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Abstract This paper discusses some serious difficulties for what we shall call the
standard account of various kinds of relative necessity, according to which any given
kind of relative necessity may be defined by a strict conditional - necessarily, if C
then p - where C is a suitable constant proposition, such as a conjunction of physical
laws. We argue, with the help of Humberstone (Reports on Mathematical Logic, 31,
33-421, 1981), that the standard account has several unpalatable consequences. We
argue that Humberstone’s alternative account has certain disadvantages, and offer
another - considerably simpler - solution.

Keywords Absolute - Humberstone - Logical - Necessity - Relative -
Two-dimensionalism

1 Introduction

Attributions of necessity and possibility are often qualified. We may assert, not that
something is necessary or possible simpliciter, but that it is logically necessary or
possible, or physically, or mathematically so, for example. It is also natural and plau-
sible to suppose that at least some of these kinds of necessity are not absolute, but
relative, in the sense, roughly, that what is said to be necessary is not being said to
be necessary outright or without qualification, but only on—or relative to—certain
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propositions taken as assumptions, or otherwise held fixed.! Thus on one common
view, physical necessity is a matter of following from the laws of physics, and
physical possibility is compatibility with them. Varying the body of laws, or other
propositions, gives us other forms of relative necessity.

How, in more precise terms, should the idea that a kind of necessity (possibility) is
relative be explained? In broadest terms, it seems that the most promising approach
will involve taking some kind of non-relative, or absolute, modality as one’s starting
point, and explaining other, relative kinds as in some way relativizations of that basic
kind. But how should this be done? What kind of necessity and possibility should be
taken as the starting point, and what exactly is it for another kind of necessity and
possibility to be a relativized form of that kind?

Interest in these questions may be prompted, and answers to them shaped, by at
least two quite distinct considerations. Our goal may simply be to achieve a better
understanding of the contrast between absolute and merely relative forms of necessity
and possibility. This may go with a view to the effect that some kinds of necessity are
absolute, and others merely relative, but it need not. One might still seek to elucidate
the contrast, even if one thought it empty on one side. For one might suppose that
while, if one kind of necessity is to be explained as a relativized form of another, the
second kind must not itself be a relativized form of the first, it does not follow that
the more basic kind must itself be absolute. To be sure, it might be thought that unless
at least one kind of necessity is absolute, we shall be involved in an infinite regress.
But it is at least not obvious that any such regress must be both infinite and vicious.?

We may be more ambitious. Our hope may be that, by showing that an ostensibly
large and varied range of kinds of relative necessity can be exhibited as restrictions or
relativizations of a single underlying kind of necessity—logical necessity, perhaps—
we can achieve a conceptual reduction of ostensibly different kinds of modality to a
single kind. Here we shall simply observe that this is a further, independent aim. As
we shall see in due course, there is room for serious doubt whether it can be accom-
plished. But even if it cannot, that need not preclude an account of relative modalities
that casts light on the contrast between absolute and merely relative necessities, and
so answers to the first goal. Our aim in this paper is to cater to the first goal, without
committing ourselves to the second.

We shall proceed as follows. First, we introduce the standard account of rela-
tive necessity, and discuss some putative problems for it, most notably propounded

IThis contrast goes back a long way. For example, Aristotle distinguishes what is necessary outright
from what is necessary only relative to certain assumptions (see, for example, [2], An.Pr.30b32-33, De
Int.19a25-27; the distinction is implicit in De Soph.El. 166a22-30).

2In [4], Hartry Field writes: “In this discussion, I have avoided taking a stand on whether even logical
necessity should be viewed as ‘absolute’ necessity. One view, to which I am attracted, is to reject the
whole notion of ‘absolute’ necessity as unintelligible. Another view, also with some attractions, regards
the notion as intelligible but regards the only things that are absolutely necessary as logic and matters
of definition’. (p.237, fn.8) Field does not here countenance the possibility of a third view, which allows
that the notion is intelligible, but denies that any form of necessity is absolute. Such a position appears
comparable to that to which Quine is apparently committed at the end of ‘Two Dogmas’—that the notion
of analytic truth is intelligible (because one can explain it as ‘true and immune to revision on empirical
grounds’), but empty.
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by Lloyd Humberstone. Having resolved some of those problems, we move on to
discuss Humberstone’s diagnosis and solution to the remainder, and highlight some
shortcomings with his approach. We then explore some alternative remedies, ulti-
mately unearthing a much deeper problem with the standard account and some of
its amended versions. In response, we offer our own proposed account, and discuss
some of its consequences, technical and philosophical. We close with a summary of
our findings.

2 Relative Necessity: The Standard Account

The standard account defines each kind of relative necessity by means of a necessi-
tated or strict conditional, whose antecedent is a propositional constant for the body
of assumptions relative to which the consequent is asserted to be necessary. Thus in
a now classic treatment, Timothy Smiley wrote:

If we define OA as L(T D A) then to assert QA is to assert that T strictly
implies A or that A is necessary relative to 7. Since the pattern of the definition
is independent of the particular interpretation that may be put on 7 we can
say that to the extent that the standard alethic modal systems embody the idea
of absolute or logical necessity, the corresponding O-systems embody the idea
of relative necessity—necessity relative to an arbitrary proposition or body of
propositions. They should therefore be appropriate for the formalisation of any
modal notion that can be analysed in terms of relative necessity. [21] p.113.3

This kind of formulation of relative necessity has been quite widely endorsed
in subsequent work.* The standard account takes the kind of absolute necessity in
terms of which different forms of relative necessity are to be explained to be logi-
cal necessity, so that it is relatively necessary that p just when, as a matter of logical
necessity, C materially implies p, where C is a proposition of a certain kind—briefly,
L(C — p)); and it is relatively possible that p just when p’s truth is not ruled out
by C, i.e. when it is not the case that, as a matter of logical necessity, C implies
not-p—briefly, =LJ(C — —p)), or equivalently &>(C A p).

Before considering those features which are genuinely problematic, it is worth
briefly surveying some more or less obvious peculiarities of the notion of relative
necessity, as formulated on the standard account. First, in the absence of any restric-
tion upon the choice of C, each proposition p will be relatively necessary in an
indefinite number of ways or senses. Any conjunction of propositions which num-
bers p as one of its conjuncts strictly implies p, as does p itself. Forms of relative
necessity come cheap, and most of them are entirely without interest. This is not—or
not obviously—a crippling drawback. A defender of the standard account can reply

3Smiley uses ‘L’ as a necessity operator, more usually written ‘(1. See also [1] and [12].

4Gideon Rosen, for example, writes, ‘given any proposition, ¢, we can always introduce a ‘restricted
necessity operator’ by means of a formula of the form Uy P =4,y U(¢ — P).” [20], p.33. See also [8],
p.93.
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that it simply underlines the point that we should not expect interesting, non-trivial
kinds of relative necessity to result unless the choice of C is restricted in interesting
ways—to the laws of physics, say, or those of mathematics.

Second, since every logical necessity is strictly implied by any proposition what-
ever, every logical truth is C-necessary—necessary relative to C—no matter how C
is chosen. But this, again, is not problematic. In particular, the fact that what is logi-
cally necessary is automatically relatively necessary in any sense you care to specify
is in no tension with the plausible claim that logical necessity is absolute. The impor-
tant contrast is not with relative necessity, but with merely relative necessity, where
it is merely relatively necessary that p if it is, say, C-necessary that p but absolutely
possible that —p.

Thirdly, since C always strictly implies itself, it automatically counts as C-
necessary. So on the standard account, assuming that physical necessity, say, is
to be analysed as a form of relative necessity, the laws of physics themselves
automatically—and so, it would seem, trivially—qualify as physically necessary. But
while physical necessity may not be absolute, it may be felt that there is more to
the kind of necessity attaching to the laws of physics than their mere self-strict-
implication.> This may be felt to be a more serious objection and we shall have a little
more to say about it below. First, we should see why the standard account appears
to be in far deeper trouble, for reasons to which Lloyd Humberstone drew attention
over three decades ago.

3 Humberstone’s Problems

Humberstone raises the following problems for the standard account.”
3.1 Modal Collapse

One might suppose that there are several distinct kinds of relative necessity, and that
many of them are factive, in the sense that, where (¢ is our relative necessity opera-
tor, ¢ p — p, for every p. In other words, the characteristic axiom of the quite weak
modal logic T holds for U¢. In particular, one would expect any kind of alethic neces-
sity operator to be factive.® For example, it might be held that both biological and
physical necessity are two distinct kinds of necessity which are both relative and fac-
tive. However, Humberstone argues that, on very modest assumptions about the logic
of the absolute modality operator in terms of which, on the standard account, they

5See, for example, [6], p.266

6See [10], also [11]

7In a footnote of [10, p.34], Humberstone acknowledges Kit Fine as first noticing these problems.

