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Abstract  

Regulation for nanomaterial is urgently needed and the drive to adopt an intelligent testing 
strategy is evident. The intelligent testing strategy will not only be beneficial from a cost 
reduction point of view but will also mean the reduction of the moral and ethical concerns 
related to animal  research. In the chemical and legislative world, such an approach is 
promoted by REACH and in particular the use of (Q)SAR as a tool for the purpose of 
categorisation. In addition to traditional compounds, (Q)SAR has also been applied to 
nanomaterials i.e. nano(Q)SAR, useful to correlate toxicological endpoints with 
physicochemical properties.  Although (Q)SAR in chemicals is well established, 
nano(Q)SAR is still at an early stage of its development and its successful uptake is far from 
reality. The purpose of this paper is to identify some of the pitfalls and challenges associated 
with nano-(Q)SARs, in relation for its use to categorise nanomaterials. Our findings show 
clear gaps in the research framework that must be addressed if we are to have reliable 
predications from the use of such models. Three major types of barriers were identified: a) 
the need to improve quality of experimental data in which the models are being developed 
from in the first place, b) the need to have practical guidelines for the development of the 
nano(Q)SAR models, c) the need to standardise and harmonise activities for the purpose of 
regulation. Out of the three barriers, immediate attention is needed for a) as this underpins 
activities associated in b) and c). It should be noted that the usefulness of data in the context 
of nano-(Q)SAR modelling is not only about the quantity of data but also about the quality, 
consistency and accessibility of those data.    

Introduction 

The National Science Foundation has estimated that nanotechnology is to be worth $1 trillion 
by 2015 1 and that engineered nanomaterials represent a growing class of material being 
introduced into multiple business sectors. However, there are also concerns surrounding the 
potential harmful effects of engineered nanomaterial imposed on health and the environment. 
The immediate goal to regulate without hampering public perception on the benefits of 
nano-enabled products but scientific findings have not yet provided any clear answers on the 
toxicity of nanomaterials 2. The real danger here is that regulation will run ahead of scientific 
reality, which may lead on the tightening or loosening of regulations, thus affecting either the 
nanomaterial manufacture sectors or the environment and human health.  

The need to develop a sound infrastructure for assessment of risk is clear. However, the 
variety of nanomaterials is great. Subsequently, this will mean the need to test large number 
of nanomaterial/matrix combination; this makes it difficult to assess the possible hazard and 



risk of each nanomaterial. In the chemical world, an “intelligent testing” approach is 
employed in order to improve testing efficiency. One strategy to alleviate the problem is 
through the establishment of chemical categories, which relies on “similarity principle” i.e. 
similarities in the structure of different molecules/compounds that may create predictable 
patterns of particular biological activity/toxicity endpoints. This allows untested chemicals to 
be categorised by assuming that the biological activity is linked to their molecular structure, 
as determined by compositional and structural descriptors such as size, elemental 
composition, topology and functional groups 3. Categorisation has meant the ability to 
streamline hazard and risk assessment process; where costs are concerned, this will mean that 
a particular chemical group can be assessed as a whole, without the need to test every 
category member for every regulatory endpoint. Moreover, in relation to ethical 
considerations, a great deal of animal experimentation will be reduced. This is particularly 
attractive in certain market categories, such as European cosmetic products (e.g. skin creams, 
oral care, shampoo, conditioner, deodorants, etc.) in which restrictions on in vivo testing 
exist.  

The development of chemical categories often involves the need to estimate missing entries. 
This can be achieved through the use of trend analysis, which often involves a form of 
interpolation and extrapolation. Interpolation can be defined as the estimation of a value 
between two known data points 4,5. Extrapolation is an estimate of a value based on extending 
a known sequence of values near or at the category boundary using measured values from 
internal category members 5. Another approach to estimate missing experimental values is to 
use read across, which involves using information on one chemical structure and making 
some assessment about the relevance of that information for a second chemical structure 
considered similar 5. Hence, methods of extrapolation and read across are therefore inherently 
more risky than interpolation. In addition to trend analysis and read across, the use of in silico 
methods such as (Q)SAR, 6 is attractive to many industry and regulators. The predictive 
ability of in silico methods resulted in REACH to promote the use of (Q)SAR to develop 
chemical categories 7,8.  

