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MICHAEL BATE, SEBASTIAN HERPEL,
BENJAMIN MARTIN AND GERHARD RÖHRLE

In memory of Robert Steinberg

Let k be a field, let G be a reductive k-group and V an affine k-variety on

which G acts. In this note we continue our study of the notion of cocharacter-

closed G(k)-orbits in V . In earlier work we used a rationality condition on

the point stabilizer of a G-orbit to prove Galois ascent/descent and Levi

ascent/descent results concerning cocharacter-closure for the correspond-

ing G(k)-orbit in V . In the present paper we employ building-theoretic

techniques to derive analogous results.

1. Introduction

Let k be a field and let G be a reductive linear algebraic group acting on an affine
variety V , with G, V and the action all defined over k. Let 1k be the (simplicial)
spherical building of G over k, and let 1k(R) be its geometric realisation (for
precise definitions, see below). In this paper we continue the study, initiated in
[Bate et al. 2013; 2012; 2015], of the notion of cocharacter-closed orbits in V for
the group G(k) of k-rational points of G, and of interactions with the geometry
of 1k(R). The philosophy of this paper is as follows (cf. [Bate et al. 2015]): for
a point v in V , we are interested in Galois ascent/descent questions — given a
separable algebraic extension k ′/k of fields, how is the G(k ′)-orbit of v related to
the G(k)-orbit of v? — and Levi ascent/descent questions — given a k-defined torus
S of the stabilizer Gv, how is the CG(S)(k)-orbit of v related to the G(k)-orbit of
v? (See [Bate et al. 2015, Section 5, Paragraph 1] for an explanation of the terms
Galois/Levi ascent/descent in this context.) These questions are related, and have
natural interpretations in 1(K).

Our results complement those of [Bate et al. 2015]: they give similar conclusions
but under different assumptions. It was shown in [loc. cit.] (see Proposition 2.6
below) that Galois descent — passing from G(k ′)-orbits to G(k)-orbits — is always
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well-behaved. Certain results on Galois ascent were also proved [loc. cit., Theo-
rem 5.7] under hypotheses on the stabilizer Gv. The mantra in this paper is that
when the centre conjecture (see Theorem 1.2 below) is known to hold, one can use
it to prove Galois ascent results, and hence deduce Levi ascent/descent results. The
idea is that when the extension k ′/k is separable and normal, questions of Galois
ascent can be interpreted in terms of the action of the Galois group of k ′/k on the
building; moreover, if one has such Galois ascent questions under control, then it is
easier to handle Levi ascent/descent because one may assume that the torus S is
split (cf. [loc. cit., Theorem 5.4(ii)]).

When k is algebraically closed (or more generally when k is perfect), our setup
is also intimately related to the optimality formalism of [Kempf 1978; Rousseau
1978; Hesselink 1978]. Indeed, one may interpret this formalism in the language
of the centre conjecture (see [Bate et al. 2012, Section 1]). The idea is to study
the G-orbits in V via limits along cocharacters of G: limits are formally defined
below, but given v in V , if we take the set of cocharacters λ of G for which the
limit lima→0 λ(a) · v exists, and interpret this set in terms of the set of Q-points
1(Q) of the building of G, then we obtain a convex subset 6v of 1(Q). In case
G ·v is not Zariski-closed, one can find a fixed point in the set 6v and an associated
optimal parabolic subgroup P of G with many nice properties: in particular, the
stabilizer Gv normalises P . It is not currently known in general how to produce
analogues of these optimality results over arbitrary fields (or even whether such
results exist); see [Bate et al. 2013, Section 1] for further discussion. Our first main
theorem gives a rational analogue of the Kempf–Rousseau–Hesselink ideas when
6v,ks

(the points of 6v coming from ks-defined cocharacters of G) happens to be a
subcomplex of 1(Q), and also answers in this case the ascent/descent questions
posed earlier.

Theorem 1.1. Let v ∈ V . Suppose 6v,ks
is a subcomplex of 1ks

(Q). Then the

following hold:

(i) Suppose v ∈ V (k) and G(ks) · v is not cocharacter-closed over ks . Let S be

any k-defined torus of Gv and set L = CG(S). Then there exists σ ∈ Yk(L)

such that lima→0 σ(a) · v exists and lies outside G(ks) · v.

(ii) Suppose v ∈ V (k). For any separable algebraic extension k ′/k, G(k ′) · v is

cocharacter-closed over k ′ if and only if G(k) · v is cocharacter-closed over k.

(iii) Let S be any k-defined torus of Gv and set L = CG(S). Then G(k) · v is

cocharacter-closed over k if and only if L(k) · v is cocharacter-closed over k.

The hypothesis that 6v,ks
is a subcomplex allows us to apply the following

result — Tits’ centre conjecture — in the proof of Theorem 1.1:
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Theorem 1.2. Let 2 be a thick spherical building and let 6 be a convex subcomplex

of 2 such that 6 is not completely reducible. Then there is a simplex of 6 that

is fixed by every building automorphism of 2 that stabilizes 6. (We call such a

simplex a centre of 6.)

For definitions and further details, see [Ramos-Cuevas 2013]; in particular, note
that the spherical building of a reductive algebraic group is thick. The conjecture
was proved by Mühlherr and Tits [2006], Leeb and Ramos-Cuevas [2011] and
Ramos-Cuevas [2013], and a uniform proof for chamber subcomplexes has also
now been given by Mühlherr and Weiss [2013]. The condition that 6v,ks

is a
subcomplex is satisfied in the theory of complete reducibility for subgroups of
G and Lie subalgebras of Lie(G), and our results yield applications to complete
reducibility (see Theorem 1.4 below).

By [Bate et al. 2015, Theorem 5.7], the conclusions of Theorem 1.1(ii) and (iii)
hold if Gv has a maximal torus that is k-defined. Our second main result gives
alternative hypotheses on Gv , this time of a group-theoretic nature, for the conclu-
sions of Theorem 1.1 to hold, without the assumption that 6v,ks

is a subcomplex.
The proof of this result relies in an essential way on known cases of a strengthened
version of the centre conjecture (this time from [Bate et al. 2012]).

Theorem 1.3. Let v ∈ V (k). Suppose that (a) G0
v is nilpotent, or (b) every simple

component of G0 has rank 1. Then the following hold:

(i) Suppose G(ks) · v is not cocharacter-closed over ks . Let S be any k-defined

torus of Gv and set L = CG(S). Then there exists σ ∈ Yk(L) such that Gv(ks)

normalises Pσ (G0) and lima→0 σ(a) · v exists and lies outside G(ks) · v.

(ii) For any separable algebraic extension k ′/k, G(k ′) · v is cocharacter-closed

over k ′ if and only if G(k) · v is cocharacter-closed over k.

(iii) Let S be any k-defined torus of Gv and set L = CG(S). Then G(k) · v is

cocharacter-closed over k if and only if L(k) · v is cocharacter-closed over k.

The hypothesis in Theorem 1.1(i) that v is a k-point ensures that the subset
6v is Galois-stable, and it is also needed in our proof of Theorem 1.3 (but see
Remark 4.6). Sometimes, however, one can get away with a weaker hypothesis.
This happens for G-complete reducibility in the final section of the paper, where
we prove the following ascent/descent result:

Theorem 1.4. Suppose that G is connected. Let H be a subgroup of G. Let S be a

k-defined torus of CG(H) and set L = CG(S). Then H is G-completely reducible

over k if and only if H is L-completely reducible over k.

