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Abstract - Gas-water-rock reactions taking place within volcano-hosted hydrothermal 

systems scrub reactive, water-soluble species (sulfur, halogens) from the magmatic gas phase, and 

as such play a major control on the composition of surface gas manifestations. A number of 

quantitative models of magmatic gas scrubbing have been proposed in the past, but no systematic 20 

comparison of model results with observations from natural systems has been carried out, to date. 

Here, we present the results of novel numerical simulations, in which we initialized models of 

hydrothermal gas-water-rock at conditions relevant to Icelandic volcanism. We focus on Iceland as 

an example of a “wet” volcanic region where scrubbing is widespread. Our simulations were 

performed (using the EQ3/6 software package) at shallow (temperature <106°C; low-T model runs) 25 

and deep hydrothermal reservoir (200-250°C; high-T model runs) conditions. During the 

simulations, a high-temperature magmatic gas phase was added stepwise to an initial meteoric 

water, in the presence of a dissolving aquifer rock. At each step, the chemical compositions of 

coexisting aqueous solution and gas phase were returned by the model. The model-derived aqueous 

solutions have compositions that describe the maturation path of hydrothermal fluids, from 30 

immature, acidic Mg-rich waters, toward Na-Cl-rich mature hydrothermal brines. The modeled 

compositions are in fair agreement with measured compositions of natural thermal waters and 

reservoir fluids from Iceland. We additionally show that the composition of the model-generated 

gases is strongly temperature-dependent, and ranges from CO2(g)-dominated (for temperatures 

≤80°C) to H2O(g)-dominated (and more H2S(g) rich) for temperatures > 100°C. We find that this 35 

range of model gas compositions reproduces well the (H2O-CO2-STOT) compositional range of 

reservoir waters and surface gas emissions in Iceland. From this validation of the model in an 

extreme end-member environment of high scrubbing, we conclude that EQ3/6-based reaction path 
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simulations offer a realistic representation of gas-water-rock interaction processes occurring 

underneath active magmatic-hydrothermal systems. 40 

 

Keywords: magmatic gas scrubbing; gas-water-rock interaction; EQ3/6; hydrothermal 

systems; Iceland 

 

1. INTRODUCTION 45 

A recurrent, but sometimes overlooked, control factor on the chemistry of volcanic gas 

emissions is the interaction between magmatic gases and groundwater/hydrothermal systems. This 

process, commonly referred as magmatic scrubbing (Symonds et al., 2001), takes place as rising 

magmatic gases encounter any aquifer interposed between the source magma stored at depth and the 

surface. The resulting gas-water-rock interactions cause partitioning of water-soluble species (S, 50 

halogens) into aqueous solutions, and irreversibly modify the composition of the primary magmatic 

gas phase. Quantitative assessment of scrubbing is, therefore, essential for interpreting mechanisms 

and evolution of volcanic-hydrothermal unrests (Doukas and Gerlach, 1995; Gerlach et al., 2008; 

Ilyinskaya et al., 2015; Symonds et al., 2001, 2003; Werner et al., 2008, 2012; Shinohara et al., 

2015). The mechanism of magmatic gas scrubbing by hydrothermal systems was introduced in the 55 

fifties (White, 1957), but it was only in the 1990s that scrubbing was invoked as a most important 

process to explain the anomalous low fluxes of magmatic SO2 and HCl observed at many volcanoes 

worldwide, both before and after eruptions (Doukas and Gerlach, 1995; Reed, 1997). Quantitative 

modeling of magmatic gas scrubbing started with Symonds et al. in 2001. By using the reaction 

path modeling approach and the CHILLER (Reed, 1982, 1998; Spycher and Reed, 1988) and 60 

GASWORKS (Symonds and Reed, 1993) programs, the Authors numerically investigated 

scrubbing at shallow- and deep-water conditions, by simulating the injection of increasing amounts 

of a magmatic gas (T = 915°C) to aqueous solutions (ranging from diluted meteoric water and to 

hydrothermal solutions), in the 0.1-5 MPa pressure range. Results of these simulations highlighted 

the large impact of scrubbing on the chemistry (abundance of SO2(g), HCl(g), HF(g) and, to a minor 65 

extent, CO2(g) and H2S(g)) of volcanic gases. Symonds et al. (2001) also discussed the implications 

of scrubbing for volcano monitoring, and concluded that volcanic emissions of SO2(g) and HCl(g) are 

essentially reduced when scrubbing occurs. In such conditions, CO2(g) remains the most useful 

magmatic gas species to be monitored, until interactions between magmatic gas and hydrothermal 

aquifers are eluded by opening of a dry degassing pathway to the surface, shortly prior to or during 70 

a volcanic eruption. More recently, Marini and Gambardella (2005) first tested the ability of the 

EQ3/6 software package to model the irreversible gas mass exchanges occurring during addition of 



magmatic gas to pure water, at near-surface conditions (0.1 MPa). The obtained results were 

qualitatively similar to those of Symonds et al. (2001), confirming utility and flexibility of EQ3/6 

for scrubbing calculations. More recent applications of EQ3/6 were presented in Di Napoli et al. 75 

(2013) and Ilyinskaya et al. (2015). 

In spite of the major advance reached in past studies, application of thermodynamics models 

to scrubbing have not yet been validated using measured (natural) gas compositions. In this paper, 

we apply the reaction path modeling approach (Helgeson, 1968) with the specific objective of 

quantitatively investigating magmatic gas scrubbing at two volcanoes exhibiting extensive 80 

scrubbing: Hekla volcano and the Krýsuvík volcanic system, both in Iceland (Hk and Kr in Figure 

1). These case studies are here taken as archetypes of systems in which gas-water-rock interactions 

proceed in shallow and deep-reservoir hydrothermal environments, respectively. So doing, we 

provide more theoretical and observational confirmation to our initial attempts to model magmatic 

gas scrubbing at Icelandic volcanoes (Ilyinskaya et al., 2015) and, even more importantly, extend 85 

these to higher-temperature hydrothermal interactions. The large mass of previous work on 

hydrothermal systems has clearly demonstrated that compositions of surface hydrothermal 

manifestations are controlled by a variety of processes, occurring at both deep reservoir conditions 

(e.g., fluid-mineral reactions; Arnórsson et al., 1983; Giggenbach, 1981, 1988; Reed and Spycher, 

1984; Stefánsson and Arnórsson, 2000, 2002) and upon ascent of fluids from the reservoir to 90 

surface (e.g., boiling, degassing, mixing, oxidation and further water-rock interactions; Arnórsson, 

1985; Arnórsson et al., 2007; Fournier, 1989; Kaasalainen and Stefánsson, 2012; Markússon and 

Stefánsson, 2011; Nordstrom et al., 2009). In comparison to these well characterised processes, the 

interaction mechanisms (scrubbing) of magmatic volatiles inside hydrothermal reservoirs have 

received less attention so far, and motivate the present study. We ultimately demonstrate that EQ3/6 95 

scrubbing models satisfactorily reproduce the chemical compositions of cold (Hekla-type) natural 

gas emissions and, when combined with other processes such as boiling, of the near-boiling 

hydrothermal steam vents in Iceland. We also find good match betwenn our model fluids and 

compositions of reservoir fluids in boreholes. Our developed model approach, after the validation 

study described here, can now generically be used to investigate scrubbing process at any volcano 100 

worldwide. 

 

2. MATERIALS AND METHODS 

2.1 EQ3/6 code  

Reaction path models of magmatic gas scrubbing are here carried out by means of EQ3/6 105 

(version 7.0; Daveler and Wolery, 1992; Wolery, 1979, 1992a, 1992b; Wolery and Daveler, 1992), 



a software package combining together the EQ3NR and EQ6 codes (see Appendices A and B). By 

using thermodynamic and kinetic constraints, this software performs numerical simulations of 

aqueous solutions that evolve, through a set of irreversible (not at equilibrium) reactions, towards a 

final equilibrium state. The reaction progress variable (ȟ) (Helgeson, 1968) describes the extent to 110 

which reactions have progressed.  

 

2.2 Range of conditions investigated by EQ3/6 reaction path modeling  

Scrubbing of a high-temperature magmatic gas at hydrothermal or shallow groundwater 

conditions is simulated by EQ3/6 via the stepwise addition of a deep magmatic gas (initial gas) to 1 115 

kg of a starting aqueous solution, in contact with reservoir rocks (solid reactants) (Table 1 and 

Figure 2). The initialization of the model runs is described in Appendices A and B. The model input 

parameters are listed in Tables 1-2 and A.1.  

We investigated scrubbing at temperatures of ≤106°C (low-T model runs; Table 2) and  200-

250°C (high-T model runs; Table 2), in the attempt to compare our modelling results with natural 120 

gas compositions from respectively low-T (e.g., Hekla volcano) and higher-T (e.g., Krýsuvík) 

volcanic/hydrothermal systems. The low-T model runs are an extension-implementation of those 

presented in Ilyinskaya et al. (2015): a wider range of gas/water ratios is explored and, more 

importantly, HCl(g) is now incorporated in the model. The high-T runs are first presented in this 

study. 125 

A total of 8 different model run types (A-H) were performed (Table 2). Low-T run types (A to 

D in Table 2) consisted each of 5 to 11 runs (e.g., A_1, A_2, etc.), which corresponded to distinct 

steps (0.6-1.5 moles each) of gas addition to a starting aqueous solution (see Section 4 and Figure 

2). Similarly, seven runs (e.g., seven iterative additions of 0.3 mol gas each) were performed in each 

of the high-T run types (E to H; Table 2). 130 

 

2.3 Degassing calculations   

EQ3/6 code does not implement any routine to perform degassing calculations. We therefore 

used an independent calculation routine to (i) extract from EQ6 the model aqueous solutions, (ii) 

calculate for each of them the total gas pressure PgasTOT (where PgasTOT = PH2O + PCO2
 + PH2S +…) 135 

(Figure 5), and (iii) process any gas over-saturated solution (where PgasTOT > Prun) in a single-step 

degassing process (Henley et al., 1984), to release the excess dissolved gas until attainment of an 

equilibrium condition (PgasTOT = Prun) (Figure 2 and Table 2). In brief, from the molar fractions of 

each j-th gas species in the un-degassed aqueous solution ((nj/nH2O)i) (aqueous solution_n in Figure 

2), extracted from the EQ6 output file, we calculated the gas molar fractions in the degassed 140 



aqueous solution_n ((nj/nH2O)lq) and in the separated gas phase_n ((nj/nH2O)g) (see Figure 2), using 

Equations 1-2: ൬ ௡ೕ௡ಹమೀ൰௟௤ ൌ ൬ ௡ೕ௡ಹమೀ൰௜ ή ൬ ଵ஻ೕή௙ାଵି௙൰                                 (1) 

൬ ௡ೕ௡ಹమೀ൰௚ ൌ ቈ൬ ௡ೕ௡ಹమೀ൰௜ െ ൬ ௡ೕ௡ಹమೀ൰௟௤ ή ሺͳ െ ݂ሻ቉ ൊ ݂              (2) 

where f is the degassing fraction, and (Bj) the partition coefficient of each gas, calculated at the run 145 

temperature (Trun) using the relations of Giggenbach (1980). The value of f was interactively 

changed until Equation 3 was satisfied:  

௚ܲ௔௦೅ೀ೅ ൌ σ ൬ ௡ೕ௡ಹమೀ൰௟௤௝ ή ு௝ܭ ൌ ௥ܲ௨௡ ሺat ௥ܶ௨௡ሻ                                                               (3) 

where PgasTOT is total pressure (as sum of partial pressure values of all j-th gas species) of degassed 

aqueous solution, (nj/nH2O)lq (derived from Eq.1) and KHj are the molar fractions and the Henry’s 150 

constant of j-th gas specie in degassed aqueous solution, respectively, and Prun is the run pressure. 