8 Alethic modalities are standardly taken to be those which concern ‘modes’ of truth, in contrast with epis-
temic and doxastic modalities, concerned with knowledge and belief, and deontic modalities, concerned
with obligatoriness and permissibility. Factivity does not define alethic modalities, since epistemic neces-
sity is also factive. The collapsing argument is intended to apply to all factive modalities—so that it is
epistemically necessary that p iff it is physically necessary that p, for example.
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are to be defined, there is at most one factive kind of relative necessity. The modest
assumption is that the logic of [ is at least as strong as K—the weakest normal modal
logic. Let U¢, A and U¢, A be defined by [1(Cy — A) and LJ(C, — A) respectively.
Then, Humberstone claims, it is readily proved that C¢, A and Uc, A are equivalent.

() OCr—p—p T-axiom for ¢,

2 OC—=p —p T-axiom for Oc,

3) U —C)—~>C (DxCi/p

@) UG- )~ G (2)x C2/p

B) O — Cy) propositional logic x Necessitation Rule
6) (Cy — Cp) propositional logic x Necessitation Rule
T C (3), (5) x modus ponens

@® (4), (6) x modus ponens

) OC < Cy) (7), (8) x propositional logic,

Necessitation Rule
(10) O(C1 — q) < U(C2 — g) (9) x obvious reasoning in K
(11) Oc,q <> Oc,q (10) x Def.[JCy, Def.[IC,

The key steps in this proof purport to show that when any relative modality Ul¢
defined in the standard way satisfies the T axioms, one can prove C. By Necessita-
tion, CJC, so that for any p, O¢ p entails (p. But Cp obviously entails C¢ p.® So
relative modalities satisfying the T axioms collapse, not only into each other, but into
logical modalities—relativization is a waste of time.

3.2 Unwanted Interactions: Imposing S4

It seems reasonable to suppose that our absolute necessity operator, [, satisfies the
S4 axiom. If [J does obey the S4 axiom, every relative necessity operator [Jc must
do so as well. The proof is simple. It is a theorem of S4 that JA — (B — UA).
An instance of this theorem, substituting C — p for A and C for B is J(C —
p) — L(C — L(C — p)). But this is simply the S4 axiom for a relative necessity
operator (¢ defined by Oc p =407 LJ(C — p). So, if we assume that our absolute
necessity operator, [, satisfies the S4 axiom, it immediately follows that our relative
necessity operator, (¢, does as well, i.e. Ocp — OcUcp. Yet it may seem both
odd and implausible to suggest that if it is, say, physically necessary that p, then
it is physically necessary that it is physically necessary that p. More generally, we
should expect to be able to define kinds of relative necessity in terms of [J which
do not satisfy the characteristic S4 principles. The standard account is either overly
restrictive, or defective, in only allowing one to define kinds of relative necessity that
satisfy the S4 axiom.

Second, assuming [ is S4-like, one can show in a similar way that, where U,
and [, are any two different forms of relative necessity defined in the standard way,
the bizarre ‘mixed’ S4 principle U¢, p — Oc,0Uc, p holds. Again, it is a theorem of

9Cf [11], p.50
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S4 that [JA — (B — UA), so in particular: [I(¢ — p) — U@ — U(g — p)).
Hence for any C;: (C; — p) — O(C; — O(Cy — p)). Yet it appears quite
implausible that if something is, say, physically necessary, then it is biologically (or
morally, and so on) necessary that it is physically necessary. To give another example,
one might define drawer-necessity relative to truths about items in NN’s top desk
drawer. For example, it is drawer-necessary (but not, say, physically necessary) that
all the pencils in NN’s drawer are blunt. However, the consequences of the standard
account include that if it is drawer-necessary that p, then it is physically necessary
that it is drawer-necessary that p (and also that if it is physically necessary that p,
then it is drawer-necessary that it is physically necessary that p). But surely both
results are absurd. It is not a matter of the laws of physics that NN keeps only blunt
pencils in his top desk drawer. Nor should it be a matter of drawer-necessity what
does or doesn’t follow from the laws of physics.

3.3 Out of the Frying Pan?

To the modal collapse proof as it stands, there is a fairly obvious objection. The
problem concerns the application of Necessitation at step 9. This rule allows us to
to necessitate a proposition only if it has been established as a theorem, and if [
expresses logical necessity, the proposition to be necessitated must be a theorem of
logic. But in this case, the proposition to be necessitated, viz. C; <> C3, is no theorem
of logic, since it depends upon 1) and 2), which are non-logical axioms of a system
for relative necessity. Consider 1): its inner antecedent, Cy, will be some non-logical
proposition. For example, if we are considering an analysis of physical necessity, it
will be a proposition we take to be a physical law, or perhaps a conjunction of such
laws. Thus it might be, say, the proposition that force = mass x acceleration, so that
1) will assert that if the proposition that p is strictly implied by the proposition that
f = m x a, then (it is true that) p. True or not, this is evidently no theorem of logic.
It would seem, then, that the crucial step of Necessitation is illicit, so that the proof
does not, after all, lead to modal collapse.

A similar flaw occurs in other relevant proofs. In his original paper, Humberstone
argues that the standard account is afflicted by two other problems. First, on the
assumption of a relative necessity operator ¢ satisfying the K, T and S4 axioms, one
can show that the S4 axiom must also be satisfied by []. However, this relies on the
modal collapse argument to establish the crucial result, [JC, and so is also invalid.19
Second, he claims that, on the assumptions that one relative necessity operator Uc,
satisfies the K axioms, the axioms B and D, but not T, while another U¢, satisfies
the K axioms and also the T axiom, we can prove that Uc, must satisfy the T axiom

10The purported proof was supposed to go as follows. By the argument above, (JC. But for any p, we have
Op — O(C — p), and by hypothesis, (C — p) — O(C — O(C — p)). But from these it follows
that Op — O(C — O(C — p)). But since, by the K axiom for O, J(C — O(C — p)) — (OC —
O0O(C — p)), it follows that Jp — (OC — OO(C — p)). And since JOJ(C — p) — OOC — Op)
and JOC — Op) — (OOC — OOp),it follows that (Op — (OC — (UOC — OOp)). But we
can permute and detach the second and third antecedents, so that Op — OO p. Thus, the assumption of a
relative necessity operator (¢ satisfying the K, T and S4 axioms forces the S4 axiom for OJ.
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after all. We have chosen not to discuss this problem in detail not only because it is a
rather less intuitive combination of modal properties, but also because the proof fails
for the same reason as that of problem 1: illicit use of Necessitation.

Is the standard account thus vindicated? No. Whilst some of Humberstone’s prob-
lems, in the form presented, can be dissolved, those of the unwanted imposition of
S4, and ‘mixed’ S4, remain. Hence, there is still good reason to explore alterna-
tives to the standard account. Moreover, in so doing we must take care to ensure
that any alternative does not accidentally revive those problems now deemed solved.
More importantly, in developing an alternative account, we will discover a far deeper
problem for the standard account.

4 Humberstone’s Solution

Although, as we have observed, some of Humberstone’s problems may be set aside
as relying on illicit steps of Necessitation, others remain. We wish now to consider
his proposed solution to them. To understand it, it is useful to review his diagnosis of
the source of the problems he takes to be fatal to the standard account.