Remark 1.5. (i) Theorem 1.4 gives an alternative proof and also slightly generalises
Serre’s Levi ascent/descent result [Serre 1997, Proposition 3.2]; cf. [Bate et al. 2005,
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Corollary 3.21, Corollary 3.22] — for in the statement of Theorem 1.4, we do not
require H to be a subgroup of G(k).

(ii) The counterpart of Theorem 1.1(ii) (Galois ascent/descent for G-complete
reducibility) was proved in [Bate et al. 2009].

We spend much of the paper recalling relevant results from geometric invariant
theory and the theory of buildings. Although the basic ideas are familiar, we need
to extend many of them: for instance, the material on quasi-states in Section 3D
was covered in [Bate et al. 2012] for algebraically closed fields, but we need it
for arbitrary fields. We work with the geometric realisations of buildings rather
than with buildings as abstract simplicial complexes; some care is needed when the
reductive group G has positive-dimensional centre.

The paper is laid out as follows. In Section 2, we set up notation and collect
terminology and results relating to cocharacter-closedness. In Section 3, we translate
our setup into the language of spherical buildings; we use notation and results from
[Bate et al. 2012] on buildings, some of which we extend slightly. In Section 4, we
combine the technology from both of the preceding sections to give proofs of our
main results. In the final section we give our applications to the theory of complete
reducibility.

2. Notation and preliminaries

Let k denote a field with separable closure ks and algebraic closure k̄. Let Ŵ :=

Gal(ks/k) = Gal(k̄/k) denote the Galois group of ks/k. Throughout, G denotes
a (possibly nonconnected) reductive linear algebraic group defined over k, and V

denotes a k-defined affine variety upon which G acts k-morphically. Let G(k),
G(ks), V (k), V (ks) denote the k- and ks-points of G and V ; we usually identify G

with G(k̄) and V with V (k̄). If X is a variety then we denote its Zariski closure by
X .

More generally, we need to consider k-points and ks-points in subgroups that are
not necessarily k-defined or ks-defined; note that if k is not perfect then even when
v is a k-point, the stabilizer Gv need not be k-defined. If k ′/k is an algebraic field
extension and H is a closed subgroup of G then we set H(k ′) = H(k̄)∩ G(k ′), and
we say that a torus S of H is k ′-defined if it is k ′-defined as a torus of the k-defined
group G. Note that a ks-defined torus of H is a torus of H(ks).

2A. Cocharacters and G-actions. Given a k-defined algebraic group H , we let
Y (H) denote the set of cocharacters of H , with Yk(H) and Yks

(H) denoting the
sets of k-defined and ks-defined cocharacters, respectively. The group H acts on
Y (H) via the conjugation action of H on itself. This gives actions of the group of
k-points H(k) on Yk(H) and the group of ks-points H(ks) on Yks

(H). There is also
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an action of the Galois group Ŵ on Y (H) which stabilizes Yks
(H), and the Ŵ-fixed

elements of Yks
(H) are precisely the elements of Yk(H). We write Y = Y (G),

Yk = Yk(G) and Yks
= Yks

(G).

Definition 2.1. A function ‖ ‖ : Y → R≥0 is called a Ŵ-invariant, G-invariant norm

if:

(i) ‖g · λ‖ = ‖λ‖ = ‖γ · λ‖ for all λ ∈ Y , g ∈ G and γ ∈ Ŵ;

(ii) for any maximal torus T of G, there is a positive definite integer-valued form
( , ) on Y (T ) such that (λ, λ) = ‖λ‖2 for any λ ∈ Y (T ).

Such a norm always exists: To see this, take a k-defined maximal torus T and any
positive definite integer-valued form on Y (T ). Since T splits over a finite extension
of k, we can average the form over the Weyl group W and over the finite Galois group
of the extension to obtain a W -invariant Ŵ-invariant form on Y (T ), which defines a
norm satisfying (ii). One can extend this norm to all of Y because any cocharacter
is G-conjugate to one in Y (T ); this procedure is well-defined since the norm on
Y (T ) is W -invariant. See [Kempf 1978] for more details. If G is simple then ‖ ‖

is unique up to nonzero scalar multiples. We fix such a norm once and for all.
For each cocharacter λ ∈ Y and each v ∈ V , we define a morphism of varieties

φv,λ : k̄∗ → V via the formula φv,λ(a) = λ(a) · v. If this morphism extends to a
morphism φ̂v,λ : k̄ → V , then we say that lima→0 λ(a) · v exists, and set this limit
equal to φ̂v,λ(0); note that such an extension, if it exists, is necessarily unique.

Definition 2.2. For λ ∈ Y and v ∈ V , we say that λ destabilizes v provided
lima→0 λ(a) · v exists, and if lima→0 λ(a) · v exists and does not belong to G · v,
then we say λ properly destabilizes v. We have an analogous notion over k: if
λ ∈ Yk then we say that λ properly destabilizes v over k if lima→0 λ(a) ·v exists and
does not belong to G(k) · v. Finally, if k ′/k is an algebraic extension, and λ ∈ Yk ,
then we say that λ properly destabilizes v over k ′ if lima→0 λ(a) · v exists and does
not belong to G(k ′) · v; that is, if λ — regarded as an element of Yk′(G) — properly
destabilizes v over k ′.

2B. R-parabolic subgroups. When V = G and G is acting by conjugation, for
each λ ∈ Y we get a set Pλ := {g ∈ G | lima→0 λ(a)gλ(a)−1 exists}; this is a
parabolic subgroup of G. We distinguish these parabolic subgroups by calling
them Richardson-parabolic or R-parabolic subgroups. For basic properties of these
subgroups, see [Bate et al. 2005, Section 6]. We recall here that Lλ = CG(Im(λ))

is called an R-Levi subgroup of Pλ, Ru(Pλ) is the set of elements sent to 1 ∈ G

in the limit, and Pλ = Ru(Pλ)⋊ Lλ. Further, Ru(Pλ) acts simply transitively on
the set of all Lµ such that Pµ = Pλ (that is, on the set of all R-Levi subgroups of
Pλ): note that this is a transitive action of Ru(Pλ) on the set of subgroups of the
form Lµ, not on the set of cocharacters for which Pµ = Pλ. Most of these things
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work equally well over the field k: for example, if λ is k-defined then Pλ, Lλ and
Ru(Pλ) are; moreover, given any k-defined R-parabolic subgroup P , Ru(P)(k) acts
simply transitively on the set of k-defined R-Levi subgroups of P [Bate et al. 2013,
Lemma 2.5]. Note that if P is k-defined and G is connected then P = Pλ for some
k-defined λ, but this can fail if G is not connected [Bate et al. 2013, Section 2].

When H is a reductive subgroup of G the inclusion Y (H) ⊆ Y (G) means that
we get an R-parabolic subgroup of H and of G attached to any λ ∈ Y (H). When
we use the notation Pλ, Lλ, etc., we are always thinking of λ as a cocharacter of
G. If we need to restrict attention to the subgroup H for some reason, we write
Pλ(H), Lλ(H), etc.

