
This is a repository copy of Formal Verification with Confidence Intervals to Establish
Quality of Service Properties of Software Systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/93145/

Version: Accepted Version

Article:

Calinescu, Radu orcid.org/0000-0002-2678-9260, Ghezzi, Carlo, Johnson, Kenneth Harold
Anthony et al. (3 more authors) (2015) Formal Verification with Confidence Intervals to
Establish Quality of Service Properties of Software Systems. IEEE Transactions on
Reliability. pp. 107-125. ISSN 0018-9529

https://doi.org/10.1109/TR.2015.2452931

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

Formal Verification with Confidence Intervals to

Establish Quality of Service Properties of Software

Systems
Radu Calinescu, Senior Member, IEEE, Carlo Ghezzi, Fellow, IEEE, Kenneth Johnson, Member, IEEE,

Mauro Pezzé, Senior Member, IEEE, Yasmin Rafiq, Student Member, IEEE, and Giordano Tamburrelli

Abstract—Formal verification is used to establish the compli-
ance of software and hardware systems with important classes of
requirements. System compliance with functional requirements
is frequently analysed using techniques such as model checking,
and theorem proving. In addition, a technique called quantitative
verification supports the analysis of the reliability, performance,
and other quality-of-service (QoS) properties of systems that
exhibit stochastic behaviour. In this paper, we extend the ap-
plicability of quantitative verification to the common scenario
when the probabilities of transition between some or all states
of the Markov models analysed by the technique are unknown,
but observations of these transitions are available. To this end,
we introduce a theoretical framework, and a tool chain that
establish confidence intervals for the QoS properties of a software
system modelled as a Markov chain with uncertain transition
probabilities. We use two case studies from different application
domains to assess the effectiveness of the new quantitative
verification technique. Our experiments show that disregarding
the above source of uncertainty may significantly affect the
accuracy of the verification results, leading to wrong decisions,
and low-quality software systems.

Index Terms—Quantitative verification, probabilistic model
checking, quality-of-service requirements, software systems,
Markov chains.

ACRONYMS AND ABBREVIATIONS

FACT Formal verificAtion with Confidence inTervals

HTTP HyperText Transfer Protocol

IDTMC Interval-valued Discrete-Time Markov Chain

LWB Low-power Wireless Bus

MC Markov Chain

PCTL Probabilistic Computation Tree Logic

PMC Parametric Markov Chain

QoS Quality of Service

UMC Uncertain Markov Chain

WSN Wireless Sensor Network

NOTATION

M Markov chain

R. Calinescu and Y. Rafiq are with the Department of Computer Science
at the University of York, UK.

C. Ghezzi is with the Department of Electronics and Information at
Politecnico di Milano, Italy.

K. Johnson is with the School of Computer and Mathematical Sciences at
Auckland University of Technology, New Zealand.

M. Pezzè is with the University of Milano Bicocca, Italy, and the Università
della Svizzera italiana, Switzerland.

G. Tamburrelli is with Vrije Universiteit, Amsterdam, Netherlands.
Manuscript received September 15, 2014.

s, s1, s2, . . . states of a Markov chain

S set of states of a Markov chain

n number of states of a Markov chain

pij probability of transition from state si to state sj
[p

ij
, pij] confidence interval for transition probability pij

1− αi confidence level of simultaneous confidence

intervals [p
i1
, pi1], [pi2, pi2], . . . , [p

in
, pin]

π path over a Markov chain

PathsM(s) set of infinite paths over M that start with s
Prs probability measure over PathsM(s)
AP atomic proposition set

P probabilistic PCTL operator

R reward PCTL operator

⊲⊳ relational operator (any of <, ≤, ≥, >)

p probability

Φ, Φ1, Φ2 PCTL state formulae

Φ(pi1j1 , . . .) algebraic expression of state formula Φ
Φ1UΦ2 unbounded until PCTL formula

Φ1U
≤kΦ2 bounded until PCTL formula, k ∈ N

FΦ future state PCTL formula

F≤kΦ bounded future state PCTL formula, k ∈ N

Ψ PCTL path formula

|= satisfaction relation over the states S and the

paths PathsM(s), s ∈ S, of a Markov chain

[a, b] confidence interval for analysed QoS property

1− α confidence level for analysed QoS property

O set of state transition observations

N number of observations

Prob(x∈X) probability that x∈X
R1, R2, . . . QoS requirements

I. INTRODUCTION

SOFTWARE finds many applications in business- and

safety-critical systems in domains as diverse as e-

commerce, healthcare, and defence. In these applications,

software enables activities that are too complex, too costly,

or too dangerous for humans to carry out alone. The conse-

quences of failures in such critical software are enormous,

and can include financial loss or loss of human lives. To

avoid these consequences, critical software has to comply with

strict functional and quality-of-service (QoS) requirements at

all times.

Formal methods are among the most effective and widely

used means for developing high-quality software systems.

2

They comprise mathematically based techniques with a track

record of supporting multiple stages of the software lifecycle

in real-world scenarios [1], [2]. Established techniques such

as formal specification [3], design by contract [4], and model

checking [5] focus primarily on modelling and analysing

functional aspects of software systems. In contrast, a more

recently introduced technique called quantitative verification

[6] supports the analysis of reliability, performance, and other

QoS properties of software. This technique models software

behaviour using finite state transition systems such as Markov

chains and probabilistic automata; and uses temporal logics

extended with probabilities, costs, and rewards to express and

analyse QoS properties of the modelled software. Examples

of properties that can be established using quantitative ver-

ification include the probability that a fault occurs within a

specified time period, and the expected response time of a

software system in a given scenario.

Extensive research over the past decade has produced ef-

ficient quantitative verification algorithms for a wide range

of probabilistic, nondeterministic, and timed automata mod-

els [7], [8], [9]. The implementation of these algorithms

within probabilistic model checkers such as PRISM [10], [11],

MRMC [12], [13], and Ymer [14] has led to a wide adoption

of the technique in software engineering, and many other

domains. In software engineering, quantitative verification has

been proven effective in modelling and analysing reliability,

performance, and cost-related QoS properties of software

architectures both at design time [15], and more recently

at run time [16], [17]. Successful applications range from

service selection in service-oriented architectures [18], [19],

and configuration of cloud-deployed software [20], [21], to

QoS property analysis for software product lines [22], and

dynamic power management [23].

Furthermore, recent research tackling the limited scalability

of quantitative verification has produced several promising

solutions. These solutions include parametric [24], assume-

guarantee [25], [26], and incremental [27], [28] quantitative

verification techniques; and approaches that reduce the size

of quantitative verification problems by using caching, look

ahead, and nearly-optimal reconfiguration [29].

Despite these advances, one problem remains largely un-

solved. The use of quantitative verification assumes that the

analysed models accurately reflect the actual behaviour of the

real software. Like in the case of traditional model checking,

it is typically possible to satisfy this assumption with respect

to the structure of the models. However, the probabilities

associated with the state transitions of quantitative verification

models are much more difficult to establish correctly. The

current practice of using their point estimates provided by

domain experts, or inferred through model fitting [30] to

log data or run-time observations, yields values affected by

unquantified estimation errors. The verification compounds

and propagates these errors, in ways that are unknown but

likely to be significant, given the nonlinear characteristics

of these models. This raises concerns about the validity of

decisions based on quantitative verification results, and limits

the applicability of the technique.

Our paper addresses this important limitation of quantitative

verification. To this end, we introduce a new quantitative

verification approach that generates confidence intervals for

the analysed properties of a Markov chain (MC). Our For-

mal verificAtion with Confidence inTervals (FACT) approach

analyses MCs with unknown state transition probabilities,

when observations of these transitions are available from logs

or run-time observations of the modelled system. Given a

property of the modelled software system that is formally

expressed in probabilistic temporal logic, and a confidence

level 1−α ∈ (0, 1), FACT synthesises a 1−α confidence

interval for the property. As a result, FACT enables the

rigorous analysis of the reliability, performance, cost, and

other QoS properties of software systems when the transition

probabilities between the states of the MCs used to model

these systems are approximated by sets of observations. The

main contributions of the paper include the following.

1) We devise the first theoretical framework for quantitative

verification with confidence intervals.

2) We present a tool chain that implements the FACT

theoretical framework.

3) We describe two case studies that show the effective-

ness of the FACT approach on software systems from

different application domains.

The rest of the paper is organised as follows. Section II pro-

vides the necessary background on Markov chains, probabilis-

tic computation tree logic, and probabilistic model checking;

and Section III introduces a running example that we use to

illustrate the steps of our verification approach. Sections IV

through V describe the FACT theoretical framework, and the

tool chain we assembled to reify this theory. The evaluation

of the FACT approach using two case studies from different

application domains is presented in Section VI. This section is

followed by a discussion of several limitations of our approach,

and of possible ways to overcome them in Section VII. Next,

Section VIII compares our approach with related research,

and Section IX concludes the paper with a summary and a

discussion of future work.

II. PRELIMINARIES

A. Markov chains

Definition 1. A Markov chain (MC) over a set of atomic

propositions AP is a tuple

M = (S, s1,P, L) (1)

comprising a finite set of states S = {s1, s2, . . . , sn}, an initial

state s1, a transition probability matrix P : S×S → [0, 1], and

a labelling function L : S → 2AP . For any states si, sj ∈ S,

P(si, sj) represents the probability of transitioning from state

si to state sj , so
∑

sj∈S P(si, sj) = 1. For simplicity, we will

often use the notation pij = P(si, sj).

A path π overM is a possibly infinite sequence of states from

S such that, for any adjacent states s and s′ in π, P(s, s′) > 0.

The m-th state on a path π, m ≥ 1, is denoted π(m). Finally,

for any state s ∈ S, PathsM(s) represents the set of all

infinite paths over M that start with state s.

3

To compute the probability that a Markov chain (1) behaves

in a specified way when in state s ∈ S, we use a probability

measure Prs defined over PathsM(s) such that [31], [32]

Prs({π ∈ PathsM(s) | π = si1si2si3 . . . sim . . .}) =
pi1i2pi2i3 . . . pim−1im ,

(2)

where {π ∈ PathsM(s) | π = si1si2si3 . . . sim . . .} rep-

resents the set of all infinite paths that start with the prefix

si1si2si3 . . . sim (i.e., the cylinder set of this prefix). Further

details about this probability measure and its properties are

available from [31], [32].

Our FACT approach to formal verification operates with

parametric Markov chains (also called incomplete Markov

chains [33], or uncertain Markov chains [34]).

Definition 2. A parametric Markov chain (PMC) is a Markov

chain (1) for which some of the transition probabilities pij are

parameters with domain [0, 1].

Note that PMC transition probabilities could also be specified

as rational functions over a set of variables with domain R

[35], [36], [37]. Because our approach involves the compu-

tation of confidence intervals for each unknown transition

probability, we adopted the above definition, which treats

transition probabilities as variables. We discuss the extension

of FACT to PMCs with transition probabilities specified as

rational functions in Section VII.

To extend the range of system properties verified using

Markov chains, they can be augmented with rewards. These

are nonnegative values associated with the states and transi-

tions of an MC or PMC.

They correspond to system properties such as throughput or

profit. Depending on the analysed property, these values can

also be interpreted as costs. Examples of costs that can be

expressed using reward-augmented MCs and PMCs include

resource use, energy consumption, and price. Accordingly,

the verification of reward-based properties aims to establish

that costs comply with upper bounds specified by the system

requirements, and rewards satisfy the required lower bounds.

Definition 3. A reward structure over a Markov chain M =
(S, s1,P, L) is a pair of functions (ρ, ι) comprising a state

reward function ρ : S → R≥0 (a vector), and a transition

reward function ι : S × S → R≥0 (a matrix).

B. Probabilistic Computation Tree Logic

To formally verify properties of software systems, these

properties are expressed using precise mathematical for-

malisms. Markov chains support the quantitative verification

of QoS requirements expressed in probabilistic computation

tree logic [38], [39], which is a temporal logic with the syntax

defined below.

Definition 4. Let AP be a set of atomic propositions; and

a ∈ AP , p ∈ [0, 1], k ∈ N, r ∈ R, and ⊲⊳ ∈ {≥, >,<,≤}.
Then a state formula Φ, and a path formula Ψ in probabilistic

computation tree logic (PCTL) are defined by the grammar

Φ ::= true | a | Φ ∧ Φ | ¬Φ | P⊲⊳p[Ψ], (3)

Ψ ::= XΦ | ΦUΦ | ΦU≤kΦ; (4)

and a reward state formula is defined by the grammar

Φ ::= R⊲⊳r[I
=k] | R⊲⊳r[C

≤k] | R⊲⊳r[FΦ] | R⊲⊳r[S]. (5)

State formulae include the logical operators ∧ and ¬, which

allow the formulation of disjunction (∨), implication (⇒), and

false . State formulae extend computation tree logic [40] by

replacing the universal path quantifier A and the existential

path quantifier E with the probabilistic operator P , which

specifies bounds on the probability of the system evolution.