He writes:

[T]he difficulties we have become entangled with result from making substitu-
tions too generally. To see this, let us consider what happens semantically with
the idea of relative necessity. We are given an arbitrary modal operator and
asked to code it up as some combination of a fixed operator ‘(] and a proposi-
tional constant. But a propositional constant, if it is to be of the same category
as the usual propositional variables, is (in effect) assigned a set of worlds in the
Kripke semantics whereas the operators we are trying to use these constants to
express correspond instead to binary (accessibility) relations between worlds:
thus there is bound to be a loss of information in the translation. ([10], p.36.
See also [11], p.51)

His thought, in other words, seems to be as follows: modal operators are quan-
tifiers over worlds, and in particular, relative modal operators are restricted world
quantifiers. Thus whereas an absolute operator, [J, quantifies unrestrictedly, so that
[lp says that p is true at every world, a relative necessity operator, (¢, quantifies
only restrictedly, so that (¢ p says that p is true at each of a restricted range of worlds.
The question is: how is this restriction to be captured? The standard account seeks to
capture it by relativizing to a propositional constant—a constant which expresses a
proposition true at just those worlds in the restricted range intended. Instead of inter-
preting the relative necessity claim as that p is true at each of a restricted range of
worlds, it interprets it as the claim that the conditional C — p, where C is the propo-
sitional constant, is true at all worlds. The trouble with this, Humberstone thinks,
is that it loses vital information about the distinctive accessibility relation in terms
of which a relative modal operator needs to be understood. What distinguishes one
kind of relative necessity from another, he thinks, is that each corresponds to a differ-
ent accessibility relation. Thus what is physically necessary at a given world is what
holds true at every world that is physically possible relative to that world, whereas

@ Springer



B. Hale, J. Leech

what is epistemically necessary is what holds true, rather, at every world that is epis-
temically possible with respect to that world. These are quite different relations, but
the standard account does not do justice to their difference.

In more detail,

if R is a binary relation on some set W, and S is a subset of W, we define the
range-restriction of R to § symbolized Rg thus: xRgy iff xRy and y € S.
...translating (or defining) OA as [J(C — A) amounts to taking the acces-
sibility relation for “O” to be the range-restriction of that for “[J” to the set
of worlds at which C holds. Thus instead of being able to cope with an arbi-
trary collection of modal operators, we are forced to deal only with collections
whose accessibility relations are range-restrictions of a single relation, and it is
this circumstance which underlies the difficulties ... ([10], p.36)

In terms of this diagnosis, one can, he points out, give a straightforward explana-
tion of the difficulties. Thus defining the relative necessity operators ¢, and U¢, by:
Oc, Aiff O(Cy — A) and Oc, A iff J(C, — A) amounts to taking their associated
accessibility relations R; and R; to be range-restrictions of the underlying accessi-
bility relation R associated with [J, so that they are just sub-relations of R with the
same domain W but (proper) subsets S; and S, of R’s range W as their ranges. But
then the supposition that ¢, and O¢, both obey the T principle is just the supposi-
tion that R; and R, are both reflexive—whence, since each has domain W, it must
have the whole of W as its range after all. So the supposition of reflexivity undoes
the range-restriction—R] and R; both end up with the same range as R, and hence
as each other, and since they share the same domain, they are just the same relation
by different names. Hence collapse. Similar explanations, he suggests, may be given
for the other difficulties. See [10], pp.36-7.

It does not, of course, follow from the fact that some of Humberstone’s argu-
ments rely on illicit Necessitation steps that there are no formally correct arguments
to the same conclusions; so it does not straightforwardly follow that there must be
something amiss with his purported diagnosis. But in fact there is a questionable
assumption on which it rests. For if the addition of the T-schemes for U¢, and
U, is to enforce reflexivity on the their corresponding accessibility relations Rjand
R>,Humberstone must assume that those schemes are logically valid. The assumption
of validity, as opposed to mere truth at a world, is crucial. Op — p could be true at a
world w without the accessibility relation being reflexive—for we might have wRw
but —w'Rw’. v(Op — p, w) = 1 requires that if v(Op, w) = 1 then v(p, w) = 1
also, and since wRw, the truth of this antecedent requires the truth of this conse-
quent. Further, we can suppose that v((p, w’) = 1 while v(p, w’) = 0—there is no
incompatibility here, since the truth of this antecedent does not require v(p, w') = 1,
since —w’Rw’. What cannot be the case is that v(Op — p, w) = 1 is true for all
w, but R is not reflexive. But the assumption that the T-schemes are logically valid
is simply the model-theoretic counterpart of the equally problematic proof-theoretic
assumption—that Uc, p — p and O¢,p — p are logical axioms—which, as we
have seen, vitiates the formal proofs for problems 1 and 3.

Prescinding from our reservations, Humberstone’s proposed remedy should come
as no surprise given his diagnosis—since the propositional constants central to the
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standard treatment lose essential information about the distinctive accessibility rela-
tions which characterize different kinds of relative necessity, they must be replaced
by a new type of constant which encodes the lost information. As he puts it, ‘the
constants must do some of the “relational” work themselves’ (p.37). To this end, he
assumes a two-dimensional framework, in which formulae, including the new type
of ‘relational’ constants, are evaluated with respect not to single worlds, but pairs of
worlds:

[W]e want, for A a formula and “E" a truth-relation determined by a model
(W, R, V), to make sense of not the usual =, A but rather |=§,A (where x, y €
W), so that when it comes to evaluating one of our special constants, which I
shall now write as R instead of C, to emphasize the relationality, we can say:
=L R iff xRy. ([10], p.37)

The idea is that a given such R is to be true with respect to the pair of worlds x
and y just when x bears the relevant accessibility relation, R, to y. Thus

If we have in mind a formalization of physical necessity, we might read = R”
as “the laws of x are true in y” ([10], p. 38)

Using constants of this new type—semantically interpreted as ‘dipropositions’—
Humberstone’s revised definitions of relative necessity operators have the same
surface form as in the standard account. That is, where O is a relative necessity
operator, we have

OA =4, (R — A)

But, crucially, dipropositional constants are not substitutable for normal propositional
variables:

The propositional variables really do range over propositions, but the senten-
tial constants R; cannot be substituted for them because the latter are not
propositional constants. In the terminology of [Humberstone (1981)], they
are semantically interpreted not as propositions but as dipropositions—sets of
(ordered) pairs of worlds. ([11], p. 53)

Clearly, since each of problems depends upon substitution of the relevant proposi-
tional constant C; for a propositional variable, this restriction effectively blocks all
of them. Crucially, this restriction blocks the problems that, on closer examination,
are still valid and hence still pressing. In particular, the schema for the S4 axiom for
a relative necessity operator is:

S4HOR - A) - O(R — (R — A)), provided R does not occur inA.

5 Shortcomings

Humberstone’s solution comes at a price. In this section we highlight two disad-
vantages, which seem to us sufficiently serious to warrant looking for an alternative
solution. The first disadvantage concerns the modal logic of the underlying absolute
necessity operator, [. It is usual, and it seems to us overwhelmingly plausible, to
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take [ to express logical necessity. And it is, further, commonly supposed, and again
very plausible, that the modal logic of [J, interpreted as expressing logical necessity,
should be S5.!" But Humberstone cannot both take his absolute necessity operator (]
to express logical necessity and agree that logical necessity satisfies the S5 principles.
It is less than totally clear which claim he means to deny. Noting Smiley’s suggestion
that we should take absolute necessity to be logical necessity, he comments that this
is

a suggestion which is not entirely easy to evaluate. Most people believe that
logical necessity satisfies at least the T axiom and the S4 axiom; however, nei-
ther JA — A nor JA — UUJA is valid for arbitrary A, though both are valid
for R-free A. ... it may be held that since “[J” does not satisfy all instances
of the familiar schemata, it cannot be regarded as expressing logical necessity.
This matter cannot be settled here. ([10], p.40)

Since denying that the T and S4 axioms hold unrestrictedly for logical necessity is
hardly an attractive option, it may seem that Humberstone’s best course is to accept
that his absolute necessity operator does not express logical necessity. But this, too,
has its disadvantages. Setting aside the absence of any plausible alternative candidate,
it is independently plausible that the kind of necessity in terms of which various forms
of relative necessary are to be explained should be logical necessity. Further, if that
role is assigned to some other kind of (absolute) necessity, logical necessity would,
if not simply a restriction of that kind of necessity, have to be treated as a form of
relative necessity.!? But it is unclear how logical necessity could be merely relative,
if logical necessity is stronger than the kind of necessity of which it is supposed to
be a relativization (as it would be, if it obeys unrestricted T and S4, and plausibly
S5, axioms). And in any case, even if the absolute necessity is not identified with
logical necessity, it may be argued that its modal logic should be S5.13 All told, if
there is an alternative formulation of relative necessity that can avoid making difficult
claims about logical necessity—either that it does not satisfy the S5 principles, or
that it is not absolute necessity—so much the better. Our aim below is to offer such a
formulation. '

A second, and in our view more fundamental, disadvantage of Humberstone’s
solution is that it is inextricably reliant on the assumption that modal thought and
talk is to be understood as, and analysed in terms of, thought and talk about possible

T An argument for the claim that logical necessity is the strongest kind of necessity is given in [19]. For
further defence, see [8] and [9], ch.2.