2C. The sets Y(Q) and Y(R). Form the set Y (Q) by taking the quotient of Y ×N0

by the relation λ ∼ µ if and only if nλ = mµ for some m, n ∈ N, and ex-
tend the norm function to Y (Q) in the obvious way. For any torus T in G,
Y (T, Q) := Y (T ) ⊗Z Q is a vector space over Q. Now one can form real spaces
Y (T, R) := Y (T, Q) ⊗Q R for each maximal torus T of G and a set Y (R) by
glueing the Y (T, R) together according to the way the spaces Y (T, Q) fit together
[Bate et al. 2012, Section 2.2]. The norm extends to these sets. One can define
sets Yk(Q), Yk(R), Yk(T, Q), Yk(T, R), Yks

(Q), Yks
(R), Yks

(T, Q) and Yks
(T, R)

analogously by restricting attention to k-defined cocharacters and maximal tori,
or ks-defined cocharacters and maximal tori, as appropriate. For the rest of the
paper, K denotes either of Q or R when the distinction is not important. The sets
Y (K), Yk(K) and Yks

(K) inherit G-, G(k)-, G(ks)- and Ŵ-actions from those on
Y , Yk and Yks

, as appropriate, and each element λ ∈ Y (K) still corresponds to
an R-parabolic subgroup Pλ and an R-Levi subgroup Lλ of G (see [Bate et al.
2012, Section 2.2] for the case K = R). If H is a reductive subgroup of G

then we write Y (H, Q), etc., to denote the above constructions for H instead
of G.

2D. G-varieties and cocharacter-closure. We recall the following fundamental
definition from [Bate et al. 2015, Definition 1.2], which extends the one given in
[Bate et al. 2013, Definition 3.8].

Definition 2.3. A subset S of V is said to be cocharacter-closed over k (for G) if
for every v ∈ S and λ ∈ Yk such that v′ := lima→0 λ(a) · v exists, we have v′ ∈ S.

This notion is explored in detail in [Bate et al. 2015]. In this section, we content
ourselves with collecting some results from that paper, together with the earlier
paper [Bate et al. 2013]. These results, most of which are also needed in the sequel,
give a flavour of what is known about the notion of cocharacter-closure in the case
that the subset involved is a single G(k)-orbit.
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Remark 2.4. The geometric orbit G · v is Zariski-closed if and only if it is
cocharacter-closed over k̄, by the Hilbert–Mumford Theorem [Kempf 1978, Theo-
rem 1.4].

Theorem 2.5 [Bate et al. 2015, Corollary 5.1]. Suppose v ∈ V is such that G(k) · v

is cocharacter-closed over k. Then whenever v′ = lima→0 λ(a) · v exists for some

λ ∈ Yk , there exists u ∈ Ru(Pλ)(k) such that v′ = u · v.

Proposition 2.6 [Bate et al. 2015, Proposition 5.5]. Let v ∈ V such that Gv(ks) is

Ŵ-stable and let k ′/k be a separable algebraic extension. If G(k ′) ·v is cocharacter-

closed over k ′, then G(k) · v is cocharacter-closed over k.

Theorem 2.7 [Bate et al. 2015, Theorem 5.4]. Suppose S is a k-defined torus of

Gv and set L = CG(S).

(i) If G(k) · v is cocharacter-closed over k, then L(k) · v is cocharacter-closed

over k.

(ii) If S is k-split, then G(k) · v is cocharacter-closed over k if and only if L(k) · v

is cocharacter-closed over k.

We note that, as described in the introduction, one of the main points of this
paper is to show that the converse of Proposition 2.6 holds under certain extra
hypotheses, and that the hypothesis of splitness can be removed in Theorem 2.7(ii)
under the same hypotheses; see also [Bate et al. 2015, Theorem 1.5].

Our final result, a strengthening of Lemma 5.6 of [Bate et al. 2015], follows
from the arguments given in the proof of that lemma.

Lemma 2.8. Let V be an affine G-variety over k and let v ∈ V (k). Suppose there

exists λ ∈ Yks
such that λ properly destabilizes v. Then there exists µ ∈ Yk such that

v′ = lima→0 µ(a) · v exists, v′ is not G(ks)-conjugate to v and Gv(ks) normalises

Pµ. In particular, G(k) · v is not cocharacter-closed over k.

Remark 2.9. The hypotheses of Lemma 2.8 are satisfied if λ ∈ Yks
(Z(G0)) desta-

bilizes v but does not fix v. For if v′ := lima→0 λ(a) · v is G-conjugate to v then v′

is Ru(Pλ)-conjugate to v [Bate et al. 2013, Theorem 3.3]; but Ru(Pλ) = 1, so this
cannot happen.

3. Spherical buildings and Tits’ centre conjecture

The simplicial building 1k of a semisimple algebraic group G over k is a simplicial
complex, the simplices of which correspond to the k-defined parabolic subgroups
of G ordered by reverse inclusion. See [Tits 1974, §5] for a detailed description.
Our aim in this section is to construct for an arbitrary reductive group G over k,
objects 1k(K) for K = R or Q that correspond to the geometric realisation of
the spherical building of G0 over k (or the set of Q-points thereof) when G0 is
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semisimple. These are slightly more general objects (possibly with a contribution
from Z(G0)) when G0 is reductive. Recall that Ŵ denotes the Galois group of ks/k.
Most of the notation and terminology below is developed in full detail in the paper
[Bate et al. 2012] — we point the reader in particular to the constructions in [Bate
et al. 2012, Sections 2, 6.3, 6.4]. For the purposes of this paper, we need to extend
some of the results in [loc. cit.] (for example by incorporating the effect of the
Galois group Ŵ), but rather than reiterating all the details, we just gather enough
material to make our exposition here coherent.

3A. Definition of 1k(K). We first form the vector building Vk(K) by identifying λ

in Yk(K) with u ·λ for every u ∈ Ru(Pλ)(k). The norm function on Yk(K) descends
to Vk(K), because it is G-invariant. This gives a well-defined function on Vk(K),
which we also call a norm, and makes Vk(K) into a metric space.

Definition 3.1. (i) Define 1k(R) to be the unit sphere in Vk(R) and 1k(Q) to be
the projection of Vk(Q) \ {0} onto 1k(R).

(ii) Two points of 1k(K) are called opposite if they are antipodal on the sphere
1k(R).

(iii) It is clear that the conjugation action of G(k) on Yk gives rise to an action
of G(k) on 1k(K) by isometries, and there is a natural G(k)-equivariant,
surjective map ζ : Yk(K) \ {0} → 1k(K).

(iv) The apartments of 1k(K) are the sets 1k(T, K) := ζ(Yk(T, K)) where T runs
over the maximal k-split tori of G.

(v) The metric space 1k(K) and its apartments have a simplicial structure, because
any point x = ζ(λ) of 1k(K) gives rise to a k-defined parabolic subgroup Pλ

of G0 (see Section 2C); the simplicial complex consists of the proper k-defined
parabolic subgroups of G0, ordered by reverse inclusion. We write 1k for
the spherical building of G over k regarded purely as a simplicial complex.
The simplicial spherical buildings of G0 and of [G0, G0] are the same. Our
notion of opposite is compatible with the usual one for parabolic subgroups:
if λ ∈ Y (G) then P−λ is an opposite parabolic to Pλ.

To avoid tying ourselves in knots, when the distinction is not important to the
discussion at hand, we loosely refer to either of the objects 1k(Q) and 1k(R) as
the building of G over k.