The semantics of PCTL are defined with a satisfaction

relation |= over the states S and the paths PathsM(s), s ∈ S,

of an MC (1). Thus, s |= Φ means Φ is satisfied in state s, or

Φ is true in state s. For any state s ∈ S, we have: s |= true;

s |= a iff a ∈ L(s); s |= ¬Φ iff ¬(s |= Φ); and s |= Φ1 ∧ Φ2

iff s |= Φ1 and s |= Φ2. A state formula P⊲⊳p[Ψ] is satisfied

in a state s if the probability of the future evolution of the

system satisfying Ψ satisfies ⊲⊳ p:

s |= P⊲⊳p(Ψ) iff Prs({π ∈ PathsM(s) | π |= Ψ}) ⊲⊳ p.

The semantics of the three path formulae from (4) are de-

scribed below.

• The next state formula XΦ is satisfied by a path π iff Φ
is satisfied in the next state of π (i.e., in state π(2)).

• The bounded until formula Φ1U
≤kΦ2 is satisfied by a

path π iff Φ1 is satisfied in each of the first x states of

π for some x < k, and Φ2 is satisfied in the (x + 1)-th
state of π.

• The unbounded until formula Φ1UΦ2 is satisfied by a

path π iff Φ1 is true in each of the first x> 0 states of

π, and Φ2 is true in the (x+1)-th state of π.

The notation F≤kΦ ≡ trueU≤kΦ, and FΦ ≡ trueUΦ are

used when the first part of a bounded until, and until formula,

respectively, are true .

In addition, given a reward structure in the form from

Definition 3, PCTL was extended with reward constraints

that support the specification of both expected and cumulative

rewards [41]. Thus, the reward operator R can be used

to analyse the expected cost at timestep k (R⊲⊳r[I
=k]), the

expected cumulative cost up to time step k (R⊲⊳r[C
≤k]), the

expected cumulative cost to reach a future state that satisfies a

property Φ (R⊲⊳r[FΦ]), and the expected steady-state reward

in the long run (R⊲⊳r[S]). The model checking algorithms from

[41] can be used to analyse these reward properties efficiently.

Further details about the semantics of PCTL, and reward-

extended PCTL are available from [38], [39], and from [41],

respectively.

C. Probabilistic model checking

Efficient probabilistic model checkers such as PRISM [11],

MRMC [12], and Ymer [14] employ symbolic model check-

ing algorithms to automate the analysis of PCTL-specified

properties of MCs. These algorithms establish if a formula

P⊲⊳p[Ψ] is satisfied by calculating the actual probability that

Ψ is satisfied, and comparing it with the bound p. Therefore,

calculating the actual probability does not add any complexity,

and the extended PCTL syntax P=?[Ψ] can be used to obtain

this probability. The extended syntax is applicable to the

4

outermost P operator of a P⊲⊳p[Ψ] formula, and is compliant

with the input of most probabilistic model checkers.

This extended syntax also applies to reward PCTL formulae,

for which R=?[I
=k], R=?[C

≤k], R=?[FΦ], and R=?[S] are

used in a similar way. Note that PCTL formulae that use this

extended syntax can define QoS attributes (or QoS properties)

of the modelled system, while PCTL formulae that use a fixed

bound can be used to define QoS requirements.

The traditional approach to verifying PCTL-encoded prop-

erties of a PMC involves using point estimates of its unknown

transition probabilities, to derive an MC that refines the

original PMC. This MC is then analysed using a probabilistic

model checker as described above. The transition probability

estimates can come from domain experts, or can be inferred

from execution traces of the modelled system. In the latter

case, the execution traces may be obtained from system logs

[42], [43], or through system run-time monitoring [44].

D. Parametric model checking

Related research proposed an alternative approach to ver-

ifying PMCs termed parametric model checking [24], [35],

[36], [37], [45], [46]. Given a PCTL property Φ, parametric

model checking produces a symbolic expression of Φ in

which the PMC parameters appear as variables. The symbolic

expression is a multivariate rational function, and its synthesis

may be computationally expensive. However, this synthesis is

performed only once, after which the expression can be used

for multiple purposes, e.g., for trend as well as sensitivity or

perturbation analysis [47], and to evaluate the QoS property

associated with Φ at run time, when the values of the PMC

parameters are determined [24].

Research on parametric model checking has led to signif-

icant advances over the past decade. The first approach to

parametric model checking is due to Daws [45]. This approach

uses a language-theoretic technique to convert the PMC into

a finite automaton that is then used to obtain a regular expres-

sion whose recursive evaluation yields the required symbolic

expression. The approach works for reachability properties

without nested probabilistic operators, but is limited to PMCs

with low numbers of states n because the regular expression is

of size nΘ(logn). This limitation is alleviated in [35] by using

a combination of techniques for state-space reduction, and for

the early evaluation of the regular expression. This approach

outperforms Daws’ original solution in many scenarios of

practical relevance, although its worst-case performance is the

same as in [45].

The recent research in [37] significantly improves the effi-

ciency of parametric model checking through using a new state

elimination strategy based on recursively decomposing the

analysed PMC into strongly connected components, and a new

method for executing operations such as the greatest common

divisor directly on partial factorisations of polynomials. The

experimental results presented in [37] show that the new

approach speeds up parametric model checking by several

orders of magnitude compared to previous solutions.

Finally, parametric model checking is supported by the latest

version of the probabilistic model checker PRISM, as well as

by dedicated verification tools such as PARAM [46].

s1

0/0

s2

1/0

s3

2/0

s6

1/0

s7

4/70

s4

1/0

s5

1/40

s9

0/0

s10

0/0

s8

0/0

y1

y2y3

x3

w1

w2

0.20

1 1 1

ServerUnavailable CacheServer HttpResponseFileServer TooManyConnections

ProxyServer

WebServer

ApplicationServer CacheServer Database

0.55

0.25

x1
x2

0.7

0.3

z1

z2
z3

k1
k2

Fig. 1. PMC MwebApp modelling the handling of an HTTP request.

III. RUNNING EXAMPLE

We will illustrate the steps of our FACT approach using a

business-critical web application comprising an HTTP proxy

server, a web server, and an application server. To serve client

requests, the web application accesses structured data stored

in a database, and static content (e.g., text files, and images)

located on a file server. Both types of content are cached by

ad-hoc cache servers.

The parametric Markov chain in Fig. 1 models the function-

ality that handles an HTTP request within the web application.

Each PMC state represents a stage of the handling process.

The initial state s1 corresponds to the request being received,

and the shaded states are absorbing states, i.e., states that once

entered cannot be left. These states indicate the outcome of the

request handling, i.e., whether the request handling succeeds

(state s9) or fails due to an unavailable server (state s8), or

to the overloading of a component of the application (state

s10). The states s2 to s7 correspond to the web application

performing the operations indicated by their labels.

The transitions between the transient states s1 through s7,

and between these states and the absorbing states, model

the control flow for handling a request. For example, the

transitions (s1, s2), and (s1, s4) model the events of dy-

namic content has been requested, and static content has

been requested, respectively; and the self-transition (s2, s2)
corresponds to an HTTP self-redirect. The probabilities of

the outgoing transitions from states s1 and s4 through s7
are unknown, or may change over time. For example, the

transitions (s4, s9), and (s6, s9) model the cache hit for the

file server, and the database, respectively, both of which have

probabilities that depend on the (unknown) distribution of the

user requests.

The non-absorbing states of the PMC are labelled by a pair

of numbers in the form n1/n2. The values n1 and n2 represent

the average cost of the operation associated with the non-

absorbing state in tenths of a cent, and its average duration

in milliseconds, respectively. These values define two reward

structures over the PMC, a cost structure (n1), and a response

time structure (n2), where the reward values not shown in

Fig. 1 (i.e., those associated with the PMC absorbing states

and transitions) are all zero.

5

Parametric

model

checking

Algebraic

expression

State
transition

observations O

Parametric
Markov
chainM

PCTL state
formula

Φ = P⊲⊳p[Ψ]

Error level α

Confidence

interval

inference

(1− α)
confidence

interval

for P=?[Ψ]Φ(pi1j1 , . . . , pimjm)

Fig. 2. FACT confidence interval synthesis.

IV. APPROACH

A. Overview

Our FACT approach establishes confidence intervals for

PCTL-formalised QoS properties of a software system, and

checks whether these confidence intervals satisfy the con-

straints specified by the QoS requirements of the system. The

four inputs taken by FACT are shown in Fig. 2, and are

described below.

1) The first input is a parametric Markov chain M =
(S, s1,P, L) of the analysed system.

2) The second input is a PCTL state formula Φ for a QoS

requirement of interest; Φ can be a probabilistic state

formula P⊲⊳p[Ψ] or a reward formula (5).

3) The third input is an error level α ∈ (0, 1).
4) The final input is an observation function O : S → N

n

that maps each state si ∈ S to a tuple

O(si) = (Ni1, Ni2, . . . , Nin) (6)

such that Nij represents the number of transitions from

state si to state sj , 1 ≤ j ≤ n, during a fixed period

of time over which all transitions were observed and

counted. We will sometimes refer to O as the observa-

tion set, in the sense that it represents the set of map-

pings O={s1 7→O(s1), s2 7→O(s2), . . . , sn 7→O(sn)}.
For the analysis of a PCTL state formula Φ = P⊲⊳p[Ψ],

FACT synthesises a (1− α) confidence interval [a, b] ⊆ [0, 1]
for the probability that Ψ is satisfied in the initial state s1 given

the observations O. Thus, if our FACT procedure is applied

repeatedly under identical conditions, a fraction of (1−α)
of the generated confidence intervals will contain the value

Prs1({π ∈ PathsM(s1) | π |= Ψ}). We write formally

Prob
(

Prs1({π ∈ PathsM(s1) | π |= Ψ}) /∈ [a, b]
)

< α.

Next, FACT establishes if [a, b] ⊲⊳ p using the rules below,

which extend the application of the relational operators <, ≤,
≥, and > to the comparison between an interval [a, b] ⊆ R

and a scalar x ∈ R:

[a, b] < x iff b < x,

[a, b] ≤ x iff b ≤ x,

[a, b] ≥ x iff a ≥ x, and

[a, b] > x iff a > x.

(7)

We can now define the following concepts.

Definition 5. If the (1−α) confidence interval [a, b] calculated

above satisfies [a, b] ⊲⊳ p, we write

s1 |=α,O P⊲⊳p[Ψ] (8)

to indicate that P⊲⊳p[Ψ] is satisfied with confidence (1−α) in

state s1, given the observations O. We will sometimes write

M |=α,O P⊲⊳p[Ψ] (9)

to indicate that, given the observations O, P⊲⊳p[Ψ] is satisfied

with confidence level (1− α) in the initial state of M.

We handle the analysis of a reward formula R⊲⊳r[·] from (5)

similarly. First, we synthesise a (1 − α) confidence interval

[a, b] ⊆ R+ for the expected reward R=?[·]. Next, we establish

if [a, b] ⊲⊳ r, in which case we use the notation M |=α,O

R⊲⊳r[·] to indicate that the expected reward satisfies ⊲⊳ r with

probability at least (1−α) under the observations O.

Given a model M, a formula Φ, an error level α, and a set

of observations O with the characteristics described above,

the FACT synthesis of (1 − α) confidence intervals for Φ is

performed in two stages (Fig. 2).

1) Parametric model checking. In this stage, FACT gener-

ates an algebraic expression for Φ by using parametric

model checking as explained in Section II-C. This

algebraic expression is a multivariate rational function

Φ(pi1,j1 , pi2,j2 , . . . , pimjm) that depends on some or

all unknown transition probabilities of M [36], i.e.,

1≤m≤n2, and 1 ≤ ik, jk ≤ n, for 1 ≤ k ≤ m.

2) Confidence interval inference. In its second stage, FACT

uses the observations O to obtain confidence intervals

for the unknown transition probabilities that appear in

the algebraic expression, and uses them to derive the

required confidence interval for Φ. The calculations car-

ried out in this stage are based on the FACT theoretical

framework presented in the next section.

Example 1. Suppose that we want to establish with 95%

confidence if the web application from our running example

satisfies the QoS requirement that at least 2% of the requests

are handled without accessing the web server or the file server

(e.g., to decide if maintaining a cache server for web pages

is justified). Also, assume that we monitored the behaviour

of the system, and collected observations of all its outgoing

transitions from the states of the PMCMwebApp in Fig. 1 that

are associated with unknown transition probabilities.

We can address this problem by performing the confidence

interval synthesis from Fig. 2 for the four inputs described

below.

1) The parametric Markov chain M is MwebApp.

2) The PCTL state formula Φ is P≥0.02[Ψ], where

Ψ = ¬(WebServer ∨FileServer)UHttpResponse. (10)

3) The error level is α = 0.05.

4) The elements of the observation function O : S → N
10

are defined by the observed outgoing transitions of

MwebApp. As an example, assume that the observed

outgoing transitions from state s1 ofMwebApp comprise

2705 transitions to s2, 3174 transitions to s4, and 5

6

transitions to s8; and that the observed outgoing tran-

sitions from s4 consist of 2975 transitions to s5, 187
transitions to s9, and 12 transitions to s10. In these cir-

cumstances, O(s1) = (0, 2705, 0, 3174, 0, 0, 0, 5, 0, 0),
and O(s4) = (0, 0, 0, 0, 2975, 0, 0, 0, 187, 12).

To establish if M |=α,O P⊲⊳p[Ψ], the first FACT stage uses

parametric model checking to obtain an algebraic expression

for Φ. The only infinite path that satisfies our path property Ψ
is π=s1s4s9s9 Therefore, according to (2), the algebraic

expression for our PCTL state formula is Φ(x2, y2) = x2y2.