120ne kind of necessity is a (proper) restriction of another if necessities of the first kind are a (proper)
subclass of necessities of the second kind, whereas when one kind is a relativization of another, the relation
is reversed, i.e. necessities of the second kind are a (proper) subclass of necessities of the first. For example,
one might hold that logical necessity is a restriction of metaphysical necessity. But given its peculiarities,
it would not be plausible to take Humberstone’s absolute necessity to be metaphysical necessity.

3For argument in support of the claim that the logic of absolute necessity is S5, and that logical necessity
is a species of absolute necessity, see [9], chs.4, 5.4. Timothy Williamson argues, along quite different
lines, that the logic of metaphysical necessity is S5 in [22], ch.3.3.

14See [14] for an axiomatization of Humberstone’s proposed two-dimensionalist logic of absolute
necessity and a detailed discussion of its logical properties.
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worlds. Our concern is not simply that the proposed solution presupposes the two-
dimensional framework, which in turn appears to require acceptance of a plurality
of worlds. Nor is the complaint that the solution requires acceptance of some form
of extreme realism about worlds, such as Lewis’s—for there is no reason to suppose
that it does so. The point is rather that, while there is no denying the enormous utility
of possible world semantics in model-theoretic treatments of modal systems, it is one
thing to hold that the truth-conditions of modal propositions can be usefully mod-
elled in terms of systems of worlds, and quite another to claim that such propositions
are fundamentally propositions about worlds and the relations between them—that
understanding such propositions requires understanding them as making claims about
worlds, and relations between them. The standard account, for all its faults, made
no controversial demands on the metaphysics of modality, and took no stand on dis-
puted questions about the nature and basis of necessity. This, it seems to us, is a
virtue which a better account should preserve. Humberstone’s proposal, by contrast,
requires us to accept that modal propositions—or at least propositions asserting rel-
ative necessity—are really propositions about relations between worlds. This comes
out most forcefully in the new dipropositional constants. Humberstone does not spell
out just what, under his proposed analysis, we are saying when we assert, for exam-
ple, that such-and-such is physically possible, or physically necessary—how, exactly,
R is to be understood, when it is the constant for physical necessity. The closest he
comes to doing so is his suggestion that |=’y“ R might be read as “the laws of x are true
in y”. This does not tell us how to interpret R in the context LI(R — A), but it seems
that there will be no alternative but to construe it as asserting something about worlds
which are physically accessible from, or physically possible relative to, a given world.
What is lacking is a way to account for our understanding of claims about relative
necessity which does not require us to understand them as claims about relations
between worlds. There may be some world-free way to construe dipropositions, but
we take the onus to be with our opponent to offer such a construal.

Humberstone’s is not the only possible two-dimensional treatment.'> Alternative
two-dimensionalist solutions may be able to avoid these disadvantages. But it is,
we think, of interest to see whether a satisfactory solution can be developed which
does not draw on a two-dimensional framework, and this will be our course in what
follows.

6 Remedies
6.1 Adding a Conjunct
Before we present our preferred alternative treatment of relative modalities, it will

be useful briefly to discuss another remedy which has been proposed. The added
conjunct stategy, in its simplest form, consists in expanding the definiens for C¢ p

15 A rather different two-dimensionalist treatment of relative necessity is proposed in [7], a paper to which
Humberstone does refer [10, p. 40] For a brief discussion, see Appendix.
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by adding the propositional constant C as a conjunct.!0-17 That is, for any form of
relative modality for which the T axiom is to hold, we define:

Ocp =der C AOC — p)

Whilst this strategy blocks Humberstone’s modal collapse argument, that argument
itself collapses anyway, so that there is no need for any further measure to block it.
More importantly, this added-conjunct strategy does nothing to solve Humberstone’s
S4 problem, as the reader may easily verify. If [ satisfies the S4 axiom, so must any
form of relative necessity—adding a conjunct does not block this result, because the
S4 axiom for O¢, under the revised definition, i.e.

(C1 AL(C = p)) = (C1 A [L(CL = (Cr AL(CL = p)))))

is fairly obviously still a theorem of S4 for [1.'® The ‘mixed’ S4 problem, however,
is now solved.”

6.2 A Better Diagnosis

We are now in a position to draw two crucial lessons from the failings of the standard
account, and attempts to remedy those failings. In brief, (1) crucial information has
been lost, but (2) that information must be reintroduced in a suitably general form, if
the account of relative necessity is to have any plausible application.

First, then, independently of these logical shortcomings, the additional conjunct
strategy suffers from another defect. Recall Humberstone’s complaint that the stan-
dard account founders because it loses vital information. We agree with Humberstone
on this point—but not on what vital information is lost. Here is our alternative diagno-
sis. When we adopt the standard account of a relative modality—physical necessity,
say—we proceed as follows: ‘Let C be a conjunction of the laws of physics. Then

16A version of this strategy is mentioned by Steven Kuhn, who writes: ‘Other remedies [i.e. other
than Humberstone’s own proposal] may also be possible. Wlodzimierz Rabinowicz, in correspondence,
attributes to Lars Bergstrom the idea that, when OA D A obtains, the reduction of relative necessity should
be given by OA = (L D A) & L rather than OA = O(L D A).” ([14], note 2)

17Clearly this proposal is appropriate only for factive kinds of relative necessity. The effect of adding C
as a separate conjunct is that Cl¢ p always implies p. However, as we discuss briefly in Section 8, there are
other problems to be considered for treating non-factive necessities.

181f the main antecedent is true at w but the main consequent false there, then since C| is a conjunct in the
main antecedent (and so likewise true at w), it must be the right conjunct that is false at w. This requires w’
with C true and J(Cy — p) false, and the latter requires w” with C; — p false. But this is impossible—
for since we are in S4 for [J, w” must be accessible from w, so that C; — p must be true at w”. So the
whole conditional is valid, and thus a theorem by completeness.

9The foregoing model-theoretic argument depends upon the identity of the left conjuncts in the main
antecedent and consequent. Thus:

(C1 AO(CL = p)) = (C2 A (O(C2 — (€1 AD(CT — p)))))

is not a theorem of S4. There is a simple one world counter-model with C; and p both true, but C; false.
Thus the additional conjunct strategy does block the last part of problem 2.
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to say that it is physically necessary that p is just to say that p is a logical conse-
quence of C—in symbols: J(C — p).” The key point here is that, in adopting this
formalization, we simply leave it to be understood that C is a conjunction of physical
laws—nothing in our definiens actually records that that is so. So that information
is lost. And it is, surely, vital information. Nothing explicit in the definiens distin-
guishes between a strict conditional purporting to express the physical necessity of its
consequent, and one which purports to express some other kind of relative necessity.

One moral we might draw from this is that a better definition needs explicitly
to record the relevant information about the status of the antecedent C. The simple
added-conjunct strategy does no better in this respect than the standard account. An
obvious way to remedy this particular shortcoming would be to employ an additional
operator, m say, which might, in case we are seeking to define physical necessity,
be read as ‘it is a law of physics that ...’.2% Amending the simple added-conjunct
analysis to:

It is physically necessary that p iff 7(C) AO(C — p)

not only restores the lost information, but actually provides a solution to the S4
problem. This analysis preserves what is good about the added-conjunct strategy—
blocking the second ‘mixed’ version of the S4 problem—and it deals with the simpler
S4 problem, which eluded the simpler strategy. For now, the S4 principle for (¢ is:

(@(C1) AD(Ct = p)) = (@(C) A ([(C — ((C1) ATI(CT — p)))))

and a simple calculation reveals that this is no theorem of S4 for [J. Crucially, while
antecedent and consequent here share the same left conjunct, 7 (C1), this conjunct is
not necessitated—it is allowed that the laws of physics might, logically, have been
otherwise. Consequently, there is a simple two world counter-model in which 7 (C1)
is true along with Cy and p at w, but w(Cy) is false at w/, even though Cj is true
there. The counter-model exploits the fact that being true is necessary, but not suffi-
cient, for being a law of physics—so that there are possible circumstances in which
the propositions which are the actual laws of physics would still be true, but only
accidentally, and not as a matter of physical law.