One can make analogous definitions of objects 1ks
(K) and 1(K) = 1k̄(K) over

ks and k̄, respectively, with corresponding systems of apartments and maps ζ . We
write 1ks

and 1 for these spherical buildings regarded as simplicial complexes.
Because we are interested in rationality results, we need to know the relationship

between 1k(K) and 1ks
(K). Given a k-defined reductive subgroup H of G, we

also want to relate 1k(H, K) to 1k(K), where 1k(H, K) denotes the building of
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H over k. It is easy to see that the Ŵ-action on cocharacters descends (via ζ ) to
Ŵ-actions by isometries on 1ks

(K) and 1(K).

Lemma 3.2. (i) There are naturally occurring copies of 1k(K) inside 1ks
(K)

and 1(K). We can in fact identify 1k(K) with the set of Ŵ-fixed points of

1ks
(K).

(ii) Let H be a k-defined reductive subgroup of G. Then there is a naturally

occurring copy of 1k(H, K) inside 1k(K).

Proof. (i) It is clear that Yk(K) ⊆ Yks
(K) ⊆ Y (K), and Yk(K) is precisely the

set of Ŵ-fixed points in Yks
(K). Since Ru(Pλ)(k) acts simply transitively on the

set of k-defined R-Levi subgroups of Pλ, two k-defined cocharacters λ and µ are
Ru(Pλ)-conjugate if and only if they are Ru(Pλ)(ks)-conjugate if and only if they are
Ru(Pλ)(k)-conjugate. Following this observation through the definition of 1k(K),
1ks

(K) and 1(K) is enough to prove the first assertion of (i). It is clear that 1k(K)

is fixed by Ŵ. Conversely, let x ∈ 1ks
(K) be fixed by Ŵ. Let P be the parabolic

subgroup associated to x . Then P is ks-defined and Ŵ-stable, so P is k-defined.
Pick a k-defined maximal torus T of P . There exists λ∈ Yks

(T, K) such that P = Pλ

[Springer 1998, 8.4.4, 8.4.5]. Each γ ∈ Ŵ maps λ to a Ru(P)(ks)-conjugate of λ.
Now Ru(P) acts simply transitively on the set of Levi subgroups of P , and each
maximal torus of P is contained in a unique Levi subgroup [Springer 1998, 8.4.4],
so Ru(P) acts freely on the set of maximal tori of P . But T is Ŵ-stable, so we must
have that Ŵ fixes λ. Hence x ∈ 1k(K), as required.

(ii) In analogy with the first assertion of (i) (although it is slightly more subtle), the
key observation is that if λ, µ ∈ Yk(H) are Ru(Pλ(G))(k)-conjugate, then they are
in fact Ru(Pλ(H))(k)-conjugate (see [Bate et al. 2011, Lemma 3.3(i)]). Observe
also that the restriction of a Ŵ- and G-invariant norm on Y to Y (H) gives a Ŵ- and
H -invariant norm on Y (H). �

Henceforth, we write 1k(K) ⊆ 1ks
(K) ⊆ 1(K) and 1k(H, K) ⊆ 1k(K) without

any further comment. One note of caution: the inclusion 1k(H, K) ⊆ 1k(K) does
not in general respect the simplicial structures on these objects.

3B. Convex subsets. Because any two parabolic subgroups of G contain a common
maximal torus, any two points x, y ∈ 1(K) are contained in a common apartment
and, as long as these points are not opposite each other, there is a unique geodesic
[x, y] joining them. This geodesic does not depend on the apartment we find
containing x and y; in particular, this can be done inside 1k(K) if x, y ∈ 1k(K)

and inside 1k(H) if x, y ∈ 1k(H) for some reductive subgroup H of G. This leads
to the following key definitions:
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Definition 3.3. (i) A subset 6 ⊆ 1(K) is called convex if whenever x, y ∈ 6 are
not opposite then [x, y] ⊆ 6. It follows from the discussion above that 1k(K)

is a convex subset of 1(K).

(ii) Given a convex subset 6 of 1(K), its preimage C := ζ−1(6)∪{0} in Y (K) is
a union of cones CT := C ∩ Y (T, K), where T runs over the maximal tori of
G. The subset 6 is called polyhedral if each CT is a polyhedral cone and 6 is
said to have finite type if the set of cones {g ·Cg−1T g | g ∈ G} is finite for all T .

(iii) A convex subset 6 of 1(K) is called a subcomplex if it is a union of simplices
(that is, if λ, µ ∈ Y (K) are such that Pλ = Pµ, then ζ(λ) ∈ 6 if and only if
ζ(µ) ∈ 6) and if that union of simplices forms a subcomplex in the simplicial
building 1. In such a circumstance, we denote the subcomplex of 1 arising in
this way by 6 also; note that 6 is convex in the sense of part (i) above if and
only if 6 — regarded as a subcomplex of the simplicial building — is convex
in the sense of simplicial buildings.

The definitions above have obvious analogues for the buildings 1k(K) and
1ks

(K).
There is an addition operation on the set V (K), given as follows. Let ϕ : Y (K)→

V (K) be the canonical projection. Choose a maximal torus T of G and λ, µ ∈

Y (T, K) such that ϕ(λ) = x and ϕ(µ) = y; we define x + y ∈ V (K) by x + y =

ϕ(λ+µ). It can be shown that this does not depend on the choice of T ; moreover,
for any g ∈ G, g · (x + y) = g · x + g · y.

3C. The destabilizing locus and complete reducibility. For this paper, a particu-
larly important class of convex subsets arises from G-actions on affine varieties.
Given an affine G-variety V and a point v ∈ V , set

6v := {ζ(λ) | λ ∈ Y and lim
a→0

λ(a) · v exists} ⊆ 1(Q).

We call this subset the destabilizing locus for v; it is a convex subset of 1(Q)

by [Bate et al. 2012, Lemma 5.5] (note that 6v coincides with EV,{v}(Q) in the
language of [Bate et al. 2012]). Similarly we write 6v,k (resp. 6v,ks

) for the image
in 1k(Q) (resp. 1ks

(Q)) of the k-defined (resp. ks-defined) characters destabilizing
v. If H is a reductive subgroup of G, then we write 6v,k(H) for the destabilizing
locus for v with respect to H .

Definition 3.4. A subset 6 of 1(K) is called completely reducible if every point
of 6 has an opposite in 6.

Lemma 3.5. Let v ∈ V . Then:

(i) Given λ ∈ Yk such that ζ(λ) ∈ 6v,k , λ has an opposite in 6v,k if and only if

there exists u ∈ Ru(Pλ)(k) such that u · λ fixes v, if and only if there exists

u ∈ Ru(Pλ)(k) such that lima→0 λ(a) · v = u−1 · v.
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(ii) The subset 6v,k is completely reducible if and only if G(k) · v is cocharacter-

closed over k.

(iii) The subset 6v is completely reducible if and only if the orbit G · v is closed

in V .