This expression is used to compute a (1−α)=0.99 confidence

interval for P=?[Ψ] in the second FACT stage. To describe this

computation, we need the following theoretical framework.

B. Theoretical framework

We start by defining the concept of simultaneous confidence

intervals for a multinomial distribution [48], [49], [50].

Definition 6. Given a multinomial distribution with n >
1 possible outcomes of probabilities x1, x2, . . . , xn,

where
∑n

i=1 xi = 1, and a value α ∈ (0, 1),
the intervals I1, I2, . . . , In ⊆ [0, 1] are simultane-

ous (1 − α) confidence intervals for x1, x2, . . . , xn iff

Prob (x1 ∈ I1;x2 ∈ I2; . . . ;xn ∈ In) ≥ 1− α.

We can now introduce a result that enables the derivation

of a confidence interval for an algebraic expression from

simultaneous confidence intervals for disjoint subsets of its

parameters.

Proposition 1. Let M = (S, s1,P, L) be a PMC over an

atomic proposition set AP , and Φ = P⊲⊳p[Ψ] be a PCTL

state formula over AP . Assume that, for each state si ∈ S with

unknown outgoing transition probabilities, [p
i1
, pi1], [pi2, pi2],

. . . , [p
in
, pin] are simultaneous (1 − αi) confidence intervals

for the transition probabilities from si to each of the n states

in S. If the result of the parametric model checking of Φ is

Prs1({π∈PathsM(s1) |π |=Ψ})= Φ(pi1j1 , pi2j2 , . . . , pimjm),

where pi1j1 , pi2j2 , . . . , pimjm are m > 0 unknown transition

probabilities of M, and

a = min p
i1j1

≤ pi1j1 ≤ pi1j1

. . .
p
imjm

≤ pimjm ≤ pimjm∑n
j=1

pij = 1 for i ∈ I

Φ(pi1j1 , pi2j2 , . . . , pimjm)

b = max p
i1j1

≤ pi1j1
≤ pi1j1

. . .
pimjm

≤ pimjm ≤ pimjm∑n
j=1

pij = 1 for i ∈ I

Φ(pi1j1 , pi2j2 , . . . , pimjm)

α = 1−
∏

i∈I (1− αi)
(11)

with I = {i1, i2, . . . , im}, then [a, b] is a (1− α) confidence

interval for Φ, i.e.,

Prob (Φ(pi1j1 , pi2j2 , . . . , pimjm) /∈ [a, b]) < α.

Proof. For any i ∈ I , [p
i1
, pi1], [pi2, pi2], . . . , [p

in
, pin] are

simultaneous (1 − αi) confidence intervals for pi1, pi2, . . . ,

pin, so

∀i ∈ I • Prob





∧

(i,j)∈IJ

p
ij
≤ pij ≤ pij



 ≥ 1− αi,

where IJ = {(i1, j1), (i2, j2), . . . , (im, jm)}. Given the mem-

oryless property of Markov chains, the transitions from differ-

ent states si are s-independent, so

Prob





∧

i∈I

∧

(i,j)∈IJ

p
ij
≤pij≤pij



≥
∏

i∈I

(1−αi) = 1− α.

Because additionally
∑n

j=1 pij = 1 is always true for any

i ∈ I , we have Prob(a ≤ Φ(pi1j1 , pi2j2 , . . . , pimjm) ≤ b) ≥
1− α, which proves the proposition.

Example 2. Consider again the PMCM from Fig. 1, and the

property Φ with the algebraic expression Φ(x2, y2) = x2y2
from Example 1. Suppose that for each state si with unknown

outgoing transition probabilities from M we established

(1−αi) confidence intervals for the transition probabilities

from si to other states of M. The property we want to

analyse depends on the transition probabilities x2, and y2,

which correspond to outgoing transitions from the PMC states

s4, and s1, respectively. We therefore focus our attention on

these two states. Let the confidence intervals associated with

state s1 be [y
1
, y1], [y2, y2], and [y

3
, y3] for y1, y2, and y3,

respectively; and the confidence intervals associated with state

s4 be [x1, x1], [x2, x2], and [x3, x3] for x1, x2, and x3. The

three elements from (11) are

a = min x2 ≤ x2 ≤ x2, y
2
≤ y2 ≤ y2

x1+x2+x3=1, y1+y2+y3=1

x2y2 = x2y2,

b = max x2 ≤ x2 ≤ x2, y
2
≤ y2 ≤ y2

x1+x2+x3=1, y1+y2+y3=1

x2y2 = x2y2,

α = 1− (1−α1)(1−α4).

Thus, according to Proposition 1, [x2y2, x2y2] is a (1− α)
confidence interval for Φ.

We use the result from Proposition 1 to derive a sufficient

condition for a PMC to satisfy a PCTL formula with a

confidence level (1− α) under a set of observations O.

Proposition 2. Let M = (S, s1,P, L) be a PMC over

an atomic proposition set AP , O an observation func-

tion (6), Φ = P⊲⊳p[Ψ] a PCTL state formula over AP , and

Φ(pi1j1 , pi2j2 , . . . , pimjm) the result of the parametric model

checking of Φ, where pi1j1 , pi2j2 , . . . , pimjm are unknown

transition probabilities of M as before. For any state si
associated with observations O(si) = (Ni1, Ni2, . . . , Nin),
and for any state sj ∈S, further let

p
ij
=

(

fij +
z2
αi/2

2Ni
− zαi/2

√

fij(1−fij)+z2
αi/2

/4Ni

Ni

)

· Ni

Ni+z2
αi/2

,

and

pij=

(

fij +
z2
αi/2

2Ni
+ zαi/2

√

fij(1−fij)+z2
αi/2

/4Ni

Ni

)

· Ni

Ni+z2
αi/2

(12)

7

where zαi/2 is the (1−αi/2) quantile of the standard normal

distribution, Ni =
∑n

j=1 Nij , and fij = Nij/Ni. Finally,

suppose that the bounds p
ij

and pij from (12), and the

associated αi values are used to calculate a, b, and α as

in (11), and assume that [a, b] ⊲⊳ p. Under these circumstances,

M |=α,O P⊲⊳p[Ψ].

Proof. The unknown outgoing transition probabilities pi1, pi2,

. . . , pin of a PMC state si represent the success probabilities

of a multinomial distribution with n success categories. Ac-

cording to [48], the intervals [p
i1
, pi1], [pi2, pi2], . . . , [p

in
, pin]

defined by (12) are simultaneous (1−αi) confidence intervals

for the success probabilities of an n-category multinomial

distribution for which Ni s-independent trials lead to Ni1, Ni2,

. . . , Nin observations of the n success categories. Therefore,

[p
i1
, pi1], [pi2, pi2], . . . , [p

in
, pin] are simultaneous (1 − αi)

confidence intervals for pi1, pi2, . . . , pin. It follows from

Proposition 1 that

Prob (Φ(pi1j1 , pi2j2 , . . . , pimjm) /∈ [a, b]) < α.

Because additionally [a, b] ⊲⊳ p, we deduce that the probability

that P⊲⊳p[Ψ] is not satisfied in state s1 is below α, which

according to Definition 5 is denoted

M |=α,O P⊲⊳p[Ψ].

Note that numerous studies propose and discuss different

simultaneous confidence intervals for the success probabilities

of multinomial distributions, e.g., [51], [49], [48], [50], [52].

The confidence intervals (12) were proposed by Kwong and

Iglewicz [48], and achieve a good trade-off between computa-

tional complexity and precision, where by precision we mean

the width of the confidence interval. Nevertheless, other results

from literature can be substituted in (12) without affecting the

validity of the FACT theoretical framework.

Example 3. We will use the result from Proposition 2 to com-

pute a 95% confidence interval for the property Φ(x2, y2) =
x2y2 from our running example. Given the observations O
from Example 1, the number of outgoing transitions from

states s1, and s4 are respectively

N1 = 5884, and N4 = 3174; (13)

and the frequencies for these transitions are

f1,2 = 2705
5884 , f1,4 = 3174

5884 , f1,8 = 5
5884 ,

f4,5 = 2975
3174 , f4,9 = 187

3174 , f4,10 = 12
3174

. (14)

We use these frequencies and the result in (12) to calculate

confidence intervals for the transition probabilities x2 = p4,9
and y2 = p1,4, which Φ depends on. We calculate the two

confidence intervals with confidence levels

(1−α1)=(1−α4) =
√
0.95, (15)

because this will support the computation of the confidence

interval for Φ with confidence level (1−α)=(1−α1)(1−α4)=
0.95, as established in Example 2. Using (12), and the values

in (13) through (15) to calculate confidence intervals for x2,

and y2, we obtain

x2 ≈ 0.0386, x2 ≈ 0.0805, y
2
≈ 0.5069, y2 ≈ 0.5718,

so [x2y2, x2y2] ≈ [0.0195, 0.0461] is a 0.95 confidence inter-

val for Φ. Note that the 0.02 bound from the QoS requirement

introduced in Example 1 belongs to this confidence interval.

Thus, the confidence interval cannot be used to decide with

95% confidence whether our web application handles at least

2% of the requests without accessing the web server or the file

server. A solution for reducing the size of the 0.95 confidence

interval so that this decision can be made is presented in the

remainder of this section.

Propositions 1 and 2 provide the means for calculating

a (1− α) =
∏

i∈I (1− αi) confidence interval for a PCTL

formula Φ from (1−αi) confidence intervals for the unknown

transition probabilities that Φ depends on. However, this result

does not address the selection of suitable αi values for a given

PCTL formula Φ, and a given set of observations O. In other

words, the results so far do not include a method for choosing

effective αi values starting from the (1− α) confidence level

for which we want to obtain a confidence interval for Φ.

The naive method of choosing all αi = 1 − (1− α)
1

#I as

in Example 3 is suboptimal.1 To see this result, suppose that

the algebraic expression for a PCTL formula associated with

the PMC from our running example in Fig. 1 is Φ(x1, y2) =
0.9x1+0.0001y2, and that we want to obtain a 0.95 confidence

interval for Φ. Because x1, and y2 are transition probabilities

associated with states s4, and s1, respectively, we need to

select α4 and α1 such that (1 − α4)(1 − α1) = 0.95. A

quick look at Φ(x1, y2) tells us that our formula is much

more sensitive to the variation of x1 than it is to the variation

of y2. Accordingly, a good choice of α4 and α1 is one

that yields a narrow (1 − α4) confidence interval for x1, at

the expense of obtaining a much wider (1 − α1) confidence

interval for y2. Thus, the combination (1 − α4) = 0.951 and

(1 − α1) = 0.95/0.951 = 0.998 will lead to a much narrow

0.95 confidence interval for Φ than the naive combination

(1 − α4) = (1 − α1) =
√
0.95 = 0.974. A similar analysis

shows that this result is also true for the algebraic expression

Φ′(x1, y2) = 0.5x1 + 0.5y2 that is equally sensitive to the

variation of x1 and y2, if the number of observations of

transitions from states s4 and s1 satisfies N4 ≪ N1.

To account for the logical dependencies discussed above,

FACT uses the hill-climbing optimisation heuristic de-

tailed in Algorithm 1. Given the algebraic expression

Φ(pi1j1 , pi2j2 , . . . , pimjm) of a PCTL formula, a set of ob-

servations O, and an error level α, this heuristic synthesises a

(1 − α) confidence interval for Φ whose width is minimised

by using hill climbing to adjust the confidence levels (1−αi),
i ∈ I = {i1, i2, . . . , im}.

The algorithm works as follows. At any time during its

execution, the local variables bestA and bestB store the

bounds of the narrowest confidence interval identified by

the heuristic. The two variables are initialised with bounds

1Note that #I , the number of elements in I = {i1, i2, . . . , im}, is below
m if i1, i2, . . . , im are not all different.

8

Algorithm 1 Confidence interval synthesis.

1: function CONFINTERVAL(Φ(pi1j1 , . . . , pimjm), O, α)

2: bestA← 0, bestB ← 1
3: for all i ∈ I do

4: αi ← 1− (1− α)
1

#I

5: end for

6: noImprovementSteps ← 0
7: while noImprovementSteps ≤MAX STEPS do

8: for all (i, j) ∈ I × {1, 2, . . . , n} do

9: calculate p
ij

, pij in (12) for O and αi

10: end for

11: calculate a, b in (11)

12: if b− a < bestB − bestA then

13: bestA← a, bestB ← b
14: noImprovementSteps ← 0
15: else

16: noImprovementSteps ++
17: end if

18: randomly adjust αi, i∈I , s.t.
∏

i∈I(1−αi) = 1−α
19: end while

20: return [bestA, bestB]
21: end function

corresponding to the most conservative confidence interval

possible (i.e., [0, 1]) in line 2, and their final values define

the confidence interval returned by the algorithm in line 20.

The for loop in lines 3 through 5 initialises the confidence

levels (1− αi), i ∈ I , with the same value 1− (1− α)
1/#I

.

As discussed above, these values typically produce subop-

timal results. Therefore, the while loop in lines 7 through 19

uses hill climbing to adjust them to reduce the width of the

confidence interval [bestA, bestB] in a number of steps that

involve

• calculating (1−αi) confidence intervals [p
ij
, pij] for the

unknown transition probabilities used in (11) (lines 8

through 10);

• obtaining the confidence interval [a, b] corresponding to

these confidence intervals (line 11);

• retaining the new confidence interval bounds a, b if they

represent an improvement over the bounds bestA, bestB
(lines 12 and 13); and

• performing a random adjustment of the confidence levels

(1 − αi), i ∈ I (line 18), as explained shortly in this

section.