This brings us to our second crucial point. The additional conjunct strategy,
whether in its simple or revised form, remains afflicted with a defect which was all
along sufficient to justify rejecting the standard account, quite independently of the
problems with which we have been occupied, but which appears to us, remarkably, to
have escaped notice in previous discussion. As the use of C and 7 (C) makes plain,
each of these accounts simply assumes that we are able actually to state, say, the
laws of physics; neither provides an analysis we could advance, unless were we actu-
ally able to do so. At least, this is so, on the charitable assumption that the intention

20Typically what is physically necessary is a consequence of several laws of physics, not just one. In order
to postpone discussion of some complications best left aside pro tem, we shall assume—as seems not
unreasonable—that any conjunction of laws of physics counts as a law of physics. For discussion of this
and other complications, see below, Section 7.
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behind these accounts is that what is physically necessary should be what is required
by the true laws of physics, and not just by what we take to be the laws. We do not, of
course, mean to deny that it may on occasion reasonably be claimed that something
is physically necessary, or physically impossible. Someone who makes such a claim
may believe, on good grounds, that such-and-such propositions are laws of physics,
and that they require, or rule out, the truth of this or that further proposition. Or,
without being confident about any specific candidates to be laws of physics, she may
believe that whatever precisely the relevant laws are, they will be such as to require,
or rule out, the truth of certain propositions—such as that a human being should
move by its own unaided effort at 200mph. Our point, at bottom, is that someone
may understand the claim that, or the question whether, such-and-such is a physical
necessity or (im)possibility without knowing, or claiming to know, what the laws of
physics are, even approximately. Whatever the question is, that such a person is con-
sidering, it cannot be the question whether certain specified propositions are laws of
physics which strictly imply that such-and-such. Of course, she may put her ques-
tion this way: ‘Do the laws of physics require that such-and-such?’. But her question
need not concern certain specific (candidate) laws—it can still be a perfectly general
question: ‘Are there physical laws which require that such-and-such?’

6.3 Existential Generalization

There is an obvious way to do justice to this point—replace our propositional constant
by a variable and existentially generalize through the position it occupies. That is, we
should define:

It is physically necessary that p iff dg(x(g) AO(g — p))

where, as suggested above,  (¢) may abbreviate something like ‘It is a law of physics
that ¢’. It is not assumed that the laws are known; hence 7 (g) could be read as
saying that g is one of the actual physical laws, whatever they are, or may be—but
not ‘whatever they could have been.’?!

For any kind of relative necessity, then, our proposal is to define it in line with the
following schema:

It is @-necessary that p ifft  3g(P(g) AO(g — p))

where, @ (q) abbreviates ‘It is a @-proposition that ¢’. The condition captured by
“@” may be more or less interesting, more or less restrictive. We will continue to use
the example of the laws of physics, i.e. w(g), as a representative, and philosophically
interesting, example.

Such a proposal captures quite naturally, or so it seems to us, the main idea of rel-
ative necessity. It introduces explicitly the information lost by the standard account.
Not only does it specify the kind of proposition to which the necessity is relative, e.g.

21We are understanding the claim that it is physically necessary that p so that to make this claim is not to
deny that the laws of physics could have been otherwise (in such a way as not to require that p). In other
words, ‘whatever they are, or may be’ is to be given an epistemic reading, not a metaphysical one.
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laws of physics, but also does so in a plausibly general way. If one claims, for exam-
ple, that it is necessary relative to the laws of physics that p, one need not be claiming
that p is necessary relative to some particular laws that one is able state, but only that
there are some such laws that necessitate p. So what might at first glance appear to
be an unnecessarily complex formulation, as contrasted with the standard account, is
in fact simply recording explicitly the information that was all along assumed by the
standard account, and in a suitably general way.

Is this proposal subject to any of the problems Humberstone took to afflict the
standard analysis? Setting aside the arguments which we saw to be flawed by faulty
Necessitation steps, it is easy to see that the arguments central to the remaining
problems—those involving unwanted imposition of S4-like properties—no longer go
through, since they both depend upon substituting a special propositional constant
or constants for propositional variables in the S4 theorems Ul(¢ — p) — U(g —
O(g — p)) and (g — p) — O(r — O(g — p)), both of which are derivable in
S4 from the so-called paradox of strict implication JA — (B — A), and we no
longer have any such propositional constant(s) to substitute.

Might there be some other route by which some or all of these problems could
be re-instated? In the case of Humberstone’s first problem, the question is whether,
when a T-axiom governing [, defined as now proposed, is added to an underlying
modal system, say K or T, to obtain a system S, we can derive Lp from [, p. The
distinctive axiom is g (7 (g) ALl(g — p)) — p. With this available, we could argue:

1 ey Aq((q) AU(g — p))
1 2) p by T-axiom for [,

But to get Llp, we would need to apply the Rule of Necessitation or a rule of [I-
introduction. We cannot use the Rule of Necessitation, as this only permits us to
necessitate theorems, but p is no theorem. And we cannot use the [-introduction
rule, as this allows us to necessitate a formula only if it depends only on suitably
modal assumptions, and (1) is not suitably modal. There is no other obvious strategy
for a derivation, and we are confident there isn’t one to be found. Proving this—
assuming we are right—is a more substantial task than we can undertake here. But
we can at least sketch how we think things would go.

Giving a model to show that 3¢ (7w (¢) A O(¢g — p)) s Op would require giving
a semantics for the system S, and that will require, inter alia, a semantics for proposi-
tional quantification. Perhaps the most obvious method is (following [5]), to interpret
propositions as sets of worlds, and take propositional variables to range over subsets
of the set of worlds of the model. We would need to show that S is sound with respect
to the semantics, i.e. that I' =g A only if I' Fg A. As well as dealing with proposi-
tional quantifiers, the semantics will include a clause governing the 7 -operator (and
more generally, for any relative necessity system, a clause governing the @-operator).
We may presume that this will ensure that 77 (p) is true at a world w only if p is so:
the laws of physics are, apart from anything else, true.

Since dg(w(g) A U(g — p)) — p is an axiom of S, we require this formula to
come out true in every S-model. To see, informally, why it will do so, let M be any
S-model. M will have a set of worlds W as its principal domain, so that propositional
variables range over subsets of W. If g (7w (¢g) A (g — p)) — p is to evaluate as
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true at each world w, it must be that g ((g) A (g — p)) is false at w or p is true
atw. If p is true at w, sois 3¢ (w(¢) AO(g — p)) — p, just as required. So suppose
p is false at w. Then we require that 3g (7 (g) AO(g — p)) be false at w. In effect, a
propositionally quantified formula 3p A(p) will be true in a world in a model iff A(p)
is true at that world for some replacement of the variable p by some propositional
constant pg. So 3q(w(g) A U(g — p)) is false at w iff (m(go) A U(go — p)) is
always false at w, no matter how g is chosen. Pick any gg. We can suppose that gg
is true or false at w. If g is true at w,then since p is false at w, go — p is false at w,
so that J(go — p) is false and hence (1t (gg) AU(go — p)) is false as required. If go
is false at w, then given our assumption about the clause for 7, 7w (go) will likewise
be false at w, so that again (w(qo) A LJ(go — p)) is false as required.

To see that 3¢ (w(g) A (g — p)) ¥s Op, we shall need to show that in some
S-model, for some w, g (7 (q) A U(g — p)) is true at w while p is false at w.
Intuitively, this is clearly possible. Suppose Lp is false at w. For g (7w (g) A O(g —
p)) to be true at w, we require that 7(g) A (g — p) is true at w for some choice
of g. Since we are taking 7 to be factive, ¢ must be true at w. And [J(¢ — p) must
be true at w. This means that p must be true at w (we are assuming S includes the
T-axiom for plain [J, so that the accessibility relation is reflexive). But this is entirely
consistent with p and g being false at w’ for some w’ accessible from w, as required
for truth of [l(¢ — p) and falsehood of [p at w.

We are reasonably confident that with further work, this informal sketch can be
turned into a rigorous model-theoretic proof, and that we shall be able to show, along
similar lines, that our proposed definition of relative necessity does not succumb to
any of the other problems discussed in Section 3.

7 Complications and Refinements

The system S, lightly sketched in 6.3, clearly calls for more rigorous formulation
and development. We cannot undertake a full-dress presentation here. Our purpose
in this section is rather to draw attention to some signficant aspects of the system we
intend, and to deal with some complications noted in Section 6.2 (see fn. 20). Here we
have benefitted from very helpful discussion of an earlier version with David Makin-
son and some observations made by an anonymous referee, to whom we are much
indebted. The complications, and in some cases, refinements, concern the following
facts. (i) p — Ug p, i.e. the principle that logical necessity implies relative neces-
sity, which Makinson calls Down, is not a theorem of S. (ii) The converse of Down,
Ug p — Up, which Makinson calls Up, is not a theorem of either S or S + Down.
(iii) S appears to lack the conjunction property, i.e. that g A, Up B - e (A A B).
We give a brief statement of the logical facts, then comment on the issues to which
they give rise.

i) S¥ Down
Let our relative necessity operator be g, defined as 3g(P(g) A U(g —
p)). Interpret @ so that v(® A, w) = O for all w € W. Then v(¢g(Pg, w) =0
for all w € W. Hence v(3q(®@g AO(g — A)),w) = 0 forall w € W, ie.
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v(pA, w) = 0 for all w € W. So, vacuously, v(p A — A, w) = 1 for all
w € W. That is, the T-schema holds with this interpretation of @.