Prun was taken constant at 1.013bar for T<100°C runs, and equaled the water saturation pressure at 

the simulation-run temperature (Trun) in high-T (200-250°C) runs (Table 2). 

 

3. BACKGROUND 155 

  3.1 Hekla and Krýsuvík  

Hekla (Figure 1) is one of the most active and frequently erupting volcanoes in Iceland 

(Höskuldsson et al., 2007; Larsen et al., 1999), but the compositional signature of its magmatic 

gases, its magmatic gas output, and the structure of its magmatic-hydrothermal system, all remain 

very poorly known. This paucity of information reflects the absence of sustained gas vent emissions 160 

during quiescent intervals; consequently, degassing at Hekla has long been only indirectly 

investigated through analysis of groundwaters issuing at the base of the volcano (Flaathen and 

Gíslason, 2007; Flaathen et al., 2009; Gíslason et al., 1992). Warm (40-70 °C), diffuse degassing on 

the volcano’s summit emits ~14 tons of CO2-dominated volcanic gas/ day (Ilyinskaya et al., 2015). 

The Authors identified a magmatic origin for this gas based on C isotopes, and preliminary reaction 165 

path modeling suggested that these CO2-rich (S-poor) fluids may be the result of extensive 

scrubbing of deeply sourced magmatic volatiles into the Hekla groundwater system.  

The Krýsuvík geothermal area (Arnórsson, 1987), in the Reykjanes Peninsula (Figure 1a), is 

the surface expression of one of the several active hydrothermal systems in Iceland (Arnórsson, 

1995). Thermal manifestations include steam-heated hot springs and mud pools, extensive acid 170 

surface alteration, and steaming hot grounds (Markússon and Stefánsson, 2011). In the geothermal 

reservoir, being <1000m deep (Arnórsson et al., 1975) and 200-300°C in temperature (Arnórsson, 



1987; Arnórsson and Gunnlaugsson 1985; Poreda et al., 1992), the recharge meteoric fluids (with 

some minimal seawater contributions) react with host rock minerals in the presence of a deeply 

sourced (possibly magmatic) gas phase, acquiring the characteristic NaCl-composition of fully 175 

equilibrated hydrothermal brines (Arnórsson et al 2007; Giggenbach, 1988). Upon depressurization 

along faults and fractures, these reservoir fluids boil to produce the geothermal steams feeding the 

surface (~100°C) fumaroles (Arnórsson, 1995; Guðjónsdóttir, 2014; Poreda et al., 1992). These 

rising steams, upon shallow condensation, and oxidation of H2S to H2SO4, lead to intensive acidic 

alteration and to formation of SO4-rich steam-heated springs and pools (Markússon and Stefánsson, 180 

2011).  

 

3.2 The natural gas dataset 

Iceland is an ideal location to study gas-water-rock interactions because of widespread 

volcanic and geothermal activity in the presence of huge groundwater circulation. We use this end-185 

member environment to validate the use of our EQ3/6 models for simulating magmatic gas 

scrubbing at natural conditions. Although our models were specifically initialised (Tables 1-2) at 

conditions suitable for Hekla volcano and the Krýsuvík geothermal system, that are respectively 

examples of gas-water-rock reactions at shallow (<100°C) and deep-reservoir (200-250°C) 

conditions, we extend our model vs. natural sample comparison to volcanic gases released from the 190 

26 active volcano/hydrothermal systems in Iceland (Figure 1b and Table 3).  

The complex interactions between the Mid-Atlantic Ridge and an underlying mantle plume 

have controlled the location of volcanism in Iceland (Figure 1a): due to the westward American-

Eurasian plate boundary migration, relative to the stable Icelandic hotspot, volcanic activity has 

progressively migrated eastward (Garcia et al., 2003; Ward, 1971; Saemundsson, 1974), from the 195 

West Volcanic Zones (>3 Myr; Garcia et al., 2003) towards the today active rifts of the North and 

the East Volcanic Zones, hosting the currently most active volcanic systems (Figure 1a). The 

volcanic gases in our dataset (Table 3) include samples from both West and East-North Icelandic 

Volcanic Zones (Figure 1a). Their isotopic features (Arnórsson, 1986; Arnórsson and Barnes, 

1983), with their magmatic į13C(CO2) of ~ -2.5 to -4‰ (Barry et al., 2014; Marty et al., 1991; Poreda 200 

et al., 1992), and the 3He/4He isotopic ratios higher than MORB (from 8.5 to 20 Ra; Poreda et al., 

1992), reflect well the strong deep-mantle plume imprint.  

The natural gas compositions listed in Table 3 are based upon a review of published, data of 

hydrothermal fumaroles and near-vent plumes in Iceland. This compilation has been extended with 

the results of new unpublished gas measurements (El, Gr in Table 3), obtained during field 205 

campaigns made for volcano monitoring at the Icelandic Meteorological Office within the context 



of the EU-FP7 project “Futurevolc” with a portable Multi-component Gas Analyzer System (Multi-

GAS; Aiuppa et al., 2005). We additionally list in Table 3 the compositions of well fluids (well 

steam, “WS”, and dissolved gases in reservoir waters, “WW”) collected from geothermal boreholes 

at depth (data source: Ármannsson et al. 1982; Arnórsson, 1986; Arnórsson and Gunnlaugsson 210 

1985; Arnórsson et al., 1975; Bjarnason, 2000; Guðmundsson et al., 1975). These borehole data 

provide constraints on reservoir fluid composition, prior to decompression boiling, and are therefore 

very useful independent tests for the validity of our model outputs.  

In the H2O/10-CO2-5STOT triangular plot of Figure 1b, the natural gas samples (Table 3) fall 

into three distinct compositional domains. The majority of the samples are the near-to-boiling steam 215 

vents/fumaroles, corresponding to the surface discharges of high-temperature (T>180°C), volcano-

hosted hydrothermal reservoirs. These samples are identified as “hydrothermal gases” in Figure 1b. 

Although a magmatic origin (from a MORB-mantle plume mixture) is implicated for both CO2 and 

noble gases, based on isotopic data (Barry et al., 2014; Ilyinskaya et al., 2015; Kurtz et al., 1985; 

Macpherson et al., 2005; Polak et al., 1976; Poreda et al., 1980, 1986, 1992), these gas samples 220 

show clear signs of hydrothermal derivation of the emitted fluids, including (Figure 1b): (i) very 

high H2O/CO2 ratios (often > 100 and up to 630), (ii) very low total sulfur contents (STOT < 0.3 % 

vol; CO2/STOT 1.9 - 61450), and (iii) dominance of H2S over SO2 (typically below detection). Data 

from the Krýsuvík geothermal system (Arnórsson, 1986, 1987; Arnórsson and Gunnlaugsson, 1985; 

Guðjónsdóttir, 2014) clearly fall into this category of H2O-rich hydrothermal steam samples (Figure 225 

1b). These compositions overall imply that vigorous interaction (re-equilibration) of magmatic 

fluids within hydrothermal reservoirs must have occurred (Arnórsson, 1983, 1986; Arnórsson and 

Gunnlaugsson, 1985; Barth, 1950; Sigvaldason, 1966). The very low sulfur concentrations, in 

particular, reflect extensive magmatic gas scrubbing at hydrothermal reservoir conditions 

(Arnórsson, 1986; Arnórsson and Barnes, 1983; Arnórsson and Gunnlaugsson, 1985; Ilyinskaya et 230 

al., 2015; Oskarsson, 1984). Deep-reservoir well fluids (WW and WS in Table 3), collected from 

geothermal boreholes at depth, also share similar H2O-rich and S-poor compositions (Arnórsson 

and Gunnlaugsson, 1985).  

A second group of “cold gases” (Figure 1b) essentially correspond to gas samples from Hekla 

volcano; these exhibit unusually CO2-rich compositions (H2O/CO2 of 1.2±1.4), that have been 235 

interpreted (Ilyinskaya et al. 2015) as reflecting even larger extents of magmatic gas scrubbing, 

occurring in a lower-temperature (< 100 °C) groundwater environment.  

Finally, “magmatic gases” are characterized by much higher STOT (>3% vol.), lower CO2/STOT 

(from 1.1 to 5) and H2O/CO2 (as low as 5; Table 3) ratios relative to hydrothermal steam samples, 

and prevalence of SO2 over H2S. Information on the chemistry of high-temperature magmatic gas 240 



emissions in Iceland is limited, and includes measurements made during only three volcanic 

eruptions (Surtsey in 1963 from Sigvaldson and Ellison, 1968; Eyjafjallajökull/Fimmvörduháls in 

2010 from Burton et al., 2010; and Bárðarbunga/Holuhraun in 2014-2015 from Burton et al., 2014; 

Gíslason et al., 2015; Pfeffer et al., 2015) (Table 3). Note that some of the most H2O-rich gases 

emitted during the early stages of the Bárðarbunga/Holuhraun eruption (Figure 1b) have been 245 

interpreted to reflect some extent of meteoric water entrainment in the plume (measured by the 

Multi-GAS) (Gíslason et al., 2015). 

 

4. MODELS OF MAGMATIC SCRUBBING: SEQUENCE OF COMPUTATIONAL 

OPERATIONS   250 

In order to explore scrubbing at different T-P conditions, we combined reaction path models 

(Sections 2.1, 2.2 and Appendices A and B) with degassing calculations (Section 2.3), to finally 

derive the chemical composition of both aqueous and gas phases formed after reaction of magmatic 

gases with hydrothermal solutions and host rock.  

The typical sequence of computational operations is illustrated in Figure 2. For a given model 255 

run type (e.g. “A_1-11” in Table 2), several distinct runs were carried out (see number of runs in 

Table 2). At the first simulation run, Run_1 in Figure 2 (e.g. A_1 run in Table 2), ng,run_1 moles of 

initial gas (Tg = 800 °C; Table 1) are added to 1kg of initial aqueous solution (Tw = 4.1 °C; Table 1) 

while ns moles of solid reactant are available to dissolve (see also Table 2). The temperature of the 

run Trun_1 (Figure 2) is either derived by enthalpy balance (for low-T model runs; see Appendix A) 260 

or a-priori fixed to fit geothermal reservoir temperatures (for high-T model runs).  