The hill-climbing while loop in lines 7 through 19 is executed

until no improvement over the current bestA, bestB confi-

dence interval bounds is found for MAX STEPS consec-

utive steps, where MAX STEPS is a parameter of the al-

gorithm. To this end, the local variable noImprovementSteps

is used to count the number of consecutive steps that do not

reduce the width of the confidence interval [bestA, bestB].
This variable is initialised in line 6, incremented in line 16, and

reset to zero when a better confidence interval [bestA, bestB]
is identified (in line 14).

This completes the description of the algorithm, with the

exception of the random adjustment of the αi, i ∈ I , values

in line 18. The technique that FACT uses to perform this

adjustment involves randomly selecting two elements i, i′ ∈ I ,

i 6= i′, and applying the change

1− αi ← (1− αi)x
1− αi′ ← (1− αi′)/x

,

where x is a random value drawn repeatedly from a uniform

distribution over [0.9, 1.1] until the new values of (1−αi) and

(1−αi′) are both in the interval [0, 1]. Note that the value of

the product (1−αi)(1−αi′) is not affected by this adjustment,

so the property
∏

i∈I(1−αi) = 1−α (which is true after the

for loop in lines 3 through 5) will continue to hold after each

instance of this adjustment.

To analyse the time complexity of the algorithm, note that

each iteration of the while loop in lines 7 through 19 involves

the constant-time calculation of up to n2 confidence intervals

in lines 8 through 10, O(1) operations in lines 12 through 17,

the random adjustment of the αi confidence levels in line 18,

and the calculation of (11) in line 11. Unless n is extremely

large, or the expression Φ(pi1j1 , pi2j2 , . . . , pimjm) in (11) is

particularly simple, the time taken by the calculation of (11)

dwarfs that of the other operations.

Example 4. Consider one last time the QoS requirement

P≥0.02[Ψ] from our running example, with Ψ given by (10).

The 0.95 confidence interval [0.0195, 0.0461] that we com-

puted for P=?[Ψ] in Example 3 was insufficient to establish

with 95% confidence whether the requirement was satisfied

or not. We therefore used the implementation of Algorithm 1

described in Section V to obtain a tighter confidence interval.

The execution of the algorithm for MAX STEPS = 30
completed after 85 iterations of the while loop in lines

7 through 19, and we obtained the 10.07% narrower 0.95

confidence interval [0.0208, 0.0449], so we can conclude with

95% confidence that the QoS requirement from our running

example is satisfied.

Finally, remember that the aim of calculating the confidence

interval returned in line 20 of Algorithm 1 is to establish

whether M |=α,O P⊲⊳p[Ψ] by checking if [bestA, bestB] ⊲⊳ p
(cf. Definition 5). In case of a negative answer, there are two

scenarios.

1) When p /∈ [bestA, bestB], p is on the wrong side of

the interval [bestA, bestB] with respect to rules (7),

e.g., p > bestB for ⊲⊳ =<. In this scenario, P⊲⊳p[Ψ]
is not satisfied with confidence level (1− α), given the

observations O.

2) When p ∈ [bestA, bestB], the confidence interval is not

narrow enough to decide whether the property P⊲⊳p[Ψ]
is satisfied or not with the required confidence level,

and given the available observations. In this case, ad-

ditional observations can be used to obtain a narrower

confidence interval, which may allow a decision to be

made. The width of the confidence interval defined by

the bounds (12) is strictly decreasing with the number of

observations, and converges asymptotically to zero, so it

is theoretically possible to obtain a [bestA, bestB] con-

fidence interval that is as narrow as desired. However,

this action may require an impractically high number of

9

Algebraic

expression

Φ(. . . pij . . .)

State
transition

observations O

Parametric
Markov
chainM

PCTL state
formula

Φ = P⊲⊳p[Ψ]

Error level α

FACT

confidence interval

synthesiser

(1− α)
confidence

interval

for P=?[Ψ]

PRISM

probabilistic

model checker

MATLAB

with YALMIP

toolbox

Fig. 3. High-level architecture of the FACT tool chain

observations. Thus, it might be practically unfeasible to

establish if some QoS properties are satisfied with the

required level of confidence.

When the FACT analysis shows that a required QoS property

is not satisfied, or cannot provide a definite answer, then

the system designer has the option to modify the system

architecture or parameters, and to redo the analysis.

V. FACT TOOL CHAIN

To automate the two stages of the FACT process (Fig. 2),

we assembled a tool chain that integrates established mathe-

matical analysis tools and libraries, and a confidence interval

synthesiser that we developed specifically for FACT.

Fig. 3 shows the high-level architecture of the FACT tool

chain.

We use the probabilistic model checker PRISM [11] to

obtain an algebraic expression for the analysed property in

the parametric model checking stage of FACT. Starting with

version 4.2, PRISM supports the parametric model checking

of PCTL formulae2. More precisely, PRISM parametric model

checking [35], [36] supports the analysis of PMC models with

transition probabilities specified as functions over a set of

parameters. Depending on the analysed PCTL formula, the

result is given either as an algebraic expressions (i.e., rational

function over the parameters), or as a mapping from regions

of these parameters to rational functions or truth values.

For the confidence interval inference stage of FACT, we

developed a prototype confidence interval synthesiser tool in

Java. Our tool implements the FACT theoretical framework

from Section IV-B, and uses MATLAB [53], and the MAT-

LAB optimisation toolbox YALMIP [54], [55] to calculate

the confidence interval [a, b] in line 11 of Algorithm 1.

Our FACT confidence interval synthesiser is freely available

from http://www-users.cs.york.ac.uk/∼raduc/FACT. Likewise,

the YALMIP toolbox is free of charge to use, and can be

downloaded from the project wiki [56].

VI. EVALUATION

To evaluate the effectiveness and generality of FACT, we

used our approach and tool chain to establish confidence

2PRISM’s implementation of parametric model checking re-implements the
techniques previously included in the PARAM model checker [46].

intervals for the QoS properties of two software systems from

different application domains, and across a wide range of

scenarios. The two case studies serve different purposes. The

former shows the potential of the approach, the role of its

parameters, and its performance. The latter case study shows

how FACT concretely supports engineers in establishing the

QoS properties of a real-world embedded system.

For both case studies, we first implemented simulators of

the analysed systems. We then used these simulators to obtain

observations of the events corresponding to the state transitions

from the system PMCs. To assess whether FACT produces cor-

rect results, we instantiated (i.e., fixed) the unknown transition

probabilities when collecting the observations. Next, we used

FACT to establish confidence intervals for the QoS properties

of each system starting from its observations. This approach

is the intended use of FACT in a real scenario. Finally, we

calculated the actual value of the same QoS properties starting

from the transition probability values used in the simulation.

This step is not possible in a real scenario, and is not part

of FACT. Its only purpose was to allow us to compare the

confidence intervals produced by FACT for a range of QoS

properties to the actual values of these properties.

A. Web application case study

1) Description: For the first case study, we considered the

business-critical web application from our running example

described in Section III. Table I shows the QoS requirements

for this application, in plain English, and formally specified

in PCTL. Requirements R1 through R3 are expressed as

state PCTL formulae (3), while requirements R4 through R5

formalise cost and response time constraints as reward PCTL

formulae (5).

As explained in Section II-C, each QoS requirement is

expressed by a PCTL formula that uses a fixed bound to

constrain the value of a QoS property of the system. For

example, the QoS property associated with requirement R2

is P=?[F HttpResponse] (i.e., the probability of successfully

handling a request), and R2 asks its value to be at least 0.995.

2) Experimental setup: To evaluate the effectiveness of

FACT in analysing the QoS properties of the web application,

we implemented a MATLAB simulator of the application. We

then ran the simulator with the PMC parameter values from

Table II, and we collected a wide range of state-transition

observations (6). Finally, we used these observations, and the

FACT tool chain in Fig. 3, to obtain confidence intervals

for the QoS properties of the web application. The purpose

of these experiments was to provide empirical evidence for

answering the following questions.

(a) What is the impact of varying the 1−α confidence level

in Fig. 3 on the confidence interval produced by FACT?

(b) How does the size of the observation set affect the

precision of confidence intervals?

(c) What are some typical numbers of observations required

to establish if the system complies with its requirements,

at difference confidence levels?

(d) How effective is the hill climbing Algorithm 1 at im-

proving the precision of confidence intervals?

10

TABLE I
QOS REQUIREMENTS FOR THE WEB APPLICATION

ID Informal description PCTL formula

R1 Cache hit probability: “At least 65% of the requests are
handled without accessing the database or the file server.”

P≥0.65[¬(Database∨ FileServer)U HttpResponse]

R2 Reliability: “The probability of successfully handling a
request must be at least 0.995.”

P≥0.995[F HttpResponse]

R3 Complexity bound: “88% of the requests must be suc-
cessfully processed within 4 operations.”

P≥0.88[F
≤4 HttpResponse]

R4 Cost: “The average cost for handling a request must be
less 2.5 tenths of a cent.”

Rcost
≤2.5

[F HttpResponse ∨ ServerUnavailable ∨ TooManyConnections]

R5 Response time: “The average response time must be less
than 15 milliseconds.”

Rresponse

≤15
[F HttpResponse ∨ ServerUnavailable ∨ TooManyConnections]

TABLE II
PMC PARAMETERS USED IN THE EXPERIMENTS

State Outgoing transition probabilities

s0 y1 = 0.4053, y2 = 0.5946, y3 = 0.0001

s3 x1 = 0.5790, x2 = 0.0005, x3 = 0.4205

s4 w1 = 0.9998, w2 = 0.0002

s5 z1 = 0.25065, z2 = 0.00125, z3 = 0.7481

s6 k1 = 0.9996, k2 = 0.0004

(e) What is the performance of the FACT toolset on a typical

computer?

3) Experimental results: For the parametric model check-

ing stage of the FACT analysis, we used version 4.2 of the

probabilistic model checker PRISM to obtain algebraic ex-

pressions for the QoS properties associated with requirements

R1 through R5 in Table I. These expressions are shown in

Table III.

For the confidence interval inference stage of FACT, we

used observations from the execution of our MATLAB imple-

mentation of the PMC in Fig. 1. Fig. 4 shows the 1− α con-

fidence intervals obtained for four typical sets of observations

that correspond to N observations of outgoing transitions from

each of the PMC states associated with unknown transition

probabilities, where 1 − α ∈ {0.85, 0.86, . . . , 0.99}, and

N ∈ {5000, 10000, 25000, 100000}. For simplicity, we will

use the notation O5K, O10K, O25K, and O100K to refer to the

four observation sets.

Note that these results include the actual values of the QoS

properties associated with requirements R1 through R5. These

values were obtained using PRISM to analyse the Markov

chain obtained by fixing all PMC parameters in Fig. 1 as

indicated in Table II, and are provided for reference. Of course,

these values are not available when FACT is used in a real-

world scenario. The graphs show also the requirement bounds

from Table I, with shaded areas for the parts of these graphs

that correspond to requirements being violated.

We analysed the results in Fig. 4 to answer questions (a)

through (c) from Section VI-A2 as follows.

(a) For any fixed number of observations N , the width of

the confidence interval increases supralinearly with the

confidence level 1 − α. This result is true for all anal-

ysed QoS properties. Furthermore, the 0.99 confidence

interval for each of the requirements R1 through R5

from our case study are at least twice as wide as the

0.85 confidence interval for the same requirement, across

all examined numbers of observations N . As a conse-

quence, given a fixed set of observations, establishing

compliance with a requirement is typically possible only

up to a certain level of confidence. As an example, for

observation set O10K, we can state that R1 is satisfied

with confidence level 0.94; or, using the notation in

(9), MwebApp |=0.06,O10K R1, where 0.06 = 1 − 0.94
represents the error level. In contrast, it is impossible

to establish that the requirement is satisfied with a 0.95
confidence level for O10K: MwebApp |=0.05,O10K/ R1.

(b) The width of the interval [bestA, bestB] computed

by Algorithm 1 is much smaller in experiments with

larger observation sets O. For instance, the intervals

[bestA, bestB] obtained for requirement R2 from Table I

and the observation sets O5K and O10K were not above

the R2 bound of 0.995 (i.e., bestA >/ 0.995) for any

1− α ≥ 0.85. In contrast, for the observation set O20K

and 0.85 ≤ 1 − α ≤ 0.95, the [bestA, bestB] interval

produced by Algorithm 1 satisfied bestA > 0.995. Thus,

according to Proposition 2, MwebApp |=0.05,O20K R2.

Similarly, in the experiment corresponding to O100K,

Algorithm 1 produced intervals with bestA > 0.995 for

all 1− α ≤ 0.99, so MwebApp |=0.01,O100K R2.

(c) Clearly, the number of observations required to establish

if the system complies with its QoS requirements with

a fixed level of confidence is influenced by how close

the requirement bounds are to the actual (unknown)

value of the associated QoS property. This effect is

illustrated qualitatively by the FACT analysis results for

requirements R2 and R3. For R2, a 0.99 confidence

interval that does not contain the requirement bound

0.995 is obtained only for the 100,000-observation set,

as the requirement bound is less than 0.005 away from

the actual value. In contrast, the requirement bound for

R3 is more than 0.04 away from the actual value, and

10,000 observations are sufficient to establish that R3 is

satisfied with 0.99 confidence level.