Now let T be any tautology, so that v(T,w) = 1 for all w € W. Hence
vdT,w) = 1 forall w € W. But v(UpT,w) = v(Aq(Pg A T(g —
T)),w) =0 forallw € W. Hence v(UT — UpT),w) =0 forall w € W.
That is, Down is not derivable in S.

(i) S (S+Down) ¥ Up
LetW={w;, wo} and R=W xW = {{wy, wy), (wy, w2), (w2, wy), (w2, wa)}
so that R is an equivalence relation on W. Interpret @ so that v(® A, w) = 1
iff v(A,w) =1forallw € W.

It follows that v(Lep A, w) = 1 iff v(A, w) = 1 for all w € W. It immedi-
ately follows from this last that v(p A — A, w) = 1 for all w € W—since
if v(depA, w) = 1, then v(A, w) = 1 for all w € W. So the T-schema is
validated by this model. But this model falsifies Up, if we stipulate (as we
may), for some p, that v(p, wi) = 1 but v(p, wy) = 0.

(iii)) OpA,OpB ¥ Op(A A B)
Under our definition, the premises are 3¢ (® () AL(g — A) and 3¢ (@ (g)A
Ll(g — B). As far as these premises go, there need be no single proposition
q such that @ (g) which strictly implies both A and B. So we appear unable to
infer 3¢ (@ (¢) A U(g — (A A B)), as required for the conjunction property.

7.1 Comments on (i), (ii) and (iii).

For reasons which will rapidly become apparent, it makes best sense to begin with
point (iii).

7.2 The Conjunction Property

What, in essence, appears to block the derivation of Ug (A A B) (i.e. (@ (g) A
U(g — (AAB)))) from e A and Ug B (i.e. 3g (@ (@) ALI(g — A)) and g(D(g) A
Ll(g — B))) is the fact that we cannot infer from the premises that there is a single
proposition r such that @ (r) AL(r — (AAB)). As our anonymous referee points out,
this problem would be solved if we could generally infer @ (A A B) from @ (A) and
@ (B), since we could then conjoin the possibly distinct propositions g;, ¢; such that
®(g;) Ad(g;i — A) and @(gq;) AU(g; — B), whose existence is guaranteed by the
premises, to obtain @ (g; Aq;) AL((q; Aqj) — (AAB)), whence 3g(® () AL(g —
(A A B))). As amatter of fact, we make just this assumption for our operator & above
(see footnote 20). However, an objection to this remedy, also proposed by our referee,
is that it re-opens and reinforces the concern, to be discussed in section 8, that a @-
operator is really nothing but a thinly disguised duplication of the relative necessity
operator which we are seeking to define. In that case, rather than working via the
conjunction property for @, we might as well directly stipulate that (e AAOgp B) —
Oe (A A B).
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The problem raised is a special case of a wider issue, i.e., whether relative
necessity operators, according to our proposed formulation, are closed under logical
consequence, that is, if A1, ..., A, F BthenUgp A1, ...,0pA, F UgpB forn > 122,
We need a solution that does not simply beg the question. And indeed, there is a sim-
ple revision of our proposal from which closure under logical consequence follows,
without the complication of needing to specify and justify a conjunction property for
@-operators.

Instead of defining (g A by a simple existential quantification 3g (@ (¢) AO(g —
A)),we may simply use a finite string of quantifiers:

oA =ger 391, ..., gn (@ (@) A .. AP (qy) AD(g1 A .. A — A))

Clearly we obtain closure under logical consequence now, without needing
to insist that a conjunction of @-propositions must itself be counted as a @-
proposition.3

7.3 Down

Makinson’s own view is that the failure of Down is a defect—without it, the system
is ‘rather weak’. On the contrary, we take there to be good reason why we should not
have Down. Down is, obviously, closure under logical consequence for the limiting
case where n = 0. It is bound to fail if, as seems reasonable, we allow that the
laws of physics, say, might have been otherwise, and that it is a contingent matter
whether there are any such laws at all, for then [JB may be true, but Og B (i.e.
g1, ..., g (@ (q1) N ... AP (gn) AO(g1 A ... Agqn — B))) false, because there are no
true @-propositions. Of course, under the hypothesis that there is at least one true @-
proposition, Down will hold; where there are, say, some laws of physics, their logical
consequences will, trivially include all the logical necessities, which will harmlessly
qualify as physical necessities.

That Down should be validated is, no doubt, just what one would think, if one
thinks about relative necesity in essentially world-terms: that is, so that what is phys-
ically necessary, for instance, is essentially just what is true throughout a restricted
range of all logically possible worlds. For then, since anything logically neces-
sary (i.e. true throughout the whole unrestricted range) must be true throughout any
restriction of it, it must also be physically necessary. Our answer to this is that it is

22We should not expect closure when n = 0, for reasons to be given in our discussion of Down.

23 A a referee for this journal observed, this refinement, in allowing for variation over natural numbers
serving as indices, and in using suspension dots, results in a right hand side that is no longer a formula of
a simple extension of the language of ordinary modal logic by @ and propositional quantifiers. A fuller
treatment of our proposal would need to settle on a formal treatment of these extra devices.

As our referee points out, we might accommodate numerical indices by enriching the language to
include explicit quantification over the natural numbers; or we might instead take our formulation as short-
hand for an infinite set of axioms of the form: 3¢g...3¢, (P (q1) A ... AP (gn) AO(g1 A ... Agn — A)) —
Og A. We have no aversion to enriching the language by adding quantification over the natural numbers,
if that is necessary for current purposes, nor is it obvious to us what the shortcomings, if any, would be
in opting for an axiom scheme in place of a fully explicit definition. We shall not attempt to adjudicate
between these, and perhaps other, alternatives here.
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just a mistake to think of forms of relative necessity as fundamentally to be under-
stood in world terms. If we drop that prejudice, then it can seem entirely natural and
correct to characterize or define a form of relative necessity in such a way that logical
necessity does not automatically ensure relative necessity.

7.4 S(S+ Down) ¥ Up

Evidently this is a welcome result from our point of view; Makinson’s proof confirms
what we claim in 6.3.

8 Further Issues

In this closing section, we anticipate and respond to an objection to our preferred
account, and draw attention to a limitation on its range of application.

The objection focuses on the sentential operators, such as 7 which play a key
role in our definition scheme. These operators serve to demarcate propositions to
which specific kinds of relative necessity and possibility are relative. Because we
wish to avoid assuming that we are able to actually state explicitly the relevant propo-
sitions, we need to characterize them in general terms, as propositions of a certain
kind. Thus, as we suggested, 7 (q) might be read as abbreviating something along
the lines of ‘it is a law of physics that g’, where this is to be understood as mak-
ing a non-specific reference to the laws of physics, whatever they are, rather than
to what we happen presently to take to be laws. Put bluntly, the objection says that
by making essential use of operators so understood, the account simply gives up on
the reductive explanatory aspiration which informs the original Anderson-Kanger-
Smiley project. For what drove that project—and what gave it its interest—was the
prospect of showing that, contrary to appearances, we do not need to recognize a great
variety of independent notions of necessity, because we can explain each relative
form of necessity using just a single ‘absolute’ notion (probably logical necessity).
This explanatory aim is completely undermined by our appeal to laws of physics, for
example, because the notion of a law of physics itself involves the idea of physical
necessity.>*

A first point to be made in response to this objection is that, whatever force it
may possess, it does not tell selectively against the explanation of relative neces-
sity we have proposed. For essentially the same objection could be brought against
Humberstone’s two-dimensionalist proposal. Of course, he makes no use of an oper-
ator comparable to our 7 operator. But for each distinct kind of relative necessity,
his proposal will require a distinctive dipropositional constant, R, and this will need
to be explained. The only kind of explanation he suggests is that we might under-
stand =) R as ‘the laws of x are true in y’. As it stands, of course, this is hopelessly
vague—there are many different kinds of laws, and he presumably does not mean that

24This objection, or something close to to it, was put to one of us in conversation by Lloyd Humberstone.
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they should all hold. What he intends, presumably, is that two-dimensionally under-
stood, the diproposition will say, for example, that x’s physical laws are true in y. So
his proposal, too, essentially involves an appeal to the notion of physical law, and
so is no less vulnerable than ours to the envisaged objection. Thus if it should prove
impossible satisfactorily to characterize physical laws without appeal to the notion of
physical necessity, his account will be no better placed to subserve the reductionist
aims of the standard account than our own.23 It is true enough that the objection does
not apply to the standard account itself. But as we have seen, there are good reasons
to explore alternatives. Moreover, it seems inescapable that the deficiencies of the
standard account have their source in its suppression of vital information. It is quite
unclear how the requisite information could be incorporated without making use, in
the analysis of physical necessity, say, of the notion of a physical law, or something
near enough equivalent to it.