Proof. We have that 6v (resp. 6v,k) is completely reducible if and only if for every
λ ∈ Y (resp. λ ∈ Yk) such that lima→0 λ(a) ·v exists, there is some u ∈ Ru(Pλ) (resp.
u ∈ Ru(Pλ)(k)) such that both u ·λ and −(u ·λ) destabilize v. But this is true if and
only if u · λ fixes v, which is equivalent to the fact that lima→0 λ(a) · v = u−1 · v,
by [Bate et al. 2013, Lemma 2.12]. This gives part (i). Part (ii) now follows from
Theorem 2.5, and part (iii) from Remark 2.4. �

3D. The strong centre conjecture and quasi-states. The aim of the paper [Bate
et al. 2012] is to study a strengthened version of Tits’ centre conjecture for 1ks

(K).
Let G denote the group of transformations of 1ks

(K) generated by the isometries
arising from the action of G(ks) and the action of Ŵ. Note that elements of G map
ks-defined parabolic subgroups of G to ks-defined parabolic subgroups of G, so
they give rise to automorphisms of the simplicial building 1ks

. Given a convex
subset 6 of 1ks

(K), we call a point x ∈6 a G-centre if it is fixed by all the elements
of G that stabilize 6 setwise. We can now formulate the original centre conjecture
in our setting.

Theorem 3.6. Suppose 6 ⊆ 1ks
(K) is a convex non-completely reducible subcom-

plex. Then 6 has a G-centre.

Proof. Theorem 1.2 asserts the existence of a stable simplex in the subcomplex
(note that the simplicial structure on 1(K) does not “see” the difference between G

and G0, or between G0 and its semisimple part, so the proof of the centre conjecture
for subcomplexes of spherical buildings still works for the more general class of
objects we have described). Now any element of G that fixes a simplex also fixes
its barycentre (because the action is via isometries), and we are done. �

In the strong centre conjecture [Bate et al. 2012, Conjecture 2.10], one replaces
convex non-completely reducible subcomplexes with convex non-completely re-
ducible subsets. Most of [loc. cit.] deals with the special case when k = k̄ and
considers only the isometries of 1k(K) coming from the action of G. We need to
take the action of Ŵ into account, so we briefly indicate some of the key changes
that must be made to the constructions in [loc. cit.] in order to make the results go
through; see also the comments in [loc. cit., Section 6.3].

Definition 3.7. We recall the notion of a K-quasi-state 4 from [Bate et al. 2012,
Definition 3.1]: this is an assignment of a finite set of characters 4(T ) to each
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maximal torus T of G satisfying certain conditions (see [loc. cit.] for a precise
statement).

The groups G and Ŵ act on quasi-states: given a K-quasi-state 4 and g ∈ G and
γ ∈ Ŵ we define new quasi-states g∗4 and γ∗4 by

g∗4(T ) := g!4(g−1T g), γ∗4(T ) := γ!(γ
−1 · T ),

where for a character χ of a torus T , g!χ is a character of the torus gT g−1 given by
(g!χ)(gtg−1) := χ(t) for all t ∈ T , and similarly γ!χ is a character of γ · T given
by (γ!χ)(γ · t) := χ(t) for all t ∈ T .

We say a quasi-state is defined over a field k ′ if it assigns k ′-defined characters to
k ′-defined maximal tori. Recall also the notions of boundedness, admissibility and
quasi-admissibility for K-quasi-states, [Bate et al. 2012, Definitions 3.1 and 3.2].

With these definitions in hand, we can extend [loc. cit., Lemma 3.8] as follows:

Lemma 3.8. Let ϒ be a K-quasi-state which is defined over ks and define 4 :=⋃
γ∈Ŵ γ∗ϒ by 4(T ) :=

⋃
γ∈Ŵ(γ∗ϒ)(T ) for each maximal torus T of G. Then 4 is

a K-quasi-state which is defined over ks , and it is bounded (resp. quasi-admissible,
admissible at λ) if ϒ is. Moreover, by construction, 4 is Ŵ-stable.

Proof. There are two points which need to be made in order for the arguments
already in the proof of [Bate et al. 2012, Lemma 3.8] to go through. First note that
given a ks-defined maximal torus T of G the set of Galois conjugates of T is finite
(because T is defined over some finite extension of k). This means that, because ϒ

is ks-defined, 4(T ) is still finite, so 4 is a K-quasi-state. Now, for boundedness we
need to check that if ϒ is bounded then the set

⋃
γ∈Ŵ

(⋃
g∈G g∗(γ∗ϒ)(T )

)
is finite

for some (and hence all) ks-defined maximal tori T of G. Since we can choose any
ks-defined maximal torus T , we choose one that is actually k-defined, and then

g∗(γ∗ϒ)(T ) = g!(γ∗ϒ)(g−1T g) = g!

(
γ!ϒ

(
γ −1 · (g−1T g)

))

= g!

(
γ!ϒ

(
(γ −1 · g)−1T (γ −1 · g)

))

= γ!(γ
−1 · g)!ϒ

(
(γ −1 · g)−1T (γ −1 · g)

)
= γ!((γ

−1 · g)∗ϒ)(T ).

Therefore, we can write

⋃

γ∈Ŵ

(⋃

g∈G

(g∗(γ∗ϒ))(T )

)
=

⋃

γ∈Ŵ

γ!

(⋃

g∈G

(γ −1 · g)∗ϒ(T )

)
.

Now, since ϒ is bounded, the second union on the RHS is finite for every γ , and
because ϒ is ks-defined and the set of Galois conjugates of a ks-defined character
is finite, the whole RHS is finite. This proves the boundedness assertion. The other
assertions follow as in [loc. cit.] �
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Using Lemma 3.8 we can ensure that, when appropriate, the states and quasi-
states constructed during the course of the paper [Bate et al. 2012] are Galois-stable.
In particular, we get the following variant of [loc. cit., Theorem 5.5]:

Theorem 3.9. Suppose 6 ⊆ 1(Q) is a convex polyhedral non-completely reducible

subset of finite type contained in a single apartment of 1(Q). Then 6 has a G-centre.

In particular, if 6 is stabilized by all of Ŵ, then there exists a Ŵ-fixed point in 6.

Proof. Using Lemma 3.8, one can ensure that the quasi-state constructed in [Bate
et al. 2012, Lemma 5.2] which is used in the proof of [loc. cit., Theorem 5.5] is also
stable under the relevant elements of G. The proofs in [loc. cit.] now go through. �

Remark 3.10. In our application of Theorem 3.9 to the proof of Theorem 1.3 below,
6 is a Ŵ-stable subset of 1ks

(Q) and we want to show that 6 has a Ŵ-fixed point.
A striking feature of Theorem 3.9 is that we do not require the apartment containing
6 to be ks-defined: it can be any apartment of the building 1(K) = 1k̄(K).

We note here that, unfortunately, we do not know a priori that any cocharacter
corresponding to the fixed point given by Theorem 3.9 properly destabilizes v.
Moreover, we may need to consider cocharacters of Z(G0), which do not correspond
to simplices of the spherical building at all. These technical issues are at the heart
of many of the complications in the proofs in Section 4 below.

4. Proofs of the main results

Having put in place the building-theoretic technology needed for our proofs, we start
this section with a few more technical results to be used for the main theorems. As
always, V denotes a k-defined affine G-variety, and v ∈ V . One obstacle to proving
Theorems 1.1 and 1.3 is that we need to deal with cocharacters that live in Z(G0),
which are not detected by the simplicial building (cf. the proof of Theorem 3.6). An
extra problem for Theorem 1.3 is that we need to factor out some simple components
of G0. The following results let us deal with these difficulties.