4) Hill climbing analysis: To evaluate the effectiveness of

the hill climbing technique employed by FACT, we recorded

the bounds of the confidence interval [bestA, bestB] at the end

11

TABLE III
ALGEBRAIC EXPRESSIONS FOR QOS REQUIREMENTS R1-R5

ID Algebraic expression

R1 (160y2x1 − 77z1y1 − 77z2y1 + 160y1)/160

R2 (−160w1y2x1 − 160w1y2x2 +77k1z1y1 +160y2x1 − 77z1y1 − 77z2y1 +160w1y2 +160y1)/160

R3 (508y1 + 385y1z3 + 1000x1y2 + 1000y2x3w1)/1000

R4 (−160y2x1 − 160y2x2 + 308z1y1 + 497y1 + 320y2)/160

R5 (−640y2x1 − 640y2x2 + 539z1y1 + 640y2)/16

0.86 0.88 0.9 0.92 0.94 0.96 0.98

0.6

0.65

0.7

0.75

R
1

0.86 0.88 0.9 0.92 0.94 0.96 0.98

0.97

0.975

0.98

0.985

0.99

0.995

1

R
2

1− α 1− α

0.86 0.88 0.9 0.92 0.94 0.96 0.98

0.86

0.88

0.9

0.92

0.94

R
3

0.86 0.88 0.9 0.92 0.94 0.96 0.98

2

2.2

2.4

2.6

R
4

 [

$
0

.0
0

1
]

1− α 1− α

0.86 0.88 0.9 0.92 0.94 0.96 0.98
8

10

12

14

16

18

R
5

 [
m

s
]

1− α

N=5000

N=10000

N=25000

N=100000

actual value

requirement bound

Fig. 4. FACT 1− α confidence intervals for requirements R1 through R5, and observation sets of size N ∈ {5000, 10000, 25000, 100000}. The shaded
areas correspond to violations of the requirement bounds, and the actual values are given for the PMC parameters in Table II.

12

0.7

0.72

0.74

0.76

 R

1

0 10 20 30 40 50 60

hill climbing step

0.62

0.64

0.66

 R

1

90% confidence interval

95% confidence interval

99% confidence interval

actual value

≈ ≈

Fig. 5. Hill-climbing refinement of the confidence interval for requirement R1.

TABLE IV
REDUCTION IN THE SIZE OF CONFIDENCE INTERVALS THROUGH

HILL-CLIMBING OPTIMISATION, FOR THE EXPERIMENT IN FIG. 5

1− α initial interval final interval steps reduction

0.90 [0.6535, 0.7336] [0.6558, 0.7306] 51 6.6%

0.95 [0.6439, 0.7429] [0.6475, 0.7396] 39 6.9%

0.99 [0.6212, 0.7644] [0.6269, 0.7592] 63 7.6%

of each iteration of the while loop from lines 7 through 19 of

Algorithm 1.

Fig. 5 depicts a typical refinement of the confidence interval

for requirement R1 during the execution of Algorithm 1 with

MAX STEPS = 30, for three confidence levels, and the

observation set O10K from above. This diagram illustrates the

general trend of obtaining a larger reduction in the size of the

confidence intervals for larger confidence levels, for example

a 7.6% reduction for the 0.99 confidence interval compared to

a 6.6% reduction for the 0.90 confidence interval (Table IV).

Thus, we can answer question (d) from Section VI-A2.

(d) Hill climbing optimisation can improve the precision

of confidence intervals significantly, enabling a more

accurate analysis of QoS properties.

5) Performance analysis:3 The FACT verification time is

dominated by its confidence interval inference stage, with

the parametric model checking stage taking below 200ms to

obtain the algebraic expression in Table III for each of the

five requirements. Note also that the first FACT stage needs

to be performed only once for each requirement, whereas

the second stage must be executed for each confidence level

used in the analysis. Table V shows the execution times for

this second stage, and the experiments reported in Fig. 4. In

these experiments, the hill-climbing optimisation was stopped

after MAX STEPS = 50 steps that did not generate a

reduction in the size of the analysed confidence interval.

This rule explains why several experiments took precisely

50 optimisation steps; in these experiments, the hill climbing

could not find an improvement within its first MAX STEPS

steps. The MAX STEPS value used for these experiments

was larger than the one from the hill climbing analysis so we

could stretch the approach when evaluating its performance.

Based on these results, we can address our last question from

Section VI-A2.

(e) The time taken to establish confidence intervals using the

FACT toolset is dominated by the confidence interval

inference stage. Within this stage, the hill-climbing

optimisation of the initial solution takes most of the

time (above 98% for the experiments in Table V). The

average time required for one execution of optimisation

step ranged between 2.33s and 3.04s, and further investi-

gation showed that this range corresponds to the invoca-

tion of the MATLAB–YALMIP optimisation engine for

the calculation of the confidence interval bounds (11).

The overall time to obtain a confidence interval varied

between approximately 2 and 4 minutes on an off-the-

shelf laptop computer, so we concluded that the FACT

tool chain was sufficiently efficient to support the QoS

analysis of the non-trivial system in our case study.

To ensure that the results described above were not skewed

by the choice of PMC transition probabilities from Table II,

we repeated the experiments used to produce them for 100
randomly selected instantiations of the transition probabilities.

Given the large number of such experiments, we consid-

ered only the commonly used confidence levels (1 − α) ∈
{0.95, 0.99}, and we ran the experiments for observation sets

of size N = 10, 000. Thus, we used the FACT tool chain

to compute the two confidence intervals for each of the five

QoS requirements in Table I, and each of the 100 parameter

instantiations, running 1000 experiments in total.

For each experiment, we recorded the synthesised con-

fidence interval, the decrease in the size of this interval

due to the FACT hill climbing, and the total time taken to

compute the confidence interval. These experimental results

are summarised in Table VI, and are in line with the findings

presented earlier in this section. In particular, the confidence

interval sizes for all requirements are similar to those reported

3All experiments were carried out using a standard OS X 10.9.4 MacBook
Pro computer with a 2GHz Intel Core i7 processor, and 8GB 1600MHz
DDR3 RAM for the PRISM parametric model checking; and an OS X 10.9.4
Macbook Pro computer with a 2.3GHz Intel Core i7 processor, and 16 GB
1600 MHz DDR3 RAM for the confidence interval inference.

13

TABLE V
CONFIDENCE INTERVAL INFERENCE TIME AND HILL-CLIMBING OPTIMISATION STEPS

5000-observation set, O5K 10000-observation set, O10K 25000-observation set, O25K 100000-observation set, O100K

ID average
hill
climbing
steps

average
step
time
[s]

average
time†

[s]

average
hill
climbing
steps

average
step
time
[s]

average
time†

[s]

average
hill
climbing
steps

average
step
time
[s]

average
time†

[s]

average
hill
climbing
steps

average
step
time
[s]

average
time†

[s]

R1 63.5 2.45 158.07 56.2 2.31 132.25 53.6 2.39 130.7 50.0 2.40 122.52

R2 50.0 3.04 155.35 50.0 2.68 137.15 50.0 2.65 135.27 50.0 2.59 132.24

R3 50.0 2.59 132.58 50.0 2.46 125.63 50.0 2.45 125.28 50.0 2.42 123.55

R4 87.2 2.35 208.08 50.0 2.46 125.63 72.8 2.33 172.36 50.0 2.49 136.43

R5 100.4 2.40 244.12 98.6 2.42 241.39 100.6 2.43 247.33 74.8 2.44 198.47

†The average time includes the time taken by the hill-climbing optimisation steps and by the other operations of Algorithm 1.

TABLE VI
PERFORMANCE OF CONFIDENCE INTERVAL COMPUTATION OVER 100 RANDOM PMC PARAMETER INSTANTIATIONS

0.95 confidence interval computation

confidence hill-climbing total

interval size gain† [%] time [s]

ID mean SD mean SD mean SD

R1 0.164 0.029 2.66 3.03 186.0 44.5

R2 0.109 0.025 10.8 4.67 165.7 37.5

R3 0.123 0.028 6.27 3.32 187.5 40.7

R4 0.362 0.074 11.8 3.74 213.8 59.2

R5 4.904 0.840 14.4 4.48 272.3 100.3

0.99 confidence interval computation

confidence hill-climbing total

interval size gain† [%] time [s]

ID mean SD mean SD mean SD

R1 0.237 0.042 2.70 3.02 381.7 75.0

R2 0.164 0.037 7.53 3.45 324.7 48.7

R3 0.180 0.041 4.64 2.69 385.9 74.4

R4 0.545 0.112 8.27 2.68 415.4 87.7

R5 7.436 1.202 10.2 2.73 570.5 189.7

†Decrease in confidence interval size due to hill climbing, relative to the confidence interval size without hill climbing.

in Fig. 4 for observation sets of size N = 10, 000, and the

two confidence levels, with small variations. As expected, the

interval sizes are higher for the 0.99 confidence intervals. The

use of hill climbing to reduce the confidence interval size

produced average gains of between 2.66% and 14.4%, similar

to those reported earlier in Fig. 5. Finally, the average time to

calculate a confidence interval was under 275s, and under 571s

for the 0.95, and 0.99 confidence intervals, respectively. The

longer time needed to compute confidence intervals for higher

(1 − α) confidence levels is due to an increased sensitivity

of the interval size to variations in the confidence level when

(1 − α) approaches 1.0. For instance, the difference in size

between 0.985 and 0.99 confidence intervals is much larger

than the difference in size between 0.945 and 0.95 confidence

intervals. Therefore, the hill climbing will take longer to

compute a stable confidence interval when operating with

confidence levels close to 1.0.

B. The Low-power Wireless Bus case study

1) Description: In this section, we present the application

of the FACT approach to a real-world embedded software

system from the Wireless Sensor Networks (WSNs) [57]

domain. Designing and implementing an efficient WSN system

requires the careful evaluation of multiple engineering choices,

to identify effective trade-offs between the quality properties

of the system. In particular, energy efficiency is the main QoS

aspect that drives the design of these systems.

One of the mainstream approaches to designing energy-

efficient WSN systems relies on evaluating alternative con-

figurations through formal modelling and analysis (e.g., [58]).

Accordingly, our case study applies FACT formal verification

to a WSN system that uses the Low-power Wireless Bus

(LWB) communication protocol [59]. LWB is a recently

proposed WSN communication protocol that turns a multi-hop

low-power wireless network into an infrastructure similar to a

shared bus, where all nodes are potential receivers of all data.

It achieves this structure by mapping all traffic demands on a

type of fast network floods (i.e., transmissions of one packet

from an originator node to all other nodes in the network)

called Glossy floods [60]. To avoid collisions between floods,

LWB uses a time-triggered operation: nodes communicate

according to a global communication schedule that determines

when a node is allowed to initiate a flood.

The protocol operates within communication rounds that

repeat with a round period T , computed at the host, and

based on the current traffic demands. Every round consists of a

number of non-overlapping communication slots. In each slot,

at most one node puts a message on the bus (initiates a Glossy

flood), whereas all other nodes read the message from the bus

(receive and relay the flood). A round starts and ends with

a slot allocated by the host to distribute the communication

schedule. The detailed description of the protocol is beyond

the scope of this paper, and can be found in [59].

2) Modelling LWB nodes: LWB has configuration parame-

ters whose choice influences its radio on-time (i.e., the time a

receiver node has its radio turned on during a network flood),

and thus the energy consumption of a node. In particular,

the choice of the LWB round period T in the acceptable

range 1000ms ≤ T ≤ 60, 000ms can lead to significantly

different energy consumptions. The selection of this parameter

14

1-ps

ps

11-ps

Bb

Be

Re

Rb

Sb

Se

M1e

M1b

M2b

M2e

M3e

M3b

ps

1-ps

1-ps
ps

1-ps ps

ps

ps ps

ps

ps

ps

1-ps

1-ps

ps

1-ps

1-ps

1-ps

1-ps

BootBeginSch

BootEndSch ReceivedBeginSch

ReceivedEndSch SynchBeginSch

SynchEndSch 1stMissedBeginSch

1stMissedEndSch 2ndMissedBeginSch

2ndMissedEndSch

3rdMissedEndSch

3rdMissedBeginSch

Fig. 6. Parametric Markov chain model of an LWB node, taken from [58].

TABLE VII
REWARD STRUCTURES FOR THE LWB MODEL IN FIG. 6

Energy consumption Start-up energy

State per period (‘period’) consumption (‘startup’)

Be (T-1000)/T T-1000

Bb 1000/T 1000

Re 35/T 35

Rb 145/T 145

Se 19/T 19

Sb 129/T 0

M1e 19/T 0

M1b 133/T 0

M2e 28/T 0

M2b 28/T 0

M3e 35/T 0

M3b 35/T 0

is based on the analysis of the worst-case radio on-time

of a node, which represents a measure of the worst-case

energy consumption of a WSN system. This analysis uses the

parametric Markov chain (PMC) of a LWB node introduced in

[58], and shown in Fig. 6. The unknown transition probability

ps in this PMC represents the probability for the node to

receive a schedule that was sent by the host.

