed to the low temperature of the experiment 

(20°C) compared to the peak melting temperature of PEG (50°C). SEM images of the 20°C 

water debinded specimen are shown in figure 8. 
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Figure 8. SEM Images of the sample after 23 hours of dissolution 

As can be seen from the SEM images, the KCl space holder was dissolved in water and the shape 

of pores replicated the shape of the space holder, while the PEG and PMMA networks are still 

apparent after 23 h of dissolution at 20°C. These networks can be eliminated by increasing the 

temperature of the dissolution up to or above the melting temperature of PEG. 

3.5 Temperature Analyses Results  

Figure 9 indicates the results of debinding and dissolution at different temperatures  

 

Figure 9. Dissolution curves at different temperatures 
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In general, as the temperature of the dissolution increases, the rate of the removal of the space 

holder and PEG rises. This is due to faster removal of PEG and KCl at higher temperatures, 

especially when the temperature reaches the peak melting point of PEG (50°C). However, this 

trend changes as the dissolution temperature reaches 80°C where the removal rate becomes 

slower than that at 70°C particularly after longer dissolution times. This is suspected to be due to 

the fact that under these conditions the sample was significantly swollen, making it much harder 

for the space holder to be removed. Observations of the samples after dissolution found that the 

sample’s surface area at 80°C had swelled by around 20 %. This might be due to water uptake by 

the binder and on a microscale; such swelling could close the channels through the structure, 

reducing the dissolution rate. Thus, it is not recommended to carry out water dissolution at a 

temperature higher than 70°C. In addition, the data for the 80°C experiment were not used in 

constructing the Arrhenius plot, as another mechanism is thought to have been activated. The 

percentage of space holder and binder removed after three hours of dissolution at 70°C is equal 

to 95 %, whereas only 28 % was removed after 3 hours of dissolution at 20°C. An example of 

cube root mass plot obtained under equation 3 for the 30°C experiment is shown in figure 10 a. 

All the tests at different temperatures showed a similar degree of fit. The correlation values for 

the plotted root mass curves were ranging from 0.95 to 0.99. The Arrhenius plot obtained is 

illustrated in Figure 10 b. 
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                                              (a)                                                                                      (b) 

Figure 10 A. A plot of cube root mass against time for the 30°C experiment, B. Arrhenius plot for water debound 

MIM-SH foams at different temperatures   

The fact that these plots show a straight line indicates that the Hixson–Crowell law applies in the 

first stages of the dissolution and that the process at this stage is not controlled by slow rate 

diffusion, thus diffusion does not play a significant role in the first stages of dissolution. 

However, its importance in determining dissolution time would be expected to increase at later 

stages in the dissolution process or where samples have larger size (with additional dependency 

on sample shape, debinding technique and percentage of space holder). It is also interesting to 

note that there is not a dramatic departure from the linear fit as the temperature passes the 

measured peak melting point of the PEG, 50 °C.   

The activation energy for the dissolution process was found to be equal to 21.4 kJ/mol. This 

value is comparable to the value reported in the literature for dissolution of PEG from injection 

moulded dense Ti parts, namely 21.5 kJ/mol and approximately equivalent to the attraction 

energy between the water molecules (23.3 kJ/mol)[23, 25]. Thus, PEG plays an influential role in 

the dissolution process and is the main barrier for accelerating the dissolution process. By 
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contrast, the KCl does not act as the rate controlling phase. The dissolution process takes place 

by interaction of water molecules with PEG and KCl. KCl dissolves faster than PEG leading to 

the creation of macropores that replicate the shape of KCl particles. These macropores promote 

rapid water penetration through the sample. Depending on the dissolution temperature, the 

hydration process of PEG molecules begins and proceeds at a particular rate. These hydrated 

PEG molecules move out of the sample leaving amorphous networks of PMMA behind and 

creating micropores. These amorphous PMMA networks are responsible for providing 

mechanical stability for the parts after dissolution, but before sintering (the green state).   

3.6 Sintering Results  

To validate that the materials processed were suitable for the production of titanium foams, 

several samples were sintered. Some sintered samples are shown in figure 11a, while an SEM 

image of as-sintered foam surface is shown in figure 11b.   

                        

Figure 11. A. Un-sintered and sintered samples. B. As sintered sample surface 

As can be seen the shape of the pores have been altered during the sintering process from a cubic 

shape to approximately elongated irregular pores, though the size of the pores is still proportional 

to the size of the space holder particles. This change in the shape of the pores is believed to be 