It is not the intent of this paper to delve into the details of the processes involved in (Q)SAR, 
as they have been covered in great details elsewhere and the reader is referred to the relevant 
past literature 7,9-11. Only a brief summary will be given in order to familiarise the reader with 
the basics of this topic. (Q)SAR is a collective term that refers to both Structure-Activity 
Relationships (SAR) and Quantitative Structure-Activity Relationships (QSAR). Both are 
theoretical models, used to predict “analysed activity” (e.g. some biological endpoints) from 
“descriptor values”. Whereas QSAR is a numerical measure i.e. mathematical (regression), 
SAR is more qualitative in nature i.e. categorisation. In relation to chemicals the descriptors 
are often referred to as molecular descriptors, which can range from geometrical and 
topological (e.g. moment of inertia, accessible surface area and volume, aspect ratios) to 
electronic (e.g. HOMO and LUMO energies, dipole moment); the descriptors here can either 
be measured (experimental) or calculated (theoretical numerical values). (Q)SAR model is 
created using a data set referred to as the training set e.g. chemicals for which activity is 
known. In QSAR, the model is constructed by using classical chemoinformatic methods, such 
as classical linear methods (e.g. partial least squares and multiple linear regression), and 
non-linear methods (e.g. support vector machine and artificial neural networks) 12-16. 
Modellers also sometimes employ principal component analysis (PCA) to aid the process of 
designing (Q)SARs 17,18 e.g. for searching for structural similarity patterns and thus 
predefining new categorises of the studied chemicals. In SAR, as there is no attempt to derive 
a quantitative model, artificial intelligence methods such as decision trees and discriminant 
analysis are used instead19. The most crucial steps in (Q)SAR  are to demonstrate the 



robustness of the model (validation) and to set the boundaries of the validated model which 
define the domain of applicability. This helps to check which external chemicals can be 
predicted using the built model and to establish how the model will perform when faced with  
compounds that were not included in the training or test set. 

The use of (Q)SARs in order to categorise chemicals is quite advanced, which in turn have 
allowed past workers to create a broad hazard identification profile, prioritise chemicals and 
estimate values for untested chemicals20-28. Furthermore, the development of chemical 
categories have also been used to identify hazards (associated with safe storage, handling and 
disposal of waste)29-32, prediction of physicochemical properties or toxic/biochemical 
effects33-36 and provide information about mechanism of action37,38, thus promoting the safe 
use of chemicals.  

Unlike chemicals, no clear strategy is in place to categorise nanomaterials. Several 
suggestions have been made. Glotzer and Solomon39 suggests that nanomaterials can be 
categorised through the use of eight orthogonal dimensions (surface coverage, aspect ratio, 
faceting, pattern quantization, branching, chemical ordering, shape gradient, and roughness) 
in order to describe the key attributes of nanomaterials. Hansen and Stone suggested the use 
of a chemistry based categorisation system as a starting point40,41. Although little work has 
been done in relation to the use of (Q)SAR to categorise nanomaterial, the approach (of using 
such models much in the same way as in chemicals) would be attractive, if proven possible.  

In 2009, Puzyn coined the term nano(Q)SAR i.e. (Q)SAR models that correlate the 
physicochemical properties of nanomaterials to their biological activity42. To date, several 
alternative acronyms on top of nano-(Q)SAR have been used to describe the same method, 
which includes: Quantitative Nanostructure-Activity Relationships (QNAR)43 and 
Quantitative Nanostructure-Toxicity Relationships (QNTR)44. For the remainder of the 
manuscript the term of nano(Q)SAR shall be used throughout. Unlike the use of (Q)SAR in 
chemicals, nano-(Q)SAR is still at an early stage45, far from successful uptake in relation to 
nano-regulation.  

The purpose of the paper is to understand the pitfalls and challenges associated with 
nano(Q)SAR and research requirements in order to develop reliable nanomaterial categories. 
In order to meet this objective, we will be reviewing past literature on nano-(Q)SAR and 
report relevant findings to their use for categorisation of nanomaterials. We will present 
criteria necessary in the use of (Q)SAR to categorise chemicals and translate this to 
nano(Q)SAR. Finally, we will identify the pitfalls/barriers associated and discuss future work 
necessary for implementation.   

Much of the source material presented for this paper is from peer-reviewed papers as well as 
grey literature e.g. guidelines/scientific opinion documents for regulations, with relevance to 
the objectives stated. 