Second, even if it is granted that the notion of a law of physics, say, involves an
implicit appeal to the notion of physical necessity or possibility, it is not clear that this
need be objectionable. Whether it is so or not depends upon what the proposal sets out
to accomplish. As we observed at the outset, one might hope that an analysis of rel-
ative necessity would subserve a reductionist programme. That is, one might hope to
show that, contrary to appearances, there is no need to recognize a variety of indepen-
dent kinds of necessity—physical, mathematical, etc.—by showing that each of these
ostensibly different kinds of modality may be fully explained using just one single
kind of modality, such as logical modality. If this were one’s aim, then the objec-
tion, if sound, would indeed be fatal. However, as we saw, there is another, no less
important, aim one might have in pursuing analyses of forms of relative necessity—
that of achieving an improved understanding of the contrast between merely relative
and absolute kinds of necessity. The achievement of that aim is in no way compro-
mised by the irreducibility—if such it is—of the various kinds of putatively relative
necessity to a single absolute necessity.

Third, the claim that the notion of physical law cannot be understood without
bringing in that of physical necessity may be challenged. There are various ways in
which one might attempt to characterize laws of physics that make no overt appeal
to the notion of physical necessity. One might characterize laws of physics without
any appeal to (familiar) modal notions at all. For example, Maudlin [18] takes law-
hood to be a primitive status, and indeed proposes a definition of physical modality
in terms of laws.?® Or, more commonly, one might characterize laws of physics mak-
ing use of some modal notion other than physical necessity. For example, Lewis’s
“best deductive system” account of laws of nature arguably only draws on the log-
ical necessity built into the notion of a deductive system (see Lewis [15-17]). Or
so-called “necessitarians” take the laws of physics to be metaphysically necessary

25The same point applies equally to the alternative 2-D analysis of relative necessity proposed by van
Fraassen in [7], discussed briefly in the Appendix below.

26 My own proposal is simple: laws of nature ought to be accepted as ontologically primitive. ... Laws are
the patterns that nature respects; to say what is physically possible is to say what the constraint of those
patterns allows.” [18, p. 15]
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(see [3] for a representative summary). These views would avoid the troublesome
circularity of defining physical necessity in terms of physical laws, in turn defined
in terms of physical necessity. The latter would of course introduce a further kind
of modality—metaphysical—to be treated as relative or absolute, but the objection
presently under consideration would be avoided. The success of this response to
the objection depends upon the success of one of these alternative accounts of the
laws of physics, but we will not be able to adjudicate on that matter here. It is cer-
tainly not obvious that these will all prove to involve a more or less thickly disguised
appeal to the notion of physical necessity, and so to be unavailable as independent
characterization of laws of physics.?’

Our claim in this paper is that our proposal is the preferable treatment of alethic
kinds of relative necessity, such as physical necessity or mathematical necessity.
There are potential problems for applying it to non-alethic relative modalities.
Whether these problems can be overcome, we leave as further work to be carried
out elsewhere. But we will briefly survey two key difficulties for treating non-alethic
relative necessities.

The first difficulty arises from the relation between relative necessity and logical
necessity. On the standard account, since every logical necessity is strictly implied
by any proposition whatever, every logical truth is C-necessary—necessary relative
to C—no matter how C is chosen. Similarly, although, as we have seen, Down does
not in general hold for our alternative account, if it is C-necessary that p just when
dg(C(g) AU(g — p)), then, so long as the existence condition is fulfilled (there is a
C-proposition), every logical truth will be C-necessary. This seems to be a reasonable
result for alethic necessities: it would certainly be strange to claim that, although it
is logically necessary that p, it is nevertheless possible, relative to existing physical
laws, that —p. However, it has implausible consequences for non-alethic necessities
for which, intuitively, even if some relevant C-propositions exist, it is not always the
case that if Op, then U¢ p, such as epistemic or deontic modalities. Consider kinds
of necessity defined relative to a conjunction of known propositions, or a conjunction
of moral precepts. The current proposal for treating these necessities would yield the
result that any logical truth is thereby epistemically necessary and morally necessary.
However, it seems that we should leave room for the epistemic possibility that a
proposition whose truth-value is as yet undecided should turn out to be false, even
if in fact it is a logical truth. It also seems wrong to take logical truth to be a matter
of moral obligation—we might not think that the world would be a morally worse
place if a contradiction were true in it. Indeed, one might think, to the contrary, that
if ‘ought’ expresses moral obligatoriness, ‘It ought to be the case that p’ implies that
it is at least metaphysically (and so logically) possible that —p.

A different kind of problem arises from kinds of relative necessity where one
might expect to find inconsistent ¢, although C(g), such as doxastic and legal modal-
ities. One might expect that some conjunctions of beliefs are inconsistent, or that
some conjunctions of laws of a given state are inconsistent. However, for any C-
necessity defined in terms of an inconsistent proposition (i.e. where the existential

270ne of us is more sanguine about the prospects for the reductive project than the other.
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condition is fulfilled by an inconsistent proposition), this would have the unfortunate
result that everything would be C-necessary, given the inference rule that everything
follows from a contradiction. But again, just because the statute books are likely to
contain strict inconsistencies, does not mean that everything is legally required. That
would be quite bizarre.?®

9 Conclusion

Our leading question has been: How should we best formulate claims of relative
necessity? We have considered several answers

First, we reviewed the standard account: U =47.[0(C — p). This, we argued,
falls foul of the S4 and mixed S4 logical problems as presented by Humberstone.
Moreover, it omits important information about the nature of the proposition (i.e. C)
to which the necessity is relative. Further, and crucially, the account assumes that,
in making a claim of relative necessity, one is able to state all of the relevant propo-
sitions; for example, to make a claim of physical necessity in accordance with the
standard account, one would have to be able to state the laws of physics. But such
an assumption is too demanding—whilst we may be unable to answer the ques-
tion whether it is physically necessary that p without some knowledge of the laws
of physics, no such knowledge is required merely to understand the question; nor,
accordingly, should it be presupposed by a good explanation of claims about physical
necessity. These reasons led us to explore alternatives to the standard account.

Second, then, we considered Humberstone’s two-dimensional alternative. We had
two main concerns with this approach: first, it is, we argued, unclear how best to inter-
pret the [l-operator of absolute necessity, without making unpalatable claims about
the logical properties of logical necessity; and, second, it appeared to us implausibly
to require not just that claims about relative necessity can be modelled in terms of
worlds, but that they are in fact to be understood as claims about worlds.

We then considered a series of amendments to the standard account. The sim-
plest of these consists in adding the proposition C itself as an extra conjunct in the
analysans. This does indeed block the mixed S4 problem, but the simple S4 problem
remains. So also does the crucial problem of understanding: the account still requires
that one be able to, for example, state the laws of physics in order to make a claim
of physical necessity. Adding a more complex conjunct, including the information
of what kind of proposition is involved (e.g. specifying that C is a law of physics),
solves the remaining S4 problem, but does nothing to resolve the problem of under-
standing, for the proposed analysans is still one which we can offer only if we are
able to state the relevant laws (e.g. the laws of physics).

We then introduced our own, preferred, account.