Let N be a product of certain simple factors of G0, and let S be a torus of Z(G0).
Let M be the product of the remaining simple factors of G0 together with Z(G0).
Suppose that N and S are normal in G (this implies that M is normal in G as well),
and that N and S both fix v. Set G1 = G/N S and let π : G → G1 be the canonical
projection. Since Z(G0) is ks-defined and ks-split, S is ks-defined, and it is clear
that N is ks-defined. So G1 and π are ks-defined. We have a ks-defined action of
G1 on the fixed point set V N S (note that V N S is G-stable).

Lemma 4.1. (i) For any µ1 ∈ Yks
(G1), there exist n ∈ N and µ ∈ Yks

(M) such

that π ◦ µ = nµ1.

(ii) Let λ ∈ Yks
. Then λ destabilizes v over ks in V if and only if π ◦ λ destabi-

lizes v over ks in V N S . Moreover, if this is the case then lima→0 λ(a) · v =
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lima→0(π ◦ λ)(a) · v belongs to Ru(Pλ(G))(ks) · v if and only if it belongs to

Ru(Pπ◦λ(G1))(ks) · v.

(iii) G1(ks) · v is cocharacter-closed over ks if and only if G(ks) · v is cocharacter-

closed over ks .

Proof. (i) Let µ1 ∈ Yks
(G1). Since µ1 is ks-defined, we can choose a ks-defined

maximal torus T1 ⊆ G1 with µ1 ∈ Yks
(T1). Since π is separable and ks-defined,

π−1(T1) ⊆ G is ks-defined [Springer 1998, Corollary 11.2.14]. Hence π−1(T1)

has a ks-defined maximal torus T . Let T ′ = T ∩ M , a k̄-defined torus of M . Now
π(T ′) = π(T ) is a maximal torus of G1 by [Borel 1991, Proposition 11.14(1)]; but
π(T ′) is contained in T1, so we must have π(T ′) = T1. The surjection T ′ → T1

induces a surjection Q ⊗Z Yk̄(T ′) → Q ⊗Z Yk̄(T1) (the map before tensoring maps
onto a finite-index subgroup: e.g., by transposing the injective map on character
groups [Waterhouse 1979, Theorem 7.3]), hence there exist n ∈ N and µ ∈ Yk̄(T ′)

such that π ◦ µ = nµ1. As µ ∈ Yk̄(T ) = Yks
(T ), µ is ks-defined as required.

(ii) The first assertion is immediate, as is the assertion that the limits coincide.
Since π is an epimorphism, we have π(Ru(Pλ(G))) = Ru(Pπ◦λ(G1)) (see [Conrad
et al. 2010, Corollary 2.1.9]). Moreover, since λ normalises N S, the restriction
of π to Ru(Pλ(G)) is separable (see [Conrad et al. 2010, Proposition 2.1.8(3) and
Remark 2.1.11]) and ks-defined, and hence is surjective on ks-points (cf. [Wa-
terhouse 1979, Corollary 18.5]). This implies that if the common limit v′ is in
Ru(Pπ◦λ(G1))(ks) ·v, it is contained in Ru(Pλ(G))(ks) ·v. The reverse implication
is clear, since π is ks-defined.

(iii) Suppose G(ks) · v is not cocharacter-closed over ks . Then there exists λ ∈ Yks

such that lima→0 λ(a) · v exists but does not belong to Ru(Pλ(G))(ks) · v. Then
lima→0(π ◦ λ)(a) · v exists but does not belong to Ru(Pλ(G1))(ks) · v, by part (ii).
Hence G1(ks) · v is not cocharacter-closed over ks , by Theorem 2.5.

Now suppose G1(ks) · v is not cocharacter-closed over ks . Then there exists
µ1 ∈ Yks

(G1) such that v′ := lima→0 µ1(a) · v exists and does not belong to
Ru(Pµ(G1))(ks) · v. Replacing µ1 with a positive multiple nµ1 of µ1 if necessary,
it follows from part (i) that there exists µ ∈ Yks

such that π ◦ µ = µ1. Then
lima→0 µ(a) · v is equal to v′ and v′ does not belong to Ru(Pλ(G))(ks) · v, by part
(ii). Hence G(ks) · v is not cocharacter-closed over ks , by Theorem 2.5. �

Remark 4.2. We insist in Lemma 4.1(i) that λ be a cocharacter of M because we
need this in the proof of Theorem 1.3.

Lemma 4.3. Let G be connected, let S be a ks-torus of Gv and set L = CG(S).

Suppose that for every λ, µ ∈ Yks
such that Pλ = Pµ, either both of λ and µ

destabilize v or neither does. Then for every λ, µ∈Yks
(L) such that Pλ(L)= Pµ(L),

either both of λ and µ destabilize v or neither does.
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Proof. Let λ, µ ∈ Yk(L) such that Pλ(L) = Pµ(L). We can choose σ ∈ Yk(S)

such that Lσ = L [Bate et al. 2015, Lemma 2.5]. Then Pλ(Lσ ) = Pµ(Lσ ) and
there exists n ∈ N such that Pnσ+λ = Pλ(Lσ )Ru(Pσ ) and Pnσ+µ = Pµ(Lσ )Ru(Pσ )

[Bate et al. 2005, Lemma 6.2(i)]. By hypothesis, either both of nσ +λ and nσ +µ

destabilize v, or neither one does. In the first case, since σ fixes v, both λ and µ

must destabilize v. Conversely, in the second case neither λ nor µ can destabilize
v. �

Lemma 4.4. Let T be a maximal torus of G, let µ1, . . . , µr ∈ Y (T )\{0}, let µ =∑r
i=1 µi and assume µ 6= 0. Suppose g ∈ G and g · ζ(µi ) = ζ(µi ) for all 1 ≤ i ≤ r .

Then g · ζ(µ) = ζ(µ).

Proof. Clearly, there is a permutation τ ∈ Sr such that none of the sums
∑t

i=1 µτ(i)

is 0 for 1 ≤ t ≤ r . Consider the special case r = 2 (the general case follows easily
by induction on r). Recall the addition operation + on V (K) and the canonical
projection ϕ : Y (K) → V (K) from Section 3B. Let ξ : V (K)\{0} → 1(K) be the
canonical projection. Note that ϕ and ξ are G-equivariant. Moreover, as g fixes
ζ(µ1) and g acts as an isometry, g fixes ϕ(µ1), and likewise g fixes ϕ(µ2). We
have

g · ζ(µ) = g · ζ(µ1 + µ2) = g · ξ(ϕ(µ1 + µ2)) = ξ(g · ϕ(µ1 + µ2))

= ξ(g · (ϕ(µ1) + ϕ(µ2))) = ξ(g · ϕ(µ1) + g · ϕ(µ2))

= ξ(ϕ(µ1) + ϕ(µ2)) = ξ(ϕ(µ1 + µ2)) = ζ(µ1 + µ2) = ζ(µ),

as required. �

We now have everything in place to prove Theorem 1.1.

Proof of Theorem 1.1. For part (i), suppose v ∈ V (k) and G(ks)·v is not cocharacter-
closed over ks . Clearly there is no harm in assuming S is a maximal k-defined torus
of Gv , so we shall do this. Since the closed subgroup Gv(ks) generated by Gv(ks)

is ks-defined and Ŵ-stable, it is k-defined. Hence S is a maximal torus of Gv(ks);
in particular, S is a maximal ks-defined torus of Gv . Set H = CG(S). If σ ∈ Yk(H)

and σ destabilizes v but does not fix v then σ properly destabilizes v over ks for G,
by [Bate et al. 2015, Lemma 2.8]. Hence it is enough to prove that such a σ exists.