Results and Discussion 

Nano(Q)SARs: recent advances 

To date, only a handful of studies on nano(Q)SAR have been carried out, with most studies 
reporting metal oxide nanoparticles due to their relatively high volume of use/production. . 
Different modellers have attempted to establish a link between different physicochemical 
descriptors and observed biological activity. Table 1 summarises some of the different 
predictors used by different researchers. A total of twelve descriptors have been associated 



with nano(Q)SAR; these are the physicochemical properties of potential relevance to toxicity, 
although no clear and valid mechanistic understanding has been developed. There are some 
common descriptors i.e. have been reported by more than once. These are: particle size, 
zeta-potential, surface modifications and spin-spin relaxivities. Out of all of these, surface 
modification is the most common, indicating the importance of this property and its relevance 
to toxicity.  

Table 1 Past nano(Q)SAR studies and the use of different descriptors of relevance. Here, 
ǻHMe+ represents the enthalpy of formation of a gaseous cation having the same oxidation 
state as that in the metal oxide structure. 

Type of model/ 
(References) 

Particle 
Size   

Zeta-potential  Surface 
Modifications 
e.g. surface 
coatings  

Spin-spin 
relaxivities  

Others  

nanoQSAR 46  √ √ √ √ X 

nanoQSAR 47 X X X X ǻHMe+ 

nanoQSAR 10,48 X X X X Band energy  

nanoQSAR 46 X X √ X X 

nanoSAR 49 √ X X X atomisation 
energy and 
nanoparticle 
volume fraction 
(in solution)  

nanoQSAR 50 X X √ X X 

nanoQSAR 51 X X √ X hydrogen-bond 
donor sites 

nanoQSAR 52 X X √ X X 

nanoSAR 53,54  √ √ X √ conduction band 
energy, ionic 
index, 
spin-lattice  

Total number of ticks  3 2 5 2  

 

From the table, it is clear that apart from Liu and co-workers (who have developed nanoSAR) 
49,53,54, most of the studies have been associated with nanoQSAR. In general, much work is 
still needed in the field, in particular the application of nano(Q)SAR to the development of 
nanomaterial categories. The first step is to identify the criteria imposed for uptake, which 
will be similar to those identified for corresponding chemicals. According to an OECD 
guideline7 on (Q)SAR, the basic criteria that must be fulfilled is the generation of reliable and 
validated models, which will allow confidence in the predictions made. However, barriers 
exists, which prevent the criteria from being fulfilled and these will be further assessed 
below. Once these basic criteria are fulfilled, then there is a need to have a clear 
implementation route i.e. towards industry uptake and regulatory acceptance.   



Barrier 1: the generation of a reliable model 

Unlike chemicals, measuring the physicochemical characteristics of nanomaterials is not 
straightforward with current instrumentations. From a scientific perspective, nanomaterials 
cannot be considered as a homogeneous group and subsequently this means that getting 
reliable data is not easy to achieve. Potentially, this leads to a situation in which experimental 
data gets reported without proper understanding of the associated errors and the propagation 
of these errors through the model. Sources of errors may arise from a number of factors 
including polydispersity, biological environment and inappropriate measurement.  

In relation to the polydispersity of nanomaterial, it has been argued by Baalousha and Lead55 
that most nanomaterials tested are too polydisperse. Materials close to monodispersity are 
needed in order to have better reliability of result findings associated with studying 
environmental behaviour, dose, structure–activity relationships and mechanisms of toxicity. 
Although there is great effort in the scientific community to develop test/reference materials 
e.g. OECD Working Party on Manufactured Nanomaterials56), there is a need to address 
whether the commercially relevant nanomaterials offered held in this repository are suitable 
for the purpose nano(Q)SAR models. If monodisperse and homogeneous nanomaterial 
sample is needed, then only a handful of nanomaterials in existence have been certified and 
sold under the banner of reference nanomaterials, to include National Institute of Standards 
and Technology (NIST) gold nanoparticle reference materials (10, 30 and 60 nm). The use of 
such materials are ideal for use in nanotoxicology studies and recently they been shown 
suitable to act as negative controls for nanoparticle genotoxicity studies57.  

With respect to the analytical techniques currently available, it is difficult to measure 
accurately, a highly polydisperse sample. In a recent study, Anderson et al.58 show that 
complex particle size distributions i.e. away from the simple monomodal distribution will 
result in large data variability. It was reported that light scattering based Particle Tracking 
Analysis and Dynamic Light Scattering platforms were only able to detect a single population 
of particles corresponding either the largest or smallest particles in a multimodal sample. 
Clearly, the inadequacy of the instrumental methods to characterise nanomaterials is a huge 
barrier in this field, as echoed by several past workers2,55.  