During the EQ6 model reaction path, gas and solids dissolve (at their specific rates; see 

Appendix A) and secondary solid phases precipitate (if reaching over-saturation). At the end of the 

run, EQ6 returns the chemical composition of a new aqueous solution (aqueous solution_1; Figure 

2) that, due to dissolution of the initial gas, has higher gas content than the initial aqueous solution 265 

(Figure 2). If a state of over-pressurization (PgasTOT > Prun) is reached, the excess gas is separated to 

a gas phase by single-step degassing, until a new equilibrium is attained (PgasTOT = Prun) (Section 

2.3). The chemical compositions of the released gas phase (separated gas phase_1 in Figure 2) and 

of the degassed liquid (degassed aqueous solution_1; Figure 2) are then obtained, the latter being 

then used as starting aqueous solution (Figure 2) in the following simulation run (Run_2; Figure 2).  270 

In Run_2 of the same model run type, ng,run_2 moles of initial gas (see also ng,run_n, in Table 2) 

are added to the starting aqueous solution (the solid reactant is kept at same amount as in Run_1; 

see also Table 2). The new reaction path calculations carried out in Run_2 (e.g. A_2 run in Table 2) 

occur at temperature Trun_2. At the end of this run, aqueous solution_2 is outputted by EQ6, which is 



again degassed in a single-step degassing (at Trun_2) in order to derive degassed aqueous solution_2 275 

and separated gas phase_2 (in Figure 2). Each EQ6 run simulation is run out until a target 

temperature is reached (see Appendix A).    

 

5. MODELING RESULTS 

We report results for 8 different model run types, which we use to explore magmatic gas 280 

scrubbing at different P, T conditions. As summarized in Table 2, all runs of a given type (e.g., A_1 

to A_11; Table 2) are initialized with identical input parameters (initial gas, solid reactants), except 

for the amount of initial gas added to the starting aqueous solution (Figure 2 and Table 2). 

Run types A to D (Table 2) are all designed to investigate reaction paths in the 14 to 106°C 

temperature range, but are conducted using different (relative) gas dissolution rates (Table 2; see 285 

Appendix A); these low-T model runs aim therefore at investigating scrubbing in shallow 

groundwater conditions.  

Run types E to H (high-T model runs; Table 2) are executed at temperatures of either 200 or 

250°C, to explore the effect of scrubbing at hydrothermal reservoir conditions.  

The same initial aqueous solution (Holm et al., 2010) and initial gas (Burton et al., 2010) 290 

(Table 1) are used throughout. We initialise our simulations with two distinct solid reactants, a 

basaltic glass from Hekla (model runs B-D; Table 2) and a basaltic glass from the Krýsuvík 

geothermal field (model runs E-H; Table 2) (Table 1). The total amount of solid reactants available 

to dissolve in each run (Table 2) were based on inter-granular porosities, and assuming pore spaces 

of the solid reactant are water-saturated (See Appendix A). Only minor fractions of the available 295 

rock is actually dissolved at the end of the runs (<2.85 and <0.35 moles at 200° and 250° C, 

respectively; Table 2). Model runs A_1-11 (Table 2) are conducted in the absence of solid reactant 

to explore scrubbing in a simple gas-water system. More details on the initialization of the runs are 

given in Appendix A. 

 300 

5.1 Aqueous solutions 

Figures 3-4 illustrate some selected results of our model simulations. These Figures 

demonstrate, in particular, the physical-chemical properties and chemical compositions of the 

model aqueous solutions (aqueous solution_n in Figure 2). We identify with circles model aqueous 

solutions derived from low-T (A-D) model runs, while stars represent aqueous solutions from high-305 

T (E-H) model runs.   

The model evolution of pH in the aqueous solutions is illustrated in Figure 3a. In the low-T 

model run, the pH of model aqueous solutions decreases as increasing amounts of initial gas are 



stepwise added to the system. The model aqueous solutions are far more acidic (pH<4) than the 

initial aqueous solution (blue square in Figure 3a), reflecting the dissolution of acidic magmatic 310 

gases. Model runs A_1-11, in which no solid reactants has been made available to interact with the 

starting aqueous solution (see Table 2), produce aqueous solutions that are more acidic (pH from 2 

to 1) than those obtained in model runs B-D (pH from 4 to 2). In contrast, neutral to basic (pH of 

~7.8-8.5) aqueous solutions are obtained at temperatures of 200 and 250°C (E-H model runs; Table 

2), due to the increased buffering role of dissolving solid reactants.   315 

Likewise pH, the redox conditions of our model aqueous solutions also exhibit drastic 

modifications (Figure 3b) in consequence of gas-water-rock interactions. While in high-T model 

runs the oxygen fugacity (expressed as Log fO2) was externally fixed by the empirical relation of 

D’Amore and Panichi (1980), this parameter was left free to vary during the low-T simulation runs. 

In these latter cases, very reducing redox conditions (Log fO2 ~ -70) are seen in response to the first 320 

addition (run_1; Figure 2) of magmatic gas (initial gas) to the initial aqueous solution (initial 

LogfO2 = -0.6) (see Figure 3b). Afterwards, along the sequence of simulation runs (of a given model 

run type), the Log fO2 of aqueous solutions progressively increases with temperature, up to Log fO2 ~ 

-47 at 106°C. This model evolution falls closely to the theoretical curve predicted by the H2S-SO2 

redox buffer of Giggenbach (1987).   325 

The chemistry of the aqueous solutions also evolves along the model reaction paths (Figure 

4). The relative abundances of major dissolved anions (Figure 4a) and cations (Figure 4b), in 

particular, exhibit substantial chemical modifications in response to the progressive addition of 

magmatic gas to aqueous solutions. In low-T model runs, as exemplified in Figure 4a by run D_1-5, 

model solutions evolve along a compositional trend, from the carbon-dominated composition of the 330 

initial aqueous solution (blue square) towards compositions enriched in sulphur (STOT = S- + SO4
2-)  

and, to a minor extent, chlorine (as Cl-) (Figure 4a). Overall, this compositional evolution reflects 

the rapid response of aqueous solution chemistry to dissolution of the S-Cl-rich initial gas. In 

contrast, in the same temperature range (from 14 to 106°C), no evident change is observed in 

dissolved cations (Figure 4b): all modelled aqueous solutions plot in the proximity of the Mg 335 

corner, and overlap with the composition of the initial aqueous solution.  

Results of the high-T model runs highlight that the addition of the initial gas at 200°C and 

250°C guides the model reaction paths towards net relative enrichments in dissolved Cl (see stars in 

Figure 4a) at the expenses of sulphur and carbon. The latter are essentially removed by precipitation 

of S- (pyrite) and C-rich (carbonates) secondary minerals from model solutions at neutral to basic 340 

pHs. In terms of dissolved cations, 200-250°C modelled solutions have compositions that contrast 

with those obtained in low-T model runs. The high-T aqueous solutions exhibit the characteristic 



Mg-depletion trend, and alkali enrichment patter, that is typical of “mature” hydrothermal fluids 

having progressed towards a state of equilibrium (Giggenbach, 1988). Our modelled Na/K ratios 

(see stars in Figure 4b), in particular, are well consistent with those predicted at full-equilibrium 345 

conditions at run temperatures (as given by the full equilibrium line of Giggenbach, 1988). 

 

5.2 Gas phase 

The model-predicted evolution of gas phase composition is shown in Figures 5-6.  

In the low-T runs (A-D; Table 2), the model aqueous solutions reach over-saturation (PgasTOT 350 

> Prun) after addition of ~0.6 moles of gas (e.g., at ~14 °C) (Figure 5). For all the runs at T> 14°C, 

we calculate therefore the model evolution of the separated gas phase, e.g. the gas phase obtained 

after single-step degassing of the over-pressurized aqueous solutions formed by interaction with the 

initial gas (Section 2.3). Figure 6 shows these compositions, and demonstrates that these are 

manifestly dominated by CO2(g) (from 97 to 74% in vol.) for temperatures ≤80°C; at higher 355 

temperatures (80-106°C), water vapor exceeds CO2(g) to become the main gas species (H2O(g) = 60 – 

85 vol. %) (Figure 6). H2S(g) and HCl(g) are minor constituents of the modeled separated gas phase 

over the entire 14-106°C temperature range (Figure 6). At all (T < 106°C) conditions explored, 

H2S(g) and HCl(g) concentrations increase with increasing temperatures, implying more effective gas 

phase transport of both species in gas-rich environments. In contrast to CO2(g) and H2O(g), which 360 

exhibit overlapping trends for all low-T (A-D) run types, H2S(g) and HCl(g) appear more sensitive to 

the conditions at which model runs are conducted (see Table 2). For examples, HCl(g) 

concentrations are substantially different depending on if a solid reactant is present or absent in the 

simulation runs (Figure 6): model run type A (Table 2), in which the solid reactant is not present, 

outputs modeled HCl(g) concentrations that are more than one order of magnitude larger than 365 

obtained (at same temperature) in model run types B-D (solid reactants present; Table 2). Clearly, 

HCl(g) is more effectively transported in the gas phase in the extremely acidic conditions (Figure 3) 

that prevail in the solid reactant-free run. Similarly, the different input conditions of model run 

types (Table 2) lead to subtle (but still appreciable) variations in H2S(g) concentrations (Figure 6). A 

comparison of results of model runs types B-D, all made using the same input solid reactants 370 

(Table 2), shows that (at any given temperature), the H2S(g)-richest gas is obtained where the gas 

dissolution rate is higher (26 times rock dissolution rate, model runs D; Table 2).  

In the high-T run types (E-H), gas over-saturation is reached after ~0.2 (200 °C) to ~0.8 (250 

°C) moles of gas are added to 1 kg of initial aqueous solution (Figure 5). In the gas-poor regime, 

e.g. below the saturation threshold (of 0.2-0.8 moles), all gas added to model aqueous solutions 375 

remains in dissolved form. At higher gas contents, e.g. above the saturation threshold (>0.2 or >0.8 



moles), gas species partition between the aqueous solutions and a free vapor phase. In this latter 

case, the gas-phase composition of coexisting aqueous and vapor phase is computed (by single-step 

degassing, Eq. 2) and plotted in Figure 6. 

The dissolved gas compositions of model aqueous solutions, at both 200 and 250°C, contain 380 

relatively small amounts of dissolved CO2 (0.03 - 0.2 vol. %), H2S (~ 6·10-4 - 0.05 vol. %) and HCl 

(~ 8·10-12 - 3·10-8 vol. %). The lowest dissolved gas concentrations are of course obtained in the 

gas-poor model regime. The compositions of the separated gas phases (calculated only at 

conditions where a free gas-phase is formed) are also H2O-dominated (H2O(g) ~ 81-83 vol.%), but 

yet more rich in CO2(g) (~ 15 - 19 vol. %) and H2S(g) (~ 0.1 - 2 vol. %) than in the gas under-385 

saturated conditions. The neutral pH conditions of the 200-250°C model runs (Figure 3a) result in 

lower fractions of HCl(g) (from 7·10-10 to 6·10-8) in the separated gas phases, relative to 14-106°C 

runs (Figure 6). This model observation is consistent with HCl(g) being typically undetectable in 

hydrothermal steam samples (Chiodini and Marini, 1998).   

 390 

5.3 Secondary minerals formed 

A range of secondary mineral phases is allowed to form in the reaction path model runs, 

when/if reaching saturation in model aqueous solutions. Our low-T model runs predict the 

formation of large amounts of carbonates and pyrite, which act as sinks of carbon and sulphur from 

model solutions. In the same model runs, the minerals chalcedony, kaolinite, smectites and zeolites 395 

are formed, and therefore control abundance of Si, Al and other cations leached from the solid 

reactant. This mineral assemblage agrees well with observed alteration mineral paragenesis in low-

T (<100°C) hydrothermal fields (Flaathen et al., 2009; Markússon and Stefánsson, 2011; Gysi and 

Stefánsson, 2011). Calcite and pyrite are also predicted to precipitate in our high-T model runs. In 

this 200-250°C temperature range, chalcedony is replaced by quartz and smectites by chlorite in the 400 

model secondary mineral assemblage. High-T zeolite varieties (e.g. wairakie, scolecite), albite, K-

feldspar and epidote are also formed in the last stages of the reaction path of our high-T model runs. 