For the analysis of the worst-case energy consumption

of an LWB node, the PMC in Fig. 6 is augmented with

the two reward structures detailed in Table VII. The former

structure associates each PMC state with the fraction of a

communication round for which the LWB node has the radio

switched on. The latter structure maps each PMC state to its

radio on-time during the start-up synchronisation between the

node and the host. Justifying the assumptions and accuracy of

this model is beyond the scope of our paper; these details can

be found in [58].

3) Using FACT to select the LWB round period: Table VIII

shows a pair of QoS requirements that are commonly used

to drive the selection of the round period T . Requirement R1

measures the expected steady-state energy consumption, while

requirement R2 measures the energy consumption during

the initial startup synchronisation with the host. The PCTL

formulae for these requirements correspond to the two reward

structures from Table VII.

Given these requirements, and the PMC in Fig. 6, engineers

TABLE VIII
LWB QOS REQUIREMENTS

ID Informal description PCTL formula

R1 Steady-state power consump-

tion: “The radio on-time per
period should be less than
5%.”

Rperiod

≤0.05
[S]

R2 Start-up power consumption:
“The start-up radio on-time
should be less than 40s.”

Rstartup

≤40
[F SynchBeginSch]

can use the FACT tool chain for the selection of a suitable

round period T as follows. First, as the probability of suc-

cessful schedule receipt ps is typically unknown, experiments

using the testbeds and settings described in [58] must be

carried out to estimate it empirically. The experimental data

are encoded as observation sets (6), and a confidence level

1−α for the analysis of the two requirements is decided. The

observation sets and confidence level are then used as inputs

for the FACT tool chain, together with the PMC model from

Fig. 6, and the PCTL formulae in Table VIII. Given these

inputs for multiple values of the round period T , our tool

chain synthesises 1 − α confidence intervals for each of the

two QoS properties, and each value of T .

Figs. 7 and 8 show the results of this FACT analysis

for a typical 1000-observation set (obtained through model

simulations for ps = 0.8), and a confidence level 1−α = 0.99.

These 0.99 confidence intervals illustrate the trade-off between

the steady-state energy usage (which decreases with T) and

the start-up energy usage (which increases when T increases).

In this scenario, the two QoS requirements are satisfied with

probability 0.99 when the round period T is selected in

the interval [8000ms, 14, 000ms], because the threshold from

requirement R1 is met for T ≥ 8000ms, and the R2 threshold

is met for T ≤ 14, 000ms.

In contrast, using a point estimator instead of the confidence

interval generated by FACT may lead to suboptimal or invalid

choices for the LWB round period. As an example, the

application of the maximum likelihood estimator (MLE) [61]

to the 1000 observations of ps used in Figs. 7 and 8 yields

the point estimate p̂s = 0.794. The dotted MLE plots in

Figs. 7 and 8 show the variation of the two QoS properties

15

0.005$

0.015$

0.025$

0.035$

0.045$

0.055$

0.065$

0.075$

1
0
0
0
$

4
0
0
0
$

7
0
0
0
$

1
0
0
0
0
$

1
3
0
0
0
$

1
6
0
0
0
$

1
9
0
0
0
$

2
2
0
0
0
$

2
5
0
0
0
$

2
8
0
0
0
$

3
1
0
0
0
$

3
4
0
0
0
$

3
7
0
0
0
$

4
0
0
0
0
$

4
3
0
0
0
$

4
6
0
0
0
$

4
9
0
0
0
$

5
2
0
0
0
$

5
5
0
0
0
$

5
8
0
0
0
$

upperbound$

lowerbound$

threshold$

MLE$

R1

T (ms)

Fig. 7. Steady-state energy consumption with increasing round period values.

0"

20"

40"

60"

80"

100"

120"

140"

160"

180"

1
0
0
0
"

4
0
0
0
"

7
0
0
0
"

1
0
0
0
0
"

1
3
0
0
0
"

1
6
0
0
0
"

1
9
0
0
0
"

2
2
0
0
0
"

2
5
0
0
0
"

2
8
0
0
0
"

3
1
0
0
0
"

3
4
0
0
0
"

3
7
0
0
0
"

4
0
0
0
0
"

4
3
0
0
0
"

4
6
0
0
0
"

4
9
0
0
0
"

5
2
0
0
0
"

5
5
0
0
0
"

5
8
0
0
0
"

upperbound"

lowerbound"

threshold"

MLE"

T (ms)

R2

Fig. 8. Start-up energy consumption with increasing round period values.

with T when ps = p̂s = 0.794 in the PMC model from

Fig. 6. According to these results, the two QoS requirements

are satisfied for T values in the interval [6000ms, 20, 000ms].
This interval is much wider than the 0.99 confidence interval

generated by FACT, and the selection of a T value within

it provides no guarantees that the QoS requirements will

be satisfied with at least some minimum probability. FACT

addresses this important drawback of point estimates by en-

abling engineers to select LWB configurations guaranteed to

satisfy the quality requirements of the system with the required

minimum probability.

4) Performance: We carried out all the experiments for the

LWB case study using the computers with the specification in

Section VI-A5. As for our first case study, the parametric

model checking FACT stage completed in sub-second time

(i.e., 172ms for R1, and 184ms for R2). The algebraic expres-

sions generated by the PRISM probabilistic model checker for

this stage are shown in Table IX.

In the confidence interval synthesis stage of the FACT

approach, the 0.99 confidence intervals for R1 and R2 from

TABLE IX
ALGEBRAIC EXPRESSIONS FOR LWB QOS REQUIREMENTS R1 AND R2

ID Algebraic expression

R1 (12p10s − 427p9s + (T + 2322)p8s − (6T + 5972)p7s + (16T +
9815)p6s − (24T + 12027)p5s + (22T + 11102)p4s − (14T +
6277)p3s+(8T+2455)p2s−(4T+355)ps+T)/(2Tp8s−12Tp7s+
34Tp6s − 54Tp5s + 52Tp4s − 32Tp3s + 18Tp2s − 8Tps + 2T)

R2 (−1000p3s + 1035p2s − 355ps + T)/(p3s)

Figs. 7 and 8 were obtained for T = 1000ms, 2000ms, . . . ,

60, 000ms. This calculation involved evaluating the algebraic

expressions in Table IX for each of these values of T ,

and using the resulting expressions as input for the FACT

confidence interval synthesiser in Fig. 3. Because the only

unknown transition probability in these expressions is ps, the

only way to obtain a 0.99 confidence interval for R1 and

R2 is to start with a 0.99 confidence interval for ps. Thus,

hill-climbing optimisation to identify better combinations of

confidence levels for the unknown transition probabilities was

not required for the analysis of the LWB system. As a result,

each of the 120 confidence interval calculations (corresponding

to the two QoS requirements and the 60 values of T mentioned

above) took below 500ms.

VII. DISCUSSION

The experiments described in the previous section show the

feasibility and benefits of our FACT theoretical framework and

tool chain for formal verification with confidence intervals. In

particular, we demonstrated the application of FACT within

two case studies from different domains, to support the anal-

ysis of several types of QoS properties. The applicability of

FACT to other domains and to larger systems depends on the

capabilities of its two components from Fig. 2, i.e., parametric

model checking and confidence interval inference.

Parametric model checking, in particular, is computationally

expensive. The complexity of the early techniques for the

computation of symbolic expressions for reachability PCTL

properties for an n-state model is as high as nΘ(logn) [45].

However, parametric model checking is a new area of research,

and newer techniques operate with much lower overheads.

Thus, the approach from [35] is much faster than [45] in

many practical scenarios, and the most recent result from this

area reports speed-ups of up to several orders of magnitude

[37]. The probabilistic model checker used for the parametric

model checking step of the FACT tool chain, i.e., PRISM [11],

implements the techniques from [35], [36], and was able to

generate all the symbolic expressions for each of the QoS

properties from our smaller but realistic case studies in under

200ms. Using a model checker that implements the efficient

parametric model checking technique from [37] will enable

FACT to scale to much larger system sizes.

Confidence interval inference is also computationally ex-

pensive. Our FACT tool chain is based on the MATLAB

optimisation toolbox YALMIP [54], [55] configured to use

its own, free global optimization solver based on [62], which

needs 2s to 3s to execute each step of the FACT hill climbing

algorithm for the QoS properties in Section VI. However,

16

YALMIP can also be configured to use the much faster,

state-of-the-art industrial optimiser Gurobi [63], which again

provides an opportunity for scaling up FACT to larger system

sizes than presented in the previous section.

Finally, the FACT theoretical framework presented in this

paper considers PMCs whose unknown transition probabilities

are specified as variables. This approach differs from the

PMC definition in, e.g., [35], [36], [37], where transition

probabilities are expressed as fractions of polynomials over

a set of variables (i.e., the system parameters). Extending the

FACT theoretical framework to handle transition probabilities

expressed as rational functions of the system parameters is

certainly possible, and would involve operating with obser-

vations and confidence intervals of the system parameters

instead of the unknown transition probabilities. The main

implication would be an increase in the complexity of the

symbolic expressions of the analysed QoS properties. This

may happen if complex rational functions are used to specify

the unknown transition probabilities. However, the current

research [35], [37] is based on case studies that use rational

functions similar to those from our case studies [64]. Several

examples of these rational functions include p and 1 − p,

and q and 1 − q for the two sets of unknown transition

probabilities of a Zeroconf protocol [65] PMC available from

[66], and identically formulated functions for the two sets of

unknown transition probabilities of a Crowds protocol [67]

PMC available from [68].

VIII. RELATED WORK

Markov chains are widely used for the verification of

reliability, performance, and other QoS properties of software

and hardware systems. However, in many practical appli-

cations, the MC state transition probabilities are estimated

experimentally, leading to uncertainty and imprecisions that

may affect the accuracy of the results. To the best of our

knowledge, FACT is the first approach that supports formal

verification of Markov chains that exploits confidence intervals

to quantitatively account for this uncertainty. In this section,

we survey several approaches that investigated similar or

related challenges.

Interval-valued discrete-time Markov chains (IDTMC) were

introduced in [69] to incorporate uncertainty in traditional

MCs by assuming that transition probability values lie within

a range or interval of possible values. IDTMCs were subse-

quently refined and generalised to models that include generic

convex sets of probabilities in [70]. The approaches in [69],

[70] addressed the important problem of incorporating uncer-

tainty into Markov chains. However, their scope is limited to

the model definition. Unlike FACT, these approaches do not

tackle the challenge of propagating the uncertainty captured by

the model to properties of the model expressed in probabilistic

temporal logic.

Benedikt et al. [33] provide lower and upper bounds on the

complexity of evaluating ω-regular specification satisfiability

in IDTMCs, and an expectation maximisation algorithm that

starts from an IDTMC and produces a sequence of refinements

of increasing probability of satisfying an ω-regular property.

The Tulip model checking tool [33] uses this algorithm to

calculate an approximation for the maximum probability with

which an IDTMC model satisfies one of these properties.

This approximation is then used for the iterative refinement

and modification of an existing model, to obtain a model

variant that satisfies the original property (see also the existing

approaches for model repair [71]). Accordingly, the technique

devised by Benedikt et al. [33] is the inverse of our FACT

approach, which starts from a given uncertain model, and

establishes if the model meets a specification with the required

confidence level.

Uncertainty in PCTL verification is taken into account

by [34] through modelling systems as IDTMCs interpreted

semantically as either uncertain Markov chains (UMCs) or

interval Markov decision processes (IMDPs). The former in-

terpretation is often useful in scenarios where state transitions

of the system are known to lie within a specific interval of

probabilities, while the latter interpretation generalises MDPs

to an uncountable set of non-deterministic choices to be

taken at each state transition, modelling variations within the

system’s environment during execution. Chatterjee et al. [72]

extend PCTL to express ω-regular conditions. Model checking

of these specifications are considered under various semantic

interpretations of IDTMCs, proving upper and lower complex-

ity bounds. Chen et al. [73] improve these results by demon-

strating that the reachability probability for IDTMCs coincides

under UMC and IMDPs semantics, and is P-complete. They

use an ellipsoid method to yield a polynomial-time verification

algorithm. The PCTL model checking problem is shown to

be P-complete under the IMDP semantics, and reducible to

the square-root-sum problem under the UMC semantics. [74]

extends interval-bounded models to more general forms of

likelihood models and ellipsoidal models, to improve transi-

tion uncertainty in cases where probabilities are determined

experimentally.

Although the above results address the verification of PCTL

formulae over models affected by uncertainty, several unique

characteristics distinguish FACT from them. First, FACT op-

erates with parametric Markov chains with unknown transition

probabilities specified as sets of observations. This operation

makes our approach particularly suitable for practical appli-

cations, in which the transition probabilities are unknown,

and need to be derived from observations. Second, FACT

is uniquely capable of establishing confidence intervals for

PCTL properties at any requested confidence level. Thirdly,

our approach uses hill-climbing optimisation to reduce the

width of its confidence intervals over a number of iterations.

Last but not least, FACT can be readily used in practice, thanks

to a tool chain that automates all steps of the approach.

In another area of related research, [47], [75] use pertur-

bation analysis to compute bounds for the probabilistic model

checking of parameterised discrete-time Markov chains. These

bounds measure the sensitivity of the model to parameter

changes, predict the maximal variations in verification results

with respect to the amount of perturbation in the model, and

may also specify boundaries for the variation of a verification

result. This work complements the approach presented in our

paper, as it analyses the relevance of different model param-

17

eters for a given PCTL property. In contrast, FACT handles

the propagation of uncertainty in the model parameters during

the verification process, to establish if the system behaves as

expected, with the required level of confidence.