A B 
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due to shrinkage during sintering under a relatively high sintering temperature (1400°C) in 

comparison with what is typically used in the literature (1100-1200°C) [10, 26]. The diameter of 

the samples shrank by 16.5% to become around 8.6 mm after sintering, while the height of the 

samples shrank by 12 % to be equal to 5.3 mm. It also can be noted that the inner cell walls of 

the foams are microporous. These micropores will act as microporous bridges connecting the 

macropores, and should thus lead to higher porosity and permeability. Although some argue that 

these micropores can be beneficial (e.g.in transporting body fluids and nutrients in biomedical 

applications [27]), the presence of such micropores can negatively impact the mechanical 

properties of foams by reducing the load bearing cross sectional area of the cell walls [28]. The 

true density was found to be equal to 4.5 g/cm3 which is equivalent to the density of Ti and an 

indication that all pores present are open pores, whereas the foam density was equal to 2.005 

g/cm3 meaning that the volume percentage of porosity is equal to 55%. This percentage is much 

higher than the volume percentage of the space holder which was about 27.5% vol. This could be 

attributed to the entrainment of voids from the feedstock, though where this is observed acetone 

is often included as a solvent, so an alternative explanation could be a significant amount of 

microporosity. The presence of this quantity of micropores can be attributed to several factors 

such as the relatively large particle size of the starting powders and the quantity (45vol%) and 

nature of binder system used (PMMA,PEG and SA) which is reported to lead to micropores [29]. 

Increasing the space holder percentage has been observed to lead to decreased cell wall thickness 

and reduced chances for the formation of micropores among the powder particles [30, 31]. 

One critical issue in producing Ti parts by MIM is carbon and oxygen contamination during 

processing (mainly during debinding and sintering stages). It has been shown that the binder 

system used can give low content of these interstitial elements [32]. Carbon, oxygen and nitrogen 
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content in the foams produced were assessed using a LECO melt extraction system by AMG 

Analytical, UK. Chlorine content was also assessed as a means to check the removal of the KCl. 

The results are shown in table 3, and are compared with a Ti foam produced by MIM in the 

literature using NaCl as a space holder and a binder composed of PEG, low density polyethylene, 

paraffin wax and SA [26]. 

Table 3. Interstitial analysis of the foams produced.  

Foam Vol% 

Space 

holder 

Vol%  

binder 

Sintering 

Temperature, 

°C 

% 

porosity  

C % O % N% Cl % 

Ti foam, Vacuum Furnace 36 40 1400 for 2h 56 0.091 0.786 0.026 <0.01 

Ti foam, Tube Furnace 27.5 45 1400 for 2h 55 0.672 0.730 0.042 <0.01 

Ti foam [26] 25 50 1200 for 4h 36 0.17 0.66 0.020 - 

 

The results indicate that the type and cleanliness of the furnace used play a significant role in 

dictating the extent of contamination during debinding and sintering as the carbon content for 

foams produced in a vacuum furnace was much less than that for foams produced in a tube 

furnace under flowing argon. The level of oxygen is also quite high for titanium foams generally, 

which would be expected to impact the mechanical properties, a result that is comparable to 

material from the literature. This problem can be addressed by improving the vacuum of the 

sintering environment and reducing the sintering temperature [33, 34].  The low chlorine content 

indicates that KCl removal has been largely successful.  
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4. Process Design of the Debinding Stage 

As noted earlier, the debinding stage makes up the dominant fraction of the time required for the 

processing of titanium foams by MIM in most currently reported methods.  To achieve a feasible 

processing time industrially, this should be minimised.  As expected, and shown above, 

increasing the temperature is one way to do this, yet this also comes with an associated cost.  The 

balance between the two may vary with different applications, and so a selection diagram has 

been created, based on the data found here (Figure 12).  As the moment of complete dissolution 

is difficult to determine precisely, this chart is constructed taking the time to 60% dissolution as 

a representation of the dissolution speed.  It shows that, while many different sets of conditions 

could be optimum, depending on the relative importance of keeping temperature or time low, the 

ultrasonic method would always be preferred, and the optimum conditions for an equal 

weighting of low time and temperature would be estimated to be ultrasonic conditions at 50°C.  

It should be noted that as the time will vary depending on many characteristics these values are 

indicative of the relative differences between the processes only. 
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Figure 12. A selection diagram for the different debinding processes explored, showing the trade-off between 

dissolution temperature and time.  The data points from this study are plotted, along with indicative envelopes of the 

ranges they occupy.  A selection line following Ashby’s method is included for the gradient when minimisation of 

each parameter is of equal importance. 

Conclusion  

In conclusion, the effect of variations in the water debinding step on the potential production 

time of Ti foams has been investigated. Cylindrical samples initially moulded at 10mm diameter 

and 6 mm height produced foams of around 8.6 mm diameter and 5.3 mm height after 

processing.  Ultrasonic water dissolution at the peak melting temperature of PEG was the fastest 

way of water debinding and dissolution where the space holder and PEG were completely 

removed within four hours. Hot plate stirring was second fastest method with a total removal 

time of 8 hours. It was also found in this study that the dissolution temperature can play an 

important role in increasing the removal rate of PEG and space holder. The best temperature for 

dissolution was found to be equal to 70°C, above which the rate of dissolution was reduced due 

to a significant swelling in the sample that slows the removal process of the space holder. The 

activation energy for the dissolution process was found to be 21.4 kJ/mol, consistent with the 

dissolution of PEG. These results allow design decisions to be made depending on the required 

characteristics for a particular applications.       
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