OeA =45 3q1, ..., Igu (@ (q1) A ... A DP(gn) AU(G1 A ... A gy — A))

28This kind of problem is presented, and a solution offered, in [13].
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This captures the information lost by the standard account and the simple added
conjunct account—that it is @-propositions relative to which things are necessary—
but, in contrast with the more refined additional conjunct account, it does so in a
suitably general way. The proposal avoids the logical problems (imposing S4, etc.),
and does so without any intrusive use of worlds semantics in the analysis. There is no
longer the problem that one must (be able to) state the @-propositions if one is to give
the analysis—the analysans involves only the non-specific requirement that there be
some propositions of that kind. Finally, we aired some technical and philosophical
issues that may arise for our proposal. We have not had space here to resolve every
issue, but we hope to have shown that pursuit of this account for relative necessity
is at the very least a promising alternative to what, in our view, are some rather less
promising accounts.?’

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: An Alternative 2-Dimensional Solution?

In an article to which Humberstone refers ([7]) Bas van Fraassen proposes a rather
different two-dimensional analysis of relative (e.g. physical) necessity. The analy-
sis replaces the strict conditional [(J(A — B) by a two-dimensional conditional
A = B (van Fraassen uses —, but this risks confusion with our use of the same
symbol for the truth-functional conditional), defined as follows: [A = B](a) = {8 :
[A](B) < [Bl(x)}. Sentences within square brackets denote the propositions they
express, which are identified with the sets of worlds at which they are true. So this
says that the proposition expressed by A = B at world « is the set of worlds S
such that the proposition A expresses at 8 is included in the proposition B expresses
at . In other words, what A = B says at « is true at g iff every world at which
what A says at § is true is a world at which what B says at « is true. This con-
trasts with the strict conditional, which in the two-dimensional setting is true at « iff
every world at which the proposition expressed by its antecedent at « is true is one at
which the proposition expressed by its consequent at « is true. The conditions coin-
cide when the world of evaluation is the same as the world of utterance, but diverge
when they diverge. ‘It is physically necessary that A’ is then defined as R = A
where R is a special constant which does double duty, both expressing ‘the appropri-
ate relation of relative physical necessity’ and the corresponding proposition, defined
[R](x) = {B : ®RB}, i.e. the set of worlds physically possible relative to « (op. cit.,

2We are grateful to Fabrice Correia for extensive discussion of the development of the core proposal;
to Lloyd Humberstone for discussion of some of the central ideas in this paper; to Bas van Fraassen
for extensive and instructive correspondence about his 1977 paper; to David Makinson for detailed and
thoughtful technical suggestions; to the participants in a modality workshop in Nottingham and members
of a King’s College London work-in-progress group for discussion of earlier incarnations, particularly Ian
Rumfitt; and to two anonymous referees for this journal for their comments and suggestions.
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p-82). Van Fraassen tells us that R—the law sentence, as he calls it—‘may say that
the laws of « hold, or that they are laws, or that they are the only laws.’

Van Fraassen’s leading idea is that the relative character of physical necessity is
best understood indexically. We can approach this as follows. When we hold that it
is physically necessary that p, we commit ourselves to the claim that, even if things
had been different in a whole host of ways, barring some (miraculous) suspension of
the laws of physics, it would still have to be the case that p. We are not just claiming
that, given the fact that things are the way they actually are (right down to the last
detail), it has to be that p; we are allowing that circumstances might have varied in
all sorts of ways, and claiming that even so, the laws of physics require that p. We
can understand van Fraassen’s new conditional as designed to capture this. It seeks
to do so by allowing the context for the antecedent to vary in any ways consistent
with its still saying something true, but keeping the actual context for the consequent
fixed. Thus we might read R = A as something like ‘In any circumstances in which
the laws of physics hold it will be that A’—we can do so, if we may read A = B
as ‘Any circumstances in which A, as said in those circumstances, would evaluate as
true, is one in which B, as said here and now, would also be true’. In sum, the idea
is to give a way of understanding claims about physical necessity which captures the
fact that they make a claim whose truth has a high degree of independence from the
actual circumstances in which they are made—so long as the physical laws hold, then
although things can differ in all sorts of other ways, it will still be that p. Obviously,
when we envisage different circumstances here, we are restricting attention to differ-
ent circumstances in which the laws of physics as they are would not be altered—that
is, we are keeping the actual laws, not talking about (more radically divergent) cir-
cumstances in which there would be different physical laws. That is, we are using
‘the laws of physics’ rigidly. The same is true of our own account—we require 7 (gq)
to say that ¢ is a statement of the laws of physics as they are—we aren’t claiming
(falsely) that no matter what the laws of physics might be, they strictly imply p.

The obvious questions are: Does this account avoid the kind of problems which
beset the standard account? Is it otherwise satisfactory?

As far as we have been able to see, the answer to the first is that it does. In van
Fraassen’s system, validity can plausibly be understood in one of two ways. A strong
requirement would be that validity requires that VaVg Tr([A](«), B), i.e., A is valid
just when, for any worlds «, 8, what A says at « is true at 8. A weaker requirement
would be that VB Tr([A](«), B) when « is taken to be the real world, i.e., A is valid
just when what A says at the actual world is true at any world 8. Whichever notion
of validity one operates under, it appears that, due to the unconventional behaviour
of van Fraassen’s conditional, neither A = (B = A), nor the especially relevant
instance for the S4 problem, (B = A) = (B = (B = A)), is valid. Hence,
van Fraassen’s system appears not to be subject to the S4 problems that afflict the
standard account.3?

As regards the second question, we have some doubts. A first point is that A = A
is not a law of van Fraassen’s logic. For since R is indexical, there may be a world,

30The reader may amuse herself by verifying these claims.
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other than the actual world, such that what R says there is true at some world at which
what R says at the actual world is not true. Whence, on the proposed semantics for
the conditional, R = R is not valid.3! But the law of identity, ‘If A then A’, is often
taken to be fundamental, and has as strong a claim to be definitive of the conditional
as the other principles which van Fraassen mentions (op. cit., p.82) as ‘earmarks’ of
the concept. It is true that he views it as a ‘cluster concept’, so that some may go
missing without destroying a connective’s claim to be a conditional (or implication
connective—van Fraassen makes no distinction here). It remains a serious cost, and
one that we, at least, are reluctant to incur.>2

A further concern is that the account may suffer from the same drawback as we
found in Humberstone’s, i.e. that it does not just exploit the two dimensional frame-
work in the model theory, but builds talk of worlds into the very content of claims
about, say, physical necessity. The key question here is how the special propositional
constants, such as van Fraassen’s R, are to be understood. That there is unwanted
worlds content is certainly suggested by his own proposed readings of R, which ‘may
say that the laws of « hold, or that they are laws, or that they are the only laws.” It is
not obvious that the world variable is dispensable without unsuiting R for its purpose.
That van Fraassen thinks, to the contrary, that there is no essential reference to worlds
is perhaps suggested by his official agnosticism about them (‘The items in the mod-
els, such as possible worlds, I regard with a suspension of disbelief, as similar to the
ropes and pulleys, and little billiard balls that were introduced in nineteenth-century
physics’, p.74). But if, more generally, we ask ourselves: ‘What is the parameter with
respect to which talk of physical necessity is supposed to be indexical?’ it is not clear
that the answer can be anything other than ‘Possible Worlds’.

Perhaps these doubts can be answered. If so, there is another, and better, two-
dimensional solution to Humberstone’s problems. We see nothing inimical to our
own proposal in this. For it would remain the case that if we are right, those prob-
lems can be solved more simply and economically, without any recourse to the
two-dimensional framework.

31There will be other casualities. To mention only the most obvious: ¥ AANA = A F A= AANAK
AVA=S A FA= AVA.

321n fairness to van Fraassen, we should point out that he observes (in correspondence), that A = A will
be a thereom of the logic we may label Ly, which has as theorems those sentences which are frue
simpliciter at every world, i.e. true at « if understood as uttered in «, for every world «. But it will not
be a theorem of the logic £,,i,, which has as theorems those sentences which, understood as uttered in
any world, are true at every world. He appears to be sceptical, not just about the claims of either of these
notions and their logics to capture the traditional notion of logical necessity, but about whether there is a
good notion to be captured. Here we can only record our disagreement with him on the last question. Of
course, if the meanings of words, including logical words, are allowed to vary with world of utterance,
then it must be doubtful that there are any sentences which, as uttered at any world, are true at every world.
What is of far greater interest is whether, holding the meanings of relevant words fixed, there are sentences
which express propositions which are absolutely necessary—true at absolutely all worlds. It seems to us
that ‘If A then A’ can be, and often is, used to express a proposition, stronger than a merely material
conditional, which is absolutely necessarily true, and is so in virtue of the nature of the conditional alone,
and so has a good title to be regarded as logically necessary.
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