In addition to polydispersity issue, the complex biological matrix in which the particles are 
dispersed in can also pose problems where measurement is concerned, potentially resulting in 
agglomeration and thus the formation an unstable suspension. Furthermore, 
nanomaterial-media interactions can be dynamic in nature, which may pose further 
difficulties for the instrument to measure under such conditions. Finally, physicochemical 
properties measured may not being directly associated with the observed biological effects. 
Due to the analytical challenges posed in a) and b), some studies have characterised 
nanomaterials in their “pristine” state i.e. absence of the actual biological test media. In fact, 
few studies have assessed the potential transformation of nanomaterials in an environmental 
or mammalian system59,60.  

In addition to measurement of physicochemical properties, measurements of biological 
endpoints may also be problematic. In in vitro measurements, there are several biological 
endpoints that reflect changes associated with cell activity, which may be employed to 
indicate toxicity hazard related to the nanomaterial under investigation. Examples include: 
evidence of appreciable cell death relative to suitable control experiments, growth retardation 
and cell membrane damage. There are several bioassay tests that can measure these biological 



endpoints but the results may not be reliable. The following potential sources of errors, which 
may lead to false interpretation, have been previously identified as being problematic:  

a) endotoxin (LPS, lipopolysaccharide) contamination in the nanomaterial61. 

b) choice of inappropriate end-points for the nanomaterial. There is a need to define a 
standard set of biological assays (and protocols) clearly in order to evaluate the overall in 
vitro (and in vivo) response of the tested nanoparticles. The assay chosen should be truly 
indicative of key activity, property or toxicological effects caused by these nanomaterials62. 

c) interference in the assay readout by the nanomaterials e.g. tetrazolium based assays and the 
subsequent potential interference of the nanomaterials with the formazan salts63,64.  

d) varied nanomaterial dispersion protocols, including differences in the amount, source and 
pre-treatment of serum proteins used (affecting particle size distribution and 
agglomerates/aggregates population, etc.)65,66.  

The problems identified so far imply the need to develop better research techniques/ methods 
and that the developed methods are validated. Eurachem67 clearly states that analytical 
measurements should be made using methods and equipment which have been tested to 
ensure that they are fit for purpose. The current state of toxicological research in 
nanomaterials is that methods developed are rarely validated.   

Once the conditions of the method validation are met, only then can researchers consider a 
higher metrological standard of measurement, conduct uncertainty analyses to estimate 
uncertainty and the propagation of uncertainty. The need to have reliable data for the 
nano-(Q)SAR model may mean that for the first step of developing a robust nano-(Q)SAR 
model, it would be easier (more achievable) to build a model for engineered nanomaterials 
using homogeneous, monodisperse samples in environments where  agglomeration of the 
nanomaterials would be relatively low.   

Another factor that influences the reliability of the nano(Q)SAR model is in the selection of 
descriptors. Having an agreement on suitable descriptors is important, as past workers found 
that the choice of descriptors can affect the quality, significance and interpretation of 
nano-(Q)SAR model10,52. It may be that descriptors can be selected or adapted from 
traditional chemical descriptors, but it is highly likely that descriptors specifically developed 
for nanomaterials are needed. For example, Borders et al have shown that new types of 
defects in carbon nanotubes can be represented as a new descriptor in the prediction of its 
mechanical properties68. In a recent study, Wang et al.69 have shown how Principal 
Component Analysis (PCA) can be used in order to identify potentially suitable descriptors. 
Through the use of PCA, they identified: particle charge, aspect ratio and metal content as 
potential descriptors. In summary, much attention must be given to the selection of trial 
descriptor sets when developing nano(Q)SAR models, as they play a pivotal role in predictive 
quality of the model.    

Barrier 2: validation of the model  

A pre-requisite for the uptake of (Q)SAR7 and subsequently nano(Q)SAR, is for the model to 
be validated. It states clearly that the principles for validation should include: a defined 
endpoint, an unambiguous algorithm, a defined domain of applicability, appropriate measures 
of goodness-of-fit, robustness, predictivity and a mechanistic interpretation, if possible. 
Validation is vital to ensure that the predictive ability of the model is not due to chance 
factors.  