These alteration mineral assemblages, predicted by our high-T model runs, match well experimental 

results from Gysi and Stefánsson (2012), and are consistent with the observed distribution of 

hydrothermal minerals in boreholes from Krýsuvík (Arnórsson, et al., 1975) and Krafla 405 

(Ármannsson et al., 1982).    

 

6. DISCUSSION 

Quantitative models of magmatic gas scrubbing have increasingly grown in popularity in the 

geological literature (Marini and Gambardella, 2005; Symonds and Reed, 1993) since it became 410 



clear that reactions between magmatic gases and aquifers play a key control on the chemistry of 

fluids released by quiescent volcanoes (Doukas and Gerlach, 1995; Symonds et al., 2001). 

However, due to the complexity of reaction pathways, and the relatively high number of unknown 

variables, model results have been difficult to match against natural volcanic gas compositions, and 

model applications to real volcano case studies have remained few in number (Di Napoli et al., 415 

2013; Shinohara et al., 2015; Symonds et al., 2001; Werner et al., 2012).  

The EQ3/6 (Daveler and Wolery, 1992; Wolery and Daveler, 1992) reaction path modelling 

approach (Helgeson, 1968; Helgeson et al., 1969), used here, offers a comprehensive theoretical 

scheme to quantitatively interpret mechanisms and pathways of the interaction between magmatic 

gases and meteoric/hydrothermal aqueous solutions. One major advantage offered by EQ3/6 is its 420 

flexibility, including the possibility to initialise runs with a set of input parameters including mass, 

chemical composition and reaction thermodynamic/kinetic data of all the involved reactants that can 

be adapted to real volcano conditions. In this work, we show that EQ3/6 model runs, if suitably 

initialised with a proper set of input parameters (Tables 1-2), generate results that are in fair 

agreement with measured fluid emissions (gas and thermal water) from Icelandic volcanoes. 425 

 

6.1 Scrubbing in groundwater environments 

Our low temperature (< 106 °C) model runs aim at quantitatively modelling scrubbing of 

magmatic gases at shallow groundwater conditions. The separated gas phases outputted by our 

simulations (Figure 6) correspond to the gases that would escape from aqueous solutions after they 430 

have interacted with (and have become enriched in) magmatic gases. Low-T simulations predict a 

range of separated gas compositions (Figure 6), depending on temperature, regime (high gas vs. 

low gas) and phase relations (gas+water vs. gas+water+rock) at which reactions occur.  

To test if these models offer a realistic representation of natural conditions, we compare their 

results with natural gas compositions from Hekla volcano (Ilyinskaya et al., 2015). We initially test 435 

if the range of gas CO2/STOT ratios (with STOT = H2S(g)+SO2(g)) predicted by our low-T model runs 

match the compositional range of Hekla volcanic gas samples. This comparison is made in Figure 7, 

where the characteristic volcanic gas CO2/STOT ratios (µ±1Table) for several 

volcanic/hydrothermal systems in Iceland (including Hekla) are plotted against the corresponding 

discharge or deep reservoir temperature. Recent works have demonstrated a negative temperature 440 

dependence of the gas CO2/STOT ratio in several volcanic regions, including Kamchatka (Aiuppa et 

al., 2012), Italy (Aiuppa et al., 2013), Chile (Tamburello et al., 2014), and Central America (Aiuppa 

et al., 2014). This dependence, arising from the commonly high CO2/STOT ratios measured in cold 

gas samples worldwide, has been suggested to reflect the high extents of sulfur scrubbing that affect 



the feeding magmatic gas phase at the low-temperature end of the gas population. We show (Figure 445 

7) that Icelandic gases do not make exception to the general rule, given the very high (>103) 

CO2/STOT ratios seen in low-T (<100°C) gas samples from Hekla and Grímsvötn (Hk and Gr in 

Figure 7), all well above the magmatic gas range (CO2/STOT ratios of 1.13±0.49 (Holuhraun), 

1.2±0.8 (Surtsey) and 5 (Fimmvörduháls); see Table 3).  

Our low-T models runs (run types A-D) provide quantitative constraints in support to the 450 

scrubbing hypothesis. We find that the model-predicted CO2/STOT ratios in the low-T (4-106 °C; run 

types A-D) separated gas phases form a compositional band, stretching along the upper-left portion 

of Figure 7, which perfectly overlaps with the compositions of the Icelandic cold gas samples. Our 

low-T model runs are designed to represent the natural condition in which magmatic gases are 

injected into a (meteoric) groundwater system, leading to nearly complete scavenging of soluble S 455 

(and Cl) into the aqueous phase (see Figure 6). Therefore, the general agreement between model 

and observations confirm the conclusion (Ilyinskaya et al., 2015) that present-day Hekla gas 

emissions are the residual gases formed after extensive scrubbing of a deeply supplied magmatic 

gas phase into the volcano groundwater system. We here extend this argument to Grímsvötn (Gr in 

Figure 7) (measurements made at the Saltarinn hydrothermal site) where compositions (similar to 460 

Hekla) point to the occurrence of compatible processes (Figure 7). We also note that gas 

compositions from Eldfell volcano (El in Figure 7), in spite of their high discharge temperatures 

(257°C; Table 3), exhibit CO2/STOT ratios of 2603±1977 (Table 3), similar to those seen at “colder” 

systems (Hekla and Grímsvötn). We argue that relatively high vent temperatures at Eldfell do not 

reflect large magmatic gas contributions (which, in light of our model results, appear instead 465 

limited), but, rather, are related to residual cooling of the recently formed (Heimaey 1973 eruption) 

volcanic cone. 

Figure 8 extends our model vs. natural gas comparison to the H2O-CO2-STOT system. In the 

diagram, volcanic-hydrothermal gas samples from Iceland form a single compositional array, 

extending from (i) the CO2-dominated compositions of “cold gas” samples (Hekla and Grímsvötn) 470 

and Eldfell, to (ii) the low CO2/STOT ratio compositions of “magmatic gases” (Surtsey, 

Eyjafjallajökull/Fimmvörduháls and Bárðarbunga/ Holuhraun). Hydrothermal steam samples, both 

from Krýsuvík and other hydrothermal areas in Iceland, exhibit intermediate CO2/STOT ratios, and a 

tendency toward more H2O-rich compositions (H2O/CO2 ratios of 2 to 950).  

In Figure 8a, the model predicted H2O/CO2 vs. CO2/STOT compositions of low-T model runs 475 

(run types A-D) show very nice agreement with observed volcanic gas compositions at Hekla. They 

also overlap with the natural gas emissions from Eldfell, with volcanic gases emitted at Grímsvötn 



being only slightly more H2O-rich. This overall agreement provides additional confidence on our 

low-T model simulations.  

 480 

6.2 Scrubbing in hydrothermal environment 

High-T model runs attempt at investigating scrubbing conditions within hydrothermal 

systems. To validate the general applicability of the model to real (natural) conditions, we compare 

(in Figures 7-8) model outputs with measured reservoir (waters and steam) and surface (e.g., 

fumaroles and steaming pools) fluids manifestations from Krýsuvík, and other Icelandic 485 

hydrothermal systems.  

 

6.2.1 Model vs. observations: dissolved gases in reservoir fluids 

Our high-T model runs (E-H; Table 3) suggest that, for low gas additions, no gas over-

pressure is reached (Figure 5), so that all gas is retained by model aqueous solutions (here 490 

reproducing reservoir waters) in dissolved form (dissolved gas in Figures 6-7). Geologically, this 

condition reflects the case in which magmatic gases are totally scrubbed to reservoir fluids during 

hydrothermal interactions. As more gas is added to the system (Figure 5), gas species are eventually 

partitioned between dissolved gas in the aqueous solution and a coexisting equilibrium gas phase. 

This separated gas phase is obviously more CO2- and H2S-rich than the coexisting aqueous 495 

solution (dissolved gas in reservoir water) (Figures 6 and 8b). 

 The dissolved gas composition of our modeled solutions (Figure 6) is compared in Figures 7 

and 8b with compositions of hydrothermal reservoir waters sampled in geothermal boreholes 

(Ármannsson et al. 1982; Arnórsson, 1986; Arnórsson and Gunnlaugsson, 1985; Arnórsson et al., 

1975), which are obvious geological proxies for this process in nature. We find that the dissolved 500 

gas compositions obtained in our high-T (run types E-H) models satisfactorily reproduce the 

CO2/STOT ratio range (from 2.3 to 64) of hydrothermal reservoir waters (WW in Table 3), which are 

intermediate between magmatic gas (1.4-5.0) and cold-gas (>103) compositional domains (Figure 

7). Obviously, the higher temperatures concur to augmented gas-phase sulfur transport (relative to 

CO2, and to low-T models). More in the specific, the 250°C model predicted CO2/STOT ratios (4-64) 505 

match well the (observed) compositions (CO2/STOT from 4 to 92) of hydrothermal reservoir waters 

from Krýsuvík (Arnórsson et al., 1975; Guðmundsson et al., 1975) which reservoir temperatures 

(250-260°C; Arnórsson et al., 1975; Poreda et al., 1992) are in the range of model run temperatures 

(Figure 7).  

The model also predicts well the range of dissolved gas contents of hydrothermal reservoir 510 

waters (WW in Table 3), as seen by the overlapping H2O/CO2 ratio compositions of model and 



natural (reservoir water) fluids in Figure 8b. Good agreement is observed, in particular, between 

H2O/CO2 ratios compositions of model solutions and reservoir waters from Krafla, Námafjall, 

Reykjanes and Svartsengi (Figure 8a and Table 3). Overall, this nice match between modeled and 

natural compositions testifies for the ability of our models in reproducing real natural conditions of 515 

magmatic-hydrothermal interactions. We however find that our models apparently over-estimate 

(by a factor ~ 10) the gas content in Krýsuvík reservoir waters (measured H2O/CO2 ratios of ~ 

40,000 vs. < 3600 in the modeled aqueous solutions). Although we have no unequivocal 

explanation for this (relatively minor) mismatch, we speculate that some artifact during field 

sampling of reservoir waters may be implicated, because as stated by Arnórsson et al. (1975) in his 520 

Krýsuvík study on borehole fluids “…when the sample is released from the sampling apparatus 

and transferred to the sample bottle, some of the volatiles may escape, and the results….are not 

considered reliable with respect to these compounds (CO2 and H2S)”. 

 

6.2.2 The chemistry of hydrothermal steam samples, and the effect of boiling 525 

Our models above reproduce interactions between magmatic gases and hydrothermal waters 

at reservoir conditions. While such magmatic gas scrubbing reactions, followed by equilibration 

with host rock minerals (Arnórsson, 1995; Arnórsson et al., 1983; Giggenbach, 1988; Reed and 

Spycher, 1984; Stefánsson and Arnórsson, 2000, 2002), contribute to determine hydrothermal 

reservoir fluid compositions, surface steam discharges have instead compositions that are 530 

determined by boiling of deep reservoir fluids in the up-flow zone (see Arnórsson, 1986, 1995; 

Chiodini and Marini, 1998; Giggenbach, 1980, 1993). At Krýsuvík, for example, Arnórsson (1987) 

used the results of gas sampling surveys, combined with calculations and models, to demonstrate 

extensive boiling of deep reservoir fluids in their up-flow zone (fractures and faults).  