Finally, Bortolussi et al. [76] explore statistical model

checking to determine the satisfiability probability of metric

interval temporal logic formulae for continuous-time Markov

chains with parametric uncertainty. They provide approxima-

tions of satisfaction functions as an estimate of the probability

for formula satisfiability for all parameter values from obser-

vations of individual runs of the system. Given samples of

model parameters, the approach evaluates the probability of

satisfaction of the property of interest. This differs from FACT,

which focuses instead on discrete-time parametric Markov

chains, and synthesises confidence intervals for the analysed

property at any required confidence level.

IX. CONCLUSIONS, AND FUTURE WORK

We introduced FACT, the first tool-supported approach for

establishing the quality properties of software systems using

formal verification with confidence intervals. Our paper con-

tributes to the research on the formal verification for complex

software systems by proposing a novel approach to synthesis-

ing confidence intervals for PCTL verification over parametric

Markov models, given a set of observations of the system,

and a required level of confidence. The proposed solution has

been implemented using a tool chain that integrates established

model checking and mathematical analysis tools, and a freely

available tool that we developed to automate the confidence

interval inference stage of the approach.

The evaluation of the FACT approach and tool chain in two

case studies from different domains show that FACT produces

useful confidence intervals, across wide ranges of confidence

levels and observation sets. For the verified QoS properties

(depending on between one and seven unknown transition

probabilities), the synthesis of the confidence intervals took

between half a second (for univariate properties) and just over

four minutes (for properties depending on multiple unknown

probabilities). The further exploration of the FACT perfor-

mance and scalability represents an area of future work for

our project. However, note that the two stages are impacted

differently by the size of the verified Markov chain. Thus, the

parametric model checking stage will be heavily dependent on

the size of the model. Note, however, that this stage needs to be

executed only once for a given model and property. In contrast,

the confidence interval inference stage of FACT is executed

each time when a new set of observations is available, or a

confidence interval is required at a new level of confidence.

We hypothesise that the time required to carry out this stage is

s-independent of the original model size, and depends primar-

ily on the number of unknown transition probabilities from

the parametric Markov chain. A large number of experiments

will be needed to assess the validity of this hypothesis.

The two case studies presented in the paper show that FACT

can be used to analyse multiple quality aspects of software

systems, including reliability, performance, cost, and energy

consumption. In future work, we will explore the possibility

to extend the approach to other modelling formalisms and

verification logics, with a view to support the verification of

additional quality properties of software systems. Continuous-

time Markov chains and continuous stochastic logic represent

strong candidates for this extension, as they enable the mod-

elling and analysis of system characteristics not covered by

discrete-time Markov models and PCTL.

In recent work, we advocated the run-time use of quan-

titative verification in business- and safety-critical systems

that need to self-adapt to changes in their environment or

requirements [16], and we successfully applied run-time quan-

titative verification to multiple software systems [17], [18],

[19], [27], [44]. The integration of FACT with these results

has the potential to provide stronger guarantees that self-

adaptive software systems meet their QoS requirements than

is currently possible otherwise.

ACKNOWLEDGEMENT

This work was partly funded by the UK Engineering

and Physical Sciences Research Council grant EP/H042644/1

and the FP7-PEOPLE-2011-IEF European Commission Pro-

gramme project 302648-RunMore.

REFERENCES

[1] E. M. Clarke and J. M. Wing, “Formal methods: State of the art
and future directions,” ACM Computing Sureys, vol. 28, no. 4, pp.
626–643, Dec. 1996. [Online]. Available: http://doi.acm.org/10.1145/
242223.242257

[2] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald,
“Formal methods: Practice and experience,” ACM Comput. Surv.,
vol. 41, no. 4, pp. 19:1–19:36, Oct. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1592434.1592436

[3] R. M. Hierons, K. Bogdanov, J. P. Bowen, R. Cleaveland, J. Derrick,
J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Lüttgen,
A. J. H. Simons, S. Vilkomir, M. R. Woodward, and H. Zedan,
“Using formal specifications to support testing,” ACM Comput.

Surv., vol. 41, no. 2, pp. 9:1–9:76, Feb. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1459352.1459354

[4] B. Meyer, “Applying ’design by contract’,” Computer, vol. 25, no. 10,
pp. 40–51, Oct 1992.

[5] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT
Press, 1999.

[6] M. Kwiatkowska, “Quantitative verification: Models techniques and
tools,” in Proceedings of the the 6th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT Symposium

on The Foundations of Software Engineering, ser. ESEC-FSE ’07.
New York, NY, USA: ACM, 2007, pp. 449–458. [Online]. Available:
http://doi.acm.org/10.1145/1287624.1287688

[7] C. Baier, B. Haverkort, H. Hermanns, and J. Katoen, “Model-checking
algorithms for continuous-time Markov chains,” Software Engineering,

IEEE Transactions on, vol. 29, no. 6, pp. 524–541, June 2003.

[8] M. Kwiatkowska, G. Norman, and D. Parker, “Modelling and verifica-
tion of probabilistic systems,” in Mathematical Techniques for Analyzing

Concurrent and Probabilistic Systems, ser. CRM Monograph Series,
P. Panangaden and F. van Breugel, Eds. American Mathematical
Society, 2004, vol. 23, pp. 93–215.

[9] M. Z. Kwiatkowska, G. Norman, D. Parker, and J. Sproston, “Perfor-
mance analysis of probabilistic timed automata using digital clocks,”
Formal Methods in System Design, vol. 29, no. 1, pp. 33–78, 2006.

[10] M. Z. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic symbolic
model checking with PRISM: A hybrid approach,” Int. Journal on

Software Tools for Technology Transfer(STTT), vol. 6, no. 2, pp. 128–
142, Aug. 2004.

[11] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in Proc. 23rd International Confer-

ence on Computer Aided Verification (CAV’11), ser. LNCS, G. Gopalakr-
ishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011, pp. 585–591.

18

[12] J.-P. Katoen, M. Khattri, and I. S. Zapreev, “A Markov reward model
checker,” in Quantitative Evaluation of Systems. Los Alamitos: IEEE
Computer Society, 2005, pp. 243–244.

[13] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N.
Jansen, “The ins and outs of the probabilistic model checker MRMC,”
Performance Evaluation, vol. 68, no. 2, pp. 90 – 104, 2011, advances in
Quantitative Evaluation of Systems {QEST} 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0166531610000660

[14] H. L. S. Younes, “Ymer: A statistical model checker,” in Computer

Aided Verification, ser. LNCS, K. Etessami et al., Eds. Springer, 2005,
vol. 3576, pp. 429–433.

[15] S. Gallotti, C. Ghezzi, R. Mirandola, and G. Tamburrelli,
“Quality prediction of service compositions through probabilistic
model checking,” in Quality of Software Architectures. Models

and Architectures, ser. Lecture Notes in Computer Science,
S. Becker, F. Plasil, and R. Reussner, Eds. Springer Berlin
Heidelberg, 2008, vol. 5281, pp. 119–134. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-87879-7 8

[16] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola, “Self-
adaptive software needs quantitative verification at runtime,” Communi-

cations of the ACM, vol. 55, no. 9, pp. 69–77, September 2012.
[17] A. Filieri, C. Ghezzi, and G. Tamburrelli, “A formal approach to adaptive

software: continuous assurance of non-functional requirements,” Formal

Asp. Comput., vol. 24, no. 2, pp. 163–186, 2012.
[18] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tam-

burrelli, “Dynamic QoS management and optimization in service-based
systems,” IEEE Trans. Softw. Eng., vol. 37, pp. 387–409, 2011.

[19] R. Calinescu, K. Johnson, and Y. Rafiq, “Developing self-verifying
service-based systems,” in Automated Software Engineering (ASE), 2013

IEEE/ACM 28th International Conference on, Nov 2013, pp. 734–737.
[20] K. Johnson, S. Reed, and R. Calinescu, “Specification and quantitative

analysis of probabilistic cloud deployment patterns,” in Hardware and

Software: Verification and Testing, ser. Lecture Notes in Computer
Science, K. Eder, J. Louren??o, and O. Shehory, Eds. Springer
Berlin Heidelberg, 2012, vol. 7261, pp. 145–159. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-34188-5 14

[21] D. Perez-Palacin, R. Calinescu, and J. Merseguer, “Log2cloud: Log-
based prediction of cost-performance trade-offs for cloud deployments,”
in Proceedings of the 28th Annual ACM Symposium on Applied

Computing, ser. SAC ’13. New York, NY, USA: ACM, 2013, pp. 397–
404. [Online]. Available: http://doi.acm.org/10.1145/2480362.2480442

[22] C. Ghezzi and A. M. Sharifloo, “Model-based verification of
quantitative non-functional properties for software product lines,”
Information and Software Technology, vol. 55, no. 3, pp. 508 – 524,
2013, special Issue on Software Reuse and Product Lines Special
Issue on Software Reuse and Product Lines. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0950584912001516

[23] R. Calinescu and M. Z. Kwiatkowska, “Using quantitative analysis
to implement autonomic IT systems,” in Proceedings of the 31st In-

ternational Conference on Software Engineering, ICSE 2009. IEEE
Computer Society, 2009, pp. 100–110.

[24] A. Filieri, C. Ghezzi, and G. Tamburrelli, “Run-time efficient prob-
abilistic model checking,” in Proceedings of the 33rd International

Conference on Software Engineering. IEEE Computer Society, 2011,
pp. 341–350.

[25] P. Inverardi, P. Pelliccione, and M. Tivoli, “Towards an assume-guarantee
theory for adaptable systems,” in Software Engineering for Adaptive and

Self-Managing Systems, 2009. SEAMS ’09. ICSE Workshop on, may
2009, pp. 106 –115.

[26] M. Kwiatkowska, G. Norman, D. Parker, and H. Qu, “Assume-guarantee
verification for probabilistic systems,” in TACAS’10. Springer, 2010,
pp. 23–37.

[27] K. Johnson, R. Calinescu, and S. Kikuchi, “An incremental verification
framework for component-based software systems,” in Proc. 16th Intl.

ACM Sigsoft Symposium on Component-Based Software Engineering,
2013, pp. 33–42.

[28] V. Forejt, M. Kwiatkowska, D. Parker, H. Qu, and M. Ujma, “Incremen-
tal runtime verification of probabilistic systems,” in Runtime Verification,
ser. LNCS, vol. 7687. Springer, 2012, pp. 314–319.

[29] S. Gerasimou, R. Calinescu, and A. Banks, “Efficient runtime quantita-
tive verification using caching, lookahead and nearly-optimal reconfig-
uration,” in 9th International Symposium on Software Engineering for

Adaptive and Self-Managing Systems, 2014, to appear.
[30] G. Su and D. Rosenblum, “Asymptotic bounds for quantitative

verification of perturbed probabilistic systems,” in Formal Methods

and Software Engineering, ser. Lecture Notes in Computer Science,
L. Groves and J. Sun, Eds. Springer Berlin Heidelberg, 2013,

vol. 8144, pp. 297–312. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-41202-8 20

[31] J. G. Kemeny, J. L. Snell, and A. W. Knapp, Denumerable Markov

Chains, 2nd edition, ser. Graduate Texts in Marhematics. Springer,
1976, vol. 40.

[32] C. Baier and J.-P. Katoen, Principles of Model Checking. MIT Press,
2008.

[33] M. Benedikt, R. Lenhardt, and J. Worrell, “LTL model checking of
interval Markov chains,” in Proceedings of the 19th International

Conference on Tools and Algorithms for the Construction and

Analysis of Systems, ser. TACAS’13. Berlin, Heidelberg: Springer-
Verlag, 2013, pp. 32–46. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-36742-7 3

[34] K. Sen, M. Viswanathan, and G. Agha, “Model-checking Markov
chains in the presence of uncertainties,” in Tools and Algorithms

for the Construction and Analysis of Systems, ser. Lecture Notes
in Computer Science, H. Hermanns and J. Palsberg, Eds. Springer
Berlin Heidelberg, 2006, vol. 3920, pp. 394–410. [Online]. Available:
http://dx.doi.org/10.1007/11691372 26

[35] E. Hahn, H. Hermanns, and L. Zhang, “Probabilistic reachability for
parametric Markov models,” International Journal on Software Tools

for Technology Transfer, vol. 13, no. 1, pp. 3–19, 2011. [Online].
Available: http://dx.doi.org/10.1007/s10009-010-0146-x

[36] E. M. Hahn, T. Han, and L. Zhang, “Synthesis for PCTL in parametric
Markov decision processes,” in NASA Formal Methods. Springer, 2011,
pp. 146–161.

[37] N. Jansen, F. Corzilius, M. Volk, R. Wimmer, E. Abraham, J.-P. Katoen,
and B. Becker, “Accelerating parametric probabilistic verification,” in
QEST 2014, ser. Lecture Notes in Computer Science, G. Norman and
W. Sanders, Eds., 2014, vol. 8657, pp. 404–420.

[38] F. Ciesinski and M. Größer, “On probabilistic computation tree logic,”
in Validation of Stochastic Systems - A Guide to Current Research, ser.
LNCS, C. Baier et al., Eds., vol. 2925. Springer, 2004, pp. 147–188.