By Theorem 2.7(ii), H(ks)·v is not cocharacter-closed over ks . So we can choose
µ ∈ Yks

(H) such that µ properly destabilizes v over ks for H . If µ ∈ Yks
(Z(H 0))

then we are done by Lemma 2.8 and Remark 2.9. So assume otherwise. Then
Pµ(H 0) is a proper subgroup of H 0. By Lemma 4.3, 6v,ks

(H) is a subcomplex of
1ks

(H, K). It follows from Lemma 3.5 that 6v,ks
(H) is not completely reducible,

since if Q is an opposite parabolic to Pµ(H 0) in H 0 then there exists µ′ ∈ Yks
(H)

such that Pµ′ = Q and µ′ is opposite to µ, which is impossible. Clearly, 6v,ks
(H)

is Ŵ- and Hv(ks)-stable, so by Theorem 3.6 there is a Ŵ- and Hv(ks)-fixed simplex
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s ∈ 6v,ks(H), corresponding to some proper parabolic subgroup P of H 0. There
exists σ ∈ Yk(H) such that P = Pσ (H 0) [Bate et al. 2013, Lemma 2.5(ii)], and σ

destabilizes v by construction. Now σ 6∈ Yks
(Z(H 0)) since P is proper. But every

ks-defined torus of Hv(ks) is contained in Z(H 0) (since S is contained in Z(H 0)),
so σ does not fix v. As σ commutes with S, it follows from [Bate et al. 2015,
Lemma 2.8] that v′ := lima→0 σ(a) ·v does not lie in H(ks) ·v. This completes the
proof of (i).

For part (ii), Proposition 2.6 shows that if G(k ′) · v is cocharacter-closed over
k ′ then G(k) · v is cocharacter-closed over k. For the other direction, suppose that
G(k ′) · v is not cocharacter-closed over k ′. Again by Proposition 2.6, we may
assume k ′ = ks . Applying part (i) with S = 1, we find σ ∈ Yk such that σ properly
destabilizes v over ks . In particular, G(k) · v is not cocharacter-closed over k. This
finishes part (ii).

Part (iii) of Theorem 1.1 follows using similar arguments to those in the proof
of [Bate et al. 2015, Theorem 5.7(ii)]. Let S be a k-defined torus of Gv and let
L = CG(S). First, by the argument of [Bate et al. 2015, Lemma 6.2], we can assume
without loss that v ∈ V (ks) without changing 6v,ks

. Second, by [Bate et al. 2015,
Lemma 6.3] and the argument of the proof of [Bate et al. 2015, Theorem 6.1], we can
pass to a suitable G-variety W and find w ∈ W (k) such that 6w,ks

=
⋂

γ∈Ŵ γ ·6v,ks
;

in particular, 6w,ks
is a subcomplex of 1k(Q) and 6w,k = 6v,k . The arguments of

[Bate et al. 2015, Section 6] also show that S fixes w. Hence we can assume without
loss that v ∈ V (k). As before, Lemma 4.3 implies that 6v,ks

(L) is a subcomplex of
1ks

(L , K). We may thus apply part (ii) and assume k = ks . But then S is k-split,
so the result follows from Theorem 2.7. �

Remark 4.5. We do not know how to prove that Pσ (G0) from Theorem 1.1(i)
is normalised by Gv(ks), but the proof does show that Pσ (G0) is normalised by
Hv(ks).

Proof of Theorem 1.3. For part (i), suppose v ∈ V (k) and G(ks)·v is not cocharacter-
closed over ks . Recall that a connected algebraic group is nilpotent if and only if
it contains just one maximal torus (see [Humphreys 1975, §21.4 Proposition B]).
Let Gi be a simple component of G0. If rank(Gi ) = 1 and dim(Gi )v ≥ 2 then
(Gi )

0
v must contain a Borel subgroup Bi of Gi : but then the orbit map Gi → Gi · v

factors through the connected projective variety Gi/Bi and hence is constant, so
(Gi )v = Gi .

Let N be the product of the simple components of G0 that fix v, and let K be the
product of the remaining simple components of G0 together with Z(G0)0. Then
N and K are Ŵ-stable, so they are k-defined. The next step is to factor out N and
reduce to the case when the stabilizer has nilpotent identity component. As in the
proof of Theorem 1.1, Gv(ks) is k-defined and we may assume S is a maximal
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k-defined torus of Gv and a ks-defined maximal torus of Gv(ks). We can choose
k-defined tori S0 of K and S2 of N such that S = S0S2. Note that K 0

v is nilpotent —
this holds by assumption in case (a), and by the above argument in case (b) — so
S0 is the unique maximal k-defined torus of Kv(ks).

Let H0 = NG(S0), let H = NH0(N ) and let M = CK (S0). Then H0 is k-defined
[Conrad et al. 2010, Lemma A.2.9], so H is k-defined as it is Ŵ-stable and has
finite index in H 0. Note that H 0 = N M = CG(S0)

0, so N is a product of simple
components of H 0 and M is the product of Z(H 0)0 = S0 Z(G0)0 with the remaining
simple components of H 0. The subgroup M of H is normal, so it is Ŵ-stable and
hence k-defined. Now M0

v is nilpotent since K 0
v is, so M0

v has a unique maximal
torus S′ — in particular, S0 ⊆ S′ and S0 is the unique maximal torus of Mv(ks).
Since Gv(ks) normalises N and K , Gv(ks) normalises N and S0, so Gv(ks) ⊆ H ;
it follows that Hv(ks) = Gv(ks).

Let H1 = H/N S0 and let π : H → H1 be the canonical projection. We wish
to find λ1 ∈ Yks

(H1) such that λ1 properly destabilizes v over ks and Pλ1(H1)

is k-defined. Note that no nontrivial ks-defined cocharacter of H1 fixes v; for if
0 6= λ1 ∈ Yks

(H1) fixes v then by Lemma 4.1, there exist n ∈ N and λ ∈ Yks
(M)

such that π ◦λ = nλ1, and 〈Im(λ)∪ S〉 is a ks-defined torus of Gv(ks) that properly
contains S, contradicting the maximality of S. Clearly, (H1)

0
v is nilpotent with

unique maximal torus S′
1 :=π(S′). Since H 0 =CG(S0)

0, H(ks)·v is not cocharacter-
closed over ks , by Theorem 2.7(ii) and [Bate et al. 2015, Corollary 5.3]. Hence
H1(ks) · v is not cocharacter-closed over ks (Lemma 4.1). Let λ1 ∈ Yks

(H1) such
that λ1 destabilizes v. By Lemmas 2.8 and 4.1, we can assume λ1 does not properly
destabilize v over k̄. Therefore, there exists u ∈ Ru(Pλ1(H1)) such that u · λ1 fixes
v; then u · λ1 must be a cocharacter of S′

1. It follows that 6v,ks
(H1) ⊆ 1ks

(T1, Q),
where T1 is a fixed maximal torus of H1 that contains S′

1. Note that T1 and S′
1

need not be k-defined, or even ks-defined. As H1(ks) · v is not cocharacter-closed
over ks , 6v,ks

(H1) is not completely reducible (Lemma 3.5(ii)). Now 6v,ks
(H1) is

stabilized by Ŵ and by (H1)v(ks), so it follows from Theorem 3.9 that 6v,ks
(H1)

contains a Ŵ-fixed and (H1)v(ks)-fixed point x1. We can write x1 = ζ(µ1) for some
µ1 ∈ Yks

(H1). Then µ1 destabilizes v but does not fix v; moreover, Pµ1(H 0
1 ) is

Ŵ-stable and is normalised by (H1)v(ks). In particular, Pµ1(H 0
1 ) is k-defined.