In order to have boiling fully accounted for by our simulations, and therefore reproduce steam 535 

discharge compositions (Figures 8a and 8c), we used the equations of Chiodini and Marini (1998) 

to calculate the model compositions of gases formed by single-step boiling of our model aqueous 

solutions (see Figure 2), from their initial temperatures of 200-250°C down to 100°C. These 

“boiling” model lines, shown in Figure 7 and 8c, are found to perfectly overlap with the measured 

compositions of hydrothermal steam emissions at Krýsuvík, and at other systems in Iceland (e.g., 540 

Krafla). This nice agreement provides additional confidence on our model outputs. 

 

6.2.3 Model vs. observations: major element water chemistry 

The major element (anions/cations) compositions of reservoir and surface waters from 

Krýsuvík offer an independent test as for the applicability of our models to real case conditions. Our 545 



results demonstrate that extents and modes of magmatic gas scrubbing influence the major element 

composition of the interacting aqueous solutions; the question arises therefore if the model-

predicted water chemistry evolution path (Figures 3, 4) finds evidence in nature.  

In a series of key papers, Giggenbach (1984, 1988) demonstrated that the addition of hot 

magmatic gases to aqueous solutions is the prevalent source of dissolved anion species (SO4, Cl, 550 

HCO3) to volcanic groundwaters/hydrothermal brines, in addition to dissolving hydrothermal 

minerals (Arnórsson, 1983; Arnórsson et al., 2007). Interaction with hot, acidic magmatic gases also 

creates favourable conditions for the leaching of major rock forming cations (Na, K, Ca, Mg) from 

host rock formations. Giggenbach (1984, 1988) also distinguished two main environments of gas-

water-rock interaction: (i) a shallow groundwater environment, in which dissolution of 555 

magmatic/hydrothermal gases into fast circulating meteoric fluids leads to far-from-equilibrium 

acid leaching of host rock formations, ultimately generating thermal waters with Ca-Mg-SO4 

(“steam-heated groundwaters“), Ca-Mg-SO4-Cl (“volcanic groundwaters“), and/or Mg-HCO3 

(“peripheral groundwaters“) compositions, and (ii) a deep hydrothermal reservoir environment, in 

which more prolonged water residence time allows for equilibrium conditions to be reached in the 560 

gas-water-rock system, forming the so called “mature” Na-Cl hydrothermal brines (Giggenbach, 

1988).  

Figure 4 demonstrates that our model simulations reproduce well the two distinct (shallow vs. 

deep) environments of gas-water-rock interaction. The shallow environment of magmatic gas-

water-rock interactions is reproduced well by our low-T model runs, in which the modelled aqueous 565 

solutions evolve toward more acidic (Figure 3a), sulphate-rich (Figure 4a) compositions, starting 

from the original C-rich composition of the (meteoric-derived) initial solution. Ca and Mg prevail 

among cations in these low-T model aqueous solutions (Figure 4b). Although no thermal water 

sample from Hekla volcano is available to compare with our model results, we still argue that our 

low-T modelled aqueous solutions well reflect the general Ca-Mg-SO4-Cl compositional features of 570 

volcanic groundwaters (Giggenbach, 1988, 1993). 

The high-T model runs describe a distinct evolutionary path in Figure 4a; in which, after a 

transient increase in STOT (due to initial dissolution of the initial gas), the modelled aqueous 

solutions point toward Cl-rich compositions, because of S and C scavenging by hydrothermal 

minerals (pyrite, calcites and phyllosilicates) as gas-water-rock interactions advance. Concurrently, 575 

the modelled aqueous solutions transition, from the initially Mg-rich to more alkali-rich 

compositions, as the reaction path progresses (Figure 4b). We conclude that our model results well 

reproduce the maturation path of hydrothermal fluids, from acidic, far-from-equilibrium 

(“immature” after Giggenbach, 1988) Mg-rich solutions, towards neutral (Figure 3a) Na-K-Cl 



aqueous solutions (Figure 4) similar in composition to the “mature” hydrothermal reservoir waters 580 

found at Krýsuvík (Arnórsson et al., 1975) and elsewhere (Arnórsson et al., 1983). Importantly, we 

find that the Na/K ratios predicted by our model runs are not only consistent with those observed in 

the Krýsuvík hydrothermal reservoir samples, but also correspond to the expected Na/K ratios at 

full-equilibrium conditions (Giggenbach, 1988) at the run temperature.   

While, based on our model results, we confirm therefore that magmatic gas scrubbing is well 585 

implicated in the generation of Na-K-Cl chemistry of hydrothermal reservoir fluids, we are well 

aware that additional processes, including mixing and steam condensation, contribute to governing 

measured water compositions at Krýsuvík (Arnórsson, 1987; Markússon and Stefánsson, 2011). For 

example, reservoir waters sampled in boreholes (Arnórsson et al., 1975) show a range of salinities, 

and a number of them are colder (Figure 3a) and more C-rich (Figure 4a), implicating that mixing 590 

with shallower, meteoric fluids is a recurrent process at depth. This process is illustrated (in Figures 

3a and 4a) by families of mixing lines connecting our initial solution (our meteoric end-member) 

with model aqueous solutions from high-T runs. Reservoir waters find no surface expression at 

Krýsuvík (contrary to other hydrothermal systems, where neutral Na-Cl thermal springs are 

commonly encountered; Giggenbach, 1988). Instead, the majority of the surface waters at Krýsuvík 595 

are hot, acidic mud pools and springs with Ca-Mg-SO4-dominated compositions (Markússon and 

Stefánsson, 2011) (see Figure 4). These acidic fluids are thought to result from shallow-level 

condensation of rising hydrothermal steams (Arnórsson, 1987; Arnórsson et al., 1975; Markússon 

and Stefánsson, 2011). We used EQ3/6 to model dissolution of a typical Krýsuvík hydrothermal 

steam (99.44 vol. % H2O, 0.49 vol. % CO2, 0.11 vol. % H2S) into our initial solution (we assume 600 

the process occurs at 1.013 bar, 53-100°C and Log fO2 = 0.8), and obtain model solutions (“model 

steam-heated waters” in Figure 4a) that agree well with measured composition. This match again 

confirms utility and versatility of EQ3/6 in simulation hydrothermal processes. 

 

7. CONCLUSIONS 605 

We have here demonstrated that EQ3/6-based reaction path modeling is a powerful tool to 

quantitatively explore mechanisms and pathways influencing volcanic fluids. Our numerical 

simulations of gas-water-rock reactions, conducted at shallow-to-deep hydrothermal conditions, 

generate model results that are in good quantitative agreement with measured fluid (surface and 

reservoir) compositions in Iceland. We conclude that scrubbing is widespread, and that the 610 

magmatic gas phase, as it travels to the surface, is variably affected by scrubbing, in either 

hydrothermal (high-T) or groundwater (low-T) environment, to assume the compositional features 

seen exhibited by hydrothermal reservoir fluids and/or surface discharges.  



At hydrothermal reservoir conditions (temperatures of 200-250°C), our gas-water-rock 

reaction path models demonstrate that magmatic volatiles are variably (either completely or 615 

partially) scrubbed into reservoir waters. These simulations yield model aqueous solutions which 

dissolved CO2 and H2S contents are well consistent with those observed in natural samples 

(reservoir fluids sampled in boreholes). Our simulated aqueous solutions also have major element 

compositions (of Na-K-Cl type) that reflect well the hydrothermal maturation path, from 

“immature”, acidic Mg-rich waters, to mature neutral hydrothermal reservoir brines. We also show 620 

that single-step boiling of our 200-250°C aqueous solutions, down to 100°C, produces modeled 

steam compositions that match well the observed compositional range of natural hydrothermal 

steam discharges, including those of Krýsuvík. We also model condensation of this hydrothermal 

steam into a shallow meteoric aquifer, and obtain model solutions that are compositionally similar 

to the steam-heated groundwaters found in the field at Krýsuvík (Markússon and Stefánsson, 2011). 625 

Our low-T model runs are initialized in the attempt to simulate interaction of magmatic gases 

with a shallow hydrologic system, as possibly today occurring at Hekla volcano. We find that our 

model runs generate model gases with CO2-dominated compositions, matching well those of the 

Icelandic cold gas emissions from Hekla, Grímsvötn and Eldfell. 

We finally conclude that our EQ3/6-based models, once properly initialized, can open the way 630 

to investigating magmatic gas scrubbing in a variety of hydrothermal and volcanic contexts 

worldwide.  
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APPENDIX A 640 

Reaction path models and their input parameters 

Reaction path modelling is initialized via EQ3NR, the EQ3/6 module used to calculate 

speciation of the initial aqueous solution (see below and Table 1). This initial aqueous solution is 

then transferred to the EQ6 module to initiate the reaction path runs. The EQ6 input file also 

includes the compositions of gas and/or solid phases interacting with the initial aqueous solution, 645 

listed as reactant species (Table 1). The initial amounts (moles) of each different reactant (ng and 



ns; Table 2) is also specified in the input file. The mass of solid reactants (ns in Table 2) is 

calculated from the total volume of solids in contact with 1 kg of initial aqueous solution.  

The EQ3/6 model simulations were initialised by fixing a priori a suite of input parameters: 

(i) initial aqueous solution: this is the starting aqueous solution for the first run (e.g., A_1, 650 

B_1, etc.) of each run type (see Figure 2). We adopted as initial aqueous solution a low-salinity 

(Total Dissolved Solids, TDS = 300 mg/l) cold (T = 4.1 °C) water (Holm et al., 2010), which we 

consider as representative for the meteoric recharge of Icelandic aquifers (Table 1). In later runs 

(A_2, A_3, B_2, B_3…), the starting aqueous solution is the degassed aqueous solution (cfr. 

Section 2.3) formed in the previous run (A_1, A_2, B_1, B_2…) (see Figure 2 and Section 4). One 655 

kg of either the initial or starting aqueous solution was allowed to react with a set of reactants (gas 

and solids); 

(ii) initial gas: the initial gas is, by definition, the high temperature magmatic gas phase that 

reacts with (and partially dissolves into) each starting aqueous solution. There are unfortunately 

only a few compositional reports for high-temperature magmatic gases in Iceland, implying that the 660 

deep gas supply sustaining the activity of geothermal systems in Iceland is currently poorly 

determined (cfr. Section 3). We here take the gas measured by Burton et al. (2010) during the 

March 2010 Fimmvörduháls fissure eruption of the Eyjafjallajökull volcano as a proxy for high-T 

magmatic gas supply in Iceland. This Fimmvörduháls gas was thus selected as initial gas for our 

models (Tables 1 and 2). We are well aware, however, that the feeding magmatic gas in Iceland can 665 

be spatially and temporally variable, and that a more hydrous magmatic gas was for example vented 

during the Surtsey eruption in 1963 and, more recently, during the 2014-2015 Holuhraun eruption 

of the Bárðarbunga volcano (Gíslason et al., 2015; Pfeffer et al., 2015). Tests made using Surtsey or 

Holuhraun gas as initial gas in our model runs outputted model gas trends qualitatively similar 

(only slightly more water-rich) than those presented here. The amount (ng,TOT and ng,run  moles) of 670 

Fimmvörduháls initial gas added to the starting aqueous solution in each run type, and per run, is 

reported in Table 2.  