[39] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects of Computing, vol. 6, no. 5, pp. 512–535,
1994.

[40] M. Ben-Ari, Z. Manna, and A. Pnueli, “The temporal logic of
branching time,” in Proceedings of the 8th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, ser. POPL ’81.
New York, NY, USA: ACM, 1981, pp. 164–176. [Online]. Available:
http://doi.acm.org/10.1145/567532.567551

[41] S. Andova, H. Hermanns, and J.-P. Katoen, “Discrete-time rewards
model-checked,” in FORMATS 2003, ser. Lecture Notes in Computer
Science, K. G. Larsen and P. Niebert, Eds., 2004, vol. 2791, pp. 88–
104.

[42] C. Ghezzi, M. Pezze, and G. Tamburrelli, “Adaptive rest applications via
model inference and probabilistic model checking,” in Integrated Net-

work Management (IM 2013), 2013 IFIP/IEEE International Symposium

on, May 2013, pp. 1376–1382.
[43] C. Ghezzi, M. Pezzè, M. Sama, and G. Tamburrelli, “Mining behavior

models from user-intensive web applications.” in ICSE, 2014, pp. 277–
287.

[44] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Model
evolution by run-time parameter adaptation,” in Software Engineering,

2009. ICSE 2009. IEEE 31st International Conference on. IEEE, 2009,
pp. 111–121.

[45] C. Daws, “Symbolic and parametric model checking of discrete-time
Markov chains,” ICTAC, pp. 280–294, 2005.

[46] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang, “PARAM: A
model checker for parametric Markov models,” in Computer Aided

Verification. Springer, 2010, pp. 660–664.
[47] G. Su and D. S. Rosenblum, “Perturbation analysis of stochastic

systems with empirical distribution parameters,” in Proceedings of the

36th International Conference on Software Engineering, ser. ICSE
2014. New York, NY, USA: ACM, 2014, pp. 311–321. [Online].
Available: http://doi.acm.org/10.1145/2568225.2568256

[48] K.-S. Kwong and B. Iglewicz, “On singular multivariate normal distri-
bution and its applications,” Computational statistics & data analysis,
vol. 22, no. 3, pp. 271–285, 1996.

[49] L. A. Goodman, “On simultaneous confidence intervals for multinomial
proportions,” Technometrics, vol. 7, no. 2, pp. 247–254, 1965.

[50] C. Quesenberry and D. Hurst, “Large sample simultaneous confidence
intervals for multinomial proportions,” Technometrics, vol. 6, no. 2, pp.
191–195, 1964.

[51] S. Fitzpatrick and A. Scott, “Quick simultaneous confidence intervals
for multinomial proportions,” Journal of the American Statistical Asso-

ciation, vol. 82, no. 399, pp. 875–878, 1987.

19

[52] C. P. Sison and J. Glaz, “Simultaneous confidence intervals and sample
size determination for multinomial proportions,” Journal of the Ameri-

can Statistical Association, vol. 90, no. 429, pp. 366–369, 1995.
[53] T. A. Davis, “MATLAB Primer,” Eight Edition, CRC Press, 2010.
[54] J. Löfberg, “YALMIP : A toolbox for modeling and optimization in

MATLAB,” in Proceedings of the CACSD Conference, Taipei, Taiwan,
2004. [Online]. Available: http://users.isy.liu.se/johanl/yalmip

[55] ——, “Automatic robust convex programming,” Optimization methods

and software, vol. 27, no. 1, pp. 115–129, 2012. [Online]. Available:
http://www.tandfonline.com/doi/abs/10.1080/10556788.2010.517532

[56] YALMIP project wiki, 2015. [Online]. Available: http://users.isy.liu.se/
johanl/yalmip/

[57] C. S. Raghavendra, K. M. Sivalingam, and T. Znati, Wireless sensor

networks. Springer, 2004.
[58] M. Zimmerling, F. Ferrari, L. Mottola, and L. Thiele, “On modeling low-

power wireless protocols based on synchronous packet transmissions,” in
Modeling, Analysis & Simulation of Computer and Telecommunication

Systems (MASCOTS), 2013 IEEE 21st International Symposium on.
IEEE, 2013, pp. 546–555.

[59] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele, “Low-power
wireless bus,” in Proceedings of the 10th ACM Conference on Embedded

Network Sensor Systems. ACM, 2012, pp. 1–14.
[60] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh, “Efficient network

flooding and time synchronization with glossy,” in Information Process-

ing in Sensor Networks (IPSN), 2011 10th International Conference on.
IEEE, 2011, pp. 73–84.

[61] W. R. Pestman, Mathematical statistics: an introduction. Walter de
Gruyter, 1998, vol. 1.

[62] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,”
Operations Research, vol. 14, no. 4, pp. 699–719, 1966.

[63] Gurobi Optimizer 6.0 website, 2015. [Online]. Available: http://www.
gurobi.com.

[64] PARAM model checker case study repository, 2015. [Online]. Available:
http://depend.cs.uni-sb.de/tools/param/casestudies/.

[65] H. Bohnenkamp, P. van der Stok, H. Hermanns, and F. Vaandrager,
“Cost-optimization of the IPv4 Zeroconf protocol,” in Dependable Sys-

tems and Networks, 2003. Proceedings. 2003 International Conference

on, June 2003, pp. 531–540.
[66] PARAM IPv4 Zeroconf case study, 2015. [Online]. Available: http://

depend.cs.uni-sb.de/tools/param/casestudies/#zeroconf.
[67] M. K. Reiter and A. D. Rubin, “Crowds: anonymity for Web transac-

tions,” ACM Transactions on Information and System Security, vol. 1,
no. 1, pp. 66–92, 1998.

[68] PARAM Crowds protocol case study, 2015. [Online]. Available: http:
//depend.cs.uni-sb.de/tools/param/casestudies/#crowds.

[69] I. O. Kozine and L. V. Utkin, “Interval-valued finite Markov
chains,” Reliable Computing, vol. 8, no. 2, pp. 97–113, Apr.
2002. [Online]. Available: http://link.springer.com/article/10.1023/A%
3A1014745904458

[70] D. Škulj, “Discrete time Markov chains with interval probabilities,”
International Journal of Approximate Reasoning, vol. 50, no. 8,
pp. 1314 – 1329, 2009, special Section on Interval/Probabilistic
Uncertainty. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0888613X0900111X

[71] E. Bartocci, R. Grosu, P. Katsaros, C. R. Ramakrishnan, and S. A.
Smolka, “Model repair for probabilistic systems,” in Proceedings

of the 17th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems: Part of the Joint

European Conferences on Theory and Practice of Software, ser.
TACAS’11/ETAPS’11. Berlin, Heidelberg: Springer-Verlag, 2011,
pp. 326–340. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1987389.1987428

[72] K. Chatterjee, K. Sen, and T. A. Henzinger, “Model-checking
omega-regular properties of interval Markov chains,” in Foundations

of Software Science and Computational Structures, ser. Lecture
Notes in Computer Science, R. Amadio, Ed. Springer Berlin
Heidelberg, Jan. 2008, no. 4962, pp. 302–317. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-540-78499-9 22

[73] T. Chen, T. Han, and M. Kwiatkowska, “On the complexity
of model checking interval-valued discrete time Markov chains,”
Information Processing Letters, vol. 113, no. 7, pp. 210–216, Apr.
2013. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0020019013000100

[74] A. Puggelli, W. Li, A. Sangiovanni-Vincentelli, and S. Seshia,
“Polynomial-time verification of PCTL properties of mdps with convex
uncertainties,” in Computer Aided Verification, ser. Lecture Notes
in Computer Science, N. Sharygina and H. Veith, Eds. Springer

Berlin Heidelberg, 2013, vol. 8044, pp. 527–542. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-39799-8 35

[75] G. Su and D. Rosenblum, “Asymptotic bounds for quantitative
verification of perturbed probabilistic systems,” in Formal Methods

and Software Engineering, ser. Lecture Notes in Computer Science,
L. Groves and J. Sun, Eds. Springer Berlin Heidelberg, 2013,
vol. 8144, pp. 297–312. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-41202-8 20

[76] L. Bortolussi and G. Sanguinetti, “Smoothed model checking for uncer-
tain continuous time Markov chains,” CoRR, vol. abs/1402.1450, 2014.

Radu Calinescu is a Senior Lecturer in Large-Scale Complex IT Systems
at the University of York, UK. Prior to this, he was a Lecturer at Aston
University, UK, and a Senior Researcher on the Formal Verification research
theme at the University of Oxford. He holds a DPhil in Computation from
the University of Oxford, and was awarded a British Computer Society
Distinguished Dissertation Award. He has over ten years of academic and
industrial research experience in developing complex software systems in
areas including adaptive systems, model-driven architectures, and cloud com-
puting. He has chaired or has been on the program committees of multiple
international conferences on autonomic, adaptive, and complex systems. He
is a Senior Member of the IEEE, and a member of the Editorial Board of
Springer’s Computing journal.

Carlo Ghezzi is a Professor and Chair of Software Engineering in the
Department of Electronics and Information at Politecnico di Milano. He is
the Rectors delegate for research, past member of the Academic Senate and
of the Board of Governors, and past Department Chair. He is an ACM Fellow,
an IEEE Fellow, and a member of the Italian Academy of Sciences (Istituto
Lombardo). He received the SIGSOFT Distinguished Service Award. He is
a member-at-large of the ACM Council. He is a member of the editorial
board of the IEEE Transactions on Software Engineering, Communications
of the ACM, Science of Computer Programming, Service Oriented Computing
and Applications, and Software Process Improvement and Practice. He was
program chair of ESEC, program co-chair of ICSE, and general chair of ICSE
and ICSOC. He has been a keynote at ESEC, ICSE, ETAPS, and ICSOC.
He is a member of the IFIP WG 2.9 on Requirements Engineering. He has
authored over 150 papers in international journals and conferences on various
aspects of programming languages and software engineering, and 3 books.
His present research interests are in rigorous approaches to the design and
evolution of software for pervasive distributed systems.

Kenneth Johnson is a Lecturer in The School of Computer and Mathematical
Sciences at Auckland University of Technology, New Zealand. He received
his Ph.D. in Computer Science from Swansea University, UK in 2007. He
has held post-doctorate research positions at the University of York, Aston
University and INRIA, Rennes. His research interests are formal modelling
and verification of large-scale systems. Most recently, he has focused on
automated model-based analysis of quality-of-service properties of systems
at runtime. He is a member of the IEEE, and serves on several program
committees for international conferences featuring formal methods and cloud
computing technology.

Mauro Pezzé received the Laurea degree in computer science from the
University of Pisa, Italy, in 1984, and the doctorate degree in computer
science from the Politecnico di Milano, Italy, in 1989. He is a professor of
computer science at the University of Milano Bicocca, and the Università della
Svizzera italiana, Switzerland. His general research interests are in the areas
of software testing and analysis, autonomic computing, self-healing software
systems, service-base applications, and service level agreement protection.
Prior to joining the University of Milan Bicocca and the University of
Lugano as full professor, he was an assistant and an associate professor
at the Politecnico di Milano, and a visiting researcher at the University of
Edinburgh and the University of California, Irvine. He is an associate editor
of the ACM Transactions on Software Engineering and Methodology, and
member of the steering committees of the ACM International Conference on
Software Testing and Analysis (ISSTA) and the International Conference on
Software Engineering (ICSE). He is coauthor of the book Software Testing
and Analysis, Process, Principles and Techniques (John Wiley, 2008), and he
is the author or coauthor of more than 80 refereed journal and conference
papers. He is a senior member of the IEEE, and a member of the IEEE
Computer Society.

20

Yasmin Rafiq is a Ph.D. student at the University of York, UK. She received
an MRes in Photonic Networks, and a BSc in Computer Science, both from
Aston University, UK. She has active research interests in the areas of run-
time modelling and verification of self-adaptive systems. Her current research
is focused on online model learning for quality-of-service engineering, with
applications to the verification of non-functional requirements for adaptive
computer systems, analysis of non-functional requirements of complex soft-
ware systems, and service-based architectures.

Giordano Tamburrelli is currently an Assistant Professor at Vrije Universiteit
in Amsterdam (NL). Previously he has been a Marie Curie Fellow at the
USI University in Lugano (CH), and a Ph.D. student at Politecnico di
Milano (IT). He received a M.Sc. degree in computer science from the
University of Illinois at Chicago (US), and a M.Sc. degree in computer science
engineering at the Politecnico di Milano in a joint degree program. He has
active research interests in the areas of run-time modeling and verification of
systems and software. His main focus is on automated model-based analysis of
non-functional requirements of complex software systems and service-based
architectures.

	Introduction
	Preliminaries
	Markov chains
	Probabilistic Computation Tree Logic
	Probabilistic model checking
	Parametric model checking

	Running Example
	Approach
	Overview
	Theoretical framework

	FACT Tool Chain
	Evaluation
	Web application case study
	Description
	Experimental setup
	Experimental results
	Hill climbing analysis
	Performance analysis

	The Low-power Wireless Bus case study
	Description
	Modelling LWB nodes
	Using FACT to select the LWB round period
	Performance

	Discussion
	Related work
	Conclusions, and Future Work
	References
	Biographies
	Radu Calinescu
	Carlo Ghezzi
	Kenneth Johnson
	Mauro Pezzé
	Yasmin Rafiq
	Giordano Tamburrelli