By Lemma 4.1, there exist n ∈ N and µ ∈ Yks
(M) such that π ◦ µ = nµ1 and µ

destabilizes v; note that µ does not fix v, because µ1 does not. The map π gives a
bijection between the parabolic subgroups of M0 and the parabolic subgroups of
H 0

1 . So Pµ(M0) is Ŵ-stable — because Pµ1(H 0
1 ) is — and hence is defined over k.

As π(Hv(ks)) is contained in (H1)v(ks) and (H1)v(ks) normalises Pµ1(H 0
1 ), Hv(ks)

normalises Pµ(M0).
After replacing µ if necessary with an Ru(Pµ(H 0))(ks)-conjugate of µ, we can

assume that µ is a cocharacter of a k-defined maximal torus T of Pµ(H 0). Let
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µ(1), . . . , µ(r) be the Ŵ-conjugates of µ. These are cocharacters of T , so they all
commute with each other. Set σ =

∑r
i=1 µ(i), a k-defined cocharacter of T . Note

that σ centralizes S = S0S2. Now π ◦ σ destabilizes v but does not fix v (since
π ◦ σ 6= 0), so σ does not fix v. This implies by [Bate et al. 2015, Lemma 2.8]
that σ properly destabilizes v over ks for G. Since Hv(ks) is Ŵ-stable and fixes
ζ(µ), Hv(ks) fixes ζ(µ(i)) for all 1 ≤ i ≤ r . It follows from Lemma 4.4 that Hv(ks)

fixes ζ(σ ): that is, for all h ∈ Hv(ks), there exists u ∈ Ru(Pσ (H 0))(ks) such that
h · σ = u · σ . Hence Pσ (G0) is normalised by Hv(ks) = Gv(ks). This completes
the proof of (i).

Parts (ii) and (iii) now follow as in the proof of Theorem 1.1 (there is no need to
reduce to the case when v is a k-point in (iii) because we already assume this). �

Remark 4.6. It can be shown that Theorem 1.3(iii) actually holds without the
assumption that v is a k-point. Here is a sketch of the proof. It is enough to
prove that Levi ascent holds. Without loss, assume S is a maximal k-defined torus
of Gv. As in the proof of Theorem 1.1(iii), we replace v with a k-point w of a
k-defined G-variety W , with the property that 6w,ks

⊆ 6v,ks
and 6w,ks

= 6v,ks
.

By the arguments of [Bate et al. 2015, Section 6], we can assume that S and N

fix w. Suppose G(k) · v is not cocharacter-closed over k. Then G(k) · w is not
cocharacter-closed over k, so L(ks) ·w is not cocharacter-closed over ks , by Galois
descent and split Levi ascent. It follows that H1(ks) ·w is not cocharacter-closed
over ks , where H1 is defined as in the proof of Theorem 1.3. We do not know
whether hypotheses (a) and (b) of Theorem 1.3 hold for w. The key point, however,
that makes the proof of Theorem 1.3(i) work is that 6v,ks

(H1) is contained in
a single apartment of 1ks

(H1, Q). The analogous property holds for 6w,ks
(H1)

since 6w,ks
(H1) ⊆ 6v,ks

(H1). Hence Galois ascent holds and H1(k) · w is not
cocharacter-closed over k. Then H1(k) · v is not cocharacter-closed over k, and the
result follows.

5. Applications to G-complete reducibility

Many of the constructions in this paper, and in the key references [Bate et al. 2013;
2012; 2015], were inspired originally by the study of Serre’s notion of G-complete

reducibility for subgroups of G. We refer the reader to [Serre 2005] and [Bate
et al. 2005] for a thorough introduction to the theory. We simply record the basic
definition here:

Definition 5.1. A subgroup H of G is said to be G-completely reducible over k if
whenever H is contained in a k-defined R-parabolic subgroup P of G, there exists
a k-defined R-Levi subgroup L of P containing H . (We do not assume that H is
k-defined.)
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Theorem 5.2 ([Bate et al. 2015, Theorem 9.3]). Let H be a subgroup of G and let

h ∈ H n be a generic tuple of H (see [Bate et al. 2013, Definition 5.4]). Then H is

G-completely reducible over k if and only if G(k) · h is cocharacter-closed over k,
where G acts on Gn by simultaneous conjugation.

Theorem 5.2 allows us to prove results about G-complete reducibility over k

using our results on geometric invariant theory. If G is connected, and h ∈ Gn is a
generic tuple for a subgroup H of G, then 6h is a subcomplex of 1G(Q), since
for any λ ∈ Y , λ destabilizes h if and only if H ⊆ Pλ; this means that we are in the
territory of Theorem 1.1.

Proof of Theorem 1.4. Let h be a generic tuple of H . Then 6h,ks
is a subcomplex of

1G,ks
, and CG(H)= Gh. The result now follows from Theorems 5.2 and 1.1(iii). �

This theory has a counterpart for Lie subalgebras of g := Lie(G). The basic
definitions and results were covered for algebraically closed fields in [McNinch
2007] and [Bate et al. 2011, Section 3.3], but the extension to arbitrary fields is
straightforward (cf. [Bate et al. 2011, Remark 4.16]).

Definition 5.3. A Lie subalgebra h of g is G-completely reducible over k if when-
ever P is a k-defined parabolic subgroup of G such that h ⊆ Lie(P), there exists a
k-defined Levi subgroup L of P such that h ⊆ Lie(L). (We do not assume that h is
k-defined.)

The group G acts on gn via the simultaneous adjoint action for any n ∈N. The next
result follows from [Bate et al. 2011, Lemma 3.8] and the arguments in the proofs
of [Bate et al. 2011, Theorems 4.12(iii)] (cf. [Bate et al. 2011, Theorem 3.10(iii)]).

Theorem 5.4. Let h be a Lie subalgebra of g and let h∈hn such that the components

of h generate h as a Lie algebra. Then h is G-completely reducible over k if and

only if G(k) · h is cocharacter-closed over k.

We now give the applications of our earlier results to G-complete reducibility
over k for Lie algebras.

Theorem 5.5. Let h be a Lie subalgebra of g.

(i) Suppose h is k-defined, and let k ′/k be a separable algebraic extension. Then

h is G-completely reducible over k ′ if and only if h is G-completely reducible

over k.

(ii) Let S be a k-defined torus of CG(h) and set L =CG(S). Then h is G-completely

reducible over k if and only if h is L-completely reducible over k.

Proof. Pick h ∈ hn for some n ∈ N such that the components of h generate h as a Lie
algebra. If h is k-defined then we can assume that h ∈ h(k)n . Part (i) now follows
from Theorems 5.4 and 1.1(ii), and part (ii) from Theorems 5.4 and 1.1(iii). �
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