(iii) solid reactants: two different aquifer rocks were considered in our modelling as solid 

reactants (Table 1). A basaltic andesitic glass (SiAl0.31Fe0.17Mg0.08Ca0.13Na0.14K0.03O2.96; Wolff-

Boenisch et al. 2004), from the 2000 eruption of Hekla (Moune et al. 2006; 2007), was used in the 675 

low-T model runs (Tables 1 and 2); since no thermodynamic data are available for the aquifer rocks 

at Krýsuvík geothermal system, we selected a basaltic glass from Krafla volcano 

(SiAl0.32Fe0.24Mg0.17Ca0.22 Na0.09K0.01O3.18; Wolff-Boenisch et al. 2004), similar in composition to 

Krýsuvík basalts (Markússon and Stefánsson, 2011; Peate et al., 2009), for our high-T model runs 

(Tables 1 and 2). Following Oelkers and Gíslason (2001), we assume that only a hydrated surface 680 



layer (enriched in Si, Al and OH groups) of the basaltic glass equilibrates with leaching solutions. 

We therefore initialized our modelling using the following solid reactants: “Hyd-Hekla-glass” 

(SiAl0.31O2(OH)0.93) and“Hyd- Krýsuvík-glass” (SiAl0.32O2(OH)0.96) (Tables 1 and 2), which 

correspond to hydrated volcanic glasses of, respectively, a basaltic andesite from Hekla and a basalt 

from Krafla (Wolff-Boenisch et al., 2004). These reactants dissolve according to the following 685 

reactions (Eq. A1-A2):   

Hyd- Hekla -glass + 0.93H+= SiO2 + 0.93H2O + 0.31Al3+                                                  (A.1) 

Hyd-Krýsuvík-glass + 0.96H+= SiO2 + 0.96H2O + 0.32Al3+                                               (A.2) 

The total amounts of solid reactant interacting with 1 kg of starting aqueous solution, listed 

in the EQ6 input file, were computed using effective inter-granular porosities of 0.3 (Hekla) and 690 

0.11 (Krýsuvík; Arnórsson et al., 1975). We assume that pore spaces of the solid reactant are water-

saturated, and we use densities of 2.79 g/cm3 and 3.04 g/cm3 for respectively Hyd-Hekla-glass and 

Hyd-Krýsuvík-glass (Wolff- Boenisch et al., 2004). A total of 77.26 mol of Hyd-Hekla-glass and 

289.23 mol of Hyd-Krýsuvík-glass were used respectively in low-T and in high-T model runs 

(Table 2).  695 

In order to include the rock-forming metals not included in the hydrated glass compositions 

(see Eq. A.1-A.2 and Table 1), we used two different special reactants (Wolery and Daveler, 1992), 

here referred as Hekla-glass-cations and Krýsuvík-glass-cations (Table 1). Each special reactant is 

entered in the EQ6 input file in same amount as the corresponding hydrated glass (77.26 mol of 

Hekla-glass-cations and 289.23 mol of Krýsuvík-glass-cations; see Table 2), and its composition is 700 

specified as moles of metals per mole of special reactant (see Table 1).  

(iv) kinetic data: In order to allow our reaction path modeling to run in time mode, the kinetic 

parameters for each reactant (gas and solid) must be fixed in the input file. Kinetic parameters of 

dissolution-precipitation reactions are fixed by a specific rate law in the EQ6 input file. For 

irreversible reactions involving solid phases, the Transition State Theory (TST) rate law (Wolery 705 

and Daveler, 1992), which is a function of aqueous solution chemistry (Table A.1), was used.  

Consequently, the input file was implemented with the dissolution rate constant (k; mol∙cm-2∙s-1), 

the apparent activation energy (Ea; kcal∙mol-1) (Gíslason and Oelkers, 2003), and the total surface 

area (s; cm2 ) (derived from measured BET specific surface area; Wolff-Boenisch et al., 2004) for 

both Hyd-Hekla-glass and Hyd-Krýsuvík-glass (see Table A.1). Special reactants were set to 710 

dissolve at the same rate as the corresponding solid reactant (relative rate equal to 1; cfr. Section 

2.1) for both Hekla-glass-cations and Krýsuvík-glass-cations (Table A.1).  

The initial gas dissolves into the aqueous solution at a rate that is unknown (as a function of 

parameters such as the gas flux, or the gas/water ratio etc.), but in any case faster than that of 



basaltic glass (see below); in each simulation run, we therefore assumed a relative dissolution rate 715 

of the initial gas as being n times that of the solid reactant. A range of n values was explored 

(“initial gas relative dissolution rate” in Table 2).  

Since rate laws are entered in the EQ6 input file, the reaction path calculations have a defined 

time frame (simulations in time mode). 

(v) run pressure: in each single run (Table 2), pressure was taken as either 1.013bar (run types 720 

A-D) or as the water saturation pressure at run temperature (run types E-H).  

(vi) run temperature: in the low-T runs (run types A-D), we calculated (and entered in the 

input file) the temperature Trun_n of each single run (e.g. run_1 in Figure 2; A_1 run in Table 2) 

assuming enthalpy is conserved during mixing between the starting aqueous solution and the initial 

gas. We express the enthalpy balance as (modified from Spycher and Reed, 1988): 725 ܪ௦ǡ ೝ்ೠ೙̴೙ ൌ ௪ǡ்ೢ ήܪ ଵ଴଴଴ெௐೢ ൅ ݊௚ǡ௥௨௡̴௡ σ ௝ǡ்ೕܪ ή ௝ܺ௝                                           (A.3) 

where Hw,Tw and 1000/MWw are respectively enthalpy (J/mol) and amount (mol) of starting 

aqueous solution (here assimilated to pure water) at its temperature (Tw, °C); ng,run_n (mol) stands for 

the amount of initial gas added in the considered run (n), and Hj,Tj and Xj are, respectively, enthalpy 

(J/mol) and molar fraction of the j-th gas species in gas phase, at initial gas temperature (Tj, °C).  730 

From enthalpy Hs,Trun_n, run temperature (Trun_n) was calculated as:  

௥ܶ௨௡̴௡ ൌ െ͵ ή ͳͲିଵ଻൫ܪ௦ǡ்௥௨௡̴௡൯ସ െ ͳ ή ͳͲିଵଶ൫்ܪ௦ǡ்௥௨௡̴௡ ൯ଷ ൅ ͳ ή ͳͲି଼൫்ܪ௦ǡ்௥௨௡̴௡൯ଶ ൅ͲǤͲͳ͵ʹ ்ܪ௦ǡ்௥௨௡̴௡ ൅ ͲǤͲͳ                                                                                                               (A4) 

This relation is derived by combining the Denbigh’s (1971) enthalpy equation with the heat 

capacity power expression, proposed by Chase (1998). 735 ்ܪ௥௨௡̴௡ ൌ ೟ೝ೔೛೗೐ ൅்ܪ ቂܽ ቀ ௥ܶ௨௡̴௡ െ ்ܶ೟ೝ೔೛೗೐ቁ ൅ ௕ଶ ቀܶଶ െ ்ܶ೟ೝ೔೛೗೐ ଶቁ ൅ ௖ଷ ቀܶଷ െ ்ܶ೟ೝ೔೛೗೐ ଷቁ ൅ ڮ ቃ                                                                                                          
(A.5)  

This temperature is used (and kept constant) during each single run simulation. As shown in 

Figure A.1, the temperature of the degassed aqueous solutions (Figure 2) (corresponding to model 

run temperature) increases proportionally to the amount of initial gas added in the model run (Table 740 

2). The low-T run types (A-D) give rise in Figure A.1 to four overlapping model trends, that 

demonstrate that a total of 6.6 moles of initial gas are required to raise the model run temperature, 

from 4.1°C (the temperature of the initial aqueous solution; blue square in Figure A.1) to 106°C. 

The high-T model runs (E-H) were operated at constant temperatures of either 200 or 250°C 

(Table 2). These temperatures reflect the range of reservoir temperatures estimated/measured at 745 

Krýsuvík (Arnórsson, 1987; Arnórsson and Gunnlaugsson, 1985; Arnórsson et al., 1975). The 



enthalpy balance (Eq. A.3) is not used in high-T runs, because we assume conductive heating of 

recharge waters as they infiltrate through hot rocks formations of the hydrothermal system.    

(vii) redox conditions: redox conditions in hydrothermal reservoirs are known to be controlled 

by reactions involving redox couples (Chiodini and Marini, 1998). In our high-T model runs (Table 750 

2), we therefore fixed the oxygen fugacity (as Log fO2) using the empirical relation proposed by 

D’Amore and Panichi (1980). This redox buffering control is hardly extendable to shallow 

groundwater systems, and oxygen fugacity was not externally fixed in our low-T model runs 

simulations.  
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APPENDIX B 

Database implementation 

EQ6 uses thermodynamic data from the data0 database. Implementation of the original 

data0.com.R10 (Wolery, 1992a, 1992b) database was required, in order to include the new gas and 

solid reactants used in our modeling. Element compositions, dissolution reactions and equilibrium 760 

constants (as log K) at different T (from 0 to 300°C) were implemented for both initial gas and 

solid reactants (Tables 1 and 2). Equilibrium constants (log K) of the initial gas dissolution reaction 

were derived from dissociation of pure H2O(g), CO2(g), SO2(g) and HCl(g). For each solid reactant 

(Hyd-Hekla-glass and Hyd-Krýsuvík-glass; Table 1), we simply derived the equilibrium constants 

(log K) consistent with the dissolution reactions reported in Equations A.1-A.2, by summing 765 

(stoichiometrically weighted sum) the log K of amorphous silica and gibbsite hydrolysis reactions 

(Oelkers and Gíslason, 2001).  
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10. CAPTIONS 



Figure 1: (a) Simplified geological map of Iceland (modified from Thordarson and Larsen, 

2007), showing the location of the main volcanic and geothermal systems on which the gas dataset 

(Table 3) is based upon. RR, Reykjanes Ridge; RVB, Reykjanes Volcanic Belt; SISZ, South 

Iceland Seismic Zone; WVZ, West Volcanic Zone; MIB, Mid-Iceland Belt; EVZ, East Volcanic 1025 

Zone; NVZ, North Volcanic Zone; TFZ, Tjörnes Fracture Zone; KR, Kolbeinsey Ridge; ÖVB, 

Öræfi Volcanic Belt; SVB, Snæfellsnes Volcanic Belt; (b) Triangular plot of H2O/10-CO2-5STOT 

abundances in hydrothermal and magmatic gas samples from Iceland (for data source, see Table 3). 

STOT is total sulfur (e.g., H2S + SO2). Magmatic, hydrothermal and cold gas samples plot into 

compositionally distinct domains (see Text for discussion).  1030 

Figure 2: Sequence of computational operations to model magmatic scrubbing: combination 

of reaction path models (EQ3/6 model runs) with degassing calculations. Each model run listed in 

Table 2 is composed of a sequence of EQ3/6 runs; in each, ng,run_1  moles of initial gas and ns moles 

of solid reactant are added to a starting aqueous solution to initiate the model reaction path. 