Validation for nano(Q)SAR is not straightforward due to the following reasons:  

a) The heterogeneity of nanomaterial family: There is a need to develop separate models 
that are specific to nanomaterial types and thus properties70. Due to large number of 
nanomaterial types that can be engineered (and subsequently different mechanisms of 
toxicity), it has been suggested by Puzyn that individual classes of nanomaterials 
should be modelled separately 42. 

b) The paucity of data available for nano(Q)SAR: Since nano(Q)SARs are developed 
with statistical methods (MLR, neural networks etc.), the variance in the group of 
nanomaterial needs to be sufficiently represented in the training and validation sets of 
particles. It is commonly accepted that the ratio between the number of descriptors 
and compounds in the training set should be at least as 1 to 571,72.  

c) The lack of standardized validation metrics: The approach used for validation needs to 
be defined, for example whether to employ variants of cross validation or external test 
set validation73. Ideally, validation should be done externally i.e. by an external 
predication set, in which the test data set has to be independent not only from model 
building but also from model selection74. However, this step may not be always 
possible. If additional testing is not feasible then an internal validation may be carried 
out e.g. using the “leave one out” cross validation (CV) method; CV is carried out by 
omitting a point and then calculating the value of this location using the remaining 
points75. Having said this, Tropsha et al.76 demonstrated that leave-one-out cross 
validation and external test set metrics do not correlate77 and stated that a “high value 
of leave-one-out cross-validated R2 appears to be a necessary but not sufficient 
condition for a model to have a high predictive power”. It should also be noted that 
the model’s predictivity can only be confirmed with external validation without which 
the (Q)SAR modelling procedure is incomplete. 

 

Barrier 3: improving industry uptake and regulatory acceptance  

In relation to chemicals, there seems to be a clear regulatory application of (Q)SAR in the US 
but this is less so in Europe78. The wider acceptance of (Q)SAR in the US is attributed to the 
need to evaluate chemical substances within a relatively short period of time. The US 
Environmental Protection Agency (EPA) in particular is keen to promote the use of (Q)SAR 
to develop chemical category in hazard and risk assessment79. In the European Union, 
regulatory acceptance of (Q)SARs is limited. There is a push by REACH, through activities 
arising from the existing OECD chemicals programme7,80, to promote the use of (Q)SAR as 
an alternative method to evaluate chemicals. Clearly, the fact that implementation of (Q)SAR 
in Europe is still problematic for chemicals, means that nano(Q)SARS will not easily be 
accepted in the near future. In order to implement nano(Q)SAR it is vital to demonstrate to 
regulators, and industry, that nano(Q)SARs are scientifically validated  and clear 
explanations on how to use such models for making decisions45 should also be given. Once 
this is achieved, we can then “harmonise activities” e.g. by forging internationally agreed 
document standards and guidelines. Guidelines of relevance should include the provision of 
detailed guidance in relation to the practicalities on the use of nano-(Q)SAR e.g. detailing 
how to identify acceptability criteria, how to generate adequate and relevant descriptors81-83.  

 



Conclusion 

There is a widespread regulatory and scientific interest in developing intelligent and cost 
effective testing. In particular REACH is promoting the use of alternative methods such as 
(Q)SAR for the purpose of categorising chemicals. One of the most important characteristics 
of (Q)SAR is in their predictive power, having been seen as “an enabler” in bringing new 
chemicals to commercialisation. 

The recent application of (Q)SAR to nanomaterials shows that researchers are starting to use 
such models in order to categorise nanomaterials in the same way as chemicals. This may be 
beneficial as it aims to improve the efficiency of hazard and risk assessment. This may be is 
useful in market categories where there is a restriction on in vivo testing. However, it is clear 
from this review that the valid implementation of nano-(Q)SAR is a long way off, as past 
experience associated even with chemicals shows the considerable amount of time and effort 
needed to implement the use of such tools at an internationally acceptable level.  

Several issues have been highlighted in this review, which cast serious doubts over the 
reliability of such models to support nano-regulation. If nano-(Q)SAR is to be implemented, 
then issues associated with experimental data quality used to develop the model in the first 
place must be tackled. We have identified the need for better analytical techniques to deal 
with polydispersity in a sample and when the nanomaterial is dispersed in complex media. In 
addition, there is a need to have validated methods and more ideal test/reference materials. 
These activities are valuable for any understanding of nanomaterials not just for 
nano(Q)SARS. In relation to the development of the model itself, there is a need to generate 
practical guidance e.g. identification of relevant descriptors for nanomaterials. Once the 
issues associated with reliability have been tackled, the next step is to ensure better 
co-ordination between the scientific community with industry and regulatory authorities.   