Temperature (Trun) and pressure (Prun) conditions of each run are fixed a-priori (see Section 4 and 1035 

Appendix A). The new model solution (solution_1), obtained at the end of the reaction path, (if in a 

state of over-pressure: PgasTOT > Prun), is degassed (single-step degassing calculation routine; cfr. 

Section 2.3), until attainment of equilibrium (PgasTOT = Prun), thus obtaining the chemical 

compositions of degassed aqueous solution and separated gas phass. The resulting degassed 

aqueous solution is used as starting aqueous solution in the next run. This sequence of EQ3/6 run 1040 

simulations and degassing calculations are iteratively repeated (see Appendix A). 

Figure 3: (a) Model evolution of pH in the 8 different model runs (Table 2). In low-T model 

run (A-D, Table 2), the pH of model solutions decreases as increasing amounts of initial gas are 

added. The aqueous solutions modelled by high-T model runs (E-H; Table 2) are characterized by 

neutral to basic pH values, due to more effective dissolution of solid reactant, in the 200-250°C 1045 

temperature range. The pHs of high-T model aqueous solutions agree well with measured pH 

values of Krýsuvík reservoir waters (orange squares). Acidic steam-heated waters from the 

Krýsuvík geothermal system (sky blue squares) are best reproduced by a low temperature (< 100 

°C) steam-heating process, here illustrated by a yellow-coloured model line. This model trend was 

numerically simulated in EQ3/6 by stepwise adding increasing amounts (from 5 to 10 moles) of a 1050 

Krýsuvík hydrothermal steam into the initial aqueous solution (blue square) (cfr. Section 6.2.3); (b) 

Model evolution of redox conditions (as expressed by the logarithm of the oxygen fugacity, Log fO2, 

in bar). Reducing redox conditions (Log fO2 ~ -70) are produced in the low-T runs in response to the 

first addition of initial gas to the initial aqueous solution (Log fO2 = -0.6). Afterwards, the Log fO2 



of model aqueous solutions progressively increases with temperature, up to Log fO2 ~ -47 at 106°C. 1055 

In high-T model runs, oxygen fugacity was externally fixed by the empirical relation of D’Amore 

and Panichi (1980). Data sources in Figures (a): Arnórsson et al., 1975 [1]; Flaatheen and Gíslason, 

2007 [2]; Holm et al., 2010 [3]; Markússon and Stefánsson, 2011 [4]; Guðmundsson et al., 1975 

[5]. 

Figure 4: Model evolution of major anion (a) and cation (b) species in the different model 1060 

runs (Table 2). In low-T model runs, model aqueous solutions evolve, through the reaction path, 

from the carbon- magnesium-rich composition of the initial aqueous solution (blue square) towards 

compositions enriched in sulphur and, to a minor extent, chlorine (as Cl-), reflecting magmatic gas 

addition. No evident change is observed for dissolved cations (low-T model aqueous solutions all 

cluster on the Mg-corner). High-T model runs yield Na-K-Cl-rich aqueous solutions that match well 1065 

the compositions of the hottest hydrothermal reservoir waters sampled by boreholes at Krýsuvík 

(orange squares). Mixing lines between modelled Na-K-Cl solutions and cold waters (represented 

by initial aqueous solution – blue square) are illustrated by dashed lines. The acidic shallow waters 

of Krýsuvík are well reproduced by our steam-heating model line (see caption of Figure 3).   

 1070 

Figure 5: Scatter plot of total gas pressure (PgasTOT) of model aqueous solutions vs. the 

amount of initial gas added in the runs.  Run pressure (Prun; Figure 2) is fixed at 1.013bar in low-T 

model runs and as the water saturation pressure at run temperature (15.537 bar at 200°C and 39.736 

bar at 250°C) in high-T model runs (see also Appendix A). As a consequence of the addition of 

initial gas to the starting aqueous solution, total pressure of dissolved gases (PgasTOT = PH2O + PCO2
 1075 

+ PH2S +…) in the model aqueous solutions increase, and over-saturation is eventually reached 

when PgasTOT exceeds Prun. Saturation is achieved at ~0.6mols of gas added in low-T runs; 

similarly, over-pressured solutions are obtained by addition of >0.2 moles (200°C) or >0.8 moles 

(at 250°C). 

 1080 

Figure 6: Temperature-dependent model evolution of the composition of model gases. Upon 

increasing temperatures, the model separated gas phase changes from CO2-dominated (for 

temperatures ≤80°C) to H2O-dominated (temperatures in the 80-250°C range). In low-temperature 

runs, separated gas are depleted (by gas scrubbing) in sulphur (as H2S(g)) and chlorine (as HCl(g)), 

relative to the composition of the initial gas. For the high-T runs, the plot illustrates the 1085 

compositions of both (i) dissolved gases in model aqueous solutions (model reservoir waters), and 

(ii) the free gas phase (separated gas) released from high-T model solutions (the free gas is formed 



by single-step separation of model solutions when the gas overpressure threshold is reached; see 

Section 2.3). Sulfur gas-phase transport is enhanced at 200-250°C, while HCl(g) preferentially 

partitions into aqueous solutions even in such extreme conditions.  1090 

 

Figure 7: Modeled vs. natural gas compositions at match. Volcanic gas CO2/STOT ratios 

(mean - µ; Table 3) in surface gas discharges and borehole fluids from Icelandic 

volcano/hydrothermal systems, plotted against temperature. For cold gas samples (Hk and Gr; Table 

3) and hydrothermal steam vents (fumaroles; squares in Figure), the surface discharge temperatures 1095 

are used. The steam samples (WS, crosses in Figure) and deep reservoir water (WW, stars in 

Figure), collected in boreholes, are plotted at their sampling temperatures (200-340°C). For 

reservoir waters, the CO2/STOT ratios refer to the dissolved gas phase. The CO2/STOT ratios of the 

model gases (calculated from the results in Figure 6) are shown for comparison, demonstrating 

reasonable agreement with observed gas compositions (model curve identification codes are from 1100 

Table 2). Low-T run model separated gases correspond to the compositions of Icelandic cold gas 

samples; while high-T model runs output model gas compositions that reproduce well the CO2/STOT 

ratio range of Icelandic hydrothermal reservoir fluids (steam and dissolved gas in reservoir waters). 

Gas ratios in surface fumaroles are matched by compositions of gases formed by boiling at 100°C 

of high-T (200-250°C) model aqueous solutions.        1105 

 

Figure 8: Modeled vs. natural gas compositions at match. Scatter plot of volcanic gas 

CO2/STOT ratios vs. H2O/CO2 ratios in surface gas discharges and borehole fluids from Icelandic 

volcano/hydrothermal systems. The model-derived compositions of gas phases (calculated from 

model results in Figure 6) are shown for comparison, and demonstrate good agreement with 1110 

observed gas compositions. (a) Model curves obtained in low-T run model runs (Table 2) 

demonstrate H2O-poor, CO2-rich compositions matching those of Icelandic cold gas samples. (b) 

High-T model runs (Table 2) output model aqueous solutions (model curves shown; see legend) that 

reproduce the dissolved gas phase composition of Icelandic reservoir waters, collected in deep 

boreholes; in the same panel, the composition of the equilibrium free gas phase separated from 1115 

high-T model solutions (separated gas) is also indicated (see Text) (c) Model compositions of gases 

formed by boiling of 200-250°C model aqueous solutions, down to 100°C; these model gases 

overlap the compositional range of Icelandic hydrothermal steam samples (shown in (a)), and fit 

well the compositions of fumarolic steam discharges at Krýsuvík.  

 1120 



Figure A.1: Model run temperature (Trun) vs. amount of initial gas (mol) added per run. In 

low-T model runs, the temperature of each single run (Trun_n) (see also Figure 2) is calculated by 

enthalpy balance, according to Equation A.3. Trun increases proportionally to the moles of initial 

(magmatic) gas added to the starting aqueous solution (Table 2). Results for each run (e.g., A_1, 

A_2…; Table 2) and model run types (A-D; Table 2) are plotted (see legend), and describe four 1125 

overlapping model trends. 6.6 moles of initial gas are required to raise the model run temperature 

(Trun), from 4.1°C (the temperature of the initial aqueous solution; blue square) to 106°C.  

 

 



Table 1: Chemical composition of the aqueous solution and reactants (gas and solids) used to initialized the reaction path modeling here presented. 

AQUEOUS SOLUTION GAS REACTANT SOLID REACTANTS 

sample RB1E(2) 
Fimmvörduháls fissural eruption 
from Eyjafjallajökull volcano(1) 

basaltic andesitic glass(3)
 basaltic glass (3)

 

initial aqueous solution initial gas Hyd-Hekla-glass (solid reactants) Hyd-Krýsuvík-glass (solid reactants) 

Tw 4.1 °C Tg 800°C SiAl0.31O2(OH)0.93 SiAl0.32O2(OH)0.96 

Eh 0.8 Volt H2O 81.49 % in vol. 
  

pH 7.7  CO2 15.28 % in vol. Hekla-glass-cations (special reactant)
(*)

 Hyd-Krýsuvík-glass (special reactant)
 (*)

 

SiO2 21.71 mg/l SO2 3.06 % in vol. Fe 0.174 mol Fe 0.240 mol 

Na
+
 42.14 mg/l HCl 0.18 % in vol. Mg 0.076 mol Mg 0.170 mol 

Ca
2+

 18.99 mg/l 
  

Ca 0.130 mol Ca 0.220 mol 

K
+
 2 mg/l 

  
Na 0.142 mol Na 0.090 mol 

Mg
2+

 17.395 mg/l 
  

K 0.030 mol K 0.008 mol 

HCO3
-
 3.20∙10-3

 mol/kg 
  

O 0.029 mol O 0.223 mol 

Cl
-
 9.75 mg/l 

      
NO3

-
 (as NH3aq) 3.22∙10-6

 mol/kg 
      

SO4
2-

 22.8 mg/l 
      

Al
3+

 0.016 mg/l 
      

Fe
2+

 0.015 mg/l 
      

(1)
 Burton et al. (2010); 

 (2)
 Holm et al. (2010); 

 (3) 
Wolff-Boenisch et al. (2004); 

 (*)  
special reactant chemical composition (see Appendix A for details) 



 

Table 2:  The 8 model run types. For each type, the table lists the number of runs performed, the run temperature range (Trun), the run 

pressure (Prun) and the solid reactants used. The amount of initial gas added in each run (ng,run) and the initial gas relative dissolution 

rate are also indicated. Note that of the large amounts (ns) of solid reactants available to dissolve in each model run type (from 77.26 

mol to 289.23 mol), only a small fraction is actually consumed in the runs (listed in the column "consumed"). See Text and Appendix A 

model number  model run  model run  initial gas initial gas added  initial gas relative  solid reactant solid reactant  solid reactant "consumed" 

run ID of runs Trun (°C) Prun (bar)  (ng,TOT; mol) per run (ng,run; mol) dissolution rate(*) type (ns; mol) at each run (mol) 

LOW TEMPERATURE MODEL RUNS 

A_1-11 11 14-106 1.013 6.6 0.6 1 none none none 

B_1-5 5 14-106 1.013 6.6 (0.6 at the first run) 1.5  25.45 
Hyd_Hekla_Glass(1) 77.26 0.022-0.059 

Hekla-glass-cations(1) 77.26 0.022-0.059 

C_1-5 5 14-106 1.013 6.6 (0.6 at the first run) 1.5 25.50 
Hyd_Hekla_Glass(1) 77.26 0.022-0.059 