Overall, the first step is to generate reliable nano(Q)SAR models and that as part of the 
validation process, an external validation with independent series of data should be used. If 
this can be achieved, internationally agreed documentary standards and guidelines can be 
generated. 
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 (70) Quintero, F. A.; Patel, S. J.; Mũoz, F.; Sam Mannan, M.: Review of Existing 
QSAR/QSPR Models Developed for Properties Used in Hazardous Chemicals Classification 
System. Ind. Eng. Chem. Res. 2012, 51, 16101-16115. 
 (71) Lubinski, L.; Urbaszek, P.; Gajewicz, A.; Cronin, M.; Enoch, S.; Madden, J.; 
Leszczynska, D.; Leszczynski, J.; Puzyn, T.: Evaluation criteria for the quality of published 
experimental data on nanomaterials and their usefulness for QSAR modelling. SAR QSAR 
Environ. Res. 2013, 24, 995-1008. 
 (72) Richarz, A. N.; Cronin, M.; Madden, J.; Lubinski, L.; Mokshina, E.; Urbaszek, 
P.; Puzyn, T.; Kuz'min, V.: Toxicity of nanomaterials: Availability and suitability of data for 
the development of in silico models. Toxicol. Lett. 2013, 221, S246-S246. 



 (73) Gütlein, M.; Helma, C.; Karwath, A.; Kramer, S.: A LargeϋScale Empirical 
Evaluation of CrossϋValidation and External Test Set Validation in (Q) SAR. Molecular 
Informatics 2013, 32, 516-528. 
 (74) Chirico, N.; Gramatica, P.: Real external predictivity of QSAR models: how to 
evaluate it? Comparison of different validation criteria and proposal of using the concordance 
correlation coefficient. J. Chem. Inf. Model. 2011, 51, 2320-2335. 
 (75) Konovalov, D. A.; Llewellyn, L. E.; Vander Heyden, Y.; Coomans, D.: 
Robust cross-validation of linear regression QSAR models. J. Chem. Inf. Model. 2008, 48, 
2081-2094. 
 (76) Golbraikh, A.; Tropsha, A.: Beware of q2! Journal of Molecular Graphics and 
Modelling 2002, 20, 269-276. 
 (77) Golbraikh, A.; Shen, M.; Xiao, Z.; Xiao, Y.-D.; Lee, K.-H.; Tropsha, A.: 
Rational selection of training and test sets for the development of validated QSAR models. J. 
Comput.-Aided Mol. Des. 2003, 17, 241-253. 
 (78) Van Leeuwen, C. J.; Patlewicz, G. Y.; Worth, A. P.: Intelligent testing 
strategies. In Risk Assessment of Chemicals; Springer, 2007; pp 467-509. 
 (79) Frank, R. A.; Sanderson, H.; Kavanagh, R.; Burnison, B. K.; Headley, J. V.; 
Solomon, K. R.: Use of a (quantitative) structure–activity relationship [(Q) Sar] model to 
predict the toxicity of naphthenic acids. J. Toxicol. Environ. Health, Part A 2009, 73, 
319-329. 
 (80) Benigni, R.; Netzeva, T. I.; Benfenati, E.; Bossa, C.; Franke, R.; Helma, C.; 
Hulzebos, E.; Marchant, C.; Richard, A.; Woo, Y.-T.: The expanding role of predictive 
toxicology: an update on the (Q) SAR models for mutagens and carcinogens. Journal of 
Environmental Science and Health Part C 2007, 25, 53-97. 
 (81) Patlewicz, G.; Chen, M.; Bellin, C.: Non-testing approaches under 
REACH–help or hindrance? Perspectives from a practitioner within industry. SAR QSAR 
Environ. Res. 2011, 22, 67-88. 
 (82) Jaworska, J. S.; Comber, M.; Auer, C.; Van Leeuwen, C.: Summary of a 
workshop on regulatory acceptance of (Q) SARs for human health and environmental 
endpoints. Environ. Health Perspect. 2003, 111, 1358. 
 (83) Puzyn, T.; Gajewicz, A.; Leszczynska, D.; Leszczynski, J.: Nanomaterials–the 
Next Great Challenge for Qsar Modelers. In Recent Advances in QSAR Studies; Springer, 
2010; pp 383-409. 

 

 