Hekla-glass-cations(1) 77.26 0.022-0.059 

D_1-5 5 14-106 1.013 6.6 (0.6 at the first run) 1.5 26.00 
Hyd_Hekla_Glass(1) 77.26 0.022-0.059 

Hekla-glass-cations(1) 77.26 0.022-0.059 

HIGH TEMPERATURE MODEL RUNS 

E_1-7 7 200 15.537 2 (0.1 at the first run) 0.3 17 
Hyd_Krýsuvík_Glass(1) 289.23 0.19-2.85 

Krýsuvík-glass-cations(1) 289.23 0.19-2.85 

F_1-7 7 200 15.537 2 (0.1 at the first run) 0.3 100 
Hyd_Krýsuvík_Glass(1) 289.23 0.19-2.85 

Krýsuvík-glass-cations(1) 289.23 0.19-2.85 

G_1-7 7 250 39.737 2 (0.1 at the first run) 0.3 17 
Hyd_Krýsuvík_Glass(1) 289.23 0.17-0.35 

Krýsuvík-glass-cations(1) 289.23 0.17-0.35 

H_1-7 7 250 39.737 2 (0.1 at the first run) 0.3 100 
Hyd_Krýsuvík_Glass(1) 289.23 0.17-0.35 

Krýsuvík-glass-cations(1) 289.23 0.17-0.35 
(1) Wolff-Boenisch et al. (2004); 

 (*)
normalised to the solid reactant reaction rate (see Text and Appendix A for detail) 

 

 



Table 3: Chemical composition of Icelandic gas samples (expressed as % in vol.), along with gas CO2/STOT and H2O/CO2  (molar) ratios. For each volcanic-
hydrothermal system, the mean (µ) and deviation standard (1ı) of each parameter are reported. Discharge gas temperatures (Ts; °C) and/or estimated 
equilibrium temperatures (Teq; °C) are also listed for each gas manifestation. Natural gas samples include fumaroles, fumarolic plumes, and eruptive plumes. 
Geothermal borehole data include well steam (WS) samples and dissolved gases in reservoir waters (well waters: WW). Sampling techniques are also listed, 
and include direct sampling of the fumaroles, well steam and well water, and in-situ (Multi-GAS) or remote (FTIR) sensing of the near-vent plumes. 

Site 
Abbreviation and 

References 
Type 

Measurement 

technique 

H2O  

µ±1ı 

CO2 

µ±1ı 

H2S 

µ±1ı 

SO2 

µ±1ı 

HCl 

µ±1ı 

CO2/STOT 

µ±1ı 

H2O/CO2 

µ±1ı 
Ts 

Teq 

min-

max 

Askja As [5], [7] fumarole direct sampling 98.9±1 0.9±0.1 3.7·10-2±3·10-2   22.8±8 235±127 95  

Bjarnarflag Bj [5] fumarole direct sampling 99.1±0.6 0.4±0.2 2.1·10-1±6·10-2   1.9±1 348±248 95  

Eldfell El [18] fumarolic plume MultiGAS 79.4±11.9 20.6±11.9 1.3·10-2±1.1·10-2   2603±1977 5.5±3.8 257 270 

Eyjafjallajökull / 
Fimmvörduháls 

Fi [12] plume FTIR 81.5 15.3  3.06 0.17 5 5.3 1125  

Fremrinamur Fr [5] fumarole direct sampling 92.9 1 3.3·10-1   2.9 97.5 95  

Geysir Ge [7] fumarole direct sampling 99.6 0.2 7.6·10-4   209 627 95  

Grimsfjall Gr [18] fumarolic plume MultiGAS 83.9±26.4 16.1±26.4 6.1·10-3±2.2·10-3   5197±6812 11.6±43.4 94  

Hekla Hk [16] fumarolic plume MultiGAS 35.6 64.4±27.8 8.2·10-3±1.7·10-2   61451±78690 1.23±1.4 33.2  

Hengill_WS He_WS [7] well steam direct sampling 99.9 0.05 2.8·10-2±2.7·10-2   4.2±3 8345±7171 253 215-
290 

Hengill He [7] fumarole direct sampling 99.1 0.7 9.1·10-2   7.6 143 95  

Holuhraun Ho [14], [15], [17] plume FTIR - MultiGAS 96±2.2 2.1±1.3 1.9±1 0.03  1.13±0.49 75.8±53.7 1125  

Hveragerdi_WW Hg_WW [6] well waters direct sampling 100 0.01 8.2·10-4±4·10-4   6.1±1 27770±15452 201 182-
230 

Hveragerdi_WS Hg_WS [6], [9] well steam direct sampling 99.9 0.06 7.1·10-3±1.8·10-3   8.9±5 2140±1003 204 182-
230 

Hveragerdi Hg [6] fumarole direct sampling 99.8±0.1 0.19±0.1 7.6·10-3±4·10-3   34.4±30 600±222 95 182-
230 



Hveravellir Hv [5], [6] fumarole direct sampling 99.3±0.9 0.11 9.6·10-2±1.1·10-1   18.3±13 950±250 95  

Kerlingarfjöll Ke [5], [7] fumarole direct sampling 99.4±0.1 0.38±0.1 6.6·10-2±3·10-2   6.8±3 274±56 95  

Köldukvíslarbotnar Ko [7] fumarole direct sampling 99.5 0.4 1.8·10-2   23.8 235 95  

Krafla_WW Kf_WW [4], [6], [7], [9] well waters direct sampling 99.2±1 0.7±0.8 2.1·10-2±2.3·10-2   48.2±52 2143±6541 288 190-
340 

Krafla_WS Kf_WS [4], [6], [9] well steam direct sampling 99.1±1 0.8±0.9 2.3·10-2±2.8·10-2   47.9±46 1179±2546 326 190-
340 

Krafla Kf [5], [6] fumarole direct sampling 91.9±6.8 6±5.2 1.4·10-1±1·10-1   58.9±42 29±26 95  

Krýsuvík_WW Kr_WW [2], [3], [9] well waters direct sampling 100 3·10-3 1.9·10-4   65.1±80 38084±7505 157 267 

Krýsuvík_WS Kr_WS [11] well steam direct sampling 99.7 0.2 1.9·10-4±1.9·10-4   2.1 421   

Krýsuvík Kr [6], [7], [8], [13] fumarole direct sampling - 
MultiGAS 

99.2±0.7 0.7±0.6 6.5·10-2±7·10-2   17.3±17 224±97 95  

Kverkfjöll Kv [5], [7] fumarole direct sampling 99.2±0.3 0.5±0.1 4.5·10-2±1·10-2   10.8±2 222±55 95  

Landmannalaugar La [6] fumarole direct sampling 99.6±0.5 0.3±0.5 2.2·10-2±2.8·10-2   15.7±7 628±343 95  

Námafjall_WW Na_WW [6] well waters direct sampling 99.9 0.05 3.5·10-2±1.9·10-2   1.5 2617±1315 283 246-
320 

Námafjall_WS Na_WS [6], [7] well steam direct sampling 99.8 0.08 7.6·10-2±2.6·10-2   1.2 1428±566 302 246-
320 

Námafjall Na [6], [7] fumarole direct sampling 99.8±0.1 0.13±0.04 3.5·10-2±3·10-2   8±11 810±220 95  

Nesjavellir_WW Ne_WW [6] well waters direct sampling 99.9 0.1 3.7·10-2±1.9·10-2   4.4±3 972±188 281 271-
290 

Nesjavellir_WS Ne_WS [6] well steam direct sampling 99.7 0.2±0.1 9.4·10-2±3.8·10-2   3.4±3 490±204 284 271-
290 

Nesjavellir Ne [6] fumarole direct sampling 99.5±0.1 0.4 6.7·10-2±2·10-2   6.5±1 241±19 95  

Reykjanes_WW Re_WW [6] well waters direct sampling 100 0.02 9·10-4   21.9 5066 248 248-
285 



Reykjanes_WS Re_WS [6], [7], [9] well steam direct sampling 98.9 0.09 3.6·10-3±4.5·10-4   24.2±1 1175±201 267 248-
285 

Reykjanes Re [5], [6], [7] fumarole direct sampling 98.2±2.8 1.7±2.7 5.6·10-2±1·10-1   66.8±47 299±225 95  

Surtsey Su [1] fumarole direct sampling 87.8±4 4.1±3 4.1·10-1±2.8·10-1 3.03±0.62  1.2±0.8 52.6±58 1125  

Svartsengi_WW Sv_WW [6] well waters direct sampling 100 0.02 3.8·10-4±1.7·10-4   45.6±11 6654±1029 240 240 

Svartsengi_WS Sv_WS[6], [7], [9] well steam direct sampling 99.9 0.08 1.8·10-3±1.2·10-3   51.8±17 1861±1264 240 240 

Theistareykir Th [5], [7] fumarole direct sampling 99.4±0.1 0.3±0.1 7.6·10-2±3·10-2   4.1±1 386±117 95  

Torfajökull To [5], [7] fumarole direct sampling 99.6±0.3 0.3±0.2 2.6·10-2±3.0·10-2   20±10 408±204 95  

Vonarskard Vo [5] fumarole direct sampling 99.1 0.4 0.1   3.5 274 95  

[1] Sigvaldson and Ellíson (1968); [2] Arnórsson, et al., 1975; [3] Guðmundsson et al. (1975); [4] Ármannsson et al. (1982); [5] Oskarsson (1984); [6] Arnórsson and Gunnlaugsson (1985); 
[7] Arnórsson (1986); [8] Arnórsson (1987); [9] Poreda et al. (1992); [10] Arnórsson (1995); [11] Bjarnason (2000); [12] Burton et al. (2010); [13] Guðjónsdóttir (2014); [14] Burton et al. 
(2014); [15] Gíslason et al. (2015); [16] Ilyinskaya et al. (2015); [17] Pfeffer et al. (2015); [18] This Study. 

 



















 

Table A.1: Kinetic parameters introduced in EQ6 input file for gas and solid reactants. These 

parameters control the dissolution-precipitation reactions occurring along the reaction path in a gas-

water-rock system. See Appendix A for details. 

reactants 

entered in 

EQ6 

input file 

as: 

dissolution 

rate 

dissolution rate 

constant  

(k; mol∙cm-2∙s-1) 

apparent activation  

energy (Ea; kcal∙mol-1) 

BET specific 

surface area 

(ABET; cm2/g) 

total 

surface 

area  

(s; cm2) 

Initial gas gas reactant 
relative rate 

1-100(1)   
  

Hyd-Hekla-glass 
solid 

reactant 
TST rate law 8.56∙10-11 (at 25°C) 6.09 (at 25°C) 1200 7.81·106 

Hekla-glass-cations 
special 

reactant 

relative rate 

1(2)  
-   

Hyd-Krýsuvík-glass 
solid 

reactant 
TST rate law 8.56∙10-11 (at 25°C) 6.09 (at 25°C) 1400 3.44·107 

Krýsuvík-glass-cations 
special 

reactant 

relative rate 

1(3)  
-  

 

(1)
 dissolution rate relative to Hyd- Hekla or Krýsuvík-glass rate; 

(2)
 and 

(3)
 are dissolution rates relative to Hyd-Hekla-

glass rate and Hyd-Krýsuvík-glass rate, respectively.
 